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1.  Introduction

MnBi has been studied for over 65 years [1] and was initially 
a candidate material for magneto-optical recording appli-
cations [2]. There has been a recent resurgence in interest 
prompted by the desire to create rare-earth free permanent 
magnets [3]. MnBi is a candidate material due to its relatively 
large uniaxial anisotropy at room temperature. Contrary to 
most magnetic materials, the magnetic anisotropy energy of 
MnBi increases with temperature, reaching a maximum of 
2.2 MJ m−3 at 450 K, approximately 130% of NdFeB at the 
same temperature [4] and even 60% of the value of FePt [5]. 
Recent efforts to understand the origins of this anisotropy 
and the anomalous temperature dependence have focused on 
how lattice expansion and phonons effect the magnetic aniso
tropy [6–9]. Somewhat surprisingly the effect of the thermal 
spin fluctuations has not been investigated, despite being the 

primary cause of the temperature dependence of anisotropy 
in magnetic materials. Here we construct an empirical model 
of the microscopic magnetic anisotropy contributions which 
exist in MnBi. We take care to clarify the difference between 
the macroscopic, K1,2,3, anisotropy coefficients which can be 
measured experimentally and the microscopic mechanisms 
which are associated with specific spin correlations and have 
a well defined temperature dependence described by Callen–
Callen theory [10]. Parameterizing the model using existing 
experimental data from the literature gives a remarkable 
agreement of the anisotropy energy across the whole temper
ature range. We also use numerical techniques to confirm the 
validity of the applicable Callen–Callen scaling laws across 
the temperature range and when multiple anisotropies are pre-
sent in the system.

In the so-called low temperature phase (LTP) MnBi has 
the NiAs structure with alternating planes of Mn and Bi 
(figure 1). The Mn sites posses a large magnetic moment of 
4.02 µB and the Bi has almost no net moment at  −0.1µB. 
Throughout this work we will therefore ignore fluctuations of 
the Bi spins. The temperature evolution of the anisotropy con-
tains several features. In the ground state the magnetization 
lies in the a-plane with an total anisotropy energy of  −0.25 
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MJ m−3. At 90 K the magnetisation moves abruptly into an 
easy cone state [11]. Further heating reduces the cone angle 
gradually and at =T 142SR  K the system becomes uniaxial 
with the magnetization along the c-axis [12]. Most unusually, 
the magnitude of the uniaxial anisotropy continues to increase 
with temperature, reaching a maximum of 2.2 MJ m−3 at 
450 K beyond which it slowly decreases. There is no Curie 
point, the magnetic phase transition from ferromagnetism to 
paramagnetism, because at 628 K a peritectic decomposition 
to Mn1.08Bi and liquid Bi occurs, giving the so-called ‘high 
temperature phase’ [13].

Recent theories point to lattice effects being the under-
lying cause of the unusual behaviour of the magnetic aniso
tropy. Possibilities considered include the effect of anisotropic 
thermal expansion [6] and magnetoelastic and magnetostric-
tive coupling [7]. First principles calculations have shown 
a spin reorientation can occur due to changes in magneto-
crystalline anisotropy with changing lattice constants, but at 
a temperature much higher than found experimentally and 
without the subsequent large increase in anisotropy [7, 8]. The 
inclusion of the on-site Coulomb term into such calculations 
can give a better agreement with experiments [9]. However, all 
of these works explicitly state they do not include thermal spin 
fluctuations. This is something which must therefore be inves-
tigated as the inclusion of spin fluctuations would not only 
renormalise the athermal ab initio results significantly, but 
could play an important role in the temperature dependence.

2. Theoretical background: Callen–Callen theory

In the Heisenberg, local spin picture of magnetism, temper
ature causes fluctuations of the atomic scale magnetic 
moments. The fluctuations give rise to, for example, the 
temperature dependence of magnetization as the atomic 
moments become thermally distributed about the field direc-
tion, reducing the net projection of the magnetization. The 
thermal energy also causes the total magnetization to precess 
in a stochastic manner about the energy minimum. Hence, at 
non zero temperatures the system explores a finite area of the 

free energy surface. Thermodynamic quantities are therefore 
an average over the thermal distribution. This is the process 
by which spin fluctuations lead to an apparent temperature 
dependance of the magnetic anisotropy. This is separate 
from extrinsic considerations such as expansion of the lattice 
altering the electronic structure of the material. The sampling 
of the free energy surface from spin fluctuations is described 
by the theory of Callen and Callen [10] which defines the 
temperature dependence of the anisotropy in terms of the 
reduced magnetization m  =  M(T )/M(0). Most well known is 
that the anisotropy scales in power laws of the magnetization, 
although this is derived in the low temperature limit. In prin-
ciple the scaling can be calculated for arbitrary temperatures, 
however the derivation assumes no spin-wave interactions 
which become increasingly important at elevated temper
atures. Therefore we later use numerical calculations to check 
the scaling behaviours across the complete temperature range.

