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Abstract
International atomic time (TAI) is an ensemble timescale based on a
weighted average of clocks. The basic properties of the algorithm have been
fixed since its inception: that is, the weight of a clock is inversely
proportional to a variance measuring the instability of the clock, and it
cannot exceed a maximum value. On the other hand, the procedure used to
set the maximum weight has been subject to several changes over the years.
While the most stable timescale would ideally be computed without an
upper limit of weights, such an upper limit is introduced to bring reliability.
Up to now, however, there has been no adopted measure of the reliability.
In this paper, a quantitative estimator of the reliability is proposed, which
therefore helps in choosing a weighting scheme. Different procedures for
setting the maximum weight are examined in light of the application of the
reliability criterion defined here. Tests using simulated and real data are
presented. A weighting scheme to be used for TAI computation is proposed
in which the reliability estimator is optimized.

1. Introduction

The weighting scheme for the algorithm used in the
computation of international atomic time (TAI) [1] has been
the subject of several studies over the past years. In 1996, a
first study [2] resulted in the adoption of a scheme in which
the maximum relative weight was fixed to a given value (0.7%)
with a reminder that this value should be reconsidered in view
of the evolution of the clock ensemble. A recent study for
the working group on TAI of the Consultative Committee for
Time and Frequency (CCTF) [3] outlined the need to increase
the maximum relative weight attributed to a clock in the TAI
computation because it is observed that a very large fraction
of the clocks reach the maximum weight so that there is no
discrimination between the very stable clocks and those that
are only fairly stable. It was proposed to express the maximum
relative weight as a fraction A/N where N is the total number
of clocks. Such a procedure was effectively recommended
by the working group on TAI and it was implemented, with
A = 2, from January 2001.

While the conclusions of these studies seem to be quite
reasonable and have been adopted by the members of the
working group on TAI, it appears that they are based on
intuition rather than on quantitative estimates. Indeed, while

the most stable timescale would ideally be obtained without
using an upper limit of weights, such an upper limit is
introduced to bring reliability, but no quantitative measurement
of the reliability has been proposed so far. One of the goals
of this paper is to introduce such a measurement. First, in
section 2, we recall the basics of the algorithm used for the
computation of TAI. We then introduce in section 3 estimators
to quantify the stability and the reliability of a timescale
produced by such an algorithm. In section 4, after recalling
different procedures that may be used to set a maximum weight
for a clock, we present the results of tests carried out with
simulated data or with the data-set of the TAI clock ensemble.
We conclude in section 5 by suggesting a weighting scheme
that aims to optimize the proposed estimators of reliability and
stability.

2. The stability algorithm of TAI

In the computation of TAI, an ensemble timescale EAL is first
computed with the algorithm ALGOS [4]. The next step,
in which TAI is computed by steering the EAL frequency
to primary frequency standards, is not considered here (see
e.g. [5]). In the following we often explicitly consider the case
of ALGOS and EAL, but more general statements could be
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made for similar algorithms, with obvious changes. The basic
principles of such an algorithm are the following:

(a) The computation is carried out for a given computation
interval (one month in ALGOS), considering all clocks
that have data for the whole computation interval. The
effect of entering and exiting clocks on the ensemble scale
is handled by a time continuity condition and a frequency
prediction [1].

(b) The weight of a clock is inversely proportional to a
variance computed with the rates of the clock with respect
to the ensemble scale over a number of computation
intervals. The relative frequency instability of the clock
is measured by the square root of the variance (standard
deviation). In ALGOS the classical variance is used and it
is computed over 11 past intervals plus the current interval,
that is, a total of 12 months.

(c) A given clock cannot obtain a weight larger than a
maximum value wmax. Different ways to specify a
maximum weight, including those used in ALGOS, are
described in section 4.

(d) An abnormal behaviour is said to occur for a clock if the
difference between its rate over the current interval and
its past rate is larger than a given threshold. When this
happens, the clock weight is set to zero. In ALGOS,
the abnormal behaviour condition is that the difference
between the current rate and its mean over the last
11 intervals is larger (in absolute value) than either three
times its computed standard deviation over the past 11
intervals, or three times the instability of the least stable
clock at maximum weight, whichever is larger.

One can see that, among these basic principles, item (b) is
intended to provide stability to the ensemble timescale while
items (c) and (d) are intended to provide reliability to it. In
the following section, we describe estimators to measure these
quantities.

3. Estimators for the stability and the reliability of a
TAI-type timescale

Given an ensemble timescale that has been computed with an
algorithm as described in section 2 over a continuous period
of time, we define two estimators to measure its stability
and its reliability. These estimators will then be used to
compare different weighting schemes in order to determine
‘optimal’ ones.

