
Metrologia
     

Forming stable timescales from the Jones–Tryon
Kalman filter
To cite this article: Charles A Greenhall 2003 Metrologia 40 S335

 

View the article online for updates and enhancements.

You may also like
Study on GPS attitude determination
system aided INS using adaptive Kalman
filter
Hongwei Bian, Zhihua Jin and Weifeng
Tian

-

An adaptive Kalman filtering algorithm
based on maximum likelihood estimation
Zili Wang, Jianhua Cheng, Bing Qi et al.

-

An improved multi-state constraint kalman
filter based on maximum correntropy
criterion
Xuhang Liu and Yicong Guo

-

This content was downloaded from IP address 18.117.142.128 on 03/05/2024 at 20:05

https://doi.org/10.1088/0026-1394/40/3/313
https://iopscience.iop.org/article/10.1088/0957-0233/16/10/024
https://iopscience.iop.org/article/10.1088/0957-0233/16/10/024
https://iopscience.iop.org/article/10.1088/0957-0233/16/10/024
https://iopscience.iop.org/article/10.1088/1361-6501/ace9ef
https://iopscience.iop.org/article/10.1088/1361-6501/ace9ef
https://iopscience.iop.org/article/10.1088/1402-4896/acf68e
https://iopscience.iop.org/article/10.1088/1402-4896/acf68e
https://iopscience.iop.org/article/10.1088/1402-4896/acf68e


INSTITUTE OF PHYSICS PUBLISHING METROLOGIA

Metrologia 40 (2003) S335–S341 PII: S0026-1394(03)61410-6

Forming stable timescales from the
Jones–Tryon Kalman filter
Charles A Greenhall

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr.,
MS 298-100, Pasadena, CA 91109, USA

E-mail: charles.greenhall@jpl.nasa.gov

Received 24 April 2002
Published 5 June 2003
Online at stacks.iop.org/Met/40/S335

Abstract
This is a study of three timescales formed from a Kalman filter operating on
a model of a clock ensemble. The raw Kalman scale is unstable at short
averaging times. The Kalman-plus-weights and reduced Kalman scales are
stable at all averaging times. An optimality property is proved for the
reduced Kalman scale.

1. Introduction

The purpose of a timescale is to form a virtual clock from
an ensemble of physical clocks whose differences from each
other are measured at a sequence of dates, where a date is
the displayed time of a clock as determined by counting its
oscillations. The virtual clock is defined as an offset from
one of the physical clocks, the offset being computed from
the measurement data by some algorithm. The usual goal of
the algorithm design is to produce a virtual clock that is more
stable than any of the physical clocks in both the short term
and the long term, as expressed by some frequency stability
measure such as Allan deviation or Hadamard deviation.

A straight Kalman filter approach to this problem has been
tried at least twice [1–3]. The noise of each clock is modelled
as a sum of white FM, random walk FM, and random run
FM (random walk of drift), with known noise levels. The
entire ensemble is modelled by a linear stochastic differential
equation, whose state vector is estimated in a straightforward
way by a Kalman filter from clock difference measurements.
Under the assumption of noiseless measurements, if each
clock’s tick is offset by its Kalman phase estimate, we arrive at a
single point on the time axis. It makes sense to regard this point
as the estimated centre of the ensemble, and to use the sequence
of these values as a timescale. This timescale, realized as
TA(NIST), was reported to follow the clock with the best long-
term stability, regardless of its short-term stability [4, 5]. The
goals of this paper are to reproduce this result by simulations,
to understand it, and to find a better way to use this Kalman
filter in a timescale algorithm.

The model and Kalman filter are described here in detail.
By simulation of an imaginary ensemble, we reproduce the
reported behaviour of TA(NIST), called here the raw Kalman

scale. Next, we show that a much better timescale, ‘Kalman
plus weights’ (KPW), can be formed by using only the Kalman
frequency and drift estimates in a conventional timescale
equation. Finally, we describe a simple modification of the
Kalman filter that turns the raw Kalman scale into the reduced
Kalman scale, which has an optimal short-term stability
property.

