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Abstract. An evaluation is made of an iterative method for determining the amplitude 
and phase from the image intensity recorded in optical systems. The method, which 
requires two images recorded at different lens defocus values, is tested with simulated 
data subject to error arising from the photographic recording of the image. In the case 
of error-free data, the solution for the phase distribution appears to be indeterminate to 
within a constant. The results for photographic noise levels of up to 20% of the maxi- 
mum image intensity reflect the small effect of error on the calculated phase distribution. 
The calculation of phase distributions for both symmetric and asymmetric amplitude- 
phase distributions shows that the use of two images, taken at defocus values differing 
by about 100 nm in electron optics and about 1 mm in optics (depending on the numeri- 
cal aperture of the objective lens), may be used to determine the complex object wave- 
function in both dark-field and bright-field optics. 

1. Introduction 

In both optics and electron optics the image intensityJl(ri) is measured as a function of 
image coordinates ri, and an attempt is made to infer from this intensity distribution the 
structure of the object (specimen) through its light or electron scattering properties. 
The transmission function of the specimen is a complex function $ o ( ~ o )  = €(YO) + iq(ro), 
for object coordinates ro, reflecting the wave nature of the interaction between the inci- 
dent radiation and the specimen ; in electron optics this interaction occurs through the 
potential distribution in the object and $0 should reflect the atomic positions. In electron 
optics there is the particular problem of inelastic electron scattering which contributes to 
the final image as a relatively unstructured background (Misell 1973a). In optics a lens 
system modifies $o(ro) to #l(ri) causing substantial distortions to $0 as a result of lens 
defects, such as spherical aberration, axial astigmatism and defocus of the objective lens. 
There is also the problem resulting from the removal from the image of the higher spatial 
frequencies of the object caused by using an aperture in the back focal plane of the objec- 
tive lens in an attempt to reduce the lens aberration effects in the image plane. For 
coherent illumination of the specimen, we can write the linear relation between $0 and 
$1 (for unit magnification and using the isoplanatic approximation-Born and Wolf 
1959) as 

( 1 )  
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neglecting the contribution of inelastic electron scattering. Gl(r)  is the resolution func- 
tion of the lens system, including the effects of lens apertures. 

If $1 could be measured then the inversion of equation (1) to give $0 would be a 
well-defined problem-image deconvolution. However, as only jl(rz) = 1 $l(ri)12 can be 
measured, the equation to be solved for $o(ro) is nonlinear; that is, 

The solution of equation (2) for $0, where only the modulus of the complex function of 
equation (1) is determined, is a problem as yet to be satisfactorily solved in optics or 
electron optics; even the problem of the uniqueness of the solution of equation (2) has 
not yet been evaluated. In bright-field electron microscopy, allowing the unscattered 
component of the transmitted electron beam to contribute to the image, an approximate 
linear relation between j l  (vi) and $O(YO) can be developed (eg Hoppe 1970, 1971, 
Erickson and Klug 1971, Lenz 1971, Thon 1971, Frank 1972, Hoenders 1972). Writing 
$O(YO) 2: 1 + ~ ( v o )  + i ~  (YO), where E and 7 are much less than unity (weak phase/weak 
amplitude object) gives 

with 
j l(ri)  = 1 + 2 Re [$ (vi)] + Re2 [$ (vz)l +Im2 [$ (rill 

Re [$ (vz)l= 1 rl(ro) q ' (vi - ro) dro + 1 + O ) q  (rt - V O )  dro 

(3) 

and the last two squared terms in equation (3) are neglected in comparison with the 
second term. -4 '  (Y) andq(r) are respectively the imaginary and real parts of the resolution 
function G(r).  Thus equation (3) gives a linear relationship between jl(r6) and € ( P O ) ,  

 PO), the two unknown parameters characterizing the object wavefunction, and at least 
two electron micrographs, taken at different defocus values (thus varying G(r) and j ( r ) )  
are required to determine both E and 17 (Erickson and Klug 1971, Frank 1972); in this 
linear approximation the contribution of inelastic electron scattering to the image 
intensity is neglected. The linear approximation is valid only in bright-field microscopy, 
where the interaction terms E ,  7 in the equation for $0 are small compared with unity 
(representing the unscattered amplitude), as it is explicitly assumed that 7 ,  representing 
the electron phase shift on transmission through the specimen, is less than unity (-0.1). 
The validity of this approximation for heavily stained materials is doubtful (Grinton and 
Cowley 1971). Similar approximations may be made in optics, particularly in phase 
contrast optical microscopy. In dark-field microscopy $O(YO) = €(YO) + iT(r0) and the 
second-order terms are the sole contribution to jl(r6). Thus dark-field microscopy is 
avoided because of the difficulties of image analysis and, in electron microscopy, dark- 
field optics is avoided because of the radiation damage in the specimen caused by the 
increased photographic recording times compared with bright-field optics. However, 
dark-field microscopy achieves a clear advantage over the bright-field configuration : 
namely, that all spatial frequencies of the object transmitted by the objective aperture 
are present in the image with unit weighting; in contrast, using the weak phaselweak 
amplitude approximation in bright-field optics, certain spatial frequencies are absent 
from the image because of zeros in the appropriate transfer function of the objective 
lens. One way to avoid the nonlinear relation (2) is by the use of incoherent illumina- 
tion, giving a linear relation between j l ( r i )  and I$o(ro)l2; that is, 