3.1. The stability estimator S

From the results of past computations (performed over
successive one-month intervals), one may estimate the relative
frequency instability of each clock with respect to EAL, for an
averaging duration of one month. Because EAL is more stable
than each individual clock, this provides a good estimate of the
intrinsic relative frequency instability of each clock σi , with i

taking values from 1 to N . If another timescale j is computed
with the same clock data and a different weighting scheme, in
which clock i obtains the normalized weight wij , assuming no
correlation between the clocks, we may estimate the stability
Sj of the resulting timescale by S2

j = ∑N
i=1(w

2
ij σ

2
i ). We

choose Sj as a quantitative criterion to discuss the estimated
stability of the timescale, with the smaller Sj corresponding
to the most stable timescale. Note that this procedure assumes
no correlation between each clock and the ensemble timescale.
Because we are interested in ensembles of a large number of
clocks (typically N = 200 for TAI) and because all weighting
schemes studied here imply a maximum relative weight of
the order of a few per cent at most, this approach has been
considered to be satisfactory [1]. If this was not the case, an
unbiased clock variance could be estimated [6].

3.2. The reliability estimator R

Because the reliability is realized by imposing a maximum
value on the weight of a given clock and by implementing
a detection of ‘abnormal behaviour’ (see section 2), it is
possible to quantify the reliability by estimating the maximum
frequency change Rj that may be caused to the timescale j

by one clock suffering a frequency step. This corresponds
to the effect of one clock at maximum weight suffering a
frequency step whose absolute value is just below the limit
that would correspond to abnormal behaviour, that is, in our
case three times the instability of the least stable clock at
maximum weight, denoted here byσj . Therefore, Rj = 3×σj .
We choose this estimator to quantify the reliability of the
timescale, with the smaller Rj corresponding to the most
reliable timescale. It may be proved (see appendix) that Rj

is minimal when a simple condition on the maximum weight
is verified: this is when the combined weight of the clocks
at maximum weight is the half of the total weight, that is
(using normalized weights), if Nm clocks have the maximum
relative weight wmax, the condition is Nm × wmax = 0.5. In
the following section we verify this property for all test cases.

4. Tests of different weighting schemes and different
clock ensembles

4.1. Some possible weighting schemes

As outlined in section 2, the general weighting scheme is that
the weight w of a clock is inversely proportional to a variance
V . Here, we consider normalized weights (the sum of the
weights is 1). Several approaches have been (or may be)
proposed to set the maximum weight attributable to a clock.
We first mention a method that uses a threshold for the clock
variance. If V for a clock is smaller than a given threshold
Vmin, just replace V by Vmin for the computation of the weight.
This procedure was used in TAI computation until 1997 (with
Vmin = 5.4 × 10−28 from May 1995 to 1997). Though simple,
this procedure is only applicable when one knows the overall
instability distribution of the clocks and the threshold should
be updated whenever necessary—it is presented here only for
completeness. All other procedures described below (P1 to
P5) aim at defining a maximum relative weight, wmax, more or
less independently of the typical value of the instability of the
clocks. They require iterations to obtain the final distribution of
weights: at each iteration step, all weights w larger than wmax

are replaced by wmax and the set of values is re-normalized.
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The five procedures differ in the way wmax is chosen:

(P1) Set wmax as a given numerical value. This procedure was
used in TAI computation between 1998 and 2000 (with
wmax = 0.7%).

(P2) Set wmax = A/N where A is a constant and N is
the number of clocks considered for weighting. This
procedure has been used in TAI computation since
January 2001 (with A = 2).

(P3) Set wmax as the smallest value for which the number of
clocks reaching maximum weight, Nm, is larger than a
certain threshold.

(P4) Set wmax as the smallest value for which the percentage
of clocks reaching maximum weight, Pm, is larger than a
certain threshold.

(P5) Set wmax as the smallest value for which the combined
weight of clocks reaching maximum weight, Wm, is larger
than a certain threshold.

We can make some general remarks on the procedures
above, which help us in interpreting the results of the tests
reported in the following sub-sections.

1. Procedures (P1) and (P3) obviously require updates to
reflect changes in the number of clocks, while the others do
not suffer this drawback. However, all procedures may require
an update if the stability distribution of the ensemble of clocks
changes. Note that, for a given number of clocks, procedures
(P1) and (P2) on the one hand, and (P3) and (P4) on the other
hand, can be considered equivalent; that is, there is a trivial
relation between them.

2. Note also that, for a given type of stability distribution,
the procedures (P2) and (P4) can also be considered to be
equivalent, that is, there exists some monotonic (decreasing)
function of wmax representing Pm.

