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Abstract
We present several ideas in the direction of physical interpretation of q- and f-oscillators as
nonlinear oscillators. First we show that an arbitrary one-dimensional integrable system in
action-angle variables can be naturally represented as a classical and quantum f-oscillator. As an
example, the semi-relativistic oscillator as a descriptive of the Landau levels for relativistic
electron in magnetic field is solved as an f-oscillator. By using dispersion relation for q-oscillator
we solve the linear q-Schrödinger equation and corresponding nonlinear complex q-Burgers
equation. The same dispersion allows us to construct integrable q-NLS model as a deformation
of cubic NLS in terms of recursion operator of NLS hierarchy. A peculiar property of the model
is to be completely integrable at any order of expansion in deformation parameter around q = 1.
As another variation on the theme, we consider hydrodynamic flow in bounded domain. For the
flow bounded by two concentric circles we formulate the two circle theorem and construct the
solution as the q-periodic flow by non-symmetric q-calculus. Then we generalize this theorem to
the flow in the wedge domain bounded by two arcs. This two circular-wedge theorem determines
images of the flow by extension of q-calculus to two bases: the real one, corresponding to
circular arcs and the complex one, with q as a primitive root of unity. As an application, the
vortex motion in annular domain as a nonlinear oscillator in the form of classical and quantum
f-oscillator is studied. Extending idea of q-oscillator to two bases with the golden ratio, we
describe Fibonacci numbers as a special type of q-numbers with matrix Binet formula. We derive
the corresponding golden quantum oscillator, nonlinear coherent states and Fock–Bargman
representation. Its spectrum satisfies the triple relations, while the energy levels’ relative
difference approaches asymptotically to the golden ratio and has no classical limit.

Keywords: q-oscillator, NLS hierarchy, nonlinear oscillator, circle theorem, Fibonacci numbers

1. Introduction

The harmonic oscillator has played a central role in classical
and modern science, starting from the elementary pendulum
in the seventeenth century, when the ideas of Johannes Kepler
signified an important intermediate step between the previous
magic-symbolical and the modern quantitative-mathematical
description of nature [1]. At that time, the birth of classical
physics was caused by application of an abstract idea of
periodicity to a concrete variety of problems [2]. Wave theory
and Fourier series are some tools developed from this concept
in classical physics. But only in modern science have we
observed an essentially new qualitative transition from
dynamics to the oscillation theory. It was emphasized by
Mandelstam in lectures on oscillation theory [3] that the
difference between standard dynamics and the oscillation
theory is that in dynamics we are interested in a description of

what is going on in a given place at a given time, while in the
oscillation theory we are interested in the motion of the sys-
tem as a whole. In the classical mechanical picture of the
world, positions and velocities are primary objects, while
oscillations are the secondary ones. However, starting from
quantum mechanics, in which our knowledge of simultaneous
positions and velocities is restricted by the Heisenberg
uncertainty relations, this point of view has been drastically
changed. Wave mechanics affirms that the wholeness of the
quantum process is something of the same primacy as posi-
tion of a particle. And every particle is associated with some
stationary oscillation process. It is essential to note that
knowledge of phase of the particle and knowledge of the
stationary state are excluding from each other. The phase of
the particle (trajectory) in a single stationary state does not
exist, since any attempt to derive this phase switches the
system to another stationary state [4]. This way the basic
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characteristic of oscillation theory, as a consideration of the
process as a whole, comes to underlie the fundamental
questions of mechanics in the quantum world. This point of
view also influenced the modern theory of nonlinear dyna-
mical systems, studying the qualitative behavior of a system
in the phase space, its integrability properties and chaos [5].

In a recent development of quantum integrable systems,
the concept of a quantum group as a deformation of the Lie
group with deformation parameter q was discovered. The
notion of quantum q-oscillator as a q-deformed harmonic
oscillator was introduced in studies on the quantum Heisen-
berg–Weyl group [6–8]. This oscillator is related to so-called
symmetric q-calculus [11], while another version of q-oscil-
lator [9, 10] is related to non-symmetric q-calculus. The dif-
ference is in definition of q-number and several
generalizations of these numbers and oscillators with different
bases were found. In the large stream of articles devoted to q-
oscillator, here we would like to emphasize the set of papers
published by Man’ko and co-authors [12–14].

In these papers the physical approach to q-oscillator as a
nonlinear oscillator was developed. It was shown that it is an
oscillator with frequency depending on its energy in the form
of hyperbolic cosine function of the energy. The classical
motion of this nonlinear oscillator becomes descriptive of the
motion of a q-oscillator and the frequency of oscillations is
increasing exponentially with energy. By standard quantiza-
tion of this nonlinear system, the authors got a quantum q-
oscillator as a nonlinear quantum oscillator with anharmoni-
city described by power series in energy. Then they gen-
eralized the approach to an arbitrary energy dependence of
frequency and called it as the f-oscillator. In fact, in addition
to frequency, any constant parameters in some exactly sol-
vable system can be replaced by integrals of motion. This idea
in some sense continues Diracʼs approach to fundamental
constants as a simple functions slowly varying in time. The
slow variation of parameters can be implemented by adiabatic
invariants and integrals of motion, with corresponding
quantization. Then starting from any integrable system one
can replace parameters of the system by integrals of motion
and get the hierarchy of integrable systems from the
given one.

In the present paper we develop several ideas as a var-
iations on such approach to q- and f-oscillators as the main
theme. In section 2 we show that an arbitrary one- dimen-
sional integrable model in action-angle variables has natural
description as a classical and quantum f-oscillator. As an
example we consider a semi-relativistic oscillator, related
with Landau levels for relativistic electron in magnetic field.
In section 3 we review some results on symmetric q-oscillator
and in the next section 4 we study linear q-Schrödinger
equation with dispersion relation of this oscillator. The
symmetry operators and polynomial solutions with moving
zeros are described, as well as nonlinearization of the model
by complex Cole–Hopf-Madelung transformation. The sym-
metry of the linear equation then is rewritten as Bäcklund
transformation for the nonlinear q-Burgers equation. In
section 6, following the general procedure developed in [28],
we construct the nonlinear Schrödinger equation with

symmetric q-dispersion. This q-NLS equation is an integrable
model from NLS hierarchy with Lax representation, infinite
number of integrals of motion, soliton solutions etc. In the
limit q 1→ it reduces to NLS, which is one of the universal
soliton equations and for q 1≈ provides higher order cor-
rections in dispersion and nonlinearity. A peculiar property of
the model is to be completely integrable at any order of
expansion in deformation parameter around q = 1. As a next
variation on q-calculus application in section 7 we consider
hydrodynamic flow in bounded circular wedge domain. We
formulate general two circular wedge theorem and show that
the flow is determined by q-periodic functions. For real
q r r2

2
1
2= it is the flow in annular concentric circles domain,

while for wedge with angle nπ , q is the primitive root of
unity. For a vortex problem in such domains we describe a
full set of vortex images as a kaleidoscope in terms of q-
elementary functions. As an application we describe the point
vortex motion in annular domain as a nonlinear oscillator with
frequency depending on radius of motion. Then we find the f-
oscillator form of this model and discuss corresponding
quantization. Finally, in section 10 by introducing the matrix
form of Binet formula for Fibonacci numbers, we solve the
so-called golden oscillator and find corresponding coherent
states and Fock–Bargman type representation. Details of
some proofs are given in the appendix.

We regret that in this paper we are not able to give a
complete list of references in this very wide field of research.
Instead of this we try to represent some basic ideas in a
pedagogical way.