Equation (4) may be inverted without approximation to give information on 
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I $ O ( V O ) ~ ~  only; that is, the magnitude of ~2+7j2. Evidently for a phase object $o(ro)1: 
exp (iT(ro)), 1 $o(ro)12 cr: 1 and the image gives no useful information on $o(ro). The 
assumption of incoherent illumination for the evaluation of I$o(ro)l2 was made by 
Stroke and Halioua (1972) for an image taken in the scanning transmission electron 
microscope; however, electron-optical instruments usually use partially coherent illu- 
mination, and the validity of equation (4) in image analysis is doubtful. The important 
question then arises whether, in optics, information on the amplitude [ $01 is sufficient 
to define the structure of a specimen. In optics this question has a definite answer: 
the amplitude j$ol  carries very little information on the specimen structure-the informa- 
tion is restricted to its absorption properties but excludes its phase shifting properties 
(O’Neill and Walther 1963, PeFina 1963, Walther 1963). In coherence theory the informa- 
tion on l $ ~ [  which is available is of little value in the determination of the complex 
degree of coherence (eg Wolf 1962, Mehta et a1 1966, Nussenzveig 1966, Pefina 1972). 
In optics, using coherent illumination of the object, the paper by Kermisch (1970) 
shows clearly that the amplitude information can be discarded and the phase information 
alone used to  reconstruct the object-the reverse is not true; a simple example is an 
object where the transmitted amplitude is unity but the phase shifts, due to optical path 
differences, are nonzero. Since most of the electron-optical theory has been derived 
from optics, there seems to be a strong case for attempting a determination of $0 rather 
than [ $ 0 1 .  The fundamental problem of relating $0 to the object structure, even neglecting 
radiation damage, in electron microscopy is not easy to  solve; only for a weak interaction 
of the incident beam with the specimen can $o(ro) be directly related to the object poten- 
tial distribution V(r0) (eg Grinton and Cowley 1971)-in this case there is a strong case 
for using bright-field optics and the associated linear equation (3). In the practical case 
of a specimen stained with heavy metal, plural interactions invalidate any simple relation 
between $O(YO) and V(r0). 

The purpose of this paper is to examine an iterative method for the retrieving from 
jI(r6) information on the complex form of the object wavefunction $O(YO) under the general 
conditions that neither € ( P O )  nor ~ ( r o )  need be small, and assuming coherent illumination 
of the specimen. The method, which has been outlined (Misell 1973b), requires at least 
two images taken at  different defocus values of the objective lens; the difference in 
defocus between two images Af may be measured in both optics and electron optics. 
In this paper an examination is made for test distributions of the viability of the method 
for iteration between the two image amplitudes [ $ ~ ( r i ) [  and /$2(rt)j, both images of the 
same object $o(ro). In $3 we examine image profiles where the object wavefunction 
$O(YO) = 1 $o(ro)[ exp [iCo(ro)] is represented by gaussian profiles of varying structure, for 
both the amplitude I $ o [  and phase angle $0.  We also investigate the effect of asymmetry 
on the validity of the solutions for the phase distribution. Photographic noise is super- 
imposed on the two image intensity distributions j ~ ( r t )  and j&t) to simulate the experi- 
mental situation. The iterative method presented in this paper is shown to work in 
both dark-field and bright-field optics, the latter situation having already been considered 
extensively in the literature. In $2 we examine the nonlinear equation that relates 
/$l(rt)l to l$z(ri)l, the two image amplitudes, and the phase distribution +1(ri) of one 
of the images; the non-uniqueness of the solution for &(rz) is discussed. 

The present method to determine the phase distribution from two image amplitudes 
using different focal planes for the image recording is closely related to the method of 
Gerchberg and Saxton (1972), which uses the diffraction plane and image plane informa- 
tion as a basis for an iterative scheme. This method has been applied by Gerchberg 
(1972) to the bright-field image of stained catalase crystals, where the phase distribution 
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appears not to depend too critically on the image contrast, which may be taken to be 
zero; that is,jl(rt)= constant. The present method, in contrast to that given by Gerchberg 
and Saxton, uses the contrast differences between two images to obtain a solution for the 
phase distribution. The method given by Gerchberg and Saxton, in common with the 
present method, has not yet examined the uniqueness problem in detail. In optics the 
non-uniqueness of various methods for the solution of the phase problem has been 
detailed (eg Wolf 1962, O’Neill and Walther 1963, Roman and Marathay 1963, Walther 
1963, Nussenzveig 1967, Pefna 1972). 

