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Abstract 

Superconductivity disappears in (mesoscale) disordered thin films at a sheet 
resistance R,  or order 10 kR per square. This and other observed features of 
systems with both atomic and meso-scale disorder are briefly reviewed, as 
also theoretical models mainly based on the Josephson junction lattice. These 
are known to be inadequate. A new approach is described, with the sole 
assumption that the pair amplitude [AI does not vary spatially. The energy 
cost of wavevector (q) and frequency (U) dependent phase fluctuations e,, is 
expressed exactly in terms of disordered normal state properties. It is shown 
that because of perfect screening, the U* dependent term has an extra factor 
141 in two dimensions relative to the Josephson junction lattice form. The q2 
or phase gradient term is calculated as a function of R, . A rapid and large 
drop in stiffness occurs for R,  - 10 kR when the electron localization length 
and pair coherence length become comparable. At this level of disorder, the 
pair amplitude fluctuates spatially, so that the above approach becomes 
inadequate. Several indications are that a charged Bose system in a random 
potential would be a realistic model for disordered thin film superconductors 
at low temperature. 

1. Introduction 

The interplay between superconductivity and localization is a 
phenomenon of fundamental interest, for obvious reasons. 
Superconductivity is the most spectacular manifestation of 
coherence between electron (pair) states, whereas localization 
is the extreme conseqence of disorder leading to disjointed- 
ness. One therefore expects that on increasing disorder so 
that states becomes localized, superconductivity in a given 
material will disappear. A number of attempts have been 
made to investigate this competition experimentally (Refs. 
[l-81 described work on films) and to discuss it theoretically 
[9-121. We do not yet have a clear detailed picture of the 
phenomenon (or phenomena) or an understanding of its 
nature; I shall describe here briefly the situation for two 
dimensional systems, and present some new results which 
emphasize the role of electron localization. 

The case of disordered thin superconducting films is 
especially intriguing, because the lower critical dimension for 
both superconductivity and localization is two. In two dimen- 
sions, global pair phase coherence is just possible, and 
states are localized no matter how weak the disorder. Con- 
sequently, the corresponding coherence lengths are both 
exponentially large, e.g., the localization length depends 
exponentially on the inverse disorder. This is in contrast to 
bulk or three dimensional systems [7], where a critical dis- 
order is needed to localize states, and where the localization 
length diverges as a power of the fractional deviation from 
critical disorder. Thus, novel effects are expected (and found) 
in inhomogeneous thin films or metal insulator composites 
(also films) composed of superconducting metallic materials. 

The experimental situation is summarized in the next 
section (Section 2). The existing theoretical models (e.g., 
the Josephson junction lattice model) are also reviewed 
(Section 3). I then argue that disorder is the essential 
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ingredient in any realistic model for thin films supercon- 
ductors. One way it enters is the localization of underlying 
electronic states. The effects of this on the stiffness for pair 
phase fluctuations, and on universal random variations in 
this stiffness, are discussed here for the first time (Section 4). 
A possible scenario for explaining the observed phenomena 
is pointed out in the concluding section (Section 5 ) .  

2. Experimental Situation 

The effect of disorder on superconductivity depends very 
much on its scale and size, the reason being the existence of 
several length scales in the systems. These are:- interatomic 
spacing a (or (Fermi momentum)-') ( -  1-2A), electron 
mean free path l (1  > a unless disorder is on an atomic scale 
and is very strong, when I - a) ,  film thickness d (10 to 
1000 A), zero temperature superconducting coherence length 
to for the clean system (to - (hvF/kB T,) - 10 000 A) and the 
same physical quantity 5 for the disordered system ( 5  1: 

f l  - lOOA). These lengths are shown for comparison in 
Fig. 1. The film is considered two dimensional if d < 5 .  We 
shall assume here that this is the case. Depending on how the 
film is made, the disorder can be on any length scale ranging 
from 2 A  to 200A. 

Further, it is not easy to control or quantify the scale and 
size of disorder. This is one reason for the puzzling variety of 
experimental results. 