2. Integrable models and nonlinear oscillators

Representation of an integrable model by the action-angle
variables allows one to interpret the model as a set of non-
linear oscillators. For simplicity here we illustrate the idea
only for the one degree of freedom Hamiltonian system. Due
to conservation of energy this system is integrable. Let
H p q( , ) be the Hamiltonian function with canonical variables
q p( , ). The action and angle variables J( , )θ are introduced by
generating function, [15]

S q J S q H J p q H q( , ) ( , ( )) ( , )d , (1)
q∫= =

as the abbreviated action, in the following way

J p q H q J H
S q J

J

1

2
( , )d ( ),

( , )
. (2)∮π

θ= = = ∂
∂

We suppose that the motion is finite and the integral is taken
along the full period of oscillations. Hamiltonʼs equations of
motion in these variables are

J
H J H J

J
J˙ ( )

0, ˙ ( )
( ). (3)

θ
θ ω= − ∂

∂
= = ∂

∂
≡

The first equation implies that H is a function of J only,
independent of θ (cyclic coordinate), and the action variable,
as well as the energy E is an integral of motion. The second

2

Phys. Scr. 90 (2015) 074010 O K Pashaev



equation determines nonlinear frequency J( )ω ω= and
solution

J J E t J t( ), ( ) ( ) . (4)0θ ω θ= = +

The change of S and θ in the period is

S p q J
S

J
d 2 , 2 , (5)∮Δ π Δθ Δ π= = = ∂

∂
=

and trajectory of the system represents a curve on the
cylindrical surface in phase space p q( , ) endowed with time
axis t [15]. Then, original variable q p( , ) as functions of J( , )θ
are periodic and can be decomposed to Fourier series as the
spectral decomposition

q J q J p J p J( , ) ( )e , ( , ) ( )e . (6)
n

n
n

n
n

ni i∑ ∑θ θ= =θ θ

=−∞

∞

=−∞

∞

2.1.1. Linear oscillator. As an example, the linear oscillator

H
p

m

m q

2 2
(7)0

2
0
2 2ω

= +

in action variables is

H J J J( ) , ( ) (8)0 0 0ω ω ω= =

with the following solution

J
H

t t, ( ) . (9)0

0
0 0ω

θ ω θ= = +

The spectral decomposition has only harmonics with n 1= ±
and

( )

( )

q J
J

m
t p J

Jm t

( , )
2

sin , ( , )

2 cos . (10)

0
0 0

0 0 0

θ
ω

ω θ θ

ω ω θ

= +

= +

Appearance of other modes in the decomposition (6) means
anharmonicity in oscillations.

2.1.2. Complex coordinates. Quantization of action-angle
variables implies that the action variable J is replaced by
Hermitian operator Ĵ , while instead of θ one should use the
unitary operator eiθ [4, 16]. This suggests that proper variables
for quantization of the system in action-angle variables

J{ , } 1θ = are complex functions

J Ji e , ¯ i e , (11)i iα α= = −θ θ−

with canonical bracket

{ , ¯} i. (12)α α = −

Since J ¯αα= , the Hamiltonian of the linear oscillator (8) in
these variables is just H ¯0 αα= (for simplicity we put 10ω = )
and generic nonlinear Hamiltonian is function of H0:

( )H H J H H H( ) ( ¯) . (13)0αα= = =

It determines evolution equation as a nonlinear oscillator

( ) ( )H
H˙ i

( ¯)

¯
i i , (14)2 2α

αα
α

α α ω α α= −
∂

∂
= − ′ = −

with frequency ( )2ω α∣ ∣ depending on value of amplitude,
where the last one is an integral of motion.

2.2. Classical f-oscillator

For generic H H J H( ) ( ¯)αα= = as in (13), by introducing
complex variables

H J

J

H J

J

( )
, ¯

( )
¯, (15)f fα α α α= =

where J ᾱα= , we express the model in the form of the f-
oscillator [14],

( )H , ¯ ¯ , (16)f f f fα α α α=

with the Poisson bracket

( ) ( ){ } H

J
, ¯ i , ¯ i , ¯ (17)f f f f f fα α α α ω α α= − ∂

∂
= −

and evolution determined by the same frequency as in (14)

˙ i . (18)f fα ωα= −

2.3. Quantum f-oscillator

Quantization of this system replaces complex variables α, ᾱ
with bosonic operators a, a+, a a, 1⎡⎣ ⎤⎦ =+ , the action variable

J with the number operator N a a= + , and classical Hamilto-
nian function H J( ) with unique Hermitian quantum operator
H N( ). In terms of the last one we define new operators as

a a
H N

N

H N I

N I
a

a a
H N I

N I

H N

N
a

( ) ( )
,

( ) ( )
(19)

f

f

= = +
+

= +
+

=+ + +

so that

a a H N a a H N I( ), ( ) (20)f f f f= = ++ +

and

a a H N I H N, ( ) ( ). (21)f f
⎡⎣ ⎤⎦ = + −+

The Hamiltonian operator of the corresponding quantum f-
oscillator is introduced as [14],

a a a a

2
. (22)

f f f f =
++ +

In terms of H N( ) operators it becomes the operator

H N H N I
1

2
[ ( ) ( )] (23) = + +

3
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with discrete energy spectrum

E H n H n
1

2
[ ( ) ( 1)]. (24)n = + +

2.4. Semi-relativistic oscillator as quantum f-oscillator

As an example here we consider the semi-relativistic har-
monic oscillator with energy

( )E p m c c p m x( ) , (25)2 4 2 2 2 2 2ω= + +

in non-relativistic limit c → ∞ becoming the usual harmonic
oscillator

( )E p mc
m

p m x O
c

( )
1

2

1
. (26)2 2 2

0
2 2 ⎜ ⎟⎛

⎝
⎞
⎠ω≈ + + +

This type of dispersion appears in several physical applica-
tions. First is the problem of a relativistic electron in a
magnetic field: the relativistic Landau levels problem [17].
Another class of applications is the relativistic harmonic
oscillator model of hadrons to explain magnetic moments of
baryons and hadron spectroscopy [18].

In terms of action variables the Hamiltonian function is

H J mc
mc

J( ) 1
2

(27)2 0

2

ω
= +

and in terms of complex variables (11) we have nonlinear
oscillator

H mc
mc

( ¯) 1
2

¯ , (28)2 0

2
αα

ω
αα= +

with nonlinear frequency

J
H J

J J
( )

( )

1
. (29)

mc

0

2 0

2

ω
ω

= ∂
∂

=
+ ω

In the non-relativistic limit it reduces to the linear oscillator
frequency 0ω . Introducing

m c mc

m c mc

2 ¯

¯
,

¯
2 ¯

¯
¯, (30)

f

f

2 4 2
0

2 4 2
0

α
ω αα

αα
α

α
ω αα

αα
α

=
+

=
+

with Poisson brackets

{ } mc
, ¯ i , (31)f f

f
0

2

2
α α ω

α
= −

∣ ∣

we get the classical f-oscillator form of the model

( )H , ¯ ¯ . (32)f f f fα α α α=

The evolution is determined by equation

( )˙ i , (33)f f f
2α ω α α= −

where the frequency is the nonlinear function depending on
amplitude

( ) mc
. (34)f

f

2
0

2

2
ω α ω

α
=

When c → ∞ it gives

mc
1 (35)0

0

2
2

⎛
⎝⎜

⎞
⎠⎟ω ω

ω
α≈ −

so that the linear oscillator is recovered at c = ∞. The
next order correction in c1 is just a quadratic nonlinearity in
amplitude. This type of nonlinearity is very specific and is
described by the cubic nonlinear Schrödinger equation
(NLS) as generic integrable nonlinear envelope soliton
equation [19]. This means that the first relativistic correction
to the nonlinear dispersion (35) will produce the NLS
equation.

2.4.1. Quantization of semi-relativistic oscillator. Introducing
operators

a a
m c mc N

N

m c mc N

N
a

2

2 ( 1)

1
, (36)

f

2 4 2
0

2 4 2
0

ω

ω

=
+

=
+ +

+

a a
m c mc N

N

m c mc N

N
a

2 ( 1)

1

2
(37)

f

2 4 2
0

2 4 2
0

ω

ω

=
+ +

+

=
+

+ +

+

we find relations

a a m c mc N

a a m c mc N

2 ,

2 ( 1) (38)

f f

f f

2 4 2
0

2 4 2
0

ω

ω

= +

= + +

+

+

and commutator

a a m c mc N m c mc N, 2 ( 1) 2 .

(39)

2 4 2
0

2 4 2
0

⎡⎣ ⎤⎦ ω ω= + + − ++

Then the Hamiltonian is operator

m c mc N m c mc N
1

2
2 ( 1) 2 ,

(40)

2 4 2
0

2 4 2
0

⎡
⎣⎢

⎤
⎦⎥ ω ω= + + − +

with discrete spectrum

E m c mc n m c mc n
1

2
2 ( 1) 2 .

(41)

n
2 4 2

0
2 4 2

0
⎡
⎣⎢

⎤
⎦⎥ω ω= + + − +

4
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3. Classical and quantum symmetric q-oscillator

Here we briefly reproduce the main formulas for the classical
and quantum q-oscillator [12, 13].