2. Mathematical basis of the method 

The basic idea of the iterative scheme is to use the objective lens as a nonlinear phase 
shifting device, to create two images of the same object by a defocus change. The two 
image wavefunctions $1(rt) and $2(r$), corresponding to defocus values Af1 and A b ,  
may be related to the integral equation (Misell 1973b) 

$ ~ ( r ) = /  $I@’) G(r-r ’ )  dr’ ( 5 )  

where G(r)  is the Fourier transform of the objective lens transfer function, T(v), for a 
defocus difference Af = A f2 - Afi ; that is, 

G(r)  = q ( r )  -iq’(r) =P-l [exp (-iK0Afv2Ao2/2) B(v)] .  (6) 

KO = 2n-/Ao for radiation of wavelength ho; Y is the spatial frequency transmitted by the 
aperture function B(v). Since the lens aberration terms-eg spherical aberration and 
axial astigmatism-are common to both $1 and $2, only the difference term involving 
A f is required to give a relation between $1 and $2. Equation (5) gives a unique $2 from 
a given $1, a different A f  giving a different $2. The spatial frequency Y is related to a 
spacing r in the object by v r z  1 ; and the maximum value of Y, vma);, giving a minimum 
spacing rminiT. l/vmax, is related to the semi-angle of the objective aperture 01 by vAo=a. 
In electron microscopy a typical value for Yma); is 4 nm-1 (01=0.015 rad) for 100 keV 
incident electrons (XO= 3.7 pm) giving rmin~0.25 nm, and in optics with XO= 500 nm, 
v m a x z  100 mm-1 (01 20.05 rad) giving rmin N 10 pm. 

The iterative scheme uses the two image intensities jl(r) and j z ( r )  using equation (5) 
as the basis for iteration (Misell 1973b). Starting withjl-+I$II, we assign a set of phase 
angles to /$I/ to give I$1 I exp (i41), which is then convoluted with G and a first approxi- 
mation to $2, $z’, is determined. The modulus of $2‘ is compared with the actual ampli- 
tude distribution 1421 (determined fromjz) and the wavefunction is reset to [ $21 exp ($2). 
A convolution of this modified $2 with the function G‘ (corresponding to the resolution 
function for a defocus difference - A f = A f1- A f2) gives a result for $1’ which may be 
compared with the actual amplitude distribution 141 I. Resetting $1’ to I$1[ exp (idl) 
the iteration is continued until a comparison of 1$1’1 with 1411 gives only a specified 
small difference. This method is used to obtain the results in $3. However, the iterative 
method is unsuited to an evaluation of the uniqueness of the phase distribution, and we 
examine below an explicit nonlinear relationship between 1$11 1$2[ and the phase angle 
$1 of the first image. A method for the solution of this nonlinear equation is indicated 
but so far a viable numerical method has not yet been determined. 
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2 .  I .  A nonlinear equation 

The image wavefunction $1(v) is written as (omitting all subscripts i) 

$l (r )  = 4 ~ )  +iv(v) = j $dv)l exp (i+l(r)) (7) 
where the phase angle +l(r) = tan-l (Tl(r)/q(v)). From equation (5 ) ,  $a@) can be written 
in terms of $1(v), equation (7),  as 

$z(v)=(I$1(r)l exp (iC1 @))*(4@)-iq’(v)) (8) 
where the * indicates the convolution of two functions, $1 and G in this case. The expres- 
sion for 1#212, the second image intensity, is 

I#z(v)l2= [(l+dr)l cos +l(~))*q(v)+(l$l(r)l sin +1(v>>*q’(r)l2 
+ [ ( \$i(v) \  sin +i(v>>*4(“)-(l#i(r>l COS +i(f‘))*4’(~)I2 
= (Fl(r) + F Z ( V ) ) ~  + ( F ~ ( Y )  -F4(r))2. (9) 

This nonlinear integral equation relates the measured distributions 1 $l(r)l and I $z(Y) I 
and the known functions q ( r ) ,  4 ‘ (r )  to the required phase angle +l(r). We can first show 
from equation (9) that not only is +l(r) indeterminate to within a factor 2nr ,  but it is 
also indeterminate to within a constant &; that is, + 1 ( ~ ) = + 1 ( v ) + + ~  is also a solution 
of equation (9). Writing +1(v) = +1(v) + +c in equation (9) gives the following result for 

I $z(r)l2 = cos2+c(F1(v) + F ~ ( V ) ) ~  + ~in~+~(F4(v)  - F~(Y) ) *  + 2 sin +c cos +,(Fl(v) + Fz(r)) 

I *2(r)l2 : 

x (F4(v) - F3(r)) + cos2 +c(F3(r) - F~(V))~ + sin2 +,(Fl(r) + Fz(u))~ 
+ 2 sin +c cos +c(F3(r) - F4(r)) (Fl(v) + F2(r)). (10) 

Equation (10) reduces exactly to the form of equation (9). This type of non-uniqueness 
for +1(v) is unimportant, since we are interested in the variation of +I about a mean or 
constant background level and the absolute level of +I is unimportant. For example, in 
the electron microscopy of a thin object, the phase angle is related to the projection of 
the object potential distribution V(v, z )  onto the (x, y )  plane: 

+O(r) 2: - const. 1: V(v, z )  dz (11) 

for specimen thickness t. Thus the variation in +o(Y) gives a direct measure of the varia- 
tion in the potential distribution across the object, and the constant background level 
of +o(r) gives information only on the absolute level of V(v) .  Thus in the present method 
for evaluating the phase distribution, we determine solutions which differ from the actual 
test values by an arbitrary constant &. However, the present work does not exclude the 
possibility of the solution for the phase being non-unique in other ways (eg Gerchb erg 
and Saxton 1972). 