An example of atomic scale disorder is a MO-Ge film 
produced by codeposition, as described by Graybeal and 
Beasley [3, 41. The material is amorphous. The MO and Ge 
atoms are mixed together on a scale of 5-20 A. For x > 0.12 
in Mo,Ge, --x the film is metallic and superconducting. Using 
various tricks, homogeneous films of constant thickness d can 
be prepared down to an astonishing 10-20,4! In such sys- 
tems, for a given composition (and for d < 5 )  the super- 
conducting transition temperature T, is found to be a 
function solely of the resistance per square R, of the film, 
decreasing rapidly and linearly with it (at least to begin with). 
One finds, approximately, that 

where R, is in units of kilo ohms, and where, typically, = 
7 K. T," drops to unmeasurably low values for R, > 2.8 kR. 

Under most conditions, unless such special care is taken, 

(&', 4 I d 5 5 0  

I 
10" 10' 1 o2 103 io4 in A 
Fig. 1. Various length scales of interest in disordered thin film supercon- 
ductors (see text for explanation of symbols). 
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Fig. 2. Resistance per square R,  in kR versus temperature for different 
amorphous Ga thin films. (After Ref. (81). 

metal or metal-metal oxide films as deposited are inhom- 
ogeneous on a thickness or length scale of order 50A or so. 
They consist of blobs with this typical dimension, weakly 
connected via relatively narrow necks or via insulating 
oxide junctions. Such systems with mesoscale disorder have, 
experimentally, very different characteristics. For example, 
Goldman and coworkers [6, 81 have extensively studied thin 
metallic films whose coverage can be controlled very closely. 
Their data for Gallium films are shown in Fig. 2. The 
resistance of the films for different nominal thickness is 
plotted as a function of temperature. The superconducting 
transition temperature is relatively insensitive to disorder, 
and has nearly the bulk value, for R, less than about 6 to 
8 kR. For larger R,, there is a dip in resistance at the bulk 
transition temperature, but the resistance does not go to zero 
down to the lowest temperatures. It seems to settle to a finite 
value as T -+ 0 (metallic behaviour). For stronger disorder, 
the film resistance rises more or less monotonically as tem- 
perature decreases (insulating regime). 

It is fairly clear from these experiments that there is a 
critical sheet resistance beyond which global (pair) phase 
coherence does not exist. This critical value RL seems to 
be in the range of 6 to 8 kR per square. Figure 3 shows this 
dividing regime; the data points are for a number of different 
materials. Is the critical resistance relatively independent of 
the scale of disorder or does it depend upon it smoothly, i.e., 
as this scale is varied from atomic to mesoscale how does R‘, 
change? This question has not been explored experimentally 
in any systematic way. 

There is less agreement as to the number of possible 
phases. Are there three, namely superconductor, metal and 
insulator appearing with increasing disorder, as mentioned 
above, or are there basically two phases, superconductor 
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Fig. 3. Sheet resistance (in ki2) versus thickness in 8, (nominal). The zero 
resistance films are marked 0 while the ones which ave a nonzero resistance 
at low temperature are marked 0. (After Ref. [6]) .  

(phase coherence) and insulator (localization?)? The apparently 
metallic state may go insulating at exponentially low tem- 
peratures if there is such a low energy or inverse length scale 
associated with the insulator, so the second alternative is not 
unlikely. 

There have also been attempts [8] to correlate the low 
temperature Rf, of the disordered thin film with its intrinsic 
disorder, i.e., the Rh, at high temperature (obviously for RL > 
RD). Figure 4 shows the striking exponential connection. 