3.1. Classical symmetric q-oscillator

In terms of complex variables

x p x pi

2
, ¯

i

2
(42)α α= + = −

the Hamilton function is

( )
H ( , ¯)

sinh ¯

sinh
, (43)q α α

λαα
λ

=

with Poisson bracket

{ , ¯} i, (44)α α = −

and evolution equations

˙ i , ¯̇ i ¯ . (45)q qα ω α α ω α= − =

The action-angle variables are defined as

J Ji e , ¯ i e (46)i iα α= = −θ θ−

with bracket J{ , } 1θ = , so that the Hamiltonian function
depends only on J,

H J
J

( )
sinh ( )

sinh
. (47)q

λ
λ

=

Then the nonlinear frequency depends exponentially on
amplitude and the energy

J
H J

J
J( )

( )

sinh
cosh ( ). (48)qω λ

λ
λ= ∂

∂
=

3.1.1. Quantum symmetric q-oscillator. The standard creation
and annihilation operators a and a+ with commutator
a a, 1⎡⎣ ⎤⎦ =+ in the Fock basis n{ }∣ 〉 , n 0, 1, 2 ...=
determine the number operator N a a= + and symmetric q-
number operator

N
q q

q q

N
[ ]

sinh

sinh
, (49)q

N N

˜ 1

λ
λ

= −
−

=
−

−

where q e≡ λ. By transformation [12, 20, 21]

a a
N

N

N I

N I
a a a

N I

N I

N

N
a

[ ] [ ]
,

[ ]

[ ]

(50)

f
q q

f
q

q

˜ ˜ ˜

˜

= =
+
+

=
+
+

=

+ +

+

so that

a a N a a N I[ ] , [ ] (51)f f q f f q˜ ˜= = ++ +

and

a a N I N, [ ] [ ] (52)f f q q˜ ˜
⎡⎣ ⎤⎦ = + −+

the Hamiltonian is represented in terms of symmetric q-
number operators

( )
a a a a

N N I
2

1

2
[ ] [ ] (53)

f f f f
q q˜ ˜ =

+
= + +

+ +

and the spectrum is [6–8]

( )( )
( )E n n

n1

2
[ ] [ 1]

1

2

sinh

sinh
. (54)n q q˜ ˜

1

2

2

λ
= + + =

+
λ

4. The Schrödinger and complex Burgers equations
for symmetric q-oscillator dispersion

4.1. q-Schrödinger equation

The first quantization of the q-oscillator is described by the
linear Schrödinger equation with Hamiltonian

m x
kx

1

sinh
sinh

2

d

d
. (55)q

2 2

2
2

⎛
⎝⎜

⎞
⎠⎟

λ
λ= − ℏ +

For free q-particle, when the oscillator coupling constant
k = 0, we have the Hamiltonian

m x

1

sinh
sinh

2

d

d
, (56)q0

2 2

2

⎛
⎝⎜

⎞
⎠⎟

λ
λ= − ℏ

which determines the linear Schrödinger equation with
nonlinear dispersion

t m x
i

1

sinh
sinh

2
. (57)

2 2

2

⎛
⎝⎜

⎞
⎠⎟

Ψ
λ

λ Ψℏ∂
∂

= − ℏ ∂
∂

We can call it a q-Schrodinger equation.

4.2. Symmetry operators and solutions

Operators of the time and space translations

P
t

P
x

i , i , (58)0 1= ℏ ∂
∂

= − ℏ ∂
∂

commute with the Schrödinger operator

t t m x
i i

1

sinh
sinh

2
, (59)q0

2 2

2

⎛
⎝⎜

⎞
⎠⎟ 

λ
λ= ℏ ∂

∂
− = ℏ ∂

∂
− − ℏ ∂

∂

P , 0⎡⎣ ⎤⎦ =μ , 0, 1μ = . The boost operator

K x
t

m m

d

dx

d

dx

i

sinh
cosh

2
(60)

2 2

2

⎛
⎝⎜

⎞
⎠⎟

λ
λ

λ= + ℏ − ℏ

is also commuting with  , K[ , ] 0 = . Commuting it with
space and time translations we obtain the following algebra of
symmetry operators

[ ] [ ]

[ ]

P P P K

P K
m

P

m
P

, 0, , i ,

,
sinh

cosh
2

. (61)

0 1 1

0
1

1⎜ ⎟⎛
⎝

⎞
⎠

λ
λ

λ
= = − ℏ

= −

5
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An operator commutative with Schrödinger operator deter-
mines the dynamical symmetry [31]. If Ψ is a solution of (57)
and W is an operator, so that W[ , ] 0 = then Ψ is also a
solution of (57). Then, as follows, K operator can generate
new solutions of (57).

In the limit 0λ → the boost operator (60) reduces to the
Galilean boost

K x
t

m x

i d

d
(62)= + ℏ

and q-deformed symmetry algebra (61) to the usual non-
relativistic algebra of the Galilean group [31].

4.2.1. q-Polynomial solutions. For given classical dispersion

E p
p

m
( )

1

sinh
sinh

2
(63)

2⎛
⎝⎜

⎞
⎠⎟λ

λ=

we define the plane wave solution as a generating function of
q-Kampe de Feriet polynomials H x t( , )n

q( ) , q e= λ,

p

n
H x te

i

!
( , ). (64)px E p t

n

n n

n
qi ( ( ) )

0

( )⎜ ⎟⎛
⎝

⎞
⎠∑=

ℏ
ℏ −

=

∞

The polynomials

H x t
t

m x
x( , ) exp

i 1

sinh
sinh

2

d

d
(65)n

q n( )
2 2

2

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟λ

λ= −
ℏ

− ℏ

are solutions of (57) with initial value H x x( , 0)n
q n( ) = . From

commutativity K[ , ] 0 = , operator K evolves according to
the Heisenberg equation

K

t
H Ki ˆ , (66)q0

⎡⎣ ⎤⎦ℏ∂
∂

=

and has the form

K t K x( ) e (0) e e e . (67)H t H t H t H ti ˆ i ˆ i ˆ i ˆ
q q q q0 0 0 0= =− ℏ ℏ − ℏ ℏ

From this it follows that operator K generates an infinite
hierarchy of polynomial solutions according to the recursion

KH x t K x x H x t( , ) e e ( , ),

(68)

n
q H t n H t n

n
q( ) i ˆ i ˆ 1

1
( )q q0 0= = =− ℏ − ℏ +
+

and the first few polynomials are

H x, (69)q
1
( ) =

H x
m

ti
sinh

, (70)q
2
( ) 2 λ

λ
= + ℏ

H x
m

x t3 i
sinh

, (71)q
3
( ) 3 λ

λ
= + ℏ

H x
m

x t
m

t6 i
sinh

3
sinh

, (72)q
4
( ) 4 2

2

2

2

2
2λ

λ
λ

λ
= + ℏ − ℏ

H x
m

x t
m

x t10 i
sinh

15
sinh

, (73)q
5
( ) 5 3

2

2

2

2
2λ

λ
λ

λ
= + ℏ − ℏ

H x
m

x t
m

x t15 i
sinh

45
sinh

(74)

q
6
( ) 6 4

2
2 2⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

λ
λ

λ
λ

= + ℏ − ℏ

m
t

m m
t15 i

sinh
30i

sinh
. (75)

3
3

2 4

2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

λ
λ

λ
λ

λ− ℏ + ℏ ℏ

In the limit q 1→ or 0λ → we have sinh 1λ λ → , and the
above polynomials reduce to the Schrödinger polynomials
[28]

H x t x( , ) e . (76)n
S t

m x
n( )

i
2

d
d

2 2

2= ℏ
ℏ

Let H x t t
x

x( , ) exp
d

d
n

KF n( )
2

2

⎡
⎣⎢

⎤
⎦⎥= are the standard Kampe de

Feriet polynomials, then H x t H x
m

t( , ) ,
i

2n
S KF( ) ⎜ ⎟⎛

⎝
⎞
⎠= ℏ
or in

terms of the Hermite polynomials

H x t
m

t H
x

t m
( , )

i

2 2i
. (77)S

n

n
( )

2

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟= − ℏ

− ℏ

We notice that for n 1, , 5= … only coefficients in Hn
q( )

becomes deformed, while starting from n = 6 a new term,
vanishing in the limit 0λ → appears.