2. Jones–Tryon model and Kalman filter

The ensemble of n independent clocks has state vector

X = [x1, y1, z1, . . . , xn, yn, zn], (1)

where xi is the phase, yi the frequency state, and zi the drift
state of the ith clock. The frequency and drift states should
not be confused with the total frequency dxi/dt and total drift
d2xi/dt2, which contain all three noise components. With
Brown [3] we regard these states as residuals from some ideal
clock whose rate is constant. The evolution of the ith clock
from date t − δ to date t is described by the equations

�δxi(t) = δyi(t − δ) + 1
2δ2zi(t − δ) + wxi(t), (2)

�δyi(t) = δzi(t − δ) + wyi(t), (3)

�δzi(t) = wzi(t), (4)

where �δ is the backward difference operator, �δf (t) =
f (t) − f (t − δ). The process–noise vector

Wi(t) = [wxi(t), wyi(t), wzi(t)]
T
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has covariance matrix

Qi(δ) =
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. (5)

The q factors (differential variances), which specify the levels
of the three noise components for each clock, are related to the
Hadamard variances of the clocks [6] by

Hσ 2
yi(τ ) = qxi

τ
+

qyiτ

6
+

11qziτ
3

120
. (6)

The noiseless clock difference measurements at date t are
expressed by

xi1(t) = xi(t) − x1(t), i = 2, . . . , n. (7)

The model is set up for Kalman filtering by expressing it
as an overall matrix–vector equation

X(t) = �(δ)X(t − δ) + W(t).

The transition matrix �(δ) has diagonal blocks

φ(δ) =




1 δ
δ2

2
0 1 δ

0 0 1


 .

The covariance matrix of the process–noise vector W(t) =
[W1(t), . . . , Wn(t)]T is Q(δ), a matrix of diagonal blocks
Qi(δ). The measurement equations (7) are written as

ξ(t) = HX(t),

where ξ(t) = [x21(t), . . . , xn1(t)]T, and H is an (n − 1) × 3n

matrix. For three clocks,

H =
[−1 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 1 0 0

]
.

The model and measurements determine a Kalman filter
[7–9]. For each measurement date t , the filter produces a state
estimate,

X̂(t) = [x̂1(t), ŷ1(t), ẑ1(t), . . . , x̂n(t), ŷn(t), ẑn(t)]
T,

and an error covariance matrix,

P(t) = E[X(t) − X̂(t)][X(t) − X̂(t)]T,

as functions of X̂(t − δ), P(t − δ), and ξ(t), where t − δ is
the previous measurement date. The measurement dates may
be unequally spaced, that is, δ may depend on t . The Kalman
filter has two steps: a temporal update or prediction giving
an intermediate estimate X̃(t) and P̃ (t) from X̂(t − δ) and
P(t − δ), and a measurement update giving the final estimate

X̂(t) and P(t) from X̃(t), P̃ (t), and ξ(t). We assume that the
reader is acquainted with Kalman filtering, whose equations
will be brought up as they are needed.

2.1. Raw Kalman scale

For any Kalman filter with noiseless measurements, the
estimated state satisfies the measurement equations. In fact,
we have

ξ(t) = HX̂(t), HP (t) = 0. (8)

For our model,

xi1(t) = x̂i (t) − x̂1(t), i = 2, . . . , n (9)

and the x rows and x columns of the covariance matrix are all
the same. It follows from (7) and (9) that the quantity

xe(t) = xi(t) − x̂i (t) (10)

(which is just the phase estimate error) does not depend on i.
This quantity is called the raw Kalman scale, or Kraw(t). In
Brown’s terminology [3], the ‘corrected clocks’ are all the
same. It is this scale that was used for TA(NIST). As we shall
see in a simulated example, the Kraw scale fails to average out
the short-term noises of the clocks in the ensemble; the Kalman
filter seems to attribute incorrect amounts of white FM noise to
the various clocks. In section 4.3 we shall attain some insight
into this situation.

2.2. Initializing the Kalman filter

The Kalman filter must be given an initial state estimate and
error covariance matrix. For this paper, we make the Kalman
filter itself do the work of assigning an initial error covariance
by means of a preliminary filter run whose state estimates are
ignored. We start the filter with a zero error covariance, and
run it until the error covariance submatrix Pyz of the frequency
and drift states settles down. It is not necessary to wait until
it actually converges (if it ever does). Why just the frequency
and drift states? Because the phase error variances diverge
strongly; the Kalman filter seems to know that it is doing a
poor job of estimating the clock phases. In fact, we may now
clear all the elements of P outside the Pyz submatrix to zero; in
section 4.1 we prove that doing so leaves the future frequency
and drift state estimates unchanged. One could regard the
initial Pyz as Type B estimates of the uncertainties [10] of
the initial frequency and drift states, which might have been
obtained by other means.

