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Abstract
The Young-type interference effect has been investigated in electron emission from molecular
hydrogen in collision of 5 MeV u−1 F9+ ions. The double differential cross section ratios of
molecular-to-atomic hydrogen exhibits oscillatory structure, which is discussed in terms of the
Young-type electron interference. We have obtained the frequencies of such oscillation for
different angles. A comparative study of the frequency parameter is given with early
measurements performed by other groups.

PACS numbers: 34.50.Fa, 34.50.Gb

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Electrons emitted in the ionization of a homonuclear, diatomic
molecule such as hydrogen carry rich information about its
wave nature, which has been known to be manifested by
Young-type interference in the last four decades [1, 2]. In
such molecules, two identical centers act like two slits, and
therefore coherent emission of electron radial waves may
produce undulations in the electron spectrum associating
the famous Young’s double-slit experiment with light or
electrons [3–7]. In ion–atom collision studies, this was
observed only recently in the electron spectra resulting from
the ionization of molecular hydrogen by heavy ion or electron
impact [8–19] and in photoionization studies involving N2 and
H2 molecules [20–23].

The present work was carried out for a collision system
of 5 MeV u−1 F9+ + H2. The electrons ejected from H2 were
measured in the energy range 1–300 eV and in a wide
range of angles between 20◦ and 160◦. Electron interference
was investigated in the ratio spectra of molecular to
effective-H-atom double differential cross sections (DDCSs),
which are manifested by oscillations as a function of ejection
velocity. The frequency parameters are obtained for several
ejection angles in the range between 20◦ and 160◦ in the
same experimental investigation by fitting the oscillations
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using the Cohen–Fano fitting function [2, 8, 24]. We make
a comparative study of frequency parameters obtained by
different groups for different collision systems.

2. Experimental details

The measurement was carried out for a 95 MeV F9+ beam
(obtained from the BARC-TIFR Pelletron accelerator facility)
colliding with H2. The beam was well collimated by a series
of four-jaw slits and a circular aperture before it entered the
scattering chamber. The target gas was flooded inside the
chamber through a 6 mm hole from one of the side ports.
The gas pressure was constantly monitored and kept very low,
i.e. 0.1 mTorr for electron energies up to 100 eV to minimize
scattering of low-energy electrons from the gas and 0.3 mTorr
for higher energy electrons to obtain sufficient counting rate.
The electrons emitted in collisions were energy analyzed by
a hemispherical electrostatic analyzer, with inner and outer
radii of 25 and 35 mm, respectively. The resolution of the
spectrometer was measured to be about 6% in energy ranging
from 1 eV to a few keV. Further details about the performance
of the spectrometer can be found in [25]. A stepper
motor-driven, bellow-sealed, rotary vacuum feed-through was
used to change the angular position of the spectrometer
with respect to initial beam direction. Data acquisition,
analyzer voltage scanning and stepper motor movement were
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Figure 1. The DDCS ratio (H2/2Heff) for 120◦ is shown. The solid
line represents the Cohen–Fano-type function fit and the dashed line
represents the theoretical ratio.

controlled using the LabVIEW-based program. Further details
regarding this experiment are described in [17].

3. Interference effect in the DDCS ratio spectrum

The strong incoherent emission from individual atomic
centers of H2 may mask the tiny contribution of the
interference effect. Therefore, to increase the visibility of
the effect the experimental DDCS for H2 is divided by twice
the DDCS for the H atom calculation. A version of the
CDW-EIS model modified by Galassi et al [26] to include
the molecular wave function has been used in this work. In
figure 1, we show the ratio of the experimentally measured
DDCS of H2 to twice the theoretically calculated DDCS
of effective H for ejection angle 120◦. Here, we have used
the effective nuclear charge for H (Zeff) = 1.19 [27], which
yielded oscillatory structure around a horizontal line around
1.0, and no straight line fitting is needed to compare with the
theory. However, almost no agreement is seen in the structure
with the CDW-EIS calculation (dashed line). A fitting is done
to the ratio spectra using a function a + bk + f sin(cρk)/cρk
denoted by solid lines in figure 1, where a, b, f and c
are adjustable parameters, k is ejection momentum and ρ