4.2.2. Motion of zeros. Motion of N zeros for polynomial
solutions (65) is determined by the system of ordinary
differential equations

x

m i x x x

˙
i

sinh
Res

sinh
2

d

d

1
· 1, (78)

k x x

l
N

l

2

2 1

2

k

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

λ

λ

=
ℏ

× ℏ + ∑
−

=

=

k = 1,…,N, describing the system of N interacting particles in
a line. For 0λ → the polynomials of complex argument,
correspond to holomorphic extension of the Schrödinger
equation in (2+1)-dimensional Chern-Simons theory [30] and
zeros of these polynomials describe motion of point vortices
in plane. Then for 0λ ≠ , consideration of holomorphic q-
Schrödinger equation could describe a q-deformed vortex
dynamics in the plane.

5. Complex q-Burgers equation

Using Schrödingerʼs log Ψ transform : elnΨ = Ψ and identity

x x x
e e

ln
(79)

n

n

n
ln ln ⎜ ⎟⎛

⎝
⎞
⎠

Ψ∂
∂

= ∂
∂

+ ∂
∂

Ψ Ψ−

the q-Schrödinger equation (57) can be rewritten in the form

t m x x
i ln

1

sinh
sinh

2

ln
· 1.

(80)

2 2
⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟Ψ

λ
λ Ψℏ ∂

∂
= − ℏ ∂

∂
+ ∂

∂

For a given complex function e eF R Si iΨ = =ℏ + ℏ we intro-
duce a new complex function with dimension of velocity

V
m x m

Fi ln
1

, (81)Ψ= − ℏ ∂
∂

=
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where F S Ri= − ℏ is the complex potential, with real and
imaginary parts as the classical and quantum velocities

V V V
m

S
m

Ri
1

i . (82)c q x x= + = − ℏ

Then (80) becomes the quantum q-Hamilton–Jacobi
equation:

F

t m x
F

1

sinh
sinh

2
i · 1 0. (83)x

2
⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟λ

λ∂
∂

+ − ℏ ∂
∂

+ =

In the classical (dispersionless) limit 0ℏ → the quantum
velocity Vq vanishes and the complex potential reduces to the
real velocity potential F S→ , so that (83) becomes the
classical q-Hamilton–Jacobi equation for action S:

S

t m

S

x

1

sinh
sinh

1

2
0. (84)

2
⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟λ

λ∂
∂

+ ∂
∂

=

Differentiating (80) we have nonlinear complex q-Burgers
type equation for the complex velocity (complex q-Madelung
equation)

V

t m x m x
mV

1

sinh
sinh

2
i · 1. (85)

2
⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟λ

λ∂
∂

+ ∂
∂

− ℏ ∂
∂

+

In the classical limit it gives the Newton equation in the
hydrodynamic form

V

t
V

mV V

xsinh
cosh

2
0, (86)c

c
c c
2⎛

⎝⎜
⎞
⎠⎟

λ
λ

λ
∂
∂

+
∂
∂

=

which is just a differentiation of the classical Hamilton–Jacobi
equation (84). Equation (86) has an implicit general solution

V x t f x V t
mV

( , )
sinh

cosh
2

(87)c c
c
2⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟λ

λ
λ= −

where f is an arbitrary function, and develops shock at a
critical time when derivative ( )Vc x

is blowing up.

5.1. Bäcklund transformation for complex q-Burgers equation

As we have seen, using boost transformation (60) from a
given solution 1Ψ of the q-Schrödinger equation (57) we can
generate another solution as

K x
t

m m x x

i

sinh
cosh

2

d

d

d

d
. (88)2 1

2 2

2 1

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥Ψ Ψ λ

λ
λ Ψ= = + ℏ ℏ

By using identity

G
x

G
x

mVi i · 1 (89)1 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Ψ Ψ− ℏ ∂

∂
= − ℏ ∂

∂
+−

for complex velocities V
m

i lna aΨ= − ℏ
, a( 1, 2)= , for

complex q-Burger equation (85) we obtain the Bäcklund

transformation

V V
m x

x t
m x

mV V

i ln

sinh
cosh

2
i · .

(90)

2 1

2

1⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

λ
λ

λ

= − ℏ ∂
∂

× − − ℏ ∂
∂

+

It is noted that in the classical limit 0ℏ → , V Vc→ the
above Bäcklund transformation reduces to the trivial identity
V Vc c1 2= .

6. Integrable nonlinear q-Schrödinger equation

In previous sections we have studied q-Schrödinger equation
determined by hyperbolic sine dispersion. By adding the
oscillator coupling term it becomes an exactly solvable q-
oscillator equation (55). Here we show that from this dis-
persion it is also possible to construct an NLS type integrable
evolution equation. This q-NLS equation in the limit q 1→ or

0λ → reduces to the NLS equation. It is interesting to note
that by expansion in powers of λ then we have an infinite set
of NLS type equations integrable at arbitrary order of defor-
mation q.

6.1. q-nonlinear Schrödinger equation

Dispersion formula for linear q-Schrödinger equation (57)
expanded to series in p2 is

E p
p

m

p

m

p

m

( )
1

sinh
sinh

2

sinh 2 3! sinh 2
... (91)

2

2 3 2 3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

λ
λ

λ
λ

λ
λ

=

= + +

This may be used to construct a linear q-Schrödinger equation
as a formal power series

t m x

m x

i
sinh 2

3! sinh 2
... (92)

2 2

2

3 2 2

2

3

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

ψ λ
λ

λ
λ

ψ

ℏ ∂
∂

= −ℏ ∂
∂

+ −ℏ ∂
∂

+

Combining two complex conjugate versions of this equation
together we have the system

m x
i ¯

1

sinh
sinh

2
i ¯ . (93)

t
3

2

3

2
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟⎛

⎝
⎞
⎠σ

ψ
ψ λ

λ σ
ψ
ψ= − ℏ ∂

∂

Following the general procedure described in appendix A
one may proceed further: by replacing the derivative operator

x
i0 3 σ= ∂

∂
as momenta to the full recursion operator 

(A.2), one obtains an integrable nonlinear q-Schrödinger
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equation (q-NLS)

m
i ¯

1

sinh
sinh

2 ¯ . (94)
t

3

2
2⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠σ

ψ
ψ λ

λ ψ
ψ= − ℏ

6.1.1. The linear problem. Applying the general result of
appendix A to the above q-deformed non-relativistic
dispersion, we have the next linear problem (the Lax
representation) for equation (94)

( ) ( )x

v
v

p

p

v
v

¯
, (95)

1

2

i

2
2

i

2

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

κ ψ

ψ
∂
∂

=
− −

( ) ( )t

v
v

A C
C A

v
v

i ¯
i

, (96)
1

2

2 1

2

⎛
⎝⎜

⎞
⎠⎟

κ∂
∂

= − −
−

where

C
C

m m
p

p¯

sinh
2

sinh
2

( ) sinh ¯ , (97)

2 2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠




λ λ

λ
ψ
ψ=

−

−

( )A
m

p

p

p

1

2
sinh

2
i ¯ ,

sinh sinh

( ) sinh ¯ (98)

x x

m m

2 2

2
2

2
2

⎜ ⎟
⎛
⎝

⎞
⎠




∫ ∫λ κ ψ ψ

λ
ψ
ψ

= − − −

×
−

−

λ λ

and the spectral parameter p has the meaning of the classical
momentum. The model is an integrable nonlinear q-
Schrödinger equation with q-deformed dispersion as well as
the nonlinear terms. In the limit 0λ → it reduces to standard
NLS model (A.4). The last one as a universal integrable
equation describing envelope modulation has appeared in
many applications, especially in nonlinear optics. It admits N-
soliton solutions, higher symmetries etc [19]. A remarkable
property of our model (94) is that it generalizes the NLS
model in a very special way. If we expand it in λ, then at
every order of λ we get an integrable system. This means that
we have integrable corrections to the NLS equation at any
order of λ. Due to the symmetry λ λ→ − of (94) only even
powers of λ appear in the expansion. Then the lowest
corrections are given by the integrable NLS model with six-
order dispersion xxxxxxψ and up to 13th order nonlinearity

( )

m

m m
O

i ¯ 2 ¯

6 2 (2 ) ¯ .

(99)

t
3

2
2

2 2
2

6

3
6 4

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠



 

σ
ψ
ψ

ψ
ψ

λ ψ
ψ λ

= ℏ

+ − ℏ + ℏ +

7. Hydrodynamic flow in bounded domain

As a next variation on the subject here we consider hydro-
dynamical problem related with motion in double connected

domain. This problem can naturally be formulated in terms of
q-calculus and as we will see, for the point vortex motion in
annulus it provides an example of nonlinear oscillator, for-
mulated as an f-oscillator.