For the simulations in this paper, the initial frequency
and drift state errors were generated as zero-mean Gaussian
random variables whose covariance is the initial Pyz that was
determined from the above procedure.

2.3. Simulation example

One of the simulation examples in a previous paper [11] on two-
stage clocks reproduces an imaginary eight-clock ensemble
that was simulated by Stein [12]. The odd-numbered clocks
all have the same qs; similarly for the even-numbered clocks.
For the purpose of this paper, a random run FM component
was added to the odd-numbered clocks. A run of 1.8 × 108 s
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Figure 1. Results of a simulation of eight imaginary clocks. The
odd-numbered clocks are statistically identical; so are the
even-numbered clocks. The lines and dots show the theoretical and
measured Hadamard deviations of the simulated clocks. The other
symbols show the measured deviations of three timescales: the
Kraw scale, the KPW scale, and the reduced Kalman scale.

of hourly measurements was simulated; the results are shown
in figure 1, a Hadamard σ–τ plot. The short-term performance
of the Kraw scale is scarcely better than any one of the noisiest
clocks. Curiously, though, it does outperform the other scales
in a range of averaging times around 106 s.

3. Weighted-average scales

On examining the Kalman state estimates from various
simulations, one sees that the frequency and drift state
estimates are of much higher quality than the phase
estimates, which have incorrect amounts of short-term noise.
Accordingly, the author tried an approach that uses the
Kalman frequency and drift state estimates in a conventional
weighted-average timescale defined by the basic timescale
equation (BTSE) [13]. To include drift estimates, we use
the modification introduced by Breakiron [14]. The BTSE
has several equivalent forms; the one used here is a recursive
definition of the timescale xe(t) in terms of the non-observable
quantities xi(t):

�δxe(t) =
n∑

i=1

λi(t)

[
�δxi(t) − δŷi(t − δ) − 1

2
δ2ẑi (t − δ)

]
.

(11)

The behaviour of the scale depends on how the weights λi(t)

(which add to 1) are chosen, and how the estimates ŷi (t − δ)

and ẑi (t − δ) are determined from previous observations. By
subtracting x1(t) from both sides of (11), we obtain a recursion
for the offset of the scale from clock 1 in terms of observed
and computed quantities.

Here, we use the Kalman estimates ŷi (t − δ) and ẑi (t − δ)

in (11). This differs from the customary practice of using
estimated departures of the frequency and drift of the ith clock
from the previously computed timescale. As Guinot [15]
pointed out, this practice can result in ineffective frequency
estimates during periods when the weights are held constant.
This phenomenon does not occur here. It is important to
observe that information from the BTSE is not fed back to
the Kalman filter, which is kept as pure as possible; its only

job at this point is to deliver frequency and drift state estimates
from the clock models and measurements. The Kalman phase
estimates are ignored; in section 4, however, we shall modify
the Kalman filter in such a way that the phase estimates become
useful.

3.1. KPW scale

It remains to determine the weights λi(t) in the BTSE. We do
so with the intent of minimizing the short-term instability of
xe(t). By (2) and (11),

�δxe(t) =
n∑

i=1

λi(t)
{
δ[yi(t − δ) − ŷi (t − δ)]

+ 1
2δ2[zi(t − δ) − ẑi (t − δ)] + wxi(t)

}
. (12)

For now, we assume that wxi(t) dominates the other terms in
the braces. In this case, �δxe(t) is approximately a weighted
average of the uncorrelated random variables wxi(t), and xe(t)

is approximately a random walk in the short term. To minimize
its instability, we make λi(t) proportional to 1/ri , where

ri = Ew2
xi(t) = qxiδ +

qyiδ
3

3
+

qziδ
5

20
(13)

is obtained from (5). One would expect this approximation
to be best when the clocks’ white FM noises dominate the
other noises at the averaging time δ. In section 4.4 we shall
determine the optimal weights without any approximation.

The timescalexe(t)determined by these particular weights
is called the Kalman plus weights. As figure 1 shows, its
measured instability in our simulation example is almost a
factor of 2 below that of the best clock for all averaging times
except the largest ones, where the confidence of the stability
estimates is low.

