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Abstract
A new integral representation is obtained for the star product corresponding to the s-ordering of
the creation and annihilation operators. This parametric ordering convention introduced by
Cahill and Glauber enables one to vary the type of ordering in a continuous way from normal
order to antinormal order. Our derivation of the corresponding integral representation is based on
using reproducing formulas for analytic and antianalytic functions. We also discuss a different
representation whose kernel is a generalized function and compare the properties of this kernel
with those of the kernels of another family of star products which are intermediate between the
qp- and pq-quantization.

Keywords: deformation quantization, star product algebras, Weyl–Wigner correspondence,
Wick and anti-Wick symbols

1. Introduction

The star product corresponding to the Cahill–Glauber s-
ordering rule [1] was first considered by Man’ko et al [2],
along with the star product corresponding to the symplectic
tomography map. An integral representation for this star
product was also discussed in article [3] devoted to the duality
symmetry of star products and in a recent review [4] of the
matrix bases for a variety of noncommutative star products
based on a generalized Weyl–Wigner transform. As the order
parameter s changes from 1 to −1, the s-ordering of the
creation and annihilation operators changes continuously
from normal order to antinormal order and becomes sym-
metric at s = 0. This parametrization has been proposed in [1]
as a useful tool for understanding and comparison of the
convergence properties of the expansions of operator func-
tions in ordered powers of the annihilation and creation
operators for these three principal forms of ordering. The
integral representation derived below for the star product
corresponding to the s-ordering generalizes the well-known
representation [5] for the Wick star product corresponding to
normal ordering and turns continuously into the latter as
s 1→ + . Our method of deriving this representation is based

on using reproducing formulas for analytic and antianalytic
functions. A simple proof of these formulas is given in
section 3 for the reader’s convenience. It should be empha-
sized that our representation of the star product f gs⋆ , where f
and g are symbols of s-ordered operators, as well as the
representation [5] of the Wick star product, is expressed not
through the functions f and g on the real phase space, but
through their analytic continuations to the complex space. An
important point is that the corresponding integral kernel is
absolutely integrable. In section 5, we show that a repre-
sentation of f gs⋆ with integration over the real phase space
and with a bounded locally integrable kernel is possible only
for s = 0, i.e., only for the Weyl–Moyal star product. If
s 1= ± , then the integral kernel of such a representation
cannot be an ordinary function and is not even a tempered
distribution. However, for any s, it can be interpreted as a
singular generalized function defined on a suitable space of
analytic test functions, which is characterized precisely in the
same section. When written in this form, the integral kernel
depends continuously on s. For a comparison, we derive in
section 6 an integral representation for another family of star
products corresponding to a parametrized t-ordering of the
coordinate and momentum operators, which is intermediate
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between standard and antistandard ordering or, in other
words, between pq and qp-quantization. This representation
is not new, see, e.g., [6], where it was derived in a different
way. Its kernel is bounded and locally integrable on the real
phase space for all t1 1− < < + and, as we shall see, turns
continuously into a tempered distribution as t 1→ ± .

A few words about notation may be useful. For simpli-
city, we consider the case of two-dimensional phase space
with canonically conjugate coordinates q and p whose Pois-
son bracket is equal to unity. The complex coordinates z and z̄
are given by

( ) ( )z q p z q p
1

2
i , ¯

1

2
i ,1 1ς ς ς ς= + = −− −

where ς is a dimensional parameter such that qς and p1ς−

have the same dimension. We will use two Fourier
transformations f f: ˜ → and f f˘ : ˘ → defined by

f w w f z z z˜ ( , ¯ )
1

e ( , ¯)d (1)zw zw¯ ¯ 2∫π
= −

and

f w w f z z z( , ¯ )
1

e ˘ ( , ¯)d , (2)zw zw¯ ¯ 2∫π
= −

where z z zd d(Re )d(Im )2 = is a real element of area in the
complex plane. It is natural to call them symplectic Fourier
transformations, because

zw zw zwi( ¯ ¯ ) 2 Im( ¯ )− =

is the canonical symplectic 2-form on the phase space. In
contrast to the ordinary Fourier transformation, both trans-
formations  and ̆ are involutions,

˘ Id.2 2 = =
We let z( )(2)δ denote the two-dimensional delta-function

z z(Re ) (Im )δ δ . Clearly,

z z( )
1

e d .zw zw(2)
2

¯ ¯ 2∫δ
π

= −

As usual, a and a† are the annihilation and creation operators
acting on a Hilbert space and satisfying the commutation
relation

a a, . (3)†⎡⎣ ⎤⎦ = 

These operators differ by a factor of 1 2 from operators
denoted by the same symbols in [1], whose commutator
equals the unit operator. The operators used here are
preferable from the standpoint of deformation quantization
theory treating Planck’s constant ℏ as a deformation
parameter. To each complex number w we assign the operator

D w( ) e , (4)wa wa¯†= −

called in [1] displacement operator. It follows from (3) and
the Baker–Campbell–Hausdorff formula that the operators (4)
satisfy the relation

( )D w D w D w w( ) ( ) e ( ). (5)wwi Im ¯′ = + ′′

In other words, these operators realize a unitary projective
representation of the translation group of phase space with the
multiplier e wwi Im( ¯ )′ .