7.1. Hydrodynamic flow in bounded domain

For incompressible and irrotational flow in a domain bounded
by curve C, the problem is to find analytic function F z( ) with
boundary condition

F 0,C CI ψ= =

where ψ is the stream function. Then the normal velocity
vanishes at boundary v 0n C∣ = .

7.2. Milne–Thomsonʼs one circle theorem

For a given flow in plane with complex potential f z( ),
introduction of boundary circle at the origin C: z r∣ ∣ = pro-
duces the flow with complex potential [24]

F z f z f
r

z
( ) ( ) ¯ .

2⎛
⎝⎜

⎞
⎠⎟= +

7.3. Two circles theorem

For annular domain, r z r1 2< ∣ ∣ < , between two concentric
circlesC z r:1 1∣ ∣ = ,C z r:2 2∣ ∣ = the complex potential is [26,
27]

F z f z f
r

z
( ) ( ) ¯ , (100)Q Q Q

2⎛
⎝⎜

⎞
⎠⎟= +

where Q
r

r
2
2

1
2= , ( )f z f Q z( )Q n

n= ∑ =−∞
∞ is flow in even

annular image domain, ( ) ( )f f Q¯ ¯
Q

r

z n
n r

z

2 2

= ∑ =−∞
∞ is the

flow in odd annular image domain.
From (100) it follows that f Qz f z( ) ( )Q Q= , which implies

that the complex potential is Q-periodic function
F Qz F z( ) ( )Q Q= . Depending on the number and position of
vortices or other objects, we fix singularity of this function in
terms of q-elementary functions [22, 27].

7.4. Wedge theorem

Here we are going to formulate some new theorems in wedge
domain. For a given flow in plane with complex potential
f z( ), introduction of boundary wedge with angle

N n2α π π= = , where N n2= is a positive even number,
produces the flow with complex potential

( ) ( ) ( )F z f z f q z f q z f q z( ) ( ) ... (101)q
n2 4 2( 1)= + + + + −

( ) ( ) ( )f z f q z f q z f q z¯ ( ) ¯ ¯ ... ¯ (102)n2 4 2( 1)+ + + + + −

or briefly

( ) ( )F z f q z f q z( ) ¯ , (103)q

k

n
k

k

n
k

0

1
2

0

1
2∑ ∑= +

=

−

=

−
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where q e eN ni 2 i= =π π
is the primitive root of unity:

q q 1N n2= = . For proof of this theorem see appendix B.
Here we notice that the complex potential (103) is q2

periodic analytic function ( )F q z F z( )q q
2 = , while the com-

plex velocity V z dF z dz¯ ( ) ( )q= is the scale invariant analytic

function ( )V q z q V z¯ ¯ ( )2 2= − .

7.4.1. Vortex kaleidoscope. As an example, we consider
single vortex in the wedge at point z0:

f z z z( )
i

2
ln ( ). (104)0

Γ
π

= −

Then applying the above wedge theorem we get complex
potential

F z
z z q

z z q

z z q

z z q

( )
i

2
ln

¯

i

2
ln

¯
, (105)

q

k

n k

k

k

n k

k

0

1
0

2

0
2

0

1
0

2

0
2

∑

∏

Γ
π

Γ
π

=
−
−

=
−
−

=

−

=

−

describing a kaleidoscope of n2 vortices with positive
strength at points z z q z q, , ...,0 0

2
0

4 z q n
0

2( 1)− and with
negative strength at points z z q z q¯ , ¯ , ¯ ...,0 0

2
0

4 z q¯ n
0

2( 1)− .
Positive images are just rotations of original vortex position
z0 on angles n, 2 , 4 ,...,( 1)

n n n n

2 2 2 2−π π π π , while negative
images are rotations of the reflected vortex position z̄0 on
the same angles. This expression can be drastically simplified
due to the next identity

( )( )
( )
z z z z q z z q

z z q z z

( ) ...

. (106)n n n

0 0
2

0
4

0
2( 1)

0

− − −

− = −−

This identity is valid for q e n2 i2= π
as the primitive nth root

of unity and has been considered a long time ago by Kummer.
The simplest proof follows from factorization of polynomial
z zn n

0− by roots of unity. As a result, finally we get
the following compact expression for the vortex flow in
the wedge (we can call it the Kummer kaleidoscope of
vortices)

F z
z z

z z
( )

i

2
ln

¯
. (107)q

n n

n n
0

0

Γ
π

=
−
−

For n = 1 we have vortex at z0 in upper half plane, with
one image at z̄0

F z
z z

z z
( )

i

2
ln

¯
. (108)0

0

Γ
π

=
−
−

For n = 2 the vortex at z0 in first quadrant produces images at
z z z, ¯ , ¯0 0 0− −

F z
z z

z z

z z z z

z z z z
( )

i

2
ln

¯

i

2
ln

( )( )

( ¯ )( ¯ )
. (109)

2
0
2

2
0
2

0 0

0 0

Γ
π

Γ
π

=
−
−

=
− +
− +

7.5. Circular wedge theorem

Here we consider circular wedge with angle N n2α π π= = ,
bounded by lines 1Γ : z = x and 2Γ : z xe ni= π

and the circular
boundary C :1 z re ti= , t0 α< < . Then, the flow bounded by
such domain is

( ) ( )F z f q z f q z

f
r

q z
f

r

q z

( ) ¯

¯ . (110)

q

k

n
k k

k

n

k k

0

1
2 2

0

1 2

2

2

2

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∑

∑

= +

+ +

=

−

=

−

The proof is similar to the above one and shows that the
imaginary part of F z( ) vanishes at boundaries 1Γ , 2Γ and C1.
The theorem could be considered as combination of Milne–
Thomsonʼs one circle theorem with the wedge theorem.

7.5.1. Doubled vortex kaleidoscope. For single vortex in
circular wedge after some calculations and simplifications we
obtain

( )
( )

( )

( )
F z

z z z

z z z
( )

i

2
ln

¯
. (111)q

n n n r

z

n n n r

z

0

0 ¯

n

n

n

n

2

0

2

0

Γ
π

=
− −

− −

Comparing with vortex kaleidoscope (107) we observe
doubling of images by reflection in circle r.

7.6. Double circular wedge theorem

Now we consider the more general region, the double circular
wedge, bounded by two lines 1Γ : z = x and 2Γ : z xe ni= π

and
two circular boundaries C :1 z r e t

1
i= , t0 α< < , and C :2

z r e t
2

i= , t0 α< < . By combination of two circle theorem
with the wedge theorem we have the flow

F z f z f z f
r

z
f

r

z
( ) ( ) ¯ ( ) ¯ , (112)qQ qQ qQ qQ

2
2

2
2⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= + + +

where

( )f z f Q q z( ) . (113)qQ
m k

n
m k

0

1
2∑ ∑≡

=−∞

∞

=

−

In explicit form we obtain

( ) ( )F z f Q q z f Q q z

f Q q
r

z
f Q q

r

z

( ) ¯

¯ . (114)

m k

n
m k m k

m k m k

0

1
2 2

2 2
2

2 2
2

⎡⎣
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∑ ∑= +

+ +

=−∞

∞

=

−

It is noticed that in this case we have q-calculus with two
different bases. The first one Q r r2

2
1
2= is a real number

relating an infinite number of reflections in both circular

boundaries. The second one q e n2 i2= π
is a complex unitary

number with finite number of reflections n. The complex
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potential here is a double q Q, —periodic analytic function:

( )F q z F z F Qz F z( ), ( ) ( ). (115)2 = =

7.6.1. Self-similar infinite vortex kaleidoscope. For single
vortex in the double circular wedge we get the result

( )
( )

( )

( )
F z

z z Q z Q

z z Q z Q
( )

i

2
ln

¯
. (116)

m

n n nm n r

z
nm

n n nm n r

z
nm

0

0 ¯

n

n

n

n

2
2

0

2
2

0

∑Γ
π

=
− −

− −=−∞

∞

This function describes self-similar kaleidoscope of infinite
set of vortices on Q geometric lattice. It generalizes the
expression for single-vortex images in concentric annular
domain considered in [22]. For n = 1, q 12 = , and we have a
single vortex in the upper half-plane of annular domain

( )
( )

( )

( )
F z

z z Q z Q

z z Q z Q
( )

i

2
ln

¯
. (117)

m

m r

z
m

m r

z
m

0

0 ¯

2
2

0

2
2

0

∑Γ
π

=
− −

− −=−∞

∞

For n = 2, q 12 = − we have a single vortex in first quadrant of
annulus and

( )
( )

( )
( )

F z
z z Q z Q

z z Q z Q
( )

i

2
ln

¯
, (118)

m

m r

z
m

m r

z
m

2
0
2 2 2 2

2
0
2 2 2

¯
2

2
4

0
2

2
4

0
2

∑Γ
π

=
− −

− −=−∞

∞

or

( )( )
( )( )

( )( )

( )( )

F z

z z Q z z Q z Q z Q

z z Q z z Q z Q z Q

( )
i

2
ln

¯ ¯
.