4. Covariance x-reduction

The diagonal phase variance entries of the error covariance
matrix P(t) grow without bound, while the (2n) × (2n)

submatrix Pyz(t) of the frequency and drift covariances is
empirically well behaved, though a slower divergence is
not ruled out. For no other reason than to preserve the
numerical stability of the Kalman algorithm, one would like
to keep P(t) from running away, if that can be done without
disturbing the desired output of the Kalman filter. Brown [3]
proposed a method, transparent variations of covariance, for
reducing P(t) in a way that preserves future estimates of the
entire state vector. In the GPS Kalman filter, a method of
pseudomeasurements has been used [16]. For constructing the
KPW scale, we are interested only in preserving the frequency
and drift state estimates. As we mentioned in section 2.2, there
is a method, much cruder than Brown’s, that accomplishes this:
one simply sets all elements of P(t) outside Pyz(t) to zero. Let
us call this operation x-reduction.

This operation is not as drastic as it may seem. As we
pointed out in section 2.1, all the x rows and x columns of
P(t) are the same vector; we are simply setting that vector
to zero.

Most of the remainder of this paper is devoted to
stating and proving some remarkable properties of this simple
operation.
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4.1. Transparency properties

First, we must show that x-reduction is transparent to the
Kalman frequency and drift state estimates. We shall obtain
this result as a special case of a more general theorem.

The method uses an auxiliary model. Given the original
state vector X from (1), we define the new state vector

Y = [ξ1, y1, z1, ξ2, y2, z2, . . . , ξn, yn, zn]T,

where ξi = xi − x1. (In particular, ξ1 = 0; this
convention preserves the indexing and permits a more general
measurement matrix.) We can write Y = MX for a certain
(3n) × (3n) matrix M , which we shall not take the space to
write here. The evolution equations for yi and zi are the same
as before. The ξi evolve according to the equation

�δξi(t) = δ[yi(t − δ) − y1(t − δ)]

+ 1
2δ2[zi(t − δ) − z1(t − δ)] + wxi(t) − wx1(t).

The measurements are just the state components ξ2, . . . , ξn.
Thus, the new state vector Y (t) can be estimated by a Kalman
filter.

This model differs from the master clock relativization
model discussed by Brown [3] in that the state vector contains
the individual yi and zi , not their offsets from y1 and z1.

By definition, we shall say that the X estimate (X̂, P )

maps to the Y estimate (Ŷ , PY ) provided that

Ŷ = MX̂, PY = MPMT. (14)

The first equation merely says that Ŷ has the same frequency
and drift components as X̂, and its ξ components are the phase
differences of X̂.

In the following theorem, we allow measurement noise,
the same for both models.

Theorem 1. The mapping of (X̂, P ) to (Ŷ , PY ) is preserved
by corresponding Kalman temporal or measurement updates
on the two models.

Proof. The Y model and its measurements can be expressed
in vector–matrix form,

Y (t) = �Y Y(t − δ) + WY , ξ(t) = HY Y(t) + V,

where WY = MW , covWY = QY = MQMT, and the
(n − 1) × (3n) measurement matrix HY has a single 1 in each
row. We allow the measurement noise V to have a covariance
matrix R. The reader is invited to write down M , �Y , and HY ,
and to verify the identities

�Y M = M�, HY M = H. (15)

Let (X̂, P ) map to (Ŷ , PY ). Corresponding Kalman
temporal updates of the two models are given by

X̃ = �X̂, Ỹ = �Y Ŷ ,

P̃ = �P�T + Q, P̃Y = �Y PY �T
Y + QY .

Using (14) and the first identity in (15), we find easily that

Ỹ = MX̃, P̃Y = MP̃MT. (16)

For the measurement updates, first consider the Kalman
gain ‘denominators’

D = HP̃H T + R, DY = HY P̃Y H T
Y + R.

From (16) and the second identity in (15), we find thatDY = D.
It can be shown that D is positive definite as long as no more
than one clock is noiseless, even if R = 0.

Let ξ be the measurement vector for both models. The
measurement updates of the two models to new state estimates
and covariances are given by the following equations:

K = P̃H TD−1, KY = P̃Y H T
Y D−1,

X̂ = X̃ + K(ξ − HX̃), Ŷ = Ỹ + KY (ξ − HY Ỹ ),

P = P̃ − KDKT, PY = P̃Y − KY DKT
Y .

Again from (16) and (15), we find that KY = MK , Ŷ = MX̂,
PY = MPMT.