2 . 2 .  A method,for the solution of the nonlinear equation 

We give here an outline of a method to linearize the integral equation (9), but a t  present 
we do not have a viable numerical method to solve the resulting linear integral equation. 
We rewrite equation (9) as 

B ( r ) =  [s f (v, v ’ )  cos [+~(v’)+p(v’)] dv’]’+ [ s f ( v ,  v ’ )  sin [+I(Y’)+~(Y’)] dr’I2 

= 4 2 ( r )  + Z22(r) (12) 
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where 
B(r)=I#z(r)12 

f ( v ,  ut)  cos P(r’)= 1$1(r’)I q ( r - r ’ )  

f ( r ,  r ’ )  sin p(r ’ )=  - I#l(r’)j q ’ ( r - r ’ ) .  
) (13) 

If $ l ( r )  is an initial approximation to the phase distribution: then an improvement to 
$ l ( r )  can be obtained by substituting $I(r)+A+l(r) in equation (12) to give a linear 
equation in A+l(r), provided the corrections to $I@), A+l(v) are first-order. Equation 
(12) becomes 

B(r)=I1*(~)-24(r)  f(r, r’)A$l(r’) sin ($l(r’)+P(r’)] dr’  

+1zz(r)+2I2(r) j f ( r ,  r’)A$l(r’> cos (+1(r’)+P(r’)] dr’. (14) 

If we write Zl ( r )=g(r )  sin y ( r )  and Iz(r)=g(r) cos y(r ) ,  equation (14) becomes 

which is a linear integral equation in A+l(r). 

3. Numerical tests of the method 

We consider the particular application of the iterative method to high-resolution electron 
microscopy with a potential image resolution 0.1-0.3 nm; the scaling of various para- 
meters to the resolution achieved in the electron microscopy of biological specimens - 1 nm and in optics will be discussed below. The model taken for #&o) is of gaussian 
form and for simplicity we assume that # ~ ( r i )  is the convolution of #O(YO) with the aper- 
ture function to give only a diffraction limited image $1; in practice $0 will be convoluted 
with a resolution function, including the effects of lens aberrations, but the results are 
more conveniently presented using this simplified model. With an objective aperture of 
oc = 0.015 rad, corresponding to vmsx = 4 nm-1 for 100 keV electrons (A0 = 3.7 pm), the 
resolution in the diffraction limited image is about 0.25 nm, and the gaussian chosen for 
I#ol has an amplitude-phase distribution of radial half-width about 0.5 nm and an 
intensity distribution of half-width about 0.3 nm. Initially we have taken the forms of 
the amplitude and phase distributions to be identical, with various composite gaussian 
profiles ($3. l), followed by examples where I #o(ro)l and $O(YO) have different gaussian 
profiles ($3.2), and finally we examine the effects of asymmetry in I # o ~  or +o on the 
solution for the phase distribution (SS3.3 and 3.4). All these examples are taken in 
dark-field optics, where there is no background contribution from the unscattered compo- 
nent of the transmitted electron beam. In $3.5 we demonstrate the validity of the present 
iterative scheme in bright-field optics, where the weak phaselweak amplitude approxima- 
tion may be valid. 

Using the gaussian forms for I #o(ro)l and +o(ro) we calculate 

#1(r) = #o(r)* (aperture function); (16) 
and, choosing a defocus difference of A f = 100 nm, we calculate the wavefunction 
#2(r) using equation (5). In theory a defocus difference as small as 10 nm could be used 
in the test calculations that follow, but when photographic noise is added to the image 
intensities, in  addition to other systematic errors (eg defocus error) the differences between 

195 
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the two images must be significant, and a defocus difference of 50-100 nm is the smallest 
practical difference for A$ The two image intensities j1(ri) andjz(r6) are calculated from 
I $l(va)l and 1 $z(ri)l respectively, choosing the maximum values of 141I to give a maximum 
optical density of almost unity, and photographic noise is superimposed on the intensity 
distributions j l  and j 2 ,  as would occur in an experimental situation. The object in the 
following test calculations is then to determine the phase angle +l(ri), which should have 
a similar form to the object phase distribution +o(ro). 

(0) 

h 

v 

h 

- 0.1 L 

Figure 1. The transfer function T(v) and the resolution function G(v) corresponding to 
a defocus value A f= 100 nm; the full curve is the real part (cos) and the broken curve 
is the imaginary part (sin) of T(v)  or G(r).  

In figure 1 we show the optical transfer function T(u) (figure I(a)-real (cosine) and 
imaginary (sine) parts) giving the resolution function G(r )  (figure l(b)) for a defocus 
Af= 100 nm. Note that since I T(v)l= 1 in dark-field optics all spatial frequencies are 
given unit weighting in the image. Because of the profile of G(r), we expect I$Z(ri)l to 
be significantly distorted from the form of l#l(rt)I, this distortion depending on how 
much structure /$I[ displays. 