is inter-nuclear separation (1.41 au for H2). The expression
sin(cρk)/cρk is referred to as the Cohen–Fano term [2, 8, 28],
as mentioned before. The linear function a + bk takes care of
any slope present in the ratio spectrum. From the fitting using
the above function, we derived the frequency of oscillation,
i.e. parameter c in the fitting function for all ejection
angles [17]. Here we tabulate the frequency parameters
obtained from this experiment and compare with the early
measurements and theoretical predictions. In earlier work, the
angular dependence of the frequency parameter was reported
for high-velocity (40 au), highly charged Kr ions [24] along
with a few theoretical predictions [26, 28, 29]. The angular
distribution of the frequency (shown in figure 2 of [24])
included the data from two independent investigations. In the
present work, we have derived the frequency parameter for
several ejection angles on a wide angular range (between

Table 1. Frequency parameters obtained from different
experimental and theoretical studies.

Angle Heavy ion Stolterfoht Tanis Electron
impact data et al [27] et al [24] impact data

20 1.04
30 0.82 0.82 0.96 1.0
60 0.55 0.52 0.42
90 0.29 0.29 0.29 0.3
120 1.43 1.16
135 1.28
150 1.7 1.46 1.55 1.27
160 2.19

Figure 2. Frequency of oscillation is plotted as a function of angle.
The squares represent data for 95 MeV F9+ + H2, the asterisks from
Stolterfoht et al [27], the circles from Tanis et al [24] and the
triangles for 8 keV e− + H2. The solid line is a function to describe
the experimental pattern [17].

20◦ and 160◦) in the same experimental investigation for a
different collision system.

The angular distribution of the frequency parameter
for heavy ion impact data (squares) is shown in figure 2
along with the values found in early references for different
measurement systems. The frequency parameters are also
derived for an entirely different collision system such as
8 keV e− + H2 (triangles in figure 2). For electron impact
measurement this is the first attempt to obtain frequency
parameters. The detailed available values are also tabulated
in table 1. The distribution exhibits higher frequencies
of oscillation for the backward angles compared to the
complementary forward angles, with a dip at 90◦. In this
work, we extended our study of the frequency distribution
up to two more angles for heavy ion impact, namely 20◦ and
160◦, respectively. For 30◦, 60◦ and 90◦, the present value of c
has very good agreement with the previous measurements as
well as our electron impact measurement. For 120◦, however,
the present data yield a larger value compared to the value
reported by Tanis et al [24]. Note that the absolute uncertainty
of the c values of the present data is about 15%, except
for 60◦ and 90◦, where there was a large fitting error of
about 30–40%. The data for the forward angles may well be
represented by a cos θ function, which was predicted by Nagy
et al [28], whereas for the backward angles the frequencies
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are much larger than the prediction of this function.
A function (solid line) of the form m + n × cos θ(1 +
p × exp(θ)) is used, which approximately describes the
experimental behavior of figure 2, where m = 0.29, n = 0.55
and p = 0.05, respectively, in this case.

4. Conclusions

We have studied electron interference for the 5 MeV u−1

F9+ + H2 collision system. The DDCS ratios (H2-to-2H) were
obtained using theoretical DDCSs for the atomic H target
with an effective atomic number. The derived oscillations
due to Young-type interference were reproduced by the
Cohen–Fano-type fitting function for various angles. The
frequency parameters for several forward and backward
angles between 20◦ and 160◦ are tabulated along with
previous experimental and theoretical studies. We have
derived the frequency parameters for electron collision with
H2. In general, the results obtained from two entirely different
projectile collisions, namely electron impact and heavy ion
impact, are in good agreement and also in accordance with
earlier works [24, 27] performed for completely different
collision systems.
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