(119)

m

m m r

z
m r

z
m

m m r

z
m r

z
m

0 0

0 0 ¯ ¯

2
2

0

2
2

0

2
2

0

2
2

0

∑Γ
π

=

×
− + − +

− + − +

=−∞

∞

This formula demonstrates how vortices are reflected for
every value of m.

8. Vortex in annular domain as f-oscillator

As an application of the above formulas, here we consider the
point vortex problem in annular domain as a nonlinear
oscillator, or as the specific form of the f-oscillator.

8.1. Vortex rotation in annulus as nonlinear q-oscillator

For a single vortex in annular domain the complex velocity at
the vortex position is determined by [22],

z x y V z˙ ˙ i ˙ ( ¯) (120)
z z

0 0 0 0
0

= + =
=

where the complex velocity

V z
z q

Ln
z

z
Ln

z

z

Ln
r

zz
Ln

zz

r

z z q z q

¯ ( )
i

( 1)

1 1

1
¯

1
¯

i i
,

q q

q q

n
n

n
r

z
n

0

0

0

2
2

0

0

1
2

1 0 1
¯
1
2

0

⎜ ⎟
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∑ ∑

κ

κ κ

=
−

× − − −

+ − − −

=
−

−
−=±

±∞

=±

±∞

and q r r2
2

1
2= . According to Helmholtzʼs procedure, well

known in hydrodynamics, to avoid self-interaction of the
vortex, contribution of the vortex on itself is excluded. If we
take into account that q-harmonic series

n
Ln

1

[ ]
0 (121)

n

q

1

∑ = −
=

∞

converges for q 1> , then at z z0= the first two terms cancel
each other and we get the following equation of motion

z
z q

Ln
z

r
Ln

r

z

˙
i

¯ ( 1)

1 1 . (122)q q

0
0

0
2

1
2

2
2

0
2

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

κ=
−

× − − −

Here to avoid manipulations with infinite sums we introduced
q-logarithm function

Ln x
x

n
x q q(1 )

[ ]
, , 1, (123)q

n

n

1

∑− ≡ − < >
=

∞

where the q-number

n q q q
q

q
[ ] 1 ...

1

1
(124)n

n
2 1≡ + + + + = −

−
−

for any positive integer n. Equation (122) is a nonlinear
oscillator

z z˙ i (125)0 0ω= −

with frequency depending on amplitude (and energy)

( )z
q z

Ln
z

r
Ln

r

z

2 ( 1)

1 1 .

(126)

q q

0
2

0
2

0
2

1
2

2
2

0
2

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ω Γ
π

=
−

× − − −

In addition to the energy, another conserved quantity in this
problem is an angular momentum L z z¯0 0Γ= . In Hamiltonian
form we have

z
H

z
˙ 2i

¯
, (127)0

0
Γ = − ∂

∂
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with canonical bracket

z z{ , ¯ }
2i

, (128)0 0 Γ
= −

and Hamiltonian function

H z z

e
z

q r
e

r

q z

( , ¯ )
4

ln

(1 ) (1 )
, (129)q q

0 0

2

0
2

1
2

2
2

0
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Γ
π

=

×
− −

where the Jackson q-exponential function is defined as

e z
z

n
( )

[ ]!
. (130)q

n

n

0

∑=
=

∞

It is entire in z if q 1∣ ∣ > , and admits infinite product
representation

z

q z
e

z

q
1

1

1 1
, (131)

k
k q

1
1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∏ − =

−
−
−=

∞

−

showing that zeros of this function are ordered in geometric
progression with ratio q. By introducing the action-angle
variables J( , )θ

z J z Ji e , ¯ i e , (132)0
i

0
i= = −θ θ−

with canonical bracket

J{ , }
2

(133)θ
Γ

=

we get the Hamiltonian function in terms of action variables J
only

H J e
J

q r
e

r

q J
( )

4
ln

(1 ) (1 )
(134)q q

2

1
2

2
2⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Γ
π

=
− −

and the frequency of rotation

J
H J

J q J

Ln
J

r
Ln

r

J

( )
( )

2 ( 1)

1 1 . (135)q q
1
2

2
2⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ω Γ
π

= ∂
∂

=
−

× − − −

The angular momentum then is just L JΓ= . To represent our
model as an f-oscillator we introduce complex functions

z
H z z

z z
z z

H z z

z z
z

( , ¯ )

¯
, ¯

( , ¯ )

¯
¯ . (136)f f

0 0

0 0
0

0 0

0 0
0= =

Then we have simply f-oscillator

( )H z z z z, ¯ ¯ , (137)f f f f=

with Poisson bracket

( ) ( ){ }z z
H

J
z z z z, ¯

2i
, ¯

2i
, ¯ (138)f f f f f fΓ Γ

ω= − ∂
∂

= −

and evolving with the frequency (135)

z z˙ i . (139)f fω= −

8.1.1. F-oscillator quantization of vortex motion. In
semiclassical approach, quantization is implemented by
Bohr–Zommerfeld quantization rule of replacing
J n 1 2→ + . Then the energy spectrum is

( )
( )

E e
n

q r
e

r

q n4
ln

(1 ) (1 )
.

(140)

n q q

2
1

2

1
2

2
2

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Γ
π

=
+

− − +

The f-oscillator quantization of this system, replaces
complex variables z0 with bosonic operators a a, 1⎡⎣ ⎤⎦ =+ ,

N a a= + . The Hamiltonian of the corresponding f-oscillator is
given by (22), where we define operators (19) in terms of
nonlinear operator function (134) H N( ), by replacing J N→ ,
and spectrum of the system is

E H n H n
1

2
[ ( ) ( 1)]. (141)n = + +

In a similar way one can study N vortex polygon rotation in
annular domain [22, 23] as a nonlinear or f-oscillator.

9. Golden quantum oscillator

As a final variation here we consider two golden ratio bases
quantum q-oscillator. We define creation and annihilation
operators b and b+ in the Fock basis n{ }∣ 〉 , n 0, 1, 2 ...=
represented by infinite matrices

b

F

F

F

b F

F

0 0 ...

0 0 0

0 0 0
... ... ... ...

,

0 0 0 ...
0 0 ...

0 0 ...
... ... ... ...

,

(142)

1

2

3

1

2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
= =+

where Fn are Fibonacci numbers. By introducing the
Fibonacci operator as a matrix Binet formula,

F , (143)N

N Nφ φ
φ φ

= − ′
− ′

where N a a= + is the standard number operator, and φ,
1φ φ′ = − − are solutions of 12ϕ ϕ= + , 1 5

2
φ = +

—is the
golden ratio, we find that in the Fock basis the eigenvalues are
just Fibonacci numbers

F n F n (144)N n=

and in the matrix form

F

F

F

F
F

F

F

F

0 0 ...
0 0 0
0 0 0
... ... ... ...

,

0 0 ...
0 0 0
0 0 0
... ... ... ...

. (145)N N I

0

1

2

1

2

3

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
= =+

It satisfies Fibonacci recursion rule F F FN I N N I+ =− + . Then
we have

bb F b b F, , (146)N I N= =+
+

+
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and the commutator is

b b F F F, . (147)N I N N I
⎡⎣ ⎤⎦ = − =+

+ −

From the definition of FN we get the matrix identity

F F , (148)N
N N Iφ φ= + −

where

1 0 0 ...
0 0 0

0 0 0
... ... ... ...

(149)N

2

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
φ φ

φ
=

and the following deformed commutation relations

bb b b bb b b, . (150)N Nφ φ φ φ− = ′ − ′ =+ + + +

The Hamiltonian [25]

( ) ( )bb b b F F F
2 2 2

(151)

N N I N I2 ω ω ω= ℏ + = ℏ + = ℏ+ +
+ +

is diagonal

F

F

F

F

0 0 0 ...