For mesoscale disorder, it seems plausible that below the 
bulk transition temperature 2, Cooper pairs form, and well 
below TP, are bound nearly as strongly as in the bulk. A 
rough criterion for this to happen is that the spacing between 
electronic energy levels in a grain is smaller than the BCS gap 
A. This leads to a minimum grain size of order 10 to 20 A. For 
disorder on a significantly larger scale, the gap function is 
expected to be nearly the same as in bulk, and destruction of 
superconductivity is due to (pair) phase incoherence. Another 
direct confirmation of the former statement is provided by 
tunneling spectroscopy of quench condensed Sn thin films [7]. 
The quasiparticle density of states obtained from (dZ/dV) is 
of the BCS form, with a gap A which does not depend on 
disorder (or R,) in the range R, 5 1OkR. T, is not par- 
ticularly sensitive to disorder either, for R, in this range). The 
measured density of states, along with the BCS form, 

j o 3 I  
0 

c -I 

Fig. 4.  Low temperature sheet resistance Ro7 versus high temperature sheet 
resistance for amorphous Ga film (After Ref. [8]). 
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Fig. 5 .  The density of states deconvoluted from conductance data for:- (a) 
a 542 njo thin film and (b) a 9933 n/D thin film. (After Ref. [7]). 

broadened to include quasiparticle lifetime r-’ , is shown in 
Fig. 5. The agreement is excellent. (Even the size and R,  
dependence of r are reasonable). In such systems then, the 
basic attraction between electrons, and pair formation, are 
unaffected (unlike in films with atomic scale disorder). Many 
more experiments are needed, however to establish in detail 
the features of these two presumed limiting cases, and to 
find out the nature of the crossover. 

3. Theoretical models 

Attempts to understand superconductivity in disordered thin 
films fall into two broad classes. One can think of the system 
as a (weakly) disordered metal, and try to find how Cooper 
pair formation is affected by disorder. This would be appro- 
priate for systems with atomic scale disorder. Or, one 
can assume the system to consist of superconducting grains 
which are weakly and randomly coupled to each other. This 
Josephson junction or phase only model ought to be relevant 
for the low temperature behaviour of systems with mesoscale 
disorder. After a brief review of extant models in both classes, 
I describe some new results for the second or phase only kind 
of models. 

3 . 1 .  Weakly disordered metal 
In a disordered metal, localization and the dynamics of 
interacting electrons have characteristic effects on equilib- 
rium and transport properties. The effects are singular 
(logarithmically) in two dimensions [9, 131. The super- 
conducting transition temperature is influenced in several 
ways, many of which have been discussed by Fukuyama and 
coworkers [14]. For example, the single particle density of 
states, the pair propagator, and the coulomb repulsion vertex 
are all changed, to first order in ( l / k F l ) ,  for a film. This leads 
to a reduction in T, of a film to first order in ( l /kFl ) ,  In 
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bulk systems, the effect appears at order (l/kF1)*. Thus 
Anderson’s theorem stating that T, does not depend on non- 
magnetic static disorder, is valid to order ( l /kFl)  in three 
dimensions and is not valid in two (essentially because the 
disordered metallic film is anomalous). This (l /kFl) or 
R,  functional dependence is indeed observed for atomically 
disordered films [3, 41. (Section 2). There is considerable 
uncertainty in the theoretically estimated coefficient; however 
the calculated values have the right size. The calculation 
cannot be carried through for strong disorder, and the dis- 
ordered superconducting phase has not yet been considered 
in detail. 

3.2. Josephson junction lattice 
For mesoscale disorder, each grain i can be assumed to have 
a well defined pair amplitude, with a phase $i. The phases of 
neighbouring grains are coupled by pair (Josephson) tunnel- 
ing. The size J ,  of this coupling depends on the integrain 
tunneling amplitude, i.e., inversely on the local electrical 
resistivity. The coupling tends to make phases the same, i.e., 
it is of the form - Jlj  cos ($i - $i). This tendency towards 
global phase coherence is offset by charge fluctuations. A 
particular grain, if isolated, has a certain number of pairs or 
charge 2eni. This causes the phase to change at a steady rate. 
Thus if charge fluctuations are slow, phase incoherence is 
likely. The most important effects are due to single grain 
charging, and the Hamiltonian can then be written as: 

n2 H = 1 (2e)2 2 - 1 Jij cos ($i - 
i 2Ci i , j  

where Ci is the capacitance of the grain i. Assuming that there 
is no randomness in the Ci and in the Jii (which couple nearest 
neighbour grains) one has a Josephson junction lattice. 