By definition, two X estimates (X̂, P ) and (X̂′, P ′) that
map to the same Y estimate are said to be consistent. In
particular, they have the same phase differences, frequency
states, and drift states. As a corollary of theorem 1, consistent
X estimates remain consistent if the same sequence of Kalman
temporal and measurement updates is applied to them, for they
both map to an underlying sequence of Y estimates. The case
we want to consider is when (X̂(t), P (t)) is the result of a
noiseless measurement update. Let P ′(t) be the x-reduced
version of P(t). Because the x rows and x columns of P(t)

are equal, we find that

P ′(t) = MP ′(t)MT = MP(t)MT.

Therefore, (X̂(t), P (t)) and (X̂(t), P ′(t)) are consistent.
Because consistency is an equivalence relation, it follows
that x-reduction of the covariance matrix at date t and any
subsequent dates never affects the future frequency and drift
state estimates.

4.2. Reduced Kalman scale

X-reduction does affect the phase estimates, however. Just
to check it out, the author tried it in a simulation, performing
the x-reduction at each date. To the author’s surprise, the
Kalman scale defined by (10) no longer resembled the Kraw
scale; it became as stable as the KPW scale. This procedure
produces a new timescale, which we call the reduced Kalman
scale, or Kred. To repeat, one simply carries out the Kalman
filter, performing the x-reduction after each measurement
update, and uses the common phase error (10) as the timescale
Kred(t). Figure 1 shows the measured instability of Kred
for our simulation example. In this view, Kred is hardly
distinguishable from KPW; in fact, most of the Kred deviations
are 1%–3% below the KPW deviations.

In the next two sections, we investigate what is behind this
surprising empirical result.
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4.3. The implicit weights

Weiss et al [4] showed that the Kraw scale is actually a
weighted-average scale, with weights determined implicitly
by the Kalman gain matrix. This is also true for the Kred
scale, but the latter scale has different Kalman gains. Let us
see how this works. The first (x1) component of the Kalman
measurement update equation can be written as

x̂1(t) = x̃1(t) +
n∑

i=2

K1i (t)[xi(t) − x1(t) − x̃i (t) + x̃1(t)],

(17)

where K1i (t) is the first row of the Kalman gain matrix, whose
columns are indexed by the measurements xi1(t) for i = 2
to n. The x̃i (t) are the predicted phase estimates produced by
the temporal update,

x̃i (t) = x̂i (t − δ) + δŷi(t − δ) + 1
2δ2ẑi (t − δ). (18)

The implicit weights are defined by

λ1(t) = 1+
n∑

i=2

K1i (t), λi(t) = −K1i (t) for i = 2 ton.

(19)
These weights add to 1, and (17) can be rewritten as

x̂1(t) = x1(t) +
n∑

i=1

λi(t)[x̃i (t) − xi(t)]. (20)

Finally, in (20) and (18) we may set

x̂1(t) = x1(t)−xe(t), x̂i(t − δ) = xi(t − δ)−xe(t − δ),

where xe(t) is the Kalman scale defined by (10). When we do
so, we find that (20) becomes the BTSE (11).

For our simulation example, it is interesting to show the
explicit KPW weights, inversely proportional to ri from (13),
and the implicit weights of the Kraw and Kred scales, obtained
by (19) from the Kalman gains at the end of the simulation:

λodd λeven

Kraw −0.0937 0.3437
KPW 0.2474 0.0026
Kred 0.2330 0.0170

The weights for the Kraw scale are inappropriate, to say the
least; it even assigns negative weights to the odd-numbered
clocks. The weights for the Kred scale are slightly less
unbalanced than the KPW weights. Other simulations gave
similar results. These observations led to the conjecture that
the Kred weights are optimal in some sense. The next section
shows that these weights indeed satisfy a precise optimality
condition.

4.4. Optimality of the Kred scale

Returning to the expression (12) for the increment of a
Kalman-based weighted-average timescale, we write it in
the form

�δxe(t) =
n∑

i=1

λi(t)Ni(t). (21)

Let 	 be the covariance matrix of the random variables Ni(t).
As an aid to expressing it, write p(yi, yj ), p(zi, zj ), p(yi, zj ),
p(zi, yj ) for the corresponding entries of the error covariance
matrix P(t − δ) coming from the Kalman filter. The process–
noises wxi(t), because they depend only on the underlying
white noises between t − δ and t , are independent of the other
random variables making up Ni(t). Therefore,

	ij = p(yi, yj )δ
2 + [p(yi, zj ) + p(zi, yj )]

δ3

2

+ p(zi, zj )
δ4

4
+ riδij , (22)

where ri is given by (13) and δij is the Kronecker delta. This
matrix is positive definite if all the ri are positive, that is, if
each clock has some noise.