An important distinction must be made between the mac-
roscopic anisotropy energy which is often measured and the 
the microscopic origin of magnetic anisotropies. The macro-
scopic uniaxial anisotropy energy is often expressed as

( )θ θ θ θ= + +E K K Ksin sin sin ,1
2

2
4

3
6� (1)

where θ is the azimuthal angle, or sometimes given by the total 
effective anisotropy = + +K K K Keff 1 2 3. The temperature 
dependence of the ‘K’ coefficients has no general form which 
can be derived because many different anisotropies in the system 
are mixed together, such as different orders of magneto-crystal-
line anisotropy, dipole interactions, magneto-elastic effects and 
so on [14]. Callen–Callen theory on the other hand derives the 
temperature dependence of these individual terms which can be 
expressed in polynomials of the spin components. In the low 
temperature limit the temperature dependence of an anisotropy 
that is an lth order polynomial in the spin components is

( ) ( )[ ( )] ( )/κ κ= +T m T0 .l l
l l 1 2� (2)

for example, the first order single-ion uniaxial anisotropy 
is described by the second order Legendre polynomial 

( )/κ −S3 1 2z i2 ,
2  and therefore scales proportionally to m3.

Identifying the multiple contributions to anisotropy from 
experimental data is not straight forward. Anisotropies of dif-
ferent origins are indistinguishable when they have the same 
angular dependence—except if they have a difference in 
their characteristic temperature dependence. This is the key 
to interpreting the anomalous behaviour of MnBi. By iden-
tifying the different origins of magnetic anisotropy in MnBi 
and using the characteristic temperature dependence of each 
term from Callen–Callen theory, we can build a phenom-
enological model of the contribution of spin fluctuations to 
the temperature dependence of the anisotropy. We do not try 
to identify how different electronic effects contribute to the 
anisotropy constants, assuming that changes in the electronic 
structure with temperature are less significant than the role of 
spin fluctuations. For example it is known that there is a strong 
Mn-d—Bi-p hybridization, however this could be responsible 
for single ion and two ion anisotropies, but we cannot identify 
this definitively and leave this to ab initio works [9].

Figure 1.  Structure of MnBi which has alternating planes of Mn 
and Bi.
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3.  Phenomenological model of MnBi

Uniaxial anisotropy constants K1, K2 and K3 have been mea-
sured in experiments [15], and so we include single ion 
anisotropy contributions to third order. The higher order 
terms are quite small and are likely to be from magneto
crystalline anisotropy. The K1 term presumably also contains 
some magnetocrystalline anisotropy, but probably also a large 
magneto-elastic contribution due to the extraordinarily large 
magnetostriction of MnBi [16] . The single-ion contributions 
are expressed by Legendre polynomials in Sz

( )∑
κ

= −H S
2

3 1
i

z i1
2

,
2

� (3)

S S
8

35 30 3z i z i
4

,
4

,
2κ

+ − +( )� (4)

κ
+ − + −( )S S S

16
231 315 105 5 .z i z i z i

6
,

6
,

4
,

2
� (5)

Now it becomes clear that the K’s contain contributions of κ’s 
of multiple orders, for example, K1 is the coefficient for terms 
in Sz

2 which are present in the second, fourth and sixth order 
polynomials, κ2, κ4 and κ6 [15]. These three terms have the 
magnetization dependence

( )
( )
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( )
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The layered structure of MnBi has broken cubic symmetry 
which leads to a dipole–dipole contribution to the anisotropy. 
This is described by the Hamiltonian term

r r

S r S r S S

4

3
,

s i s j

i j

i ij j ij

ij

i j

ij
dipole

, , 0

5 3∑
µ µ µ

π
=−

⋅ ⋅
−

⋅

≠

H
( )( )