2. The s-ordering and its corresponding star product

The Weyl correspondence between phase space functions and
operators acting on a Hilbert space can be written as

f A f w w D w w
1 ˜ ( , ¯ ) ( )d . (6)f

2∫π
⟼ =

The monomial z z¯α β is transformed by the mapping (6) into
the symmetrically ordered product a a{( ) }† α β . For instance,
a a a a aa{ } ( )† 1

2
† †= + . The s-ordered product of the operators

a and a† emerges if (6) is replaced by the correspondence

f A f w w D w w
1 ˜ ( , ¯ ) ( )d , (7)f s s,

2∫π
⟼ =

where

D w D w( ) e ( ). (8)s
s w 22

= 

By using the formula

z z w¯ ( 1) ( ),w w̄
(2)π δ= − ∂ ∂α β α α β

we find that the monomial z z¯α β is transformed by (7) into the
operator

{ }( )a a
D w

w w

( )

( ¯ )
. (9)

s

s

w

†

0

=
∂

∂ ∂ −
α β

α β

α β

+

=

This is precisely the definition of s-ordered product given in
[1]. From the equalities

D w D w( ) e e and ( ) e e ,wa wa wa wa
1

¯
1

¯† †= =−
−

−

it is clear that the orderings specified by s 1, 1= + − are,
respectively, normal and aninormal

{ } { }( ) ( ) ( ) ( )a a a a a a a a, .†

1

† †

1

†= =
α β α β α β β α

−

The star product f gs⋆ corresponding to the s-ordering or, in
other words, the composition law for phase space functions
that is induced by the operator product through the
correspondence (7) can be obtained by a direct generalization
of the method used by von Neumann [7] for the Weyl
correspondence. In [8], such a derivation has been carried out
for orderings of a more general form, and for the reader’s
convenience, we reproduce it in notation used here. First we
show that in terms of the Fourier transforms the required
composition law is given by

( ) ( ) ( )
( )

f g w w f w w w w g w w

w

˜ ˜ ( , ¯ )
1 ˜ , ¯ ¯ ˜ , ¯

e d .

(10)

s

s w w w s w w w
2

(1 )( ) ¯ (1 ) ¯ ¯ 2⎡⎣ ⎤⎦

∫π
⊛ = − ′ − ′ ′ ′

× ′− − ′ ′− + − ′ ′

We note that the integral on the right-hand side of (10) is a
noncommutative deformation of convolution and turns into

2
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the ordinary convolution as 0→ . If s = 0, the exponential
on the right-hand side of (10) takes the form e wwi Im( ¯ )′ and, in
this case, the deformed convolution is called ‘twisted
convolution’. Substituting f g˜ ˜s⊛ for f̃ in (7), using the
definition (8) and changing integration variables, we find that

( )
( )

( )

f g w w D w w

f g w w

D w w

f w w g w w

D w w w w

˜ ˜ ( , ¯ ) ( )d

˜ ˜ ( , ¯ )

e ( )d
1 ˜ ( , ¯ ) ˜ , ¯

e

( )d d .

s s

s

s w

s ww s ww s w w

2

2
2

2
(1 ) ¯ (1 ) ¯

2 2

2

2⎡⎣ ⎤⎦

∫
∫

∬
π

⊛

= ⊛

×

= ′ ′

×
× + ′ ′

− ′− + ′+ + ′





The expression in square brackets can be rewritten as

( )s w s w ww2i Im ¯ .2 2+ ′ + ′

By using (5), we obtain

( )

( )

f g w w D w w

f w w g w w

D w D w w w A A

1 ˜ ˜ ( , ¯ ) ( )d

1 ˜ ( , ¯ ) ˜ , ¯

( ) ( )d d ,

s s

s s f s g s

2

2

2 2
, ,

∫
∬

π

π

⊛

= ′ ′

× ′ ′ =

which is what we set out to prove. Now we define f gs⋆ by

( )f g f g˜ ˜ (11)s s⋆ = ⊛

and conclude that the generalized Weyl transformation (7)
converts this star product into the operator product. An
explicit expression for f gs⋆ follows directly from the
definitions (10), (11). Taking the Fourier transform of the
deformed convolution (10), we find that

(
)

( )

( )

( )

( )

(12)

f g z z f g w w w

f w w g w w

w w

f w w g z s w

z s w w

( , ¯)
1 ˜ ˜ ( , ¯ )e d

1 ˜ ( , ¯ ) ˜ , ¯

e
d d

1 ˜ ( , ¯ ) (1 ) ,

¯ (1 ) ¯ e d .