Instead of just making the λi(t) inversely proportional
to ri , as we do for the KPW scale, it is reasonable to choose
them to minimize the variance of the scale increment �δxe(t).
Letting λ be the row vector of the λi(t), we want to minimize
var�δxe(t) = λ	λT, given that

∑
λi = 1. By using a

Lagrange multiplier, or otherwise, we find that the optimal λ is
such that the vector λ	 has entries that are all equal. Defining
the (n − 1) × n matrix

A =




−1 1 0 · · · 0
−1 0 1 · · · 0

· · · . . .

−1 0 0 · · · 1


 ,

we may assert that the optimal λ is the unique vector that
satisfies

λ	AT = 0,
∑

λi = 1. (23)

With this preparation, we can state and prove our main
result, which goes a long way towards explaining the good
short-term stability of the Kred scale.

Theorem 2. Among all weighted-average timescales based on
the Kalman frequency and drift state estimates, the Kred scale
has the implicit weights that minimize the variance of the scale
increment.

This means that we do not have to solve (23) to obtain
the optimal weights; they are delivered automatically by the
x-reduced Kalman filter.

Proof. Define the auxiliary matrices

e1 = [1 0 · · · 0] (1 × n),

B =




1 0 0
1 0 0

. . .

1 0 0


 (n × (3n)).

Then H = AB. Let K1 be the first row of the Kalman gain K .
Let P̃ = P̃ (t), the error covariance matrix after the temporal
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update from t − δ to t , and denote its first row by P̃1. The
Kalman gain satisfies the equation

KHP̃H T = P̃H T.

Therefore,
K1ABP̃BTAT = P̃1B

TAT.

By the definition (19) of the implicit weights λ,

K1A = [1 − λ1, −λ2, . . . , −λn] = e1 − λ.

Also, P̃1 = e1BP̃ . Therefore,

(e1 − λ)BP̃BTAT = e1BP̃BTAT,

λBP̃BTAT = 0.

We already know that
∑

λi = 1. According to (23), we shall
be done if we can prove that

BP̃BT = 	. (24)

From the temporal update equation for the covariance,
we have

P̃ = �P(t − δ)�T + Q,

BP̃BT = B�P(t − δ)�TBT + BQBT.

Now

B� =




1 δ
δ2

2

1 δ
δ2

2
. . .

1 δ
δ2

2




.

Because P(t − δ) is x-reduced, it is composed of the 3 × 3
submatrices

Pij =

0 0 0

0 p(yi, yj ) p(yi, zj )

0 p(zi, yj ) p(zi, zj )


 .

The (xi, xj ) element of Q is riδij . Thus, the (i, j) element of
BP̃BT is just

[
1 δ

δ2

2

]
Pij

[
1 δ

δ2

2

]T

+ (BQBT)ij = 	ij

from (22). This establishes (24), and the proof is
complete.

5. Final remarks

We have discussed the properties of three timescales based on
the Jones–Tryon Kalman filter. All three scales are actually
weighted-average scales; they use the same Kalman frequency
and drift state estimates, but have different weights. The Kraw
scale, which was used for TA(NIST), is just the common phase

error of the unmodified Kalman filter. The KPW scale ignores
the Kalman phase estimates entirely and uses the frequency
and drift state estimates explicitly in the BTSE, with weights
determined by an auxiliary formula. We have seen, though,
that the KPW scale can be regarded as an approximation to the
Kred scale, in which we reach inside the Kalman filter to reduce
the covariance matrix at each step, then use the phase estimates
in the same way that they are used for the Kraw scale. The
implicit weights of the resulting scale are optimal in a sense
just described. Both the KPW and Kred scales perform well
over the whole range of averaging times. The slight advantage
of the Kraw scale in a range of long averaging times is not a
good trade-off for its short-term instability.

This study has been carried out in a simulation playpen in
which all clocks behave according to their assumed models.
A practical timescale must deal with outliers, jumps, and
ensemble changes, and it ought to provide for adaptive
estimation of the qs. One might also want to add white PM and
measurement noise to the model. Management of a Kalman-
based timescale presents practical difficulties, especially the
problem of inserting a new clock into the ensemble without
causing a phase or frequency step in the scale. Perhaps the
simplicity and excellent stability of the Kred scale, under ideal
conditions to be sure, will motivate an effort to overcome these
difficulties.
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