� (7)

where µs is the magnetic moment, µ π= × −4 100
7 N A−2 is the 

permeability of free space and rij is the vector between spins i and 
j. This is a property of the bulk lattice and is different from the 
demagnetizing fields which depend on the shape of the sample. 
We calculated the value numerically for a bulk system using 
an Ewald summation, finding a uniaxial =K 0.161

dip  MJ m−3  
at T  =  0 K. Dipole anisotropy drives the spin reorientation 
transition in Mn2Sb [17]. However, in MnBi this contribution 
is an order of magnitude smaller than the peak of the aniso
tropy energy and is thus too small to be the dominant mech
anism. In principle the temperature dependence of this term 
depends on the fluctuations of pairs of spins. However these 
can be factored out as independent in the low temperature 
regime and is expected to scale with m2 [10]. We check the 
scaling across the whole temperature range numerically using 
constrained Monte Carlo [18] in figure 4(b). We find the m2 
scaling is valid at any temperature. We will refer to the dipole 
anisotropic energy as ( )δz

2 .
The final anisotropy energy contribution we include is a 

two-ion anisotropy of the form,

( )∑= −H d S S .
ij

z z i z j2
2

, ,� (8)

The motivation for this term is two fold. The presence of 
the Bi between the Mn layers is likely to give rise to a sig-
nificant two-ion exchange between the Mn layers as with other 
material such as FePt. Magneto-elastic coupling also gives rise 
to two-ion terms. In a hexagonal system the symmetry allows 

a uniaxial term proportional to / ( )− ⋅S S S S3 2 z i z j i j, ,
1

3
 [19]. 

Within Callen–Callen theory the magnetoelastic anisotropies 
give rise to the same scaling behaviour as a magnetocrystalline 
terms and therefore we cannot make a distinction between 
them within this phenomenological model. The two-ion term 
is also indistinguishable from the dipole term as it has both 
the same angular dependence and m2 temperature dependence.

The final equations for the macroscopic K coefficients are

κ κ κ=− +∆ − −( ) ( )K m m m m m
3

2
5

21

2
,1 2

3
2

2
4

10
6

21� (9)

K m m m
35

8

189

8
,2 4

10
6

21κ κ= +( )� (10)

K m m
231

16
,3 6

21κ=−( )� (11)

where ( ) ( )δ∆ = + dz z2
2 2 . κ∆ ,2 2,4,6 are defined at zero temper

ature and only these four parameters are required.
Disregarding effects from the sample shape or impurities 

within the bulk, we have included all magnetic anisotropy 
contributions which have experimental or theoretical evi-
dence for existence. We now parameterize the model using the 
torque measurements of Stutius et al [15] for K1,2,3 (figure 2). 
Using only the lowest temperature (T  =  4 K) data points, we 
begin with the highest order term K3 which uniquely defines 
the single-ion κ6 term giving a value of κ = 0.01696  MJ m−3. 
In a similar way K2 is a combination of only κ6 and κ4 and 
hence we deduce κ = −0.00624  MJ m−3. More problematic 
is the K1 term as it is the sum of κ2,4,6, dipole and two-ion 
terms. However, at the peak in Keff at 450 K, κ4 and κ6 are 
very small and the peak value is defined by the sum of ∆2 
and κ2. The different temperature scaling κ ∝m2

3 and ∆ ∝m2
2 

must therefore be the reason for both the change in sign of K1 
and the peak. The two-ion term must give rise to the uniaxial 
anisotropy as it has the weaker temperature dependence. This 
implies the single-ion κ2 is negative, giving an in-plane aniso
tropy which is initially slightly larger than than the two-ion 
term. Our analysis gives the values of κ = 102  MJ m−3—an 
in-plane anisotropy and ( ) ( )δ + =d 14.854z z

2 2  MJ m−3. These 
values are quite large for anisotropy energies but of the same 
order of magnitude as predicted by ab initio calculations when 
the spin–orbit interaction of the Bi is included [9]. There is 
also a qualitative agreement with ab initio calculations which 
find a large in-plane magnetocrystalline anisotropy at T  =  0 K 
[9, 20].

For the temperature dependence of magnetization we use 
the data of Guo et al [21] (red circles in figure 4(a)) fitted by 
the general equation for magnetization of Kuz’min [22] (red 
line in figure 4(a)). Using the equations (9)–(11) we calculate 
the temperature dependence of K1,2,3 due to spin fluctuations 
according to Callen–Callen theory. The results in figure 2(a) 
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show an excellent agreement the experimental data [15]. The 
sign change and large increase in K1 is caused by the rapid 
diminution of the κ6 energy and the competition between 
two-ion and single-ion contributions which have opposite 
sign. The only significant deviation is in the behaviour of K2 
after the reorientation transition. However in this region the 
experiments were unable to saturate the magnetization and the 
ability to differential K1 and K2 in their analysis is limited. The 
cusp around TSR is also not reproduced and it is not clear if 
this is due to the relatively flat energy landscape or the lattice 
distortion which has been measured [6].