3 .  I .  Amplitude andphase distributions of identical form 

Figure 2(a) shows the case of a single gaussian form for both $0 and $0 as affected by the 
aperture function to give $l(ri) = I yh(ri)[ exp (i$l(rt)) (full curves) with the maximum 
value of $1 2: T in order to give a significant phase variation across the specimen. The 
broken curve It,h1 of figure 2(a) shows the second image amplitude, which is used in the 
iteration with l$ll. The iteration scheme outlined in $2 is terminated when the sum 
squared difference between the actual value of 1$11 and the calculated estimate 1$1’1 

c (I $1(rt)I - I #l’(rt)1)2 
all points 

attains a prescribed value, say 0.001, relative to the total energy density 

c l$l(J?)l2 
all points 

in the case of error-free data. In this case the difference between /$ll and 1$1’1 is not 
significant enough to show graphically in figure 2(a). The calculated phase distribution 
$I/, which differs from $1 by a constant $c, is used to scale $1’ to match $1 (see $2.1)- 
this scaling constant $c is chosen arbitrarily only for the case of perfect data. In the 
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- I  0 I -I 0 I 
r c n m )  r ( r ”  

- I  0 I 
r ( n m )  

Figure 2. The image amplitude 1411 and the phase distribution qh(~) for a gaussian 
function (full curves). The broken curve in the amplitude diagram is: (U)  the second image 
amplitude 1421 for a defocus difference A f= 100 nm; (b) the fitted image amplitude 
1411 when the image intensity is subject to error of 10% (full curve); (c) as in (b) but 
for 20% error. The broken curve in the phase diagram is the fitted phase distribution. 

results that are presented for the noise affected data, the solution for $1’ is not renormal- 
ized but the same scaling constant taken from the result for perfect data is used; thus 
the effect of noise on the phase solution can be clearly seen in absolute terms. The phase 
solution for perfect data is shown as the broken curve in figure 2(a); relatively large devia- 
tions from the actual $1 occur at radial distances larger than 0.5 nm because of numerical 
errors arising from the small values of [ $11 above 0.5 nm: 

An important point to note is the form used for the initial phase distribution $1 
in the iterative scheme. Evidently if one has some idea of the functional form of $1 
convergence is extremely rapid ( - 5 iterations). However, in dark-field optics this is 
most unlikely and it would seem that the initial estimates for $1 should be based on a 
slowly varying function of pi. In practice, random number initial values generated in 
the range 0 to 27r achieve the best convergence (-20 iterations). The discussion of con- 
vergence of this type of iterative scheme has been given by Gerchberg and Saxton (1972) 
and they find that random number initial values are most suited to the iteration scheme. 
We have verified that different random number sequences for $1’ give similar profiles for 
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$1‘, differing only in the constant $c, The author, however, is not satisfied with such a 
random approach to the phase solution, and a more systematic iterative scheme, such 
as that suggested in $2.2, is likely to be more predictable in its convergence properties. 

In figures 2(b) and 2(c) we show the results for the phase solution where photographic 
noise is superimposed on both image intensity distributions j ,  and je .  The photographic 
grain noise y,  which is proportional to the square root of the optical densityj112, is 
characterized by the variation of the optical density about a mean value jm with a standard 
deviation U in the normal gaussian distribution; that is, the probability of an optical 
density j is determined by 

for a region with mean density j ,  about an image point (see eg Valentine 1966). 
Assuming an electron-optical magnification of 500 000 for recording j on a photographic 
emulsion, U varies from about 0.02 (fine grain) to 0.2 (coarse grain). In the present test 
calculations we chose the larger values for U of 0.1 and 0.2 to demonstrate the adverse 
effects of the noise on the solution for the phase distribution. At low optical densities, 
-0.1, the gaussian relation (17) is invalid and Poisson statistics are used to describe the 
effects of grain noise. The image intensities subject to photographic noise are calculated 
using the expression 

j + y  

in accordance with the above analysis. The square roots of j l  andjz give the image ampli- 
tudes that are used in the iterative scheme. Figures 2(b) and 2(c) show for 0=0.1 
and ~ = 0 . 2  respectively (full curves) and the fitted results 1+1’1 (broken curves) which 
represent a least-squares fit to I $ I I .  There is little point in continuing the iterations 
beyond a convergence of -0.1 measured relative to the total energy density of the 
image (depending on the noise level), because photographic noise has strictly invalidated 
the linear relation (5) between $1 and $2. The phase distributions $1’ calculated (broken 
curves) using the same $c derived in the error-free result of figure 2(u) are shown in 
comparison with the actual gaussian $1 (full curves). The solution determined for $1’ is 
a fair representation of the original gaussian form, the large deviations occurring in the 
region where the amplitudes 1#11 and l $ z l  are significantly affected by noise, namely, at 
optical densities below 0.2 (corresponding to an image amplitude of about 0.4). 

Similar results to those shown in figure 2 are presented in figure 3 for overlapping 
gaussian distributions separated by 0.4 and 0.6 nm respectively. In figure 3 (Ia) the 
broader gaussian form for I+1 I gives an excellent solution for 41 (full and broken curves 
coincide) and the adverse effect of photographic noise-3(Ib, IC)-on the phase solutions 
out to radial distances of 0.5 nm is reduced because of the broader intensity distributions, 
In contrast, the results presented in figure 3(II) for a more structured 1$11 and 1$21 show 
the serious effect on the solution for $1 when the noise level is about 20 % of the maximum 
intensity. However, photographic emulsions with such a large grain noise (corresponding 
to x-ray emulsions) are seldom used in electron microscopy, unless extremely fast record- 
ing is required. The results of figures 2 and 3 give some indication of the noise levels 
that can be tolerated for simple profiles and show that the present method of phase 
solution should be restricted to images with noise levels below 10 %. 