The above model is quite commonly used, and was first 
considered by Abeles [15], who pointed out the obvious 
analogy with lattice vibrations. The atomic mass is (C /4e2)  
and Ji j  are the force constants. For small atomic mass (in 
relation to force constants) as in He4, zero point fluctuations 
are too large and lead to melting, i.e., loss of global phase 
coherence. Several authors, most recently Chakravarty, 
Ingold, Kivelson and Zimanyi [ 161 have used self consistent 
harmonic phonon theory to calculate phonon frequencies 
with the anharmonic potential of eq. (2), and find, like in high 
temperature calculations of vibrational instability [ 171 a 
sudden collapse of elastic stiffness. Chakravarty et al. include 
in addition a dissipative term in eq. (2) due to thermally 
excited quasiparticles causing supercurrent decay. In the 
phonon language, this amounts to assuming oq = qv, - ilq’ 
for small q, the imaginary part being due to dissipation. There 
is now more spectral density at low frequencies, so that 
“melting” (still discontinuous) occurs at smaller of the 
product CJ than before. For a sufficiently large value of ,I 
however, the transition becomes continuous. 

As applied to experimental systems, the model does 
predict a superconductor-insulator transition, generally dis- 
continuous however since at low temperatures the dissipative 
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terms becomes exponentially small. Experimentally the tran- 
sitions seems continuous. There is no universal critical R, in 
the theory since the critical J,, clearly depends on grain 
capacitance. There is no understanding yet in this picture 
of the relation between Rkgh and R P ,  or indeed whether 
there is an identifiable RF region. In the lattice model dis- 
order does not appear, though it could be crucial since in 
two dimensions any randomness localizes the phonon like 
excitations. 

I present now an approach in which no assumption beyond 
the spatial constancy of the size of the Cooper pair amplitude 
lAj is made. The effect of disorder on phase fluctuation stiff- 
ness, and on its random variation, are related to measured 
normal state properties such as sheet resistance. The results 
point clearly to a new regime, namely one where R, is such 
that the localization length t,,, 5 4 the coherence length. 

4. Disordered film model 
4.1. Preliminaries 

For superconducting systems with mesoscale disorder, it is 
natural to assume that the magnitude of the superconducting 
order parameter has its bulk value and does not fluctuate very 
much spatially. The obvious question then is:- How does one 
describe the free energy of the system as a functional only of 
phase fluctuations? A method for answering such questions 
was proposed many years ago by deGennes [18]. He showed 
how one could work in the representation of the exact single 
particle states in the disordered medium, and express physi- 
cally relevant interaction parameters or response functions in 
terms of measurable averages. The method has been since 
then used in the context of disordered superconductors by 
Kapitulnik and Kotliar [lo], and by Ma and Lee [ l l ] .  I 
formulate it here a little differently, and apply it to two 
dimensional superconductivity. 

Consider a collection of electrons in a random potential 
V ( x ) ,  interacting via a BCS zero range attractive term of 
strength g. The Hamiltonian of the system is 

H = { z $ : ( x ) [ % ( ~ V  1 h  - + V ( x )  - ,U] 
C C 

where A is the vector potential, and p is the chemical poten- 
tial. The partition function Z of this system can be written as 
a functional integral over the Grassmann fields $(x)( = $(x, T ) )  

and $(x):- 

The order parameter field A(x) is introduced by the usual 
Hubbard-Stratonovich transformation, i.e., by writing 

x dA*(x) exp [ - ’ ” - A*$l(,x)$T(x) - h.c.1 

where C is a normalization constant. We assume that A(x) 
can be written as a product of a spatially constant amplitude 
times a phase factor, i.e., 

A(x) = Ae16(y) ( 6 )  
and assume further that A has the free energy minimum or 
mean field value A,,, i.e., that fluctuations with respect to the 
mean are not relevant for the physics. The mean field value 
A. satisfies the usual BCS Bogolubov equation, even for a 
disordered system, as shown by deGennes [18]. Ma and Lee 
[ l  11 have argued that this is true so long as t,,, > 5. One then 
has, on using eqs. (5) and (6) in eq. (4) for Z,  and making a 
phase change I)~(X) = exp i8(x)/2 in the Fermi fields, 

Z = ID{$, $, e}  exp [-dT + &)I (7a) 

where 

and 

with n, = AV8 - (2eA/c).  If the fermion degrees of freedom 
are integrated out, the free energy is explicitly a functional of 
phase 8(x) alone. Further, the functional is clearly gauge 
invariant. 