0 0 0 ...

0 0 0

0 0 0
... ... ... ...

0 0 0 ...

0 0 0 ...

0 0 0

0 0 0
... ... ... ...

(152)

2 2

2 3

2 4

2 5

2

3

2
5

2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟



ω

=

=
ℏ

ω

ω

ω

ω

ω

ω

ω

ℏ

ℏ

ℏ

ℏ

ℏ

ℏ

ℏ

and gives the energy spectrum as the Fibonacci sequence

E F
2

. (153)n n 2
ω= ℏ

+

These energy levels satisfy the Fibonacci three-term relations

E E E (154)n n n1 1= ++ −

and the difference between levels

E E E F
2

(155)n n n n1 1Δ ω= − = ℏ
+ +

is growing as Fibonacci sequence. Then the relative distance

E

E

F

F
(156)n

n

n

n

1

2

Δ
= +

+

for asymptotic states n → ∞ is given just by the golden ratio

lim
E

E

1
. (157)n

n

n

Δ
φ

=→∞

This behavior drastically differs from the harmonic oscillator
and shows that there is no simple classical limit for this
golden oscillator. In fact, the Hamiltonian function for
corresponding classical system becomes complex valued.

By transformation

b a
F

N

F

N I
a

b
F

N
a a

F

N I

,

(158)

N N I

N N I

= =
+

= =
+

+

+ + + +

one can show that eigenstates

( )
n

b

F !
0 (159)F

n

n
F=

+

coincide with the Fock states n{ }∣ 〉 . Then we have

b n F n

b n F n

1 ,

1 . (160)

F n F

F n F

1= +

= −

+
+

Here we would like to mention that three-term relations (154)
can be generalized by introducing free coefficients and
corresponding oscillators are known as Fibonacci oscillators
[32]. See also [33] for quasi-Fibonacci oscillators. In this
generalized form the spectrum is given by Fibonacci
polynomials and Binet formula can be interpreted as q-
number with two basis q and p. The spectrum is given just by
Fibonacci numbers only in the case, when the basis is
determined by the golden ratio: q φ= , p φ= ′. We discuss
these relations in detail in our paper [25].

9.1.1. Golden coherent states. We define the golden
coherent states as eigenstates

b . (161)
F Fβ β β=

Expanding these states in the Fock space c nn n0β∣ 〉 = ∑ ∣ 〉=
∞ we

find recurrence relation

c F c , (162)n n n1 1 β=+ +

giving

c
F

c
!

. (163)n

n

n
0

β=

We fix c0 by normalization condition 1β β〈 ∣ 〉 = so that

( )c
F

e
!

, (164)
n

n

n
F0

2

0

2
1

12
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ β= = β

=

∞ −
−

where we have introduced the Fibonacci exponential function

e
z

F !
, (165)F

z

n

n

n0

∑=
=

∞

which, as is easy to see, is the entire function of z. As a result
we get normalized coherent state

( )e
F

n
!

, (166)F F

n

n

n
F

1 2

0

2 ∑β β= β −

=

∞

12

Phys. Scr. 90 (2015) 074010 O K Pashaev



with the scalar product

( ) ( )
e

e e
. (167)F F

F

F F

¯

1 2 1 22 2
α β =

αβ

α β

9.2.2. Golden Fock–Bargman representation. For an
arbitrary state from the Fock space c nn n F0ψ∣ 〉 = ∑ ∣ 〉=

∞ by
projection

( )e c
F

¯

!
(168)F

n

n

n

n

1 2

0

2 ∑β ψ β= β −

=

∞

we find the analytic wave function

c
F

( )
!

(169)
n

n

n

n0

∑ψ β β=
=

∞

in the golden Fock–Bargman representation. By simple
calculation it is easy to see that operators b and b+ in this
representation are given by

b D b, , (170)F β→ →β
+

where the Binet–Fibonacci complex derivative is defined as

( )
( )

( )
( )

D z
z z

z

z z

z

( )
( )

( )
. (171)

z
F

1

1

ψ
ψ φ ψ φ

φ φ

ψ φ ψ φ

φ φ

=
− ′
− ′

=
− −

+

−

−

Action of this derivative on monomial gives just Fibonacci
numbers D z F zz

F n
n

n 1= − and for the Fibonacci exponential
function we have D e ez

F
F
z

F
z= . Then the Fibonacci number

operator is represented as

F D . (172)N
Fβ→ β

If an analytic function z( )ψ is scale invariant
z z( ) ( )k

k
kψ λ λ ψ= , then it satisfies equation

( )
( )

( )
( )

D z
z z

z

z
z

( )
( )

( )
( ) (173)

z
F

k

k k

k k

k

1

1

1

1

ψ
ψ φ ψ φ

φ φ

φ φ

φ φ
ψ

=
− −

+

=
− −

+

−

−

−

−

or

zD z F z( ) ( ). (174)z
F

k k kψ ψ=

This eigenvalue problem is just the golden Fock–Bargman
representation of the Fibonacci operator eigenvalue problem
(144), where eigenfunctions

z
z

F
( )

!
(175)k

k

k

ψ =

are scale invariant. However if we look for a general solution
of (174), then it is of the form

f z z A z( ) ( ) (176)k
k=

where A z( ) is an arbitrary golden-periodic analytic function

( )A z A z( ) 1φ φ= − − . Such a structure characterizes the
quantum fractals [27, 29] and requires additional studies.
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Appendix A. NLS hierarchy and q-NLS

A.1. NLS hierarchy

We consider the NLS hierarchy

i ¯ ¯ (A.1)
t

N
3

N

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ

ψ
ψ

ψ
ψ=

where tN, N 1, 2, 3,...= is an infinite time hierarchy. Here 
is the matrix integro-differential operator—the recursion
operator of the NLS hierarchy

i
2 ¯ 2

2 ¯ ¯ 2 ¯
(A.2)

x
x x

x
x

x
3

2 2

2 2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

∫ ∫

∫ ∫
σ

κ ψ ψ κ ψ ψ

κ ψ ψ κ ψ ψ
=

∂ + −

− ∂ +

and 3σ the Pauli matrix. For the first few members of the
hierarchy N = 1, 2, 3, 4 this gives

, (A.3)t x1
ψ ψ=

i 2 0, (A.4)t xx
2 2

2
ψ ψ κ ψ ψ+ + =

6 0, (A.5)t xxx x
2 2

3
ψ ψ κ ψ ψ+ + =

( )i 2 2 4 ¯ 3 ¯

6 .

(A.6)

t xxxx x xx xx x
2 2 2 2 2

4 4

4
ψ ψ κ ψ ψ ψ ψ ψ ψ ψψ

κ ψ ψ

= + + + +

+

In the linear approximation, when 0κ = , the recursion
operator is just the momentum operator

x
i (A.7)0 3 σ= ∂

∂
and the NLS hierarchy (A.1) becomes the linear Schrödinger
hierarchy

i i . (A.8)t
n

x
n

n
ψ ψ= ∂

Written in the Madelung representation it produces the
complex Burgers hierarchy so that this representation plays
the role of the complex Cole–Hopf transformation [30]. Every
equation of the hierarchy (A.1) is integrable. The linear
problem for the Nth equation is given by the Zakharov–
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Shabat problem

( ) ( ) ( )x

v
v

p

p

v
v J

v
v

¯
, (A.9)

1

2

i

2
2

i

2

1

2
1

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

κ ψ

ψ
∂
∂

=
− −

=

for the space evolution, and

( ) ( ) ( )t

v
v

A C

C A

v
v J

v
v

i ¯

i
, (A.10)

N

N N

N N

1

2

2 1

2
0

1

2N

⎛
⎝⎜

⎞
⎠⎟

κ∂
∂

= − −
−

=

for the time part. Coefficient functions CN and AN are [28],

( )

C

C
p

p p

¯ ¯

... ¯ . (A.11)

N

N k

N
N k k

N N N

1

1

1 2 1

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠



 

∑ ψ
ψ

ψ
ψ

=

= + + +

=

− −

− − −

To write this expression in a compact form, by analogy with
q-calculus it is convenient to introduce notation of nonsym-
metric q-number operator

q q q N1 ... [ ] , (A.12)N
q

2 1+ + + + ≡−

where q is a linear operator. Hence with operator q p≡ we
have the finite Laurent part in the spectral parameter p

p p p
N1 ... [ ] . (A.13)

N

p

2 1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

  
+ + + + ≡

−

Then we have briefly

C

C
p N¯ [ ] ¯ . (A.14)

N

N

N
p

1 ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ
ψ= −

In a similar way

A
p C

C2
i ¯ , ¯ (A.15)N

N x x N

N

2 ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟∫ ∫κ ψ ψ= − − −

and due to (A.14)

( )

A
p

p N

2

i ¯ , [ ] ¯ . (A.16)

N

N

N x x
p

2 1 ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫κ ψ ψ

ψ
ψ

= −

− −−

Equations (A.10), (A.14) and (A.16) give the time part of the
linear problem (the Lax representation) for the Nth flow of
NLS hierarchy (A.1).