In order to define the effect of photographic noise on i+li and I $ z / ,  and to ensure 
that the noise we have added to the images of figures 2 and 3 does not correspond only 
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Figure 3. (I) The image amplitude j$11 and the phase distribution +I(?) for overlapping 
gaussian functions (full curves). The broken curve in the amplitude diagram is: (a) 
the second image amplitude I $ z ~  for a defocus difference A f= 100 nm; (b) the fitted 
image amplitude 1$1i when the image intensity is subject to error of 10% (full curve); 
(c) as in (b) but for 20% error. The broken curve in the phase diagram is the fitted 
phase distribution. (11) As for (I) but with a different spatial separation of the over- 
lapping gaussian distributions. 

to high frequencies (which may be excluded by the aperture function used in equation (5 ) ) ,  
we examine the noise spectrum of the 1$1 I in figure 3(IIc), corresponding to a noise level 
of about 20%. The power spectrum of l$li, that is 

I S(V) I = EF( I h(f4 I ) I2  
is presented in figure 4 for the error-free i+ll (full curve) and the noise affected l$ll 

(broken curve). Within the frequency range (4 nm-1) transmitted by the objective aper- 
ture function using equation ( 5 )  there is a significant alteration in the power spectrum of 
1$1 1 .  However, a substantial proportion of the noise content of I $1 1 occurs at frequencies 
greater than 4 nm-1, and the total energy density eliminated by the aperture corresponds 
to about 40% of the noise spectrum. 

3 . 2 .  Amplitude and phase distributions of diyerent radial half-vt>idths 

Maintaining the symmetrical gaussian forms for I + o ~  and $0, we consider the phase 
solutions where $0 is either of smaller or larger radial half-width than I$ol. For the 
phase distribution in figure 5 ( I )  we have taken for $0 a double gaussian which has a 
radial half-width of about 0.5 of that of 1 + 0 l ,  1 # 0 l  being of similar form to the 1$11 given 
in figure 3(IIa). However, the l$ll given in figure 5(Ia) arises from a convolution of $0 
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with the aperture function to give a diffraction limited [ $11, which will depend on the 
form of 40. The difference between the I $ l l  in figure 3(IIa) and that in figure 5(Ia) 
would not depend on the functional form of 40 if we had used an infinite aperture (with 
no lens aberrations in the system). Thus the use of an aperture in the image forming 
system seems to be a requirement for a unique 141 [ for a given $0 (see O’Neill and Walther 
1963, Walther 1963). Then the effect of the aperture on the image for the simple gaussian 
form for 1401 depends on the form of 40; this clearly seen by the comparison of the 1411, 
1$2[ curves in figures 3 (IIa) and ~(Iu).  For the form of $1 chosen for figure 5(I), the 
fitted phase distributions $1’ are very good, even for the noise affected results 5(Ib, c). 

v nm-1) 

Figure 4. The power spectrum I S ( Y ) ~ ~  for the image amplitude 1411 shown in figure 3(II). 
The full curve is / S ( U ) > ~ ~  for the error-free data (figure 3VIa)) and the broken curve repre- 
sents IS(Y)[ for the noise affected data (figure 3(IIc)-noise level 20% of the maximum 
image intensity). 

The effect of the noise is less marked than in the corresponding results in figures 3(IIb, c), 
because the phase distribution in figure 5(I) has fallen to very small values at radial 
distances where I $1 I and 1 $2 I are not too seriously affected by noise. 

If we now take a broader gaussian form for 40 approximately twice the radial half- 
width of I $ o /  (corresponding to figure 3(I)), 1 $ 1 1  is hardly affected by the aperture and 
l $ z \  is correspondingly similar to 1$11 (contrast figure 3 (Ia)). In fact, in the limit of 
40+ constant, I$11 and 1 $ ~ 1  are almost identical and the phase shift introduced by the 
defocus Af integrates out of equation (5). Thus in high-resolution microscopy it could 
be difficult to determine a phase variation $0 which is relatively unstructured (broad) 
compared to the amplitude distribution. However, it is unlikely that l+ol  will reflect 
more structural information than $0; $0 is most likely to be more sensitive than 
to structural variations as in figure 5(I). The fitted results for $1 in figure 5 (II) appear 
to be very sensitive to error, but this is because in the region of image space where $1 
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Figure 5. (I) The image amplitude It,h and the phase distribution dl(r) for overlapping 
gaussian functions (full curves)-dl(u) is sharper than /$I]. The broken curve in the 
amplitude diagram is: (U)  the second image amplitude 1421 for a defocus difference 
A f= 100 nm; (b) the fitted image amplitude 1411 when the image intensity is subject to 
error of 10% (full curve); ( c ) ,  as in (6) but for 20% error. The broken curve in the phase 
diagram is the fitted phase distribution. (11) As for (I), but now the phase distribution 
&(r) is broader than the amplitude distribution 1$11. 

is still significant, the amplitudes 1411 and 1+21 are dominated by noise effects. In  the 
case of perfect data (figure 5(IIa)) the poor result for $1 above 0.5 nm, where $1-0.5 

arises from the small values of 1411 and I + Z \ ,  0.1 of their maximum values, 
resulting in numerical integration errors. 