If 8 fluctuates slowly in space and time, one need retain 
only the leading order (quadratic) terms of V8 and in 8 .  Upto 
this order, 

z = / D { ~ I  ~ X P  [ - P H ~ , { ~ ) I  ( 8 4  

where 

I + 8 - D(q,  q’, 0) iqeq,w * iq’Qq,. (8b) 

In eq. (8b), o is the Matsubara frequency (27cimk, T )  with m 
an integer, and q is the wavevector. This phase Hamiltonian 
is very similar in form to that of the Josephson junction 
model (eq. (2)). The quantities iqw and D(q,  q‘, o) describe 
the response of the disordered superconducting electron 
liquid to charge and current fluctuations, i.e., 

q.q’ .  w 

and 

(9b) 
is the inverse dielectric function, and D is the current 

correlation function (related to conductivity) for a particular 
impurity configuration, i.e., before configuration averaging. 
We discuss these two quantities now. 

4.2. Inverse dielectric function 
The inverse dielectric function for small wavevector q (and 
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zero frequency) is determined by the long-range coulomb 
interaction and its perfect screening in a Fermi liquid (normal 
or superconducting, clean or disordered). Quite generally, for 
small q, xq, can be written as 

(10) 
where uq is the Fourier transform of the coulomb potential 
e2/lxl, and goes as [2e2/1q1A] in two dimensions and as 
[4ne2/q2V] in three. In calculating x:w the coulomb inter- 
action can be neglected (RPA). In the small q, o = 0 limit, 

the irreducible polarization, is equal to the normal metal 
density of states e&, at the Fermi level. x : , , = ~  is found using 
the exact eigenstates method, to be 

2, = [x:,/(l + U , X ~ u l > l  

where D is the electron diffusion constant in the disordered 
normal metal, and E = d m .  This has the clean limit, 
normal state value e&F in the limit q -+ 0, so that from Eq. (10) 
x(q, 0) N (+ U,,)-’ (i.e., it goes to zero as q -+ 0). This incom- 
pressibility of the electron gas due to the long range of 
coulomb interactions and the finite density of low energy 
excitations qualitatively alters the energy cost of temporal 
phase fluctuations, reducing it by factor q (in thin films or two 
dimensions) and by a factor 4’ (for three dimensional 
systems). Even in the quantum insulator limit (i.e., at T = 0 
with states near Fermi level localized), for an overall neutral 
system, x:,,,+~ goes as q2 for small q (namely for q 4 <I,,‘). 
This is easily seen by expanding matrix elements involved in 
x: as a power series in q. One thus has, in general, extra 
factors of q coming from the (in)compressibility x,, of the 
electron liquid (or glass). 

For the metallic regime, since iq N ( u q ) - ’ ,  (from eqs. (10) 
and (1 1)) the explicit effective phase Hamiltonian is 