s s
wz wz

s ww s ww w w z w w z

wz wz

¯ ¯ 2

2

2
(1 ) ¯ (1 ) ¯ ( ) ¯ ¯ ¯

2 2

2

2
¯ ¯ 2

⎡⎣ ⎤⎦

∫

∫

∬
π

π

π

⋆ = ⊛

= ′ ′

×
× ′

= − −

− +

−

− ′− + ′ + + ′ − + ′

−







On substituting the explicit expression for f̃ , we obtain the
representation

(
)

( )( )

( )

f g z z f z z g z s w

z s w z w

( , ¯)
1

, ¯ (1 ) ,

¯ (1 ) ¯ e d d . (13)

s

w z z w z z

2 2

2
¯ ¯ ¯ ( ) 2 2

∬
π

⋆ = ′ ′ − −

− + ′− ′ − − ′





By changing the integration variables from w and w̄ to

z z s w(1 )
2

″ = − − and z z s w¯ ¯ (1 ) ¯
2

″ = − + , the star

product can be given the form

( )( ) ( )f g z z f z z g z z

k z z z z z z

( , ¯) , ¯ , ¯

( , )d d , (14)

s

s
2 2

∬⋆ = ′ ′ ″ ″

× ′ − ″ − ′ ″

where

( )
k z z

s

z z

s

z z

s
( , )

4

( ) 1
exp

2 ¯

1

¯

1
.

(15)

s
2 2

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭π
′ ″ =

−
′ ″
−

− ′ ″
+ 

The integral kernel (15) was first obtained by Man’ko et al [2]
by a different calculation, see remark in section 5. A formal
proof of this representation is also presented in [6], appendix
A.5. If s = 0, then the exponent in (15) is pure imaginary and
we have

{ }( )k z z z z( , )
4

( )
exp

4i
Im ¯ . (16)0 2π

′ ″ = − ′ ″
 

When expressed in terms of the real variables q and p,
k z z z z( , )0 ′ − ″ − coincides with the well-known expression
for the integral kernel of the composition law for the Weyl
symbols, see, e.g., [5].

For s 0≠ , the real part of exponent in (15) is nonzero
and is not negative definite. Therefore, the integral (14) needs
a careful interpretation. This question was addressed in [4],
where a prescription of how this integration should be per-
formed has been given for s1 0− < ⩽ . In particular, the
integrals on the right-hand sides of (13) and (14) are not
absolutely convergent for polynomial functions f and g. In
this case, we can obtain the correct result by using instead
(12) and regarding f̃ as a tempered distribution. On the other
hand, it is well known that the Wick star product, which
corresponds to s = 1, can be represented in the form of an
integral over the complex plane, which is absolutely con-
vergent not only for polynomial symbols but also for all entire
functions of order less than 2. Because the integral kernel (15)
is singular for s 1= ± , it is desirable to find a representation
having the absolute convergence property for an arbitrary s.
To this end, we shall use reproducing formulas for analytic
and antianalytic functions, whose derivation is given in the
next section.

3. Reproducing formulas

We start with the following easily verifiable identity

z v w
1

e d e , , . (17)zv zw zz vw¯ ¯ ¯ 2 ¯∫π
= ∈+ − 

Using (17), we obtain

z z
v

z

v
w

1
e d

1

¯
e d

e

¯
. (18)

w z z zv zw zz

v

vw

v

( ) ¯ 2 ¯ ¯ ¯ 2

¯ 0

¯

¯ 0

∫ ∫π π
= ∂

∂

= ∂
∂

=

α
α

α

α

α
α

− + −

=

=

3
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It follows that

w z z( )
1

( )e d (19)w z z( ) ¯ 2∫φ
π

φ= −

for any entire analytic function z a z( )φ = ∑α α
α, whose

Taylor coefficients satisfy the condition

a! . (20)2∑α < + ∞
α

α

Indeed, if (20) is satisfied, then the Schwarz inequality yields

a z a z

C

! !

e .z

2

1 2

2

1 2

22

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑α α⩽

⩽

α
α

α

α
α

α

α

This estimate enables us to interchange the order of
summation and integration in the expression

a z ze dw z z( ) ¯ 2∫ ∑α α
α − , and then (18) implies (19). Analo-

gously, by differentiating (17) with respect to w, we obtain
the reproducing formula

v z z( ¯)
1

( ¯)e d (21)v z z( ¯ ¯) 2∫φ
π

φ= −

for antianalytic functions, i.e., for entire functions of the
variable z̄ . Furthermore, we have

z z z
v w

z

v w

1
¯ e d

¯
e d

e

¯
! , (22)

zz zv zw zz

w

vw

w

¯ 2 ¯ ¯ ¯ 2

0

¯

0

v

v

¯ 0

¯ 0

∫ ∫π

α δ

= ∂
∂ ∂

= ∂
∂ ∂

=

α β
α β

α β

α β

α β αβ

−
+

+ −

=

+

=

=

=

where δαβ is the Kronecker symbol. The space of entire
functions with the property (20) can be made into a Hilbert
space by giving it the scalar product a b, ! ¯ϕ ψ α〈 〉 = ∑α α α.