A.2. General NLS hierarchy equation

For the time t determined by the formal series

E (A.17)t

N

N t

0
N∑∂ = ∂

=

∞

where EN are arbitrary constants, the general NLS hierarchy
equation is [28]

)(E E Ei ¯ ... ... ¯ (A.18)
t

N
N

3 0 1⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ σ

ψ
ψ

ψ
ψ= + + + +

A.2.1. Linear problem.
Integrability of this equation is associated with the Zakharov–
Shabat problem (A.9) and the time evolution

J E J A C
C A
i ¯

i
, (A.19)

N

N0

0

0
2

N

⎛
⎝⎜

⎞
⎠⎟∑ κ= = − −

−=

∞

where

C
C

E
C

C

E p N

¯ ¯

[ ] ¯ . (A.20)

N

N
N

N

N

N
N

p

0

1

1

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

∑

∑ ψ
ψ

=

=

=

∞

=

∞
−

In the last equation we have used that for N = 0,C 00 = . Then
we have

( )

A E A E p

C
C

1

2

i ¯ , ¯ . (A.21)

N

N N

N

N
N

x x

0 0

2 ⎜ ⎟⎛
⎝

⎞
⎠

∑ ∑

∫ ∫κ ψ ψ

= = −

− −

=

∞

=

∞

A.2.2. Integrable nonlinearization.
The above equation (A.18) gives integrable nonlinear exten-
sion of a linear Schrödinger equation with general analytic
dispersion. Let us consider the classical particle system with
the energy-momentum relation

E E p E E p E p( ) ... (A.22)0 1 2
2= = + + +

Then the corresponding time-dependent Schrödinger wave
equation is

t
H

x
i i , (A.23)⎜ ⎟⎛

⎝
⎞
⎠ψ ψℏ ∂

∂
= − ℏ ∂

∂

where the Hamiltonian operator results from the standard

substitution for momentum p
x

i→ − ℏ ∂
∂

in the dispersion

(A.22). Equation (A.23) together with its complex conjugate
can be rewritten as a system

t
H

x
i ¯ i ¯ . (A.24)3 3⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ

ψ
ψ σ

ψ
ψℏ ∂

∂
= − ℏ ∂

∂
The momentum operator here is just the recursion operator
(A.7) in the linear approximation i

x0 3 σ= ∂
∂
. Hence (A.24)

can be rewritten as the linear Schrödinger equation with an
arbitrary analytic dispersion

( )

( )
t

H

E E E

i ¯ ¯

... ¯ . (A.25)

3 0

0 1 0 2 0
2

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠



 

σ
ψ
ψ

ψ
ψ

ψ
ψ

ℏ ∂
∂

=

= + +

Then the nonlinear integrable extension of this equation
appears as (A.18), which corresponds to the replacement

0 → , ( 1ℏ = ), so that

Hi ¯ ( ) ¯ . (A.26)
t

3⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ

ψ
ψ

ψ
ψ=
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From this point of view the standard substitution for classical

momentum p
x

i→ − ℏ ∂
∂

or equivalently p
x

i 3 0σ→ − ℏ ∂
∂

=
for the equation in spinor form, gives quantization in the form
of the linear Schrödinger equation. While substitution p →
gives ‘nonlinear quantization’ and the nonlinear Schrödinger
hierarchy equation.

A.2.3. The Lax representation.
The related Lax representation for equation (A.26) is given by
(A.20), (A.21). Using definition of q-derivative

D f
f q f

q
( )

( ) ( )

( 1)
(A.27)q

( ) ζ ζ ζ
ζ

= −
−

ζ

for operator q p= we have relation

D N p[ ] . (A.28)p
p N

p
N( ) 1 ζ = −

Then equation (A.20) can be rewritten as

C
C

E p N

E D p

¯ [ ] ¯

¯ (A.29)
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N
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N
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p N

1

1
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∑

∑

ψ
ψ

ψ
ψ

=

=

=

∞
−

=

∞

or using linearity of (A.27) and dispersion (A.22)

C
C

D E p

D E p

¯ ¯

( ) ¯ . (A.30)

p
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N
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p
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∑ ψ
ψ

ψ
ψ

=

=

=

∞

Due to definition (A.27) it gives the simple formula

C
C

E E p

p¯
( ) ( )

¯ , (A.31)⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠




ψ
ψ= −

−

where

( )

E E p

p
E E p

E p p

( ) ( )
( )

... (A.32)

1 2

3
2 2


 

 

−
−

= + +

+ + + +

Then for A we obtain

( )A E p

E E p

p

1

2
( ) i ¯ ,

( ) ( )
¯ . (A.33)

x x2

⎜ ⎟
⎛
⎝

⎞
⎠




∫ ∫κ ψ ψ

ψ
ψ

= − − −

× −
−

Equations (A.31), (A.33) give the Lax representation of the
general integrable NLS hierarchy model (A.26). It is worth
noting here that special form of the dispersion E E p( )= is
fixed by physical problem. In [28] we have constructed semi-
relativistic NLS equation. As another application, in section 4
we discuss symmetric q-NLS equation. We like to mention
here also the paper [34], which discusses the relation between
integrable discretization of integrable models and q-
oscillators.

Appendix B. Wedge theorem

Proof: First we show that F z( ) 0q 1I ∣ =Γ , where
z x i: { 0}1Γ = + is the real axis. Substituting z = x to (103)

and using identities for even powers

q q q̄ , (B.1)n n2 2( 1) 2( 1)= =− − −

q q q̄ , (B.2)n n4 2( 2) 2( 2)= =− − −

... (B.3)

q q q̄ , (B.4)k n k n k2 2( ) 2( )= =− − −

... (B.5)

q q q̄ , (B.6)n2( 1) 2 2= =− −

we find

( ) ( )

( ) ( )

F z f q x f q x

f q x f q x

( ) ¯ ¯

¯ ¯ , (B.7)

q

k

n
k

k

n
n k

k

n
k

k

n
k

0

1
2

0

1
2( )

0

1
2

0

1
2

1
∑ ∑

∑ ∑

= +

= +

Γ
=

−

=

−
−

=

−

=

−

where in the second sum we have changed summation order
by substitution n k k− → . This shows that on the real line
the complex potential is pure real and imaginary part
vanishes.

Now we show that F z( ) 0q 2I ∣ =Γ , where

{ }z x q x: e n2
iΓ = =π

is the second boundary line. Sub-

stituting we have

)( ) (F z f q x f q x( ) ¯ . (B.8)q

k

n
k

k

n
k

0

1
2 1

0

1
2 1)

2
∑ ∑= +

Γ
=

−
+

=

−
+

By identities for odd powers

q q q̄ , (B.9)n n(2 1) 2 1= =− − −

q q q̄ , (B.10)n n3 (2 3) 2 3= =− − −

... (B.11)

q q q̄ , (B.12)n2 3 3 3= =− −

q q q̄, (B.13)n2 1 1= =− −

and as follows q q q̄k n k n k2 1 2 2 1 2 2 1= =+ − + + − − , we rewrite the
sum

)( ) (F z f q x f q x( ) ¯ . (B.14)q

k

n
k

k

n
k

0

1
2 1

0

1
2 1)

2
∑ ∑= +

Γ
=

−
+

=

−
+

After changing order of summation in the second sum and
shifting summation index we finally get

)( ) (F z f q x f q x( ) ¯ ¯ , (B.15)q

k

n
k

k

n
k

0

1
2 1

0

1
2 1)

2
∑ ∑= +

Γ
=

−
+

=

−
+

which shows that the stream function vanishes at the
boundary. This completes the proof of the wedge theorem.
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