3.3 .  Amplitude distribution asymmetric-phase distribution symmetric 

It is useful to examine the validity of the phase solution, when the amplitude and phase 
forms of $0 are of different functional form. In the first case we take 1+0l to be asymmetric 
and $0 to be a symmetric gaussian (corresponding to the $0 of figure 3(Ia)). Here the 
second image amplitude (figure ~ ( I u ) )  carries the information on the symmetric form of 
$0. The phase solution for $1 for error-free data is excellent and even the errored results 
are acceptable. However, when the noise level becomes large the asymmetric information 
carried by I$l] causes a distortion of $1' in figure ~ ( I c ) .  

3 . 4 .  Amplitude distribution symmetric-phase distribution asymmetric 

Considering the second type of asymmetry, namely an asymmetric $0 and a symmetric 
I # o ~  (corresponding to figure 3(IIa)), the result for \#I\ does show some asymmetry 
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(figure 6(IIa)) but this useful information on the asymmetry of 40 is almost completely 
lost in the photographic noise: figures 6 (IIb, Ilc). However, ~ $ z I  can be seen to carry 
substantial information on the asymmetry of $0. The general conclusion is that asym- 
metric phase solutions are adversely affected by error superimposed on i $ l i  and i # z l ,  
the asymmetric information contained in these amplitudes being distorted by the noise. 

r (nm)  -I 0 I 
r ( n m 1  

Figure 6.  The image amplitude 1411 and the phase distribution $I(?) for overlapping 
gaussian functions (full curves)--/411 is symmetrical and 41 is symmetrical. The broken 
curve in the amplitude diagram is: (a) the second image amplitude I$z i  for a defocus 
difference Af= 100 nm; (b) the fitted image amplitude 1411 when the image intensity is 
subject to error of 10% (full curve); (c), as in (b) but for 20% error. The broken curve 
in the phase diagram is the fitted phase distribution. (11) As for (I), but now the amplitude 
distribution 1411 is symmetrical and the phase distribution +I is asymmetrical. 

3.5. Bright-jdd optics 

In bright-field optics the object wavefunction $o(~o)  is allowed to combine with the 
unscattered wave, represented by unit amplitude (or some constant value), and the image 
wavefunction in bright-field optics consists of a modulation, which is not $0, on a constant 
background of unit amplitude. Thus the wavefunction forming the image is 

$b(pO) = 1 $. $ O ( r O )  (1 8) 

and the phase angle is not just $ O ( V O )  = tan-1 ( ~ ~ ( ~ o ) / E ( I . o ) )  as in the dark-field case but 
tan-1 [7j(ro)/(l+ ~ ( r o ) ) ] .  The image wavefunctions $1(ri) and #z(rt) are calculated in the 
same way as in $2 for a IJlo(ro)l and a ~ O ( Y O )  of gaussian form, with the maximum value of 
[ $o(ro)i -0.1 to simulate the normal bright-field electron micrograph with an image 
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intensity contrast of about 0.2, the contrast being defined as ( j ( v i )  - background intensity)/ 
(background intensity). The bright-field image amplitudes [ $11 and 1421 corresponding 
to a defocus difference of AJ- 100 nm are shown in figure 7 for the three types of gaussian 
distribution for l # o [  and 40 used in figures 2 and 3, namely (a) a single gaussian of radial 
half-width 0.5 nni, (b)  two gaussians separated by 0.4 nm, (c) two gaussians separated 
by 0.6 nm. Note the dissimilar profiles for [ and I421 in bright-field optics as compared 
with dark-field optics (figures 2(a), 3(Ia, Ira)), the difference arising from interference 
effects of the unscattered and object wavefunctions in the bright-field case. The most 

Figure 7. The bright-field image amplitudes 141 1 and l+z I  calculated for a defocus differ- 
ence A f= 100 nm, and for different gaussian profiles of the object wavefunction. The 
constant background level is 1.0. The phase distribution 41 (full curve) correspond to 
the image wavefunction $1 and the broken curve is the fitted phase distribution. 

noticeable difference in the two types of optics is shown by the phase distribution 41(Yi) 