3. Procedure (P5) is obviously particularly adapted to
the use of the reliability estimator R. However, it does not
seem advisable to use (P5) alone because it does not provide
a constraint on the number of clocks that actually receive
the maximum weight, so that this number may, in principle,
become very small, which is not satisfactory for reliability.
This appears to be a second criterion for reliability, linked to
the effect on the ensemble scale of the loss of one clock at
maximum weight. This criterion deserves more study but this
is beyond the scope of this paper. Instead, we shall empirically
introduce a minimum percentage of clocks at maximum weight
(see section 5). Because this cannot be directly introduced for
(P5), it is not considered in the tests below.

4.2. Tests on simulated data

Several hundreds of random normal distributions were
generated to simulate the logarithms of the instabilities of
ensembles of clocks. As mentioned above, because we
generate homogeneous series of distributions of a given
number of clocks, there exists a direct relationship between the
results of all the procedures above, so it is not necessary to test
each of them. It is sufficient to test only a number of values of
the maximum relative weight, that is, in effect to test procedure
(P1). The estimators for stability and reliability are computed
and examples are presented in figures 1 and 2 for two series
of distributions of instability whose logarithm has the same

Figure 1. Stability estimator S as a function of the maximum
weight for two normal distributions of clock instabilities
(case S: ——, case L: - - - -, see text).

Figure 2. Reliability estimator R as a function of the maximum
weight for two normal distributions of clock instabilities
(case S: ——, case L: - - - -, see text).

average (−14.0). For one series (called case S) the standard
deviation of the logarithm is small (0.2), that is, all clocks
have a similar instability, and for the other one (called case L)
the standard deviation is larger (0.33), that is, some clocks are
markedly better or worse than average. Comparing cases S
and L, the main observations are the following:

(a) the value wmax corresponding to optimal reliability is
smaller in case S than in case L;

(b) for this particular choice of wmax, the relative loss of
stability (as measured by S) with respect to the case of
free weights (i.e. the limit for large values of wmax) is
smaller in case S than in case L;

(c) on the other hand, for this particular choice of wmax, the
relative gain in reliability (as measured by R) with respect
to the case of free weights is larger in case S than in case L.

We conclude that, for ensembles of ideal clocks, using
the reliability criterion is specially important when the
clocks have a similar instability (case S), because unduly
increasing the maximum weight then yields a significantly
larger sensitivity to undetected frequency steps but a rather
small gain in theoretical stability. This may be important for
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TAI, because it is presently mostly based on an ensemble of
clocks of the same model (see next section).

In addition, the reliability estimator is indeed minimal
when the combined weight of clocks at maximum weight is
half of the total weight (figure 3).

4.3. Tests on the TAI clock ensemble

We have at our disposal the set of clock rates with respect to
EAL resulting from the regular TAI computation (available
at ftp://62.161.69.5/pub/tai/publication). First, we note (see
figure 4) that the observed distribution function of instability of
the TAI clocks (average over 1999–2001) is close to a normal
distribution with some significant tail in the large instability
end (this is not very disturbing because these clocks will receive
infinitesimal weight). We use this set of clock instabilities
to compute the weight distribution that would be obtained
for each interval of one month using the ALGOS algorithm
with different procedures for setting the maximum relative
weight. For each computation, we obtain a set of weights
wij from which we estimate Sj and Rj . At the same time we
obtain the subset of clocks that reach the maximum weight,
characterized by its numberNm or by the fractionPm of the total

Figure 3. Reliability estimator R as a function of the combined
weight of clocks at maximum weight for two normal distributions of
clock instabilities (case S: ——, case L: - - - -, see text).

Figure 4. Average distribution of the 30-day relative frequency
instability with respect to EAL for the TAI clocks over 1999–2001.

number of clocks. Such a computation has been performed for
36 months (January 1999 to December 2001), for a number of
values of the maximum relative weight. Results are presented
for the 36 months for three values of the maximum weight
(wmax = 1.5/N , 2.5/N or 4/N ) following procedure (P2),
along with the results corresponding to the actual computation
of TAI.

Figure 5 shows the stability estimator Sj for the resulting
timescale and figure 6 shows the reliability estimator Rj . In
addition the combined weight of the clocks at maximum weight
is shown in figure 7. The main conclusions are the following:

(a) The stability of the timescale continuously improves
(figure 5) as the maximum relative weight increases, with
fewer clocks reaching the maximum weight. This is, of
course, expected. We note that the gain from wmax =
2.5/N to wmax = 4/N is marginal (<10%).

(b) Comparing figures 6 and 7, we see that the reliability
estimator is indeed minimal when the combined weight
of clocks at maximum weight is half of the total weight
(which is about the situation for wmax = 2.5/N ).