In figure 2(b) the total anisotropy energy = + +K K K Keff 1 2 3 
of our model is compared with the experimental measure-
ments [15]. Again a good agreement is found. The model is 
parameterized from experiments as ≈T 0 and 450 K so we 
expect to reproduce these values. However, that the rest of 
the curve is in agreement with experiment implies the power 
laws of the underlying anisotropies are correctly identified. 
The down turn of Keff above 450 K is dominated by the m2 
term and serves as strong justification for its inclusion.

The existence of a spin reorientation transition is not 
explicitly guaranteed to occur within our model and no infor-
mation concerning the reorientation was used to inform our 
parameterization. Nevertheless, the competition between 
the in-plane and uniaxial anisotropies and the difference in 

temperature dependence does lead to the spin reorientation 
transition. This is caused by the change in sign of K1 due 
to the different temperature dependence of κ2 and ∆2. Also, 
the small κ4 and κ6 contributions play an important role, 
producing additional minima in the free energy landscape 
(see figure 3) which causes the easy-cone state. At the start 
of the spin reorientation transition (T  =  65 K) the first order 
uniaxial terms combined into K1 almost completely cancel 
each other. This leaves a triple minima energy landscape 
formed by the higher order κ4 and κ6 terms. With increasing 
temperature the two-ion contribution begins to overcome the 
single-ion in-plane term and the global minimum at θ = �90  
(in-plane) rises in energy causing the two satellite minima at 
θ = �30  and θ = �150  to suddenly become the global energy 
minima. This causes the magnetization to abruptly reorient 
from an easy-plane to easy-cone configuration as shown in 
figure 3(b) and just as observed in experiments [11]. In a small 
temperature regime the angle of the easy-cone configuration 
decreases with increasing temperature until at T  =  88 K the 
K1 term changes sign and the system becomes uniaxial. The 
entirety of this process is qualitatively identical to that which 
was found experimentally [11, 15, 23], although the trans
ition temperatures in this model are slightly lower. A different 
subset of the experimental literature finds that the ground state 
is not completely in-plane and the spin-reorientation proceeds 

Figure 2.  (a) Solid lines—temperature dependence of K1,2,3 
coefficients from the Callen–Callen model compared to 
experimental torque measurements [15]. The easy magnetization 
direction is labelled as found in figure 3. (b) Solid line—total 
effective anisotropy K K K Keff 1 2 3= + +  from the Callen–Callen 
model compared to experimental measurements [15].

Figure 3.  (a) Free energy surface through the reorientation 
transition for temperatures 60 K to 90 K at 5 K intervals. The red 
points mark the global energy minimum of the free energy surface 
at each temperature. (b) The azimuthal angle of the free energy 
minimum as a function of temperature. The green coloured lines 
denote the temperatures of the curves in (a).
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as a gradual canting from in-plane to easy-axis [12, 24, 25]. 
Within our model we find that small differences in the values 
of κ4,6 can change the reorientation behaviour so it is likely 
that small differences in sample preparation or composition 
could give different characteristic behaviour, without a signifi-
cant change in TSR which is strongly determined by the values 
of κ2 and ∆2.

The lattice expansion of MnBi with temperature is aniso-
tropic, with the c/a ratio increasing at higher temperatures. It 
has been suggested that a sudden jump in the lattice expan-
sion [26] close to TSR maybe be the cause of the reorientation. 
In principle the lattice expansion can have several effects on 
the magnetic system. These may have a bearing on the spin 
fluctations in the Callen–Callen picture because of the modi-
fication of the interactions in the Hamiltonian. Firstly, the 
dipole–dipole anisotropy will increase slightly as the c/a ratio 
increases. However, given the already small energy contrib
ution from this term, it cannot be regarded as a significant 
effect. The lattice expansion is also known to modify the 
magnetocrystalline anisotropy, which has been studied previ-
ously through ab initio techniques, although without regard to 
the spin fluctuations. Most works have found that the changes 
in MCA are insufficient to describe the large peak of Keff at 
high temperatures [7, 8] or cannot describe the change in sign 
[27]. In more recent first principles work [9], although ( )K Teff  
was found in good agreement to experiments, the energy 
landscapes found do not agree with the experimental meas-
urements of K1, K2, and K3. However, if the in-plane κ2 aniso
tropy used within the Callen–Callen model reduced, in real 
terms, as the lattice expanded, then the absolute values of κ2 
and ( )dz