The set of functions z !αα , where α runs through all non-
negative integers, is clearly an orthonormal basis for this
space, and (22) shows that its scalar product can be written as

z z z,
1

( ) ( )e d . (23)zz̄ 2∫φ ψ
π

φ ψ= −

The functions z̄ !αα form a basis for the analogous space of
antianalytic functions. Both these spaces are known as Fock–
Bargmann spaces. In the context of deformation quantization,
it is useful to include ℏ in the definitions and, in particular, to
replace (23) by the scalar product

z z z,
1

( ) ( )e d . (24)zz1 ¯ 2∫φ ψ
π

φ ψ= −




We let ℱ denote the corresponding function space and, for
its elements, we have the reproducing identity

w z z( )
1

( )e d . (25)w z z1 ( ) ¯ 2∫φ
π

φ= −




An analogous identity holds for the space ℱ of antianalytic
functions. It follows, from what has been said, that we also

have the reproducing formula

( )

( )

w w z z

z z

( , ¯ )
1

( )
, ¯

e d d , (26)w z z w z z

2

1 ( ) ¯ 1 ¯ ¯ 2 2

∬φ
π

φ= ′

× ′− + − ′ ′



 

which holds for all functions belonging to the Hilbert tensor
product ℱ ⊗ ℱ  .

4. An integral representation of the star
product f⋆sg

We now return to the last integral in (12). Considering the
second function in the integrand as an analytic function of w
and w̄ for fixed z and applying the reproducing formula (26),
we may write it in the form

( )

( ) ( )

( )

g z s w z s w

g z z z z

z z

(1 ) , ¯ (1 ) ¯

1

( )
, ¯ ¯

e

d d (27)

s w z z s w z z

2 2

2

1
2

(1 ) ¯ 1
2

(1 ) ¯ ¯

2 2

∬
π

− − − +

= + ′ + ″

×
× ′ ″

− − − ′ ′+ − + − ″ ″



 







Substituting this expression into (12) and integrating over w,
we obtain the representation

( )

( )

( )

f g z z f z s z

z s z g z z z z z z

( , ¯)
1

( )

1

2
(1 ) ,

¯
1

2
(1 ) ¯ , ¯ ¯ e d d .

(28)

s

z z z z

2

1 ¯ ¯ 2 2

⎜

⎟

⎛
⎝

⎞
⎠

∬
π

⋆ = + + ″

− − ′ + ′ + ″ ′ ″− ′ ′+ ″ ″





For any s, the integral (28) is absolutely convergent for
polynomials. Moreover, it converges absolutely for all entire
functions of order 2< .

If s = 1, we can integrate over z′ by using (25) and reduce
the double integral to a single integral. It is clear, however,
that in this case, the same result is obtained at once by
applying (21) to the function g z z w( , ¯ ¯ )−  . Then changing
the integration variable, we reproduce the well-known inte-
gral representation [5] for the Wick star product

( )( ) ( )

( )

f g z z f z z g z z

z

( , ¯)
1

, ¯ , ¯

e d . (29)

W

z z z z1 ( ) ¯ ¯ 2

∫π
⋆ = ′ ′

× ′− ′− ′−





There is also no need to use (26) in the case of the anti-Wick
star product f g( )AW⋆ specified by s 1= − and corresponding
to the antinormal ordering. Applying (25) to g z w z( , ¯)−  , we
obtain

( )( ) ( )f g z z f z z z g z z z

z

( , ¯)
1

, ¯ ¯ , ¯

e d . (30)z z

AW

1 ¯ 2

∫π
⋆ = − ′ + ′

× ′− ′ ′





Let us show that this representation is in full agreement with
the usual representation [5] of the anti-Wick star product in

4
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the deferential form

( )f g z z f z z g z z( , ¯) ( , ¯)exp( ) ( , ¯). (31)z zAW ¯⋆ = − ∂
←⎯⎯

∂
⎯→⎯

It suffices to demonstrate this for monomials. Using (31), we
find that

( )( )z z z z z z

z z

¯ ¯ ¯
( )

!

¯!

( ¯ )!

!

( )!
¯ .

( )
¯

AW
¯ ¯

0

min ¯,

¯

∑
κ

α
α κ

β
β κ

⋆ = −

×
− −

α α β β α β

κ

α β κ

α κ β κ

=

− −



On the other hand, the representation (30) yields

( )( )

( )

z z z z

z z z z z z z

z z

z z z z z

¯ ¯

1
¯ ¯ ( ) ¯ e d

¯
¯!

! ( ¯ )!

!

! ( )!

¯ ( 1)
1 ¯ e d .

z z

z z

¯
AW

¯

¯ ¯ 1 ¯ 2

¯

0

¯

0

¯ 1 ¯ 2

∫

∫

∑∑
π

α
κ α κ

β
λ β λ

π

⋆

= − ′ + ′ ′

=
− −

× − ′ ′ ′

α α β β

α α β β

α β

κ

α

λ

β

α κ β λ κ κ λ

− ′ ′

= =

− − − ′ ′









We therefore obtain the same result by virtue of the
orthogonality relation (22).

To demonstrate the efficiency of representation (28), we
calculate the s-star product of two Gaussian functions
g ea

azz̄= − and g eb
bzz̄= − . Substituting them into (28), setting

s s(1 )1

2
= −− , s s(1 )1

2
= ++ for notational convenience,

and first performing the integration over z′ with the use of
(17), we obtain

( )
( ) ( )

( )

( )

g g z z

z z

z

( , ¯)

1

( )
e

e d d
1

e

e e e d .

( )

( )

a s b

a z s z z s z b z z z z

z z z z

a b zz

as z z bzz z z abs z s z z z

2
¯ ¯ ( ) ¯ ¯

1 ¯ ¯ 2 2

( ) ¯

¯ ¯ 1 ¯ ¯ ¯ 2

∬

∫

π

π

⋆

=

× ′ ″

=

× ″

− + ″ − ′ − + ′ + ″

− ′ ′+ ″ ″

− +

− ″ − ″ − ″ ″ − + ″ − ″

+ −

+ − +







 

Setting c abs s1 (1 )s
2= + − + and using (17) again, but this

time with w b as z(1 )= − + − and v as bs z¯ (1 ) ¯= − ++ − , we
find that

( ) {
}

( )
( )( )

g g z z c a b abs zz

c abs as bs zz

( , ¯) exp ¯

1 1 ¯ .

a s b s

s

⋆ = − + +

+ + +
−

+ − −



  

After substituting the explicit form of cs, the exponent
becomes

a b ab s s

abs s
zz

( )

1
¯,

2
−

+ + −
+

− +

− +




and we conclude that

( )

( )

( )g g z z
ab s

a b abs

ab s
zz

( , ¯)
4

4 1

exp
4( )

4 1
¯ . (32)

a s b 2 2

2 2

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⋆ =
+ −

× − + −
+ −






For s = 0, (32) turns into the well-known formula for the
Weyl–Moyal star product of two Gaussians, see, e.g,
equations (48) and (49) in [9], where a2 2 and b2 2

correspond to our a and b.

5. Integral kernels as generalized functions

In this section, we derive another representation of the star
product f gs⋆ by using the inverse of the transformation (7).
This inverse mapping plays the same role as the Wigner
mapping for the Weyl correspondence (6). We will also use
the formula for the trace of the displacement operator

D w wtr ( ) ( ), (33)(2)πδ=

which is derived by employing the basic properties of
coherent states, see [1, 10]. The transformation (7) can be
rewritten as

f A f z z D z z
1

( , ¯) ˘ ( ) d , (34)f s s,
2∫π

⟼ =

where the symplectic Fourier transform D̆s is defined by (2). It
follows from (5), (8), and (33) that

( )
( )

( )

D z D z

D w D w w w

w

z z

tr ˘ ( ) ˘ ( )
1

e

e tr( ( ) ( ))d d
1

e d

( ).

s s
z w z w z w z w

s w w

z z w z z w

2
· ¯ ¯· · ¯ ¯ ·

2 2 2

( )· ¯ ¯ ¯ · 2

(2)

2 2

∫

∬
π

π
πδ

′ =

× ′ ′

=

= − ′

−
− + ′ ′− ′ ′

− ′

− ′ − − ′



Therefore the inverse of the transformation (34) is

( )A f z AD z( ) tr ˘ ( ) (35)A s s,⟼ = −

The star product f gs⋆ is obtained by applying the mapping
(35) to the operator A Af s g s, , , and hence we have

( )( )f g z z A A D z( , ¯) tr ˘ ( ) . (36)s f s g s s, ,⋆ = −

Writing it formally as an integral over the phase space,

( ) ( )( )f g z f z z g z z

K z z z z z

( ) , ¯ , ¯

( , , )d d , (37)

s

s
2 2

∬⋆ = ′ ′ ″ ″

× ′ ″ ′ ″

we see that the integral kernel Ks is given by

( )

( )

( )

K z z z D z D z D z

D w D w D w w w w

( , , ) tr ˘ ( ) ˘ ( ) ˘ ( )

1
e

tr ( ) ( ) ( ) d d d . (38)

s s s s

i z w z w zw

s s s

1

5
2 Im ¯ ¯ ¯

2 2 2

2

∭
π

′ ″ = ′ ″

=

× ′ ″ ′ ″

π −

′ ′+ ″ ″+

−

5
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The relation (5) implies that

( )D w D w D w
D w w w

( ) ( ) ( ) e
( ).

ww ww wwi Im ¯ ¯ ¯′ ″ =
× + ′ + ″

′+ ″+ ″

Hence

( )
( ) ( )

( ) ( )

D w D w D w

D w w w

w w w

tr ( ) ( ) ( )

e e
tr ( )

e

( ). (39)

s s s

s w w w w w w w w w

s w w w w

2 i Im ¯ ¯ ¯

Re ¯ i Im ¯

(2)

2 2 2

π
δ

′ ″

=
× ′ + ″ +

=
× ′ + ″ +

−

′ + ″ − ′ ″+ ′ + ″

− ′ ″ + ′ ″

 

 

Substituting the last expression into (38), we find that
K z z z( , , )′ ″ can be written as

K z z z k z z z z( , , ) ( , ), (40)s s′ ″ = ′ − ″ −

where

( )( ) ( )k z z( , )
1

e . (41)s
s w w w w

2
Re ¯ i Im ¯ 

π
′ ″ = ′ ″

− ′ ″ + ′ ″ 

For s = 0, we have

( )( ) ( )e 4 ew w z zi Im ¯ 2 4i Im ¯1 ′ ″ =′ ″ − − ′ ″− 

and arrive again at the formula (16).
If s 0≠ , then the real part of the exponent in (41),

expressed in terms of the real variables, is an indefinite quad-
ratic form with signature ( , , , )+ + − − . Therefore the
double Fourier transform of this exponential function is in
general a singular generalized function. The corresponding test
function space, on which it is certainly well defined, can be
described by using the elementary inequality w wRe( ¯ )∣ ′ ″ ∣ ⩽

w w( ) 22 2∣ ′∣ + ∣ ″∣ . Let w u v( i ) 2′ = ′ + ′ and w″ =
u v( i ) 2″ + ″ . Clearly, the function e s w wRe( ¯ )− ′ ″ becomes
integrable after multiplication by any function of the form

u v u v( , , , )e , (42)
s u v u v 4

2 2 2 2⎛
⎝⎜

⎞
⎠⎟φ ′ ′ ″ ″

′ ′ ″ ″− + + +

where φ belongs to the Schwartz space S ( )4 of smooth
rapidly decreasing functions. Let ( )s2, 4

4 ∣ ∣  be the space of
all function of the form (42). In the one-variable case, the
elements of ( )a2,  are characterized by the inequalities

g u C u N( ) (1 ) e , , 0, 1, 2 ,....N
N au

,
2 α∂ ⩽ + =α

α
− −

In the case of several variables, the space a2, is defined by
the same formula but with α considered as a multi-index. The
Fourier transformation maps this space onto the space b2, ,
where b a(4 ) 1= − , whose elements admit analytic continua-
tion to entire functions satisfying the estimate

x y f x y C( i ) ( i ) e .b y2+ + ⩽α
α

It is easy to see that the generalized function (41) can be
written as

k z z s s

z z

( , ) exp
2

( 1) ( 1)

( ) ( ). (43)

s z z z z¯ ¯

(2) (2)

⎜ ⎟⎛
⎝ ⎡⎣ ⎤⎦⎞

⎠
δ δ

′ ″ = + ∂ ∂ + − ∂ ∂

× ′ ″

′ ″ ′ ″


Indeed, taking the double Fourier transform of the right-hand
side of (43), we obtain

( ) ( )

s s

z z z z

1
e

exp
2

( 1) ( 1)

( ) ( )d d
1

e

1
e .

z w z w z w z w

z z z z

s w w s w w

s w w w w

2

¯ ¯ ¯ ¯

¯ ¯

(2) (2) 2 2

2
2

( 1) ¯ ( 1) ¯

2
Re ¯ i Im ¯

⎜ ⎟⎛
⎝ ⎡⎣ ⎤⎦⎞

⎠

⎡⎣ ⎤⎦

∬
π

δ δ

π

π

× + ∂ ∂ + − ∂ ∂

× ′ ″ ′ ″

=

=

′ ′− ′ ′+ ″ ″− ″ ″

′ ″ ′ ″

− + ′ ″+ − ′ ″

− ′ ″ + ′ ″





 

The generalized function (43) is well defined on b2, with
b s( ) 1= ∣ ∣ − , because the infinite order differential operator

( )s sexp ( 1) ( 1)z z z z2
¯ ¯⎡⎣ ⎤⎦+ ∂ ∂ + − ∂ ∂′ ″ ′ ″

 is well defined on this
space and maps it continuously into S. More particularly,
applying this operator to a function in ( )s2,1 4   yields a
series which converges absolutely in S ( )4 . Substituting (40)
and (43) into (37), we obtain the representation

( )

(44)

f g z z f z z s s

g z z

( , ¯) ( , ¯) exp
2

( 1) ( 1)

( , ¯),

s z z z z¯ ¯⎜ ⎟⎛
⎝

⎡
⎣

⎤
⎦
⎞
⎠⋆ = + ∂

←
∂

⎯→⎯
+ − ∂

←⎯⎯
∂

⎯→⎯

×



which holds for all f g, s2,1∈  . In a manner similar to that
used in section 4 for the anti-Wick product, it is easy to verify
that (28) and (44) give the same expression for z z z z( ¯ ) ( ¯ ).s

¯ ¯⋆α α β β

It should be pointed out that the kernel (43) is continuous in s
under the topology of the dual of s2,1  . We also note that

multiplication by the function e s w 22∣ ∣ , where s 0> , is
converted by the Fourier transformation into the differential
operator e ,s

z z
( 2)

¯Δ = ∂ ∂− Δ , which maps ( )s2,1 2   isomor-
phically onto S ( )2 , and it follows from (7) and (8) that

( ) ( )( )f g f ge e e , (45)
s

s
s s

2 2 2⋆ = ⋆− Δ − Δ − Δ  

where ⋆ is the Weyl–Moyal star product, and f and g are any
two functions in s2,1  .

Remark. As shown in [1], the symplectic Fourier transform of
the s-ordered displacement operator (8) can be expressed in
the form

D z
s

D z
s

s
D z˘ ( )

2

1
( )

1

1
( ). (46)s

a a†

⎜ ⎟⎛
⎝

⎞
⎠=

−
+
−

−

The integral kernel (15) was found in [2, 4] starting from (38)
and using the expression (46) for D̆s. This implies that the
representation (14) with ks given by (15) and properly defined
integration must be equivalent to (44) for functions in s2,1 

or for functions in a dense subspace of s2,1  .

6. Another one-parameter family of orderings

We now consider another parametric ordering, indexed by a
real parameter t, which plays for the pq- and qp-quantization
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the same role as the Cahill–Glauber ordering for the Wick and
anti-Wick quantization. Let Q and P be the position and
momentum operators satisfying the Heisenberg commutation
relation

Q P[ , ] i .= 
The displacement operator is now given by

D u v( , ) e ,vQ uPi( )= −

where u and v are real variables1. The relation (5) takes the
form

D u v D u v D u u v v( , ) ( , ) e ( , ), (47)vu uvi ( ) 2′ ′ = + ′ + ′′− ′

Let us define the operator u v( , )tD by

u v( , ) e et
tuv vQ uPi 2 i( )D = −

and consider, instead of (7), the correspondence

f A f u v u v u v
1

2
˜ ( , ) ( , )d d , (48)f t t, D∫π

⟼ =

where

f u v f u v f q p q p˜ ( , ) ( )( , )
1

2
e ( , )d d .pu qvi( ) ∫π

= = −

The monomial q pα β is transformed by the mapping (48) into
the product

( )Q P
u v

v u

( , )

( )
. (49)

t

t

v 0
u 0

D
=

∂
∂ ∂ −

α β
α β

α β

+

=
=

Since e evQ uP
1D = − and e euP vQ

1D =−
− , we see that the

orderings specified by t 1, 1=+ − are, respectively, standard
and antistandard

( ) ( )Q P Q P Q P P Q, .
1 1

= =α β α β α β β α
−

Clearly, the Weyl symmetric ordering is specified by t = 0.
To find the star product that corresponds to the ordering

(49), we proceed along the same lines as in section 2 and first
define a deformed convolution f g˜ ˜t⊛ by

( ) ( )f g u v f u u v v g u v

u v

˜ ˜ ( , )
1

2
˜ , ¯ ˜( , )

e d d .

(50)

t

t v v u t u u vi
2

[(1 )( ) (1 )( ) ]

∫π
⊛ = − ′ − ′ ′ ′

× ′ ′− − ′ ′− + − ′ ′

By using (47), it is easy to see that

( )f g u v u v u v

f u v g u v

u v u v u v u v

A A

1

2
˜ ˜ ( , ) ( , )d d

1

(2 )
˜ ( , ) ˜( , )

( , ) ( , )d d d d
,

t t

t t

f t g t

2

, ,

2

4

D

D D

∫
∫

π

π

⊛

= ′ ′

× ′ ′ ′ ′
=





Now we define f gt⋆ as the symplectic Fourier transform
f g˜ ˜t⊛ of and find that

(
)

( )( )f g q p f g u v u v

f u v g u v

u v u v

f u v g q t u

p t v u v

( , )
1

2
˜ ˜ ( , )e d d

1

(2 )
˜ ( , ) ˜( , )

e
d d d d

1

2
˜ ( , ) (1 ) ,

(1 ) e d d .

t t
vq up

t vu t uv v v q u u p

vq up

i( )

2

i
2

[(1 ) (1 ) ] i[( ) ( ) ]

2

2
i( )

2

4

2

∫
∫

∫

π

π

π

⋆ = ⊛

= ′ ′

×
× ′ ′

= − +

− −

−

− ′− + ′ + + ′ − + ′

−













After substituting the explicit form of f u v˜ ( , ), the last integral
becomes

( )f q p g q t u p t v

q p u v

1

2
( , ) (1 ) , (1 )

e d d d d .v q q u p p

2 2

i[ ( ) ( )]

4
∫π

′ ′ − + − −

× ′ ′− ′ − − ′

 



Changing the integration variables from u and v to
q q t u(1 )

2
″ = − + and p p t v(1 )

2
″ = − − , we obtain

the representation

( )f g q p f q p g q p

q q p p q q p p

q p q p

( , ) ( , ) ( , )

( , , , )
d d d d ,

(51)

t

t

4

K

∫⋆ = ′ ′ ″ ″

× ′ − ′ − ″ − ″ −
× ′ ′ ″ ″



where

q p q p
t

p q

t

q p

t

( , , , )
1

( ) 1

exp
2i

1 1
. (52)

t 2 2

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭

K
π

′ ′ ″ ″ =
−

× − ′ ″
+

− ′ ″
−





It can be verified that the same result is obtained by a
computation analogous to that carried out in section 5 or, to
be more specific, by using the mapping

( )A f q p A q p( , ) tr ˘ ( , ) ,A t t, D⟼ = −

which is inverse to the mapping (48). For t = 0, the formula
(52) is clearly equivalent to (16). As t 1→ ± , the expression
on the right-hand side of (52) becomes singular. Changing to
the variables q p( ) 2± and using the method of stationary
phase, it can be shown that

e q plim ( ) ( ).qp2iτ πδ δ=
τ

τ
→+∞

±

Therefore

q p q p q p( , , , )
1

2
e ( ) ( ),p q

1
i

K
π

δ δ′ ′ ″ ″ = ′ ″− ′ ″




and

q p q p p q( , , , )
1

2
e ( ) ( ).q p

1
i

K
π

δ δ′ ′ ″ ″ = ′ ″−
′ ″




Thus, the kernel of the integral representation (51) for the star
product corresponding to the ordering (49) is an ordinary1 These variables differ by a factor of 2 from those in section 5.
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locally integrable function for all t 1≠ ± and contains
delta-functions for t 1= ± , whereas in the case of the
Cahill–Glauber s-ordering, the kernel of the analogous
representation lies outside the space of tempered distributions
for s 1= ± .

7. Concluding remarks

The main result of this paper is the integral representation
(28) with absolutely integrable kernel for the s-star product,
which connects continuously the Wick and anti-Wick star
products in accordance with the initial Cahill and Glauber’s
idea of varying the type of ordering in a continuous way from
normal order to antinormal order. It is well known that if an
operator A is bounded, then its Wick symbol is the restriction
of an entire function f z z( , )A ′ to the set z z̄′ = . An analogous
statement holds for the s-symbols fA s, with any s 0> .
Because of this, the representation (28) is most useful in the
case of positive s. The anti-Wick symbols of bounded
operators are generally not well-behaved functions and not
even tempered distributions. The same can be said with
respect to the s-symbols for s 0< , and in this case, the
representation (12) appears to be more relevant. The Weyl–
Moyal star product holds a central position in deformation
quantization because it is completely determined by the
symplectic structure of the phase space. The Schwartz space S
is an algebra under this star product and Schwartz’s theory of
distributions provides a convenient framework for the Weyl
symbol calculus, see, e.g., [11]. However the space S is not an
algebra with respect to the star product (44) for any s 0≠
and, in particular it is not an algebra under the Wick and ant-
Wick products. In this situation, it is helpful to use, along with
Schwartz’s test functions or instead of them, the function
space b

b2
0

2,W = ⋂ > . As shown in [8], 2W is an algebra
with respect to any translation invariant star product,
including those defined by (44). By using the spaces 2W and

b2, , we obtain an exact characterization [12] of the exten-
sions of the Wick and anti-Wick correspondences that are in
line with the extension of the Weyl correspondence to dis-
tributions. A space analogous to b2, was considered in [13],

where it was denoted by G ,1
2

2σ and used in the context of the
coarse scale description of dynamics in terms of a smoothed

Wigner transform. The function space 2W also arises natu-
rally in quantum field theory on noncommutative spaces and
proved useful for analyzing the nonlocal effects and the
causality properties of noncommutative models [14].
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