Figure 5. Stability estimator S for the ensemble scale computed
with TAI clocks over 1999–2001 with a maximum weight of 1.5/N
(——), 2.5/N (– – –), 4/N (· · · · · ·) and for the real TAI (- - - -,
note that some points are outside the plot).

Figure 6. Reliability estimator R for the ensemble scale computed
with TAI clocks over 1999–2001 with a maximum weight of 1.5/N
(——), 2.5/N (– – –), 4/N (· · · · · ·) and for the real TAI (- - - -,
note that some points are outside the plot).
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Figure 7. Combined weight of clocks at maximum weight for the
ensemble scale computed with TAI clocks over 1999–2001 with a
maximum weight of 1.5/N (——), 2.5/N (– – –), 4/N (· · · · · ·) and
for the real TAI (- - - -).

(c) The actual situation (line with short dashes in figures 5
and 6) was far from optimal in 1999/2000, both in stability
and in reliability. This was corrected by the change of the
weighting scheme in 2001 but the optimal reliability is
only reached around the very end of the period (figure 7),
therefore leaving room to improve the stability without
much loss in reliability.

(d) It is to be noted (figures 5 and 6) that the general situation is
slightly worse between October 1999 and May 2000. This
is possibly due, at least in part, to the smaller number of
clocks available in that period (170 on average) compared
to a general average of 181 over the three years. Also the
situation improves starting August 2001, a period where
the average number of clocks is 193. This indicates that,
as obviously expected, it is no less important to try to
improve the number and quality of the clocks than to
use the proper algorithm. Nevertheless both actions are
required for optimal results.

5. Conclusions: an optimal weighting scheme

We recall that procedure (P5), which could be particularly
adapted to the strict application of minimizing the reliability
estimator, is not advisable because, although it sets the
combined weight of clocks at maximum weight, there is no
provision on the number Nm of clocks that actually receive the
maximum weight, so that, conceivably, only one clock could
receive it. There is a very low probability that Nm becomes
very small with the ensemble of more than 200 clocks for TAI,
but we consider that it is not advisable to allow this situation
to happen. We therefore promote a weighting scheme that is
based both on ensuring that a very minimum percentage of
the clocks reach the maximum weight and ensuring that the
combined weight of clocks at maximum weight is close to,
but slightly smaller than, half the total weight. This ensures
near optimal reliability (because R is nearly minimized) and
slightly better stability (because S is smaller than if we strictly
fulfil the reliability criterion). It is practical to demand

(a) that a minimum of, for example, 5% to 7% of the clocks
be at maximum weight, and

(b) that the combined weight of clocks at maximum weight
be at least 40% of the total weight.

These conditions are readily applicable now (2002) with
the ensemble of clocks presently used for TAI. If it happens
in the future that these two conditions cannot be fulfilled at
the same time (i.e. that assigning the maximum weight to the
7% most stable clocks would provide more than 50% of the
total weight), it would mean that a small number of very stable
clocks have appeared. Then, the whole design of the TAI
computation would need to be reconsidered.
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Appendix. Minimization of the reliability estimator

Let n(x) be the distribution function of instability x of the
clocks, and let xt be a given value of instability.

We denote by N(xt ) the number of clocks whose
instability is smaller than xt , so that N(xt ) = ∫ xt

0 n(x) dx.
We denote by V (xt ) the sum of the free weights of the

clocks whose instability is larger than xt , so that V (xt ) =∫ ∞
xt

(n(x)/x2) dx. The sum of all free weights is V0.
Let p(xt ) be the maximum normalized weight when xt is

the instability threshold (i.e. all clocks with instability lower
than xt take the maximum weight). The normalization factor
K(xt ) is such that p(xt ) = K(xt )/x

2
t and the sum of all free

weights is

K(xt )

(
N(xt )

x2
t

+ V (xt )

)
= V0 (1)

which implies by differentiation with respect to xt

K ′(xt )

K(xt )
+

N ′(xt )/x
2
t − 2N(xt )/x

3
t + V ′(xt )

N(xt )/x
2
t + V (xt )

= 0 (2)

or, because N ′(xt ) = n(xt ) and V ′(xt ) = −n(xt )/x
2
t ,

K ′(xt )

K(xt )
− 2N(xt )

x3
t × (N(xt )/x

2
t + V (xt ))

= 0 (3)

The reliability estimator defined in section 3.2 is R =
3 × K(xt )/xt and it is minimum (R′ = 0) when K ′(xt ) =
K(xt )/xt , that is, by (3) when N(xt )/x

2
t = V (xt ) or

K(xt )N(xt )/x
2
t = V0/2, that is, the combined weight of the

clocks at maximum weight is half of the total weight.
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