2  would not need to be so large to reproduce the peak. 
The final term which would be impacted is the exchange inter-
actions. The effect of lattice expansion on the zero temper
ature isotropic exchange is small in most magnetic materials 
with ‘good’ local moments. The isotropic part of course has 
no bearing on the anisotropy. However, the two-ion contrib
ution may well be modified, especially because it is the c-axis 
which is being elongated. That we cannot easily discriminate 
the κ2 and ( )dz

2  except for their temperature dependence has the 
potential to hide some of the effects of the lattice expansions. 
Having said that, the good agreement between of Keff with the 
Callen–Callen scaling for the interim region between TSR and 
the peak of Keff suggests that the temperature dependence of 
the Hamiltonian due the lattice expansion is less significant 
than the effect of the spin fluctuations.

4.  Numerical validation of Callen–Callen theory

The Callen–Callen scaling we have used throughout this work 
is based on the low temperature limit. While the theory also 
allows one to calculate the general temperature dependence 
this still assumes spin wave interactions are negligible. We 
instead have calculated the scaling numerically using the 
constrained Monte-Carlo method [18]. This allows us to also 
confirm that there is no anomalous behaviour caused by the 
presence of multiple anisotropy terms or the spin reorientation.

Williams et  al [28] have determined the Heisenberg 
exchange constants of MnBi using inelastic neutron scat-
tering. They found a long ranged exchange interaction where 
the nearest neighbours along the c-axis have a coupling with 
the antiferromagnetic sign, although the total exchange gives 
a ferromagnetic ground state. It is not a priori clear if these 
details could also have an effect on the temperature depend
ence of the anisotropy. We have constructed an atomic scale 
simulation based on the Heisenberg Hamiltonian which we 
augment with the anisotropy interactions defined in the pre-
ceding sections

∑=− ⋅ + + +H H H H
〈 〉

J S S
1

2
,

ij
ij i j 1 2 dipole� (12)

where ⟨ ⟩ij  indicates a limited sum over the interactions upto 
sixth nearest neighbours as given in [28]. The very small Bi 
moments are ignored. The macroscopic torque is then calcu-
lated with the magnetization constrained to an azimuthal con-
straint angle (θ). Note that no applied field is used to enforce 
the constraint, it is maintained by the constrained Monte 
Carlo sampling method. The anisotropy coefficients at a given 
temperature can then be found by fitting

Figure 4.  (a) Temperature dependence of MnBi magnetization. 
Red points are experimental data from [21] and the solid red line 
is a fit of the empirical equation of Kuz’min [22], T 707C =  K. The 
green line is calculated using classical Monte-Carlo simulations 
where the exchange has been calculated ab initio, T 750C =  K. 
(b) Magnetization scaling of the anisotropy terms calculated with 
constrained Monte Carlo (points). Lines show the low temperature 
scaling from Callen–Callen theory.

J. Phys. D: Appl. Phys. 49 (2016) 484002
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θ
θ θ θ θ

∂
∂
=− = + +T( ) ( )

E
K K Ksin 2 2 sin 3 sin .1 2

2
3

4� (13)

In figure 4(a) we present the temperature dependent mag-
netization calculated using the exchange constants from the 
neutron scattering. The results agree well with the exper
imental results [21]. The transition to the high temperature 
phase means a true Curie temperature cannot be measured 
in experiments, but extrapolation based on Kuz’min’s equa-
tion  for magnetization gives a value of 707 K compared to 
750 K in the calculation. As the neutron measurements where 
made at 5 K this suggests that lattice expansion has a negli-
gible effect at least on the exchange constants.

The magnetization scaling of the different Hamiltonian terms 
is given in figure 4(b) and the solid lines are the power laws 
from the low temperature limit of Callen–Callen theory. The 
numerical results show the low temperature approximation is 
good across the entire temperature range for the dipole and two-
ion terms. The κ4 and κ6 terms show some deviation at higher 
temperatures, but only once the the value has already decreased 
by 2 orders of magnitude. Therefore the use of the Callen–Callen 
scaling relationships within the empirical model is justified.

5.  Conclusion

We have formed an empirical spin Hamiltonian of MnBi 
including anisotropy terms which have been identified in exper-
iments. Using numerical simulations we have verified that the 
Callen–Callen theory can be applied in terms