
Physica Scripta
            

Pseudospin order in monolayer, bilayer and
double-layer graphene
To cite this article: A H MacDonald et al 2012 Phys. Scr. 2012 014012

 

View the article online for updates and enhancements.

You may also like
Marginal topological properties of
graphene: a comparison with topological
insulators
Jian Li, Ivar Martin, Markus Büttiker et al.

-

Theoretical aspects of the fractional
quantum Hall effect in graphene
M O Goerbig and N Regnault

-

Role of edges in the electronic and
magnetic structures of nanographene
Toshiaki Enoki

-

This content was downloaded from IP address 18.116.90.141 on 23/04/2024 at 18:50

https://doi.org/10.1088/0031-8949/2012/T146/014012
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014021
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014021
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014021
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014017
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014017
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014008
https://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014008


IOP PUBLISHING PHYSICA SCRIPTA

Phys. Scr. T146 (2012) 014012 (9pp) doi:10.1088/0031-8949/2012/T146/014012

Pseudospin order in monolayer, bilayer
and double-layer graphene
A H MacDonald, Jeil Jung and Fan Zhang

Department of Physics, University of Texas at Austin, Austin, TX 78712, USA

E-mail: macd@physics.utexas.edu

Received 16 August 2011
Accepted for publication 19 September 2011
Published 31 January 2012
Online at stacks.iop.org/PhysScr/T146/014012

Abstract
Graphene is a gapless semiconductor in which conduction and valence band wavefunctions
differ only in the phase difference between their projections onto the two sublattices of the
material’s two-dimensional honeycomb crystal structure. We explain why this circumstance
creates openings for broken symmetry states, including antiferromagnetic states in monolayer
and bilayer graphene and exciton condensates in double-layer graphene, which are momentum
space analogues of the real-space order common in systems with strong local interactions. We
discuss some similarities among, and some differences between, these three broken symmetry
states.

PACS numbers: 73.43.−f, 71.10.−w, 73.21.−b, 75.76.−j

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene [1, 2] is a two-dimensional (2D) crystal consisting
entirely of carbon atoms. Its honeycomb lattice is stabilized
primarily by strong planar sp2 bonds, leaving one weakly
bonded π -orbital per carbon atom available for metallic
conduction. Because of the two atoms per unit cell in a
honeycomb lattice the π electrons form two bands, one of
which is occupied in a neutral sheet. Because the π-bands
cross at the inequivalent honeycomb lattice Brillouin-zone
(BZ) corners, i.e. at the K and K ′ BZ corner points, the gap
between the occupied π valence band and the unoccupied π

conduction band vanishes. Most of the graphene properties of
interest to condensed-matter physicists, for example transport
and optical properties, directly involve only the π electron
orbitals that are close to the band crossing points. These are
accurately described over an energy interval several eV in
width by a Ek · Ep Hamiltonian that has the form of a massless
Dirac equation:

Hband = h̄v0

∑
Ek,s ′,s

c†
Ek,s ′

(Ek · Eσs ′s)cEk,s . (1)

In equation (1) v0 is the velocity of band electrons at the
band-crossing (Dirac) point which can be related to band
Hamiltonian π -electron hopping amplitudes, and Eσ are Pauli

matrices that act on sublattice labels s(s ′). Equation (1)
applies near the valley K Dirac point; the corresponding
equation for valley K ′ is obtained by letting kx → −kx . When
the sublattice degree-of-freedom is viewed as a pseudospin,
we see from equation (1) that the band eigenstates are chiral.
In the conduction band of valley K , pseudospin is parallel
to the momentum, while in the valence band, pseudospin is
antiparallel to the momentum.

Because only one of the two band states is occupied
at each momentum, the many-body ground state can be
continuously deformed relative to the non-interacting ground
state without breaking translational symmetry simply by
rotating the pseudospin direction at each momentum. When
interactions are neglected the valence band is full, implying
that the pseudospin direction is always opposite to the
direction of momentum. Since the interaction energy is
minimized when all pseudospins are parallel, as we will
discuss explicitly below, there is tension between band
energy minimization and interaction energy minimization
in monolayer graphene. A similar tension arises in two
other graphene-based two-dimensional electron systems
(2DES)—graphene bilayers [3] which consist of two Bernal
stacked graphene layers and graphene double-layers [4] which
consist of two layers separated by an insulating tunnel barrier.
In this paper, we will discuss the competition between
interaction and band energies in all three systems using a
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common mean-field language which enables us to highlight
similarities and point out differences. We will discuss the
potential broken symmetry states using a mean-field theory in
which the ground state is determined by minimizing the total
energy of single Slater-determinant many-body states varying
the pseudospin direction at each momentum Ek. By performing
a stability analysis for the resulting energy functional we
conclude that broken symmetry states can occur in monolayer
graphene if interactions are sufficiently strong and that they
occur in bilayer and double-layer graphene for interactions of
any strength. Our mean-field theory treats the gapped [5–7]
and nematic states [8, 9] that have been discussed for bilayer
graphene on an equal footing.