+ i 1 D(q, q‘, o)iq8,, - iq‘e,.,-, (12) 
4. 4’w 

D(q, q’, o) has a nonzero limit for small values of its argu- 
ment, and is diagonal in (4, - q’) on averaging over random 
potential configurations. (See Section 4.3). Comparing this 
equation with the phenomenological Josephson junction 
lattice Hamiltonian eqs. (2) and (l), the second term is seen 
to be similar in form, while the first is not. It has an extra 
factor of q whose origin has been discussed above. The 
Josephson junction lattice Hamiltonian is the result of a 
perturbation expansion in powers of intersite electron 
hopping. In such an expansion, D appears to second order, 
but perfect screening of coulomb interactions only in infinite 
order (RPA resummation of perturbation theory etc.). Also 
implied in the lattice model is the assumption that the Cooper 
pair binding energy A is the largest energy in the problem, i.e., 
larger than or up. Since an extra q factor is present even for 
the disordered insulator, it seems that the Josephson junction 
lattice model qualitatively overestimates the energy cost of 
time dependent phase fluctuations. Therefore conclusions on 
the consequences of charging or zero point quantum phase 
fluctuations using this model cannot be taken as they stand; 
quantum fluctuation effects are much stronger. 
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4.3. Phase gradient stifness 
The phase gradient stiffness D(q,  q’, o) (proportional to 
superfluid density!) is related to the current current corre- 
lation function (eq. (9b)). Using the exact eigenstates method, 
it can be related to the ac conductivity of the normal dis- 
ordered metal (i.e., the disordered metal with everything 
the same, but no pairing term). The expression already 
appears in deGennes [18] and Ma and Lee [l l] .  The con- 
figuration averaged D(q, q’, o) is 

&&’(E + <<‘ + - E ’ )  ”’) x (L 
5 + 5’ ( EE‘ - <5‘ - A2)]] 

- CJa,(q,  4 - 5’) 
E&’(& + E ’ )  

where ii is the electron density, and a(q, o) is the conductivity 
of the disordered metal in the absence of Cooper pairing (i.e., 
where the BCS attraction is absent, or g vanishes in eq. (3)). 
The effective phase gradient stiffness depends on normal state 
ac conductivity CJ averaged over with a coherence factor 
which varies in the frequency range of A. Normally, a(w) 
varies on a scale T - l  (Drude), so that since T-’ % A, CJ can be 
taken to be (Ae2r/m). In this limit, 

the standard “dirty limit” value, where d is a constant of 
order ten. 

In a two dimensional disordered systems, however, all 
states are localized at T = 0 [9, 131, so that the conductivity 
goes to zero at low frequencies approximately as 02. The 
crossover to the Drude form occurs for frequencies o > oo, 
where oo = $eF x exp [-R,/R,] with R, = (.’hie2) N 

40.5 kR. Thus the effective stiffness can be very much smaller, 
because the ‘normal’ metal is very soft against current fluc- 
tuations. It is also obvious that when o,, 5 A, the stiffness D 
is likely to become very small. This means that the critical 
sheet resistance is 

R,  ’ &/In (&/A) (15) 
which comes to about 6 kR for (+/A) - lo3. Another way of 
describing the condition oo 5 A is that the localization 
length t1,, 5 5 the superconducting coherence length (in the 
dirty limit). 

A detailed calculation of D ,  which illustrates its rapid and 
large decrease can be made using an approximate form for 
a(q = 0, o) derived by Vollhardt and Wolfle in their self 
consistent theory of localization [20]. Their expression for 
a(o) is 

~ ( o )  = (Ae2z/m)w2/(02 + W;T’) (16) 
The calculated value of the dimensionless stiffness coefficient 
fi for different values of the sheet resistance is shown in 
Fig. 6. A rather rapid and large drop in d occurs in the range 
R,  - 8-20 kR; 0” decreases from nearly ten to about 0.4 in 
this range. Most of the stiffness for R > lOkR is due to 
localized states with localization length < 5! In a normal 
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Fig. 6 .  The phase gradient stiffness D in dimensionless units versus sheet 
resistance R, in kR. 

metal, inelastic processes mute localization effects; such 
processes are exponentially suppressed in the super- 
conductor, so that the T = 0 limit and therefore strong 
localization effects are what one has in fact. 

The precipitous softening of D for R beyond 8-10 kR does 
not by itself explain the superconductor insulator or super- 
conductor metal transition; it makes such a transition easier, 
however, and points clearly to the relevance of a disorder 
scale such that tl,, 5 5 (the superconducting coherence 
length). An assumption is that even in systems with mesoscale 
disorder, the relation between localization length (or equiv- 
alently, coo) and the intrinsic disorder or R, is given by 
the localization theory result previously mentioned. This is 
expected to be true so long as tlOc > 1,  the mean free path, 
which in this case is the length scale of mesoscale disorder. 