(full curves in figures 7(a), (b), (c)) which is now tan-1 [~1/(1+ q)] and not simply 
tan-1 ( ~ 1 / ~ 1 )  as in dark-field optics. The bright-field forms for + I ( Y ~ )  are now very 
different from the form of $o(Yo), and only if the background subtraction can be made is 
it possible to gain information on the required form of $o(Yo). The main interpretative 
problem in bright-field optics is then the evaluation of the phase distribution, + ~ ( Y . I )  in 
this case, requiring the subtraction of a constant amplitude contribution, which in 
general cannot be readily determined. The normal method used to eliminate a constant 
background is to take the Fourier transform of the data, when the constant term should 
transform in frequency space to a delta function S(Y), which niay be filtered out. In 
figure 7 we present the phase solution $1' obtained by an iterative procedure using 
1411 and i $ z [ .  Because of the rapid variations in $1, the convergence to the measured 
image amplitudes I $ l i  and / # z /  is not as rapid as in the dark-field case. The oscillatory 
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nature of the 1411 and 1 4 2  I shown in figure 7 also leads to numerical integration termina- 
tion errors in the iterative procedure; the slow convergence of 1$11 and 1421 to the 
constant background value of 1 should be contrasted with the rapid convergence of the 
dark-field image profiles of figures 2 and 3 to zero. As mentioned above, in order to 
extract from +I’(rt) the useful information on the object wavefunction #o(ro), we must 
use the background amplitude value (not necessarily unity as assumed here) to modify 
tan-1 [r/(l+ E)] to give values for tan-1 ( T / E ) .  

Since the modulation of the image intensity about the background of unity is only 
about 0.2 in bright-field electron microscopy (Grinton and Cowley 1971), the noise 
level, which is proportional to j112, that is acceptable is considerably less than the 10-20 % 
tolerated in dark-field optics. In fact, although a tolerable fit to 1411 and can be 
obtained for a noise level of 0.05 at a mean optical density of about unity, the phase 
distribution $1’ does not reproduce any of the fine detail in $1; however, the values for 
41’ do correspond to a mean level of 41, Thus bright-field optics do not seem suited to 
the present iterative scheme because of the drastic effects on the phase solution $1’ for a 
normal noise level of 0.05, unless the modulation of the image intensity about the back- 
ground is significantly greater than 0.2. Additionally, as mentioned in $1, the weighting 
of the object spatial frequencies in bright-field optics varies and some frequencies are 
attenuated substantially below a weighting of unity, and then the noise spectrum at 
these frequencies can completely mask the useful structural information. 

The examples presented in this section for the phase solutions determined from two 
image amplitudes refer to high-resolution electron microscopy, achieving a potential 
image resolution of 0.25 nm (with vmax= 4 nm-1). In the electron microscopy of biological 
specimens, the image resolution is probably limited by specimen preparation tech- 
niques (eg negative staining) and radiation damage to a resolution of about 1 nm 
(v,,, = 1 nm-1). The calculations presented here may be scaled by a factor of 4 along the 
r axis to simulate the lower-resolution figure, and the corresponding defocus difference 
between the two images would be 1600 nm (proportional to rmin2/h0) instead of 100nm. 
In the case of such a large defocus value the effect of spherical aberration on the image 
intensity would be insignificant (Erickson and Klug 1971). The scaling of the results 
for electron microscopy explicitly assumes that wave optics describes the image contrast 
effects, rather than a scattering contrast model, which is effectively an intensity (incoher- 
ent) mechanism. 

In optics with Xo~500  nm, the potential image resolution is approximately 1-10 pm, 
and the results of figures 1-7 should be scaled appropriately, a factor of about (4-40) x 103 
for the r coordinate and the inverse factor for the v coordinate. A typical defocus differ- 
ence Af, to produce the same image differences as presented in the electron-optical 
examples, would be 10 pm-1 mm for the resolution figures given above. 

4. Conclusions 

A viable method has been proposed for the evaluation of the amplitude-phase distribu- 
tion in an image from two images taken at different objective lens defocus values. The 
method, which makes no assumptions regarding the form of the phase distribution and 
which is applicable to cases where the phase shifts are not small, has been illustrated by 
application to test distributions, simulating the situation in high-resolution electron 
microscopy. The effect of photographic noise on the images and the resulting errors 
in the phase distributions have been evaluated; in dark-field optics noise levels of about 
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10% of the maximum image intensity do not drastically affect the validity of the phase 
solution. The present iterative method works in bright-field optics but appears to be 
extremely sensitive to errors in the bright-field images, particularly when the modulation 
of the image intensity about the background (the contrast) is less than 0.2; in this case a 
noise level of about 0.02 for a mean optical density of unity, equivalent to about 10 % on 
the actual modulated signal, is acceptable. Principally we propose that the present method 
using two images is a viable method in dark-field optics, where linear approximations 
are invalid. We have outlined the advantages of dark-field optics over the bright-field 
situation, but in electron microscopy the reduced electron signal in dark-field means 
increased photographic exposure times, which may result in increased specimen damage. 
In  dark-field optics all spatial frequencies present in the object are present in the image 
with unit weighting, except those frequencies which are intercepted by the objective 
aperture, but in bright-field optics some spatial frequencies are attenuated or even 
removed from the image, and these spacings are difficult to  reconstruct in the presence 
of noise. Whereas all the test calculations presented in 93 use only two images, in the 
experimental situation, where there is no indication of the correct form for the phase 
distribution, it would seem necessary to use a third image in the sequence to test the 
validity of the phase solutions obtained. 

Other relevant questions, that arise in the discussion of the validity of the phase 
solutions, relate to the effects of various sources of error, namely, background (eg due 
to inelastic electron scattering), mismatching of the two images, and an error in deter- 
mining the defocus difference between the two images. The effects of these errors on the 
phase solution are examined in the companion paper (part 11). 
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