A parallel can be drawn between the π -orbital states
in these three graphene systems and the electronic states of
Mott insulators. In Mott insulators strong interactions project
most of the many-electron wavefunction onto a subspace
with one atom per unit cell. The only degree-of-freedom
that is available in this subspace is the spin state at each
lattice position. Unless interactions between spin orientations
on different lattice sites are frustrated, the ground state is
normally close to the classical ground state in which spin
orientations are fixed on each site and chosen to minimize the
expectation value of the effective spin Hamiltonian. Quantum
fluctuations of spin orientations play only a quantitative role.
For the graphene states discussed here the pseudospin energy
function that is fixed by energy minimization plays a role
similar to the spin distribution in an insulator, but is a function
of momentum rather than position. The graphene system band
Hamiltonians, which differ essentially in the three cases, act
like momentum-dependent pseudospin fields. Because the
band Hamiltonians reduce symmetries, energy minimization
does not in all cases imply broken symmetry ground states.

Because of the absence of a gap in the graphene case,
important quantum fluctuations occur both in pseudospin
orientations and in the occupation numbers of momentum
states, but we expect that their role is also only quantitative
and we do not discuss them at length in this paper. The
broken symmetry states that can occur in these graphene
systems are unusual from several points of view. For a given
spin and valley, the ordered states of both monolayer and
bilayer graphene have large quasiparticle Berry curvature and
spontaneous quantized anomalous Hall effects [10–14]. The
potential broken symmetry states of double-layer graphene
have spontaneous interlayer phase coherence, which leads
to the suite of phenomena connected with counter-flow
superfluidity [15, 16] when the layers are separately
contacted.

This paper is organized as follows. In section 2, we
formulate the mean-field theory in the three graphene-based
2DES in terms of energy minimization with respect to
Ek-dependent pseudospin orientation. In sections 3–5, we
discuss a stability analysis of the energy functional at the band
state configuration for monolayer, bilayer and double-layer
systems, respectively, and comment on the character of the
broken-symmetry states that result. Finally, in section 6, we
point out important similarities and differences between the
three cases.

2. Pseudospins in monolayer, bilayer and
double-layer graphene

We consider a variational single-Slater-determinant
wavefunction with a single pseudospin state occupied at
each momentum Ek, and minimize the expectation value of
the Hamiltonian with respect to the pseudospin orientations
n̂ Ek . In this approximation, the four spin-valley flavors interact
only through their contribution to the electrostatic Hartree
energy. Since we will consider only states that are locally
electrically neutral, we will ignore the Hartree energy for the
moment and return to it later when we discuss the role of
spin-valley flavors.

It will be convenient to express the band Hamiltonian
as an effective magnetic field that acts on the pseudospin
degree-of-freedom by writing

Hband =

∑
Ek,s ′,s

c†
Ek,s ′

( Eh Ek · Eσ s ′s)cEk,s . (2)

In this language, the three cases we discuss are distinguished
by their pseudospin effective magnetic fields:

Eh(ML)

Ek
= h̄v0k [cos(φEk) x̂ + sin(φEk) ŷ],

Eh(BL)

Ek
= −(h̄2k2/2m∗) [cos(2φEk) x̂ + sin(2φEk) ŷ],

Eh(DL)

Ek
= h̄v0(k − kF ) ẑ, (3)

for monolayer, bilayer and double-layer cases, respectively.
Here φEk is the angular orientation of the 2D Ek momentum
and k is its magnitude. Note that the band Hamiltonians
are off-diagonal in the pseudospin index in the monolayer
and bilayer cases, and diagonal in the double-layer case.
The pseudospin labels in equation (2) refer to the sublattice
index in the monolayer graphene case and to the layer
index in the bilayer and double-layer cases. The form we
have chosen for the bilayer Hamiltonian applies only at
energies smaller than the interlayer hopping energy γ1 and
is due [3] to virtual hopping between the two low-energy
bilayer π -orbital sites, which are located in different layers,
via two higher-energy π-orbital sites that are not explicitly
retained. Because the pseudospin labels refer to position in all
three cases, the electron–electron interaction Hamiltonian is
diagonal in pseudospin at each vertex:

Hint =
1

2A

∑
Ek, Ep,Eq

∑
s,s ′

c†
Ek+Eq,s

c†
Ep−Eq,s ′c Ep,s ′cEk,s

×
[
V +(Eq) + V −(Eq)σ z

ssσ
z
s ′s ′

]
, (4)

where V ±(Eq) = (VS ± VD)/2 and VS,D are the
momentum–space interactions between electrons on the
same and different sublattices (or layers), respectively. In the
monolayer case, the interactions are pseudospin independent
(VS = VD), whereas in the bilayer and double-layer cases they
are pseudospin-dependent because interlayer interactions are
weaker than intralayer interactions.

The dependence of the band energy on the
momentum-dependent pseudospin configuration is easy
to evaluate. From the form of the pseudospinor for a state
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x
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z|A

BA + B

n̂(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)

|A + i |B

= cos (θ/2) |A + sin (θ/2) eiφ |B

Figure 1. Representation of a pseudospin state by a unit vector
r̂(θ, φ). Pseudospins directed along the ±z direction represent the
states labeled |A〉 and |B〉. For monolayer graphene these states are
confined to alternate sublattices, while for bilayer and double-layer
graphene they are confined to alternate layers. General pseudospin
states are coherent linear combinations of |A〉 and |B〉, with the
azimuthal pseudospin angle φ specifying the phase difference
between |A〉 and |B〉 amplitudes and the polar pseudospin angle
specifying the |A〉 − |B〉 polarization. A state with θ = π/2 has
equal |A〉 and |B〉 weights, whereas the states with θ = 0 and θ = π
equal |A〉 and |B〉, respectively.

aligned in a particular pseudospin direction (see figure 1),

|n̂〉 =

(
cos θ

2
sin θ

2 eiφ

)
, (5)

it is easy to show that

〈n̂|Eσ |n̂〉 = n̂ (6)

and that

|n̂〉〈n̂| =
1 + Eσ · n̂

2
. (7)

In equation (5), θ and φ are the polar and
azimuthal angles for the pseudospin orientation, i.e.
n̂ = (sin θ cos φ, sin θ sin φ, cos θ). In the case of
pseudospin-dependent interactions, the following identity is
useful:

σ z
|n̂〉〈n̂|σ z

=
1 − σ x nx

− σ yny + σ znz

2
. (8)

Taking the expectation values of the band and interaction
Hamiltonians, we find that

Eband[n̂ Ek] =

∑
Ek

Eh Ek · n̂ Ek (9)

and that

Eint[n̂ Ek] =
−1

4A

∑
Ek, Ep

[(
1 + nz

Ek
nz

Ep

)
VS(Ek − Ep)

+
(
nx

Ek
nx

Ep + ny
Ek
ny

Ep

)
VD(Ek − Ep)

]
. (10)

The interaction energy is an exchange contribution which
sets the momentum transfer Eq in equation (4) to Ep − Ek.
As explicitly shown in equation (10), the exchange energy
contribution from any pair of momentums is lowered when
their pseudospins are made more parallel. The band energy, on
the other hand, is minimized when the pseudospin direction
is opposite to the direction of Eh Ek at every Ek and hence

strongly pseudospin dependent (see figure 2). In the following
sections we will discuss the pseudospin orientation function
which minimizes the total energy Etot = Eband + Eint for the
monolayer, bilayer and double-layer cases.

3. Spin-density-wave states in monolayer graphene

We find it useful to expand the total energy functional to
leading order around its band theory value n̂b Ek = −ĥ Ek . This
consideration follows similar lines in the three cases of
interest. To leading order we can preserve normalization by
writing

n̂ Ek = −ĥ Ek

(
1 −

1
2 |EδEk |

2
)

+ EδEk, (11)

where EδEk is a 2D vector perpendicular to ĥ Ek . For
monolayer graphene the band pseudospin orientation n̂b Ek =

−k̂ = −
(
cos φEk, sin φEk, 0

)
and δ has ẑ and azimuthal

(φ̂) components along the ẑ = (0, 0, 1) and φ̂Ek = ẑ × k̂ =(
sin φEk, − cos φEk, 0

)
directions, respectively. We find that

E = E0 +
1

4A

∑
Ek, Ep

∑
α,β

δα
Ek

K α,β

Ek, Ep
δ

β

Ep , (12)

where

K α,β

Ek, Ep
= δα,β

[
2A(h Ek + 6Ek)δEk, Ep − VD(Ek − Ep) φ̂Ek · φ̂ Ep δα,φ

− VS(Ek − Ep) δα,z
]
, (13)

where

6Ek = −
∂ Etot[n̂ Ek]

∂ n̂ Ek

· ĥ Ek . (14)

The quantity 6Ek in the above equations, the change
in interaction energy associated with switching a single
band state from valence to conduction band pseudospin
orientations can be identified as the exchange contribution
to the self-energy of the band state. 6Ek adds to the energy
difference between conduction and valence band states
because of the energy cost of reversing pseudospin orientation
at a single momentum, keeping all other pseudospins fixed.
For the monolayer graphene case, we can let VD → VS → V
so that

6Ek =
1

2A

∑
Ep

V ( Ep − Ek) n̂b Ep · n̂b Ek, (15)

which vanishes for a δ-function interaction model because of
the angular average over the direction of Ep, but grows with |Ek|

for the realistic Coulomb interaction case:

6Ek '
α

4
h̄v0k ln(3/k), (16)

where α = e2/εh̄v0 is graphene’s fine structure constant,
3 ∼ 1/a is the Dirac model ultraviolet cutoff where a is
graphene’s lattice constant, and ε is the graphene sheet’s
effective dielectric constant which depends on the substrate
used to support the sheet. Full BZ Hartree–Fock theory
calculations [18] suggest that the most appropriate value
for 3 is ∼30/a. The self-energy term captures the physics
of a theoretically anticipated [18–22] logarithmic interaction

3
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Figure 2. Pseudospin orientations and quasiparticle spectra near the Dirac point for gapless and gapped monolayer graphene. The upper
row illustrates conduction band pseudospin orientations for the gapless (a) and gapped (b) cases; the valence band pseudospins are opposite
in direction at each momentum. The arrows indicate the magnitude and direction of the x̂–ŷ plane pseudospin projection, while the color
indicates the ẑ direction pseudospin projection, which is zero in the gapless unbroken symmetry state. In monolayer graphene pseudospins
rotate around the ẑ-axis by 2π when a point in momentum space encloses the Dirac point Ek = 0. In the broken symmetry state the
self-energy contribution to the pseudospin field has a component in the ẑ direction, which does not vanishes for k → 0, opening up a gap in
the quasiparticle spectrum.

enhancement of the energy difference between conduction
and valence band quasiparticles, which has now been
confirmed experimentally [23]. This effect that is normally
described in terms of an interaction-enhanced quasiparticle
velocity at momenta near the Dirac points.

Depending on the dielectric environment of a monolayer
graphene sheet, the fine structure constant value can vary
between α ∼ 0.5 and α ∼ 2 [24]. It is sometimes claimed that
perturbative and mean-field treatment of electron–electron
interaction effects, like the one discussed here, cannot be
trusted because the coupling constant is not small. A more
reliable way of judging the adequacy of these approximations
is to compare with experiments. In the case of monolayer
graphene, the application of this type of criteria usually
argues for the opposite conclusion, namely that mean-field
theory is reliable, provided that the electron–electron
interaction is properly screened when carriers are present.
The approximation in which electronic self-energies are
approximated at leading order in dynamically screened
Coulomb interactions, variously known as the random phase
approximation (RPA) or the GW approximation, agrees very
well with, in particular, photoemission experiments [25] in
both neutral and charged monolayer graphene. For neutral
graphene the inverse quasiparticle lifetime [26, 27] in neutral
graphene is ∼10% of the quasiparticle energy at typical values
of α, and this ratio may provide a better characterization of
interaction strength.

Although some details of graphene interaction physics
are sensitive to the long range of Coulomb interactions

[18, 28–30], most importantly perhaps the velocity enhance-
ment mentioned above, we are able to make a number of
valuable points by considering a short-range interaction model
in which the momentum dependences of VS and VD are
neglected. Note that because we are neglecting inter-valley
scattering we are still imagining that the interaction range is
large compared to the atomic length scale, and that there is
therefore no direct relationship between this approximation
and using a lattice Hubbard model [43–46]. Setting VS =

VD → U , we find that 6 vanishes, that

K φ,φ

Ek, Ep
→ 2Ah̄v0kδEk, Ep − U φ̂Ek · φ̂ Ep (17)

and that
K zz

Ek, Ep
→ 2Ah̄v0kδEk, Ep − U. (18)

In-plane and out-of-plane pseudospin reorientation
instabilities are indicated by vanishing eigenvalues for
K φ,φ

Ek, Ep
and K zz

Ek, Ep
, respectively. We search for a zero eigenvalue

by solving
1

A

∑
Ep

K α,α

Ek, Ep
δα

Ep ≡ 0. (19)

These homogeneous equations are solved by setting δ
φ

Ep →

C cos(φ Ep − χ)/h̄v0k and δz
Ep → C/h̄v0k, where C is an

arbitrary constant and χ an arbitrary angle. We obtain the
conditions

2 cos(φEk − χ) = U
∫

d Ep

(2π)2

cos(φ Ep − φEk) cos(φ Ep − χ)

h̄v0 p
(20)

4
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for K φ,φ and

2 = U
∫

d Ep

(2π)2

1

h̄v0 p
(21)

for K z,z . Converting the integral over momentum Ep into an
integral over the energy of quasiparticles with energy h̄v0 p,
it follows that instability occurs in K φ,φ when Uν∗ > 4,
whereas for K z,z it occurs when Uν∗ > 2. In these equations,
ν∗

= W/(2π h̄2v2
0) is the Dirac-model density-of-states at

the model’s ultraviolet energy cutoff scale W ∼ h̄v0/a; the
integrand of the energy integral is constant because of a
cancellation between the h̄v0 p factor in the denominator
and the quasiparticle density-of-states, which is proportional
to energy. Interactions are less effective in reducing the
energy cost of in-plane φ distortions than out-of-plane z
distortions because of the angle dependence of the band state
pseudospins.

There are two important points to make about these
stability criteria results. First of all, we see that if interactions
are strong, pseudospins are more likely to tilt toward the ±ẑ
directions, rather than to alter their orientations in the x̂–ŷ
plane. The state produced by this pseudospin distortion has
a higher electron density on one sublattice than the other;
hence, it is a density-wave state when looked at from a
microscopic point of view. In ignoring the Hartree energy,
we have implicitly assumed that the signs of the density
waves are opposite for opposite valleys or for opposite spins,
with the latter possibility being more likely as we discuss
later. The expected state is therefore a spin-density-wave
state rather than a charge-density-wave state. If the instability
involved distortion of the in-plane pseudospin direction, rather
than tilting out of the plane, it would yield a state with
spontaneous anisotropy, characterized by the angle χ , in
which the magnitude of the quasiparticle self-energy depends
on the momentum direction. The mean-field-theory instability
analysis therefore suggests that density-wave instabilities
occur before anisotropy instabilities. Secondly, we note that
the instability criterion involves ν∗, the density-of-states
at the band width energy scale. We can conclude from
this observation that the presence or absence of a broken
symmetry state depends on atomic length scale physics
beyond that captured by the Ek · Ep Dirac model [13, 17, 18].

When solved with an unscreened Coulomb
interaction [5], mean-field theory predicts that the
instability occurs in monolayer graphene at α ∼ 1.3;
screening and other higher-order corrections will shift (for a
discussion of estimates, see [31] and references therein) the
instability—likely to larger values of α beyond those that can
be reached in monolayer graphene even when it is suspended
so that interactions are not reduced by dielectric screening.
Degrees of freedom not included in the π -band only model of
graphene and portions of the BZ far from the the corner Dirac
points are also likely to play an important role. The instability
can also be ruled out experimentally with nearly complete
confidence because pseudospin orientations in the ẑ direction
open gaps in the quasiparticle spectrum. It can be established
experimentally that the gaps, if present, cannot be larger than
∼10−4 eV compared to the natural energy scale of graphene,
which is ∼10 eV [32].

4. Antiferromagnetic states in bilayer graphene

Several consequential distinctions can be drawn between
the monolayer and bilayer cases. First of all, the two-band
Ek · Ep for the bilayer model provides a good description
only at energies that are small compared to the interlayer
tunneling energy γ1 ∼ 0.4 eV, whereas the corresponding
monolayer two-band model applies up to energies ∼2 eV,
much closer to the full band width. Secondly, both the
magnitude and direction of pseudospin effective magnetic
fields have different behaviors since Eh(BL)

Ek
varies quadratically

rather than linearly with k and has an orientation angle
that is twice the momentum orientation angle. The stability
analysis for bilayers parallels the strategy used in the
single-layer case once these differences are recognized.
For bilayers the band and in-plane-distortion pseudospin
directions are n̂b Ek =

(
cos(2φEk), sin(2φEk), 0

)
and φ̂Ek = n̂b Ek ×

ẑ =
(
sin(2φEk), − cos(2φEk), 0

)
. The more rapid variation of the

pseudospin direction with the momentum direction eliminates
the logarithmic divergence of the velocity enhancement at
small k found in the monolayer Coulomb interaction case,
but still [22] leaves a substantial interaction-induced velocity
enhancement. For the short-range interaction model, the
stability matrices for φ and z distortions are

K φ,φ

Ek, Ep
→ 2A

h̄2k2

2m∗
δEk, Ep − U φ̂Ek · φ̂ Ep (22)

and

K zz
Ek, Ep

→ 2A
h̄2k2

2m∗
δEk, Ep − U, (23)

where φ̂Ek · φ̂ Ep now equals cos(2φ Ep − 2φEk). Setting δ
φ

Ep →

C cos(2φ Ep − χ)/(h̄2 p2/2m∗) and δz
Ep → C/(h̄2 p2/2m∗), we

can solve for the interaction strength at which the smallest
eigenvalue approaches zero. As in the monolayer case, we
find that the ±ẑ distortions, which in this case correspond
to moving charge between layers, occur at weaker interaction
strengths. The instability criteria [6] in the bilayer case are
UνBLln(W/EF) > 4 for K φ,φ and UνBLln(W/EF) > 2 for
K z,z . In this case νBL

= m∗/(2π h̄2) is the energy-independent
band electron density-of-states. The 1/E quasiparticle energy
factor is not canceled by an increasing density-of-states, as it
was in the monolayer case, and the interaction contribution
to the stability eigenvalue integral has a logarithmic infrared
divergence which we have cut off by assuming that
conduction band states up to energy EF have been occupied,
Pauli-blocking pseudospin polarization. For EF → 0 the
conclusion is that the density-wave instability occurs before
the anisotropy distortion, as illustrated in figure 3, and that it
will occur for arbitrarily weak interactions [5–7].

5. Exciton condensates in double-layer graphene

Now we turn to the case in which two graphene layers, one
containing electrons in the conduction band and the other
containing an equal density of holes in the valence band, are
coupled by repulsive Coulomb interactions. If we ignore the
completely full and completely empty energetically remote
bands, we can view the double-layer graphene system using
the same pseudospin language that we used for the monolayer

5
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Figure 3. Pseudospin orientations and quasiparticle dispersions near the Dirac point in bilayer graphene. The upper row illustrates the
conduction band pseudospin orientations; the valence band pseudospin orientation is opposite at each momentum. In bilayer graphene
pseudospins rotate by an angle of 4π around the ẑ direction when a point in momentum space encloses the Ek = 0 Dirac point.
Panels (a) and (b) represent gapless and gapped broken symmetry states, respectively. As in the monolayer case all pseudospins are in the
x–y plane in the ungapped state. In the gapful case the ±ẑ out of plane pseudospin components are nonzero and indicate sublattice
polarization. Because the low-energy Ek · Ep model of bilayer graphene includes only two sites per unit cell, the sublattice pseudospin label
equivalent to a layer label.

and bilayer graphene cases. In the absence of interactions
the conduction band states of the n-layer, which we associate
with pseudospin up, are occupied inside a Fermi circle and
the valence band states of the p-layer, which we associate
with pseudospin down, are occupied outside of this circle
(see figure 4). As in the monolayer and bilayer cases, one
pseudospin state is occupied at each momentum. Because the
band pseudospins are oriented in the ±ẑ directions, rather
than in the x̂–ŷ plane, the pseudospin distortions that can
potentially lower the energy are in the x̂ and ŷ direction
distortions, rather than φ̂ and ẑ distortions. We find that

K x,x
Ek, Ep

= K y,y
Ek, Ep

= [2A(h̄v0(k − kF ) + 6Ek)δEk, Ep − VD(Ek − Ep)],

(24)

where

6Ek =
nz

b Ek

2A

∑
Ep

VS( Ep − Ek) (1 + nz
b Ep). (25)

(We take the band energy to be the quasiparticle energy
in the absence of carriers in either layer and include a
self-energy contribution from the full valence band of the
n-type layer.) The sudden change in pseudospin orientation
at the Fermi circle has a cost in exchange energy which
can be mitigated by rotating pseudospins into the x̂–ŷ plane,
which corresponds to establishing coherence between layers
spontaneously. Because K x,x

= K y,y , the pseudospin rotation
can occur with the same gain in energy at any azimuthal angle.
The fact that the energy is independent of the interlayer phase

(i.e. the pseudospin azimuthal angle) implies that this broken
symmetry state supports supercurrents that flow in opposite
directions in opposite layers [4, 16]. As in the monolayer
and bilayer cases, instability is indicated by a vanishing K x,x

Ek, Ep
eigenvalue. The instability condition can be found by solving

1

A

∑
Ep

K x,x
Ek, Ep

δx
Ep ≡ 0 (26)

with δx
Ep → C/h̄v0|k − kF |. For a δ-function interaction the

self-energy term simply shifts the relationship between Fermi
energy and density and plays no role. The instability criterion
is therefore UνDLln(2EF/δ) > 2 where we have chosen
2EF as an ultraviolet cutoff, δ is an infrared cutoff, and
νDL

= EF/(2π h̄2v2
0) is the constant density-of-states of the

double-layer Dirac model for energies between 0 and EF. As
in the bilayer case, an instability occurs for arbitrarily weak
interactions. Although this conclusion is universally accepted
by researchers who have examined this possible ordered
state [4, 33–36], estimates of the size of the consequent
energy gap vary widely because of the difficulty of accounting
accurately for the influence of carrier screening.

6. Discussion

Graphene 2DES are remarkable for several different reasons.
The fact that they are truly 2D on an atomic length
scale elevates 2DES physics from the low-temperature
world to the room-temperature world. Furthermore, they
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Figure 4. Pseudospin orientations and quasiparticle dispersions in double-layer graphene near the Dirac point. In the two-band pseudospin
model, the two bands furthest from the Fermi energy are not accounted for explicitly. In double-layer graphene tunneling between layers is
negligible so that the pseudospin label is equivalent to a layer label. The band pseudospin direction changes abruptly between up and down
directions along the common Fermi surface where the conduction band of the high-density layer and the valence band of the low-density
layer cross. In the presence of interactions a gap is opened and pseudospin directions rotate gradually between up and down directions.
Panels (a) and (b) represent, respectively, the single particle bands crossing at a Fermi circle and the gapped phase with interlayer coherence.
A gap opens in the presence of arbitrarily weak interactions as in the case of bilayer graphene. Any in-plane pseudospin component
introduces interlayer coherence and reduces the total energy of the system. In our illustration, we have chosen the interlayer coherence
pseudospin component to point in the x direction.

are accurately described by very simple models over very
wide energy ranges and yet have electronic properties
that can be qualitatively altered simply by stacking
[3, 37–40] them in different arrangements, and by adjusting
external gate voltages. In this paper we have discussed the
properties of three different graphene 2DES using a simple
mean-field-theory pseudospin language and specializing to
the case of electrically neutral systems.

The basic building block of all graphene 2DES is the
isolated monolayer, which is described by a massless Dirac
Ek · Ep Hamiltonian over a wide energy range. The Dirac model
has chiral quasiparticles, and in the graphene case the chirality
refers to the relationship between Ek · Ep momentum and the
direction of a pseudospin associated with the sublattice
degree-of-freedom of graphene’s honeycomb lattice [5, 41].
In neutral graphene each momentum is singly occupied on
average. In our mean-field-theory approach we do not account
for quantum fluctuations in these momentum occupation
numbers, but allow energy to be minimized with respect
to the pseudospin orientation at each momentum. Using
this approach we find that in monolayer graphene strong
interactions can lead to a broken symmetry state in which
the pseudospin rotates from the x̂–ŷ plane toward the ±ẑ
directions, breaking inversion symmetry and opening up a gap
in the quasiparticle excitation spectrum. This conclusion has
previously been reached (see, for example [42] and references
therein) [18, 43–46] by several researchers, sometimes using
more sophisticated theoretical approaches which attempt

quantitative estimates of the required interaction strengths. In
Ek · Ep mean-field theory the broken symmetry state consists
of a density-wave state with more charge on one sublattice
than the other within each spin-valley flavor, but no overall
charge density variation. Since exchange interactions beyond
the Ek · Ep level favor [13] states with the same sublattice
polarization on both valleys, the strong interaction state is
likely a spin-density-wave state. As it happens, it appears
to be clear from experiment that this broken symmetry
state does not occur [23, 25] in monolayer graphene, even
when suspended. This property is generally consistent with
theoretical expectations and is perhaps unfortunate from
the point of view of researchers interested in many-body
phenomena. Happily the very closely related bilayer and
double-layer graphene systems that were not anticipated prior
to the experimental emergence of the graphene field are more
likely to have broken symmetry states and may save the
day for interesting many-body phenomena in graphene-based
2DES.

Bilayer graphene is described, over a more limited energy
range however, by a similar pseudospin Ek · Ep model with
quadratic rather than linear dispersion; in bilayer graphene
the quasiparticle velocity vanishes with momentum as in a
conventional 2DES, but the pseudospin direction still depends
on the direction of momentum. In pseudospin language, it is
clear that the bilayer is more susceptible to instabilities to
broken symmetry states because the cost in band energy of
rotating the pseudospins toward the ±ẑ direction is smaller

7



Phys. Scr. T146 (2012) 014012 A H MacDonald et al

at small momentum. Indeed we find that instabilities occur
for arbitrarily weak interactions [5, 6]. In the bilayer case the
spin-density-wave state has opposite pseudospin orientations
for opposite spins [12–14]. An alternate state in which the
pseudospin orientation is rotated within the x̂–ŷ plane to
increase the degree of alignment leads to an anisotropic
state, and gains less exchange energy for a given interaction
energy cost. There is indeed a great deal of evidence from
recent experiments [48, 49] that a broken symmetry state
does occur in bilayer graphene, but the character of the
state is not yet completely settled since some experimenters
find evidence for a gapless anisotropic state [47] and others
[50, 51] evidence for a gapped isotropic state [5–7, 13]. On
the theoretical side, different researchers have also reached
different conclusions concerning the character of these states,
with some researchers [8, 9] concluding that the broken
symmetry state should be anisotropic.

In mean-field theory, the gapped broken symmetry state
has lower energy than the anisotropic broken symmetry state
because all band pseudospinors can be tilted to the ±ẑ
direction to reduce the probability of finding electrons with
parallel pseudospins. The efficacy of in-plane pseudospin
distortions is reduced because their pseudospin directions
φ̂Ek depend on the momentum orientation angle φEk . To us,
the conclusion that the weak-coupling broken symmetry
state will be gapped appears to be unavoidable unless
somehow overturned, in a way which has not yet been
clearly articulated, by inter-flavor correlations. In drawing
conclusions from the renormalization group calculations [6,
8, 9] which attempt to go beyond the mean-field theory
considerations described here, it is important to realize that,
because short-range interactions within a valley act only
between opposite pseudospins, the pseudospin dependence of
the corresponding flowing interaction has no significance in a
many-fermion Hilbert space.

Bilayer graphene differs from monolayer graphene
mainly because of its weaker dependence of band energy on
pseudospin direction at small momentum. This difference is
sufficient to lead to states with broken pseudospin symmetry.
Double-layer graphene differs in a more qualitative way
because not only the interaction energy, but also the band
energy, is diagonal in the ẑ component of pseudospin, i.e.
in the layer index. The band Hamiltonian in this case has
a sudden change in the sign of the ẑ direction pseudospin
orientation. This momentum space domain wall has a large
interaction energy cost, which can be mitigated by rotating
the pseudospins near the Fermi surface out of the ẑ direction
with a common azimuthal angle. In this way, the momentum
dependence of the pseudospin rotates smoothly between the
ẑ and −ẑ directions, and the interaction energy is lowered.
Like bilayer graphene, double-layer graphene has a broken
symmetry for arbitrarily weak interactions. In both cases
the size of the gap is difficult to estimate quantitatively
[4, 33–36] and likely to be overestimated by mean-field
theory. The quasiparticle density of states at the Fermi level in
double-layer graphene is finite because the bands cross along a
line in momentum space. In bilayer graphene the bands cross
at a point, but the density of states is still finite because the
band dispersion is quadratic. The consequences for order in
the two cases are however essentially the same.

In 2DES, the quantized Hall conductance can be
expressed [52] in terms of an integral of Berry curvature
over momentum space. Using ideas from topology it is
possible to show that the Hall conductivity is always e2/h
times an integer valued topological invariant known as the
Chern number. For two-band models, momentum states can
always be described using a pseudospin-1/2 language like
the one used in this paper. For this case the quantized Hall
conductivity is especially simple to visualize geometrically
since it is equal to the number of times the unit sphere
of pseudospin directions is covered upon integrating over
momentum space. The broken symmetry states of bilayer
graphene carry a positive or negative unit of Hall conductivity
because they cover either the north pole or the south pole
twice when the pseudospin at Ek = 0 points to the north or
south pole. (In the double-layer graphene case, on the other
hand, the pseudospin is confined to the interface between
a plane and the pseudospin unit sphere, i.e. to a line on
the unit sphere that encompasses zero area.) The inversion
symmetry breaking states in bilayer graphene can therefore
be viewed as spontaneous quantum Hall states [11–13]. In the
spin-density-wave state the Hall contributions from different
valleys cancel, but states with a nonzero Hall conductivity can
be stabilized by going to a nonzero total carrier density in
weak magnetic fields.

In this paper, we have discussed the possibility of
interaction-driven broken symmetries in three different
graphene-based 2DES, monolayer graphene systems and
two-layer graphene systems that are stacked in two different
ways. The three cases we have discussed are most easily
addressed theoretically, but not by any means the ones that
are most likely to have strong interaction effects and broken
symmetries. ABC stacked multilayers [37–39], for example,
tend to have even smaller separations between conduction and
valence bands at small |Ek|, but are complicated by competing
electronic structure details. Recent advances in techniques
for preparing samples in which disorder plays an inessential
role appear to be bringing us close to clear experimental
conclusions as to the strength and character of broken
symmetries in bilayers and trilayers. These developments will,
no doubt, reveal some surprises that present some focused
challenges to theory.
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