Another argument for the relevance of the criterion 
<,oc 5 ( is due to Ma and Lee [l I], who point out that when 
this happens, i.e., when states near the Fermi energy have a 

5 4, the number of states within a volume td fluctuates 
strongly. This leads to large local fluctuations in the pair 
amplitude A(x). 

A third consequence of disorder is that the stiffness D 
fluctuates substantially from its mean value. This fluctuation 
is local in space, i.e., has a range (. It is related to conductance 
fluctuations in two dimensions which are universal. 

4.4. St 1 ffness Jluct uations 
The phase stiffness D(q ,  q’, o) is not diagonal in q for a 
particular random potential configuration. The diagonal con- 
figuration averaged quantity D(q,  -4, o = 6(q, o) has 
been discussed above (Section 4.3). In a disordered medium, 
D varies randomly from its mean value. In a Josephson 
junction lattice model, this means that the force constant JI, 
fluctuates from bond to bond. An obvious measure of the 
spread in D is (9 - 6’). Using the definition eq. (9b) for D,  
where the average is over Fermi fields for a given impurity 
configuration, and noticing that (9 - B’) involves a con- 
nected configuration average of four current operators, and 
relating this to conductance fluctuations, one finds that 

(b) 

Fig. 7. Contributions to Sine-Gordon field (or vortex charge correlation 
function) self energy. (a) First two terms in infiniteseries of terms involving 
6. (b) First two terms in infinite series involving (D* - D2), this being the 
cross-hatched ring or impurity configuration averaged (m) correlation 
function. 

where the q vectors of D2(q, q2,  q3 ,  q4) are all taken to be zero. 
(This is the limit of interest for long wavelength stiffness 
fluctuations). Since the size of 6 is ( A z / h ) ( h 2 / m ) ,  eq. (16) 
implies ‘universal’ fluctuations in the size of D. This has a 
number of consequences, one of which is the local reduction 
of vortex core energy. This is discussed now. 

In a classical vortex unbinding or Kosterlitz Thouless 
model for two dimensional superconductivity, the static 
(o = 0) phase fluctuations, in the form of positive and nega- 
tive vortices, are assumed the relevant degrees of freedom. 
This may not be a realistic model here, because phase fluctu- 
ations of different frequencies have nearly the same energies 
(Section 4. l), and so the o = 0 or static mode is not specially 
low in energy. Even in this situation, however if there are no 
terms for H ( 0 )  higher than quadratic, phase fluctuations of 
different frequencies do not interact, and the result below is 
correct for the static fluctuations. 

A convenient formulation of the vortex model is in terms 
of a Sine-Gordon field theory [21], for which the partition 
function for a given configuration is 

z = lo{@) exp [ - 1 D - I ( ~ ,  x’>(v@(x>. vqx’))  

(17) 

Here @ is a real field, and z is the vortex fugacity. The vortex 
charge correlation function is related to the propagator 
( @ q @ - y ) .  For example if z = 0, (Oq @ - q )  2: @ / q 2 )  where 
8 = (6/12) is of the order A. This corresponds to the 
logarithmic long range attraction between opposite sign 
vortices, while for z > 0, the interaction is screened at tem- 
peratures such that ps < 4. This is the Kosterlitz-Thouless 
transition temperature. Consider the self energy C ( q  = 0) of 
@ propagator, to leading (first) order in z ,  and to all orders 
in Q, (perturbatively). The infinite series of terms, two of 
which are shown in Fig. 7(a), sum to a logarithmically 
(infrared) divergent term (see Ref. [21]). These terms involve 
8. A second infinite series of terms arises from conductance 
fluctuations. Two of these are shown in Fig. 7(b). These can 
be summed, and lead to a renormalization of z, i.e. 

(18) 

1 2z 

5 x dx dx’ - {cos 27cQ,(x) dx . 

z,,, = z exp {7cp2(F - s2)> .  
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If the core energy of a vortex is E,, then z N exp ( -BEc)  so 
that the above renormalization of z can be thought of as 
reducing the core energy, or as the first term in a high tem- 
perature expansion for the latter, the sum of which leads from 
z - exp ( - B E c )  to z’ - exp [ - E , / ( k , T  + E2)] where 
E2 - E, for R, 1: 10 kR. This decrease in core energy due to 
the possibility of soft spots in D, leads to a larger density of 
free vortices, and moves the bare parameters away from the 
Kosterlitz-Thouless line in the z-T plane. This could contri- 
bute to the destruction of the global phase coherence when 
R, -v lOkR or so. 

5. Conclusion 

It is clear from what has been said in the previous two 
sections that there is as yet no credible theory of the 
phenomena observed with increasing (mesoscale) disorder. 
The Josephson junction lattice model focuses on the (gener- 
ally discontinuous) phonon (phase excitation) instability as 
zero point quantum fluctuations increase due, say to an 
increase in sheet resistance. However, the actual energy spec- 
trum of time dependent phase fluctuations is qualitatively 
different from that assumed in this model because of the 
incompressibility of the coulomb Fermi liquid (Section 4.2); 
this is expected to radically change conclusions of the lattice 
model. Secondly, disorder, neglected in the lattice model is 
known to cause localization of phonons no matter how small 
it is. This fact could be crucial! 

The spatially constant order parameter or phase only 
model developed in this paper clarifies the microscopic 
meaning of coupling parameters i.e., temporal and spatial 
phase fluctuation stiffness. It shows how these depend on the 
measurable properties of the film, e.g., resistance per square 
or R ,  . It points to the significance of the criterion <,,, < < for 
R,  2 8-10 kR in at least two ways, viz. sharp reduction in 
phase gradient stiffness; and increase in its relative fluc- 
tuation. It is however not a complete dynamical theory, and 
does not describe the superconductor insulator phase change, 
(RIow 0 5  REgh) relations etc. 

From the above, and from the fact that pairing amplitude 
fluctuations are significant for tl, 6 4, it is clear that a model 
with only phase fluctuations is inadequate. More concretely, 
in a system with mesoscale disorder, some grains or islands 
may, purely by chance, be favourable for Cooper pairing, 
because of the way they are connected to other grains and 
consequent energy level tructure. The reverse is also possible. 
Thus localization of A(x) due to randomness is an important 
effect. This Anderson localization will become important 
when the random fluctuation in A(x) is comparable to kinetic 
energy, i.e., to the size of the IVA(x)1* term. The former is 
crudely of order A exp (- <,,,/<) (a function smoothly inter- 
polating between the limits A and 0 for $ 5 and <,, 9 t 
respectively). The latter goes as (h2/2mt2) .  Equating the 
two, we again arrive at the criterion 5,, 2: 5. It thus seems 
plausible that localization of A(x) is a necessary ingredient of 
a complete theory. 

A model which could be realistic on all counts is the 
charged Bose fluid in a random medium. We identify A(x) 
with the Bose field and the lVA(x)1* or Josephson term with 
boson kinetic energy. Thus the boson kinetic energy depends 
on disorder or R,. Interaction between bosons, with the 
uniform condensate present, leads to the phonon spectrum 
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characteristic of superfluidity. [In our case the bare inter- 
action between pairs (or between bosons) is coulombic and 
the collective excitation spectrum plasmon like]. The 
randomness in pair amplitude due to localization of under- 
lying electronic states is describable as a random one body 
potential acting on the bosons. The Bose glass problem has 
been discussed by several authors [22]; the general belief is 
that while bosons in a random potential condense into the 
lowest localized state the repulsive interaction between them 
counteracts this tendency, delocalizing them and restoring 
superfluidity. Thus for weak interaction (in relation to dis- 
order) the system is a nonsuperfluid glass; for strong inter- 
action it is a superfluid. There is a self consistent mode 
coupling calculation of this transition for both short and long 
range boson interactions [23], and very recently, a scaling 
analysis [24] of the critical exponents has been made. How- 
ever, there is no theory yet for the case relevant here, namely 
a two dimensional random system where localization is 
endemic, with coulomb interactions between the charged 
bosons. Also, there is no mapping yet of the problem to 
the two dimensional superconductor nor a beginning of an 
attempt to connect observations with model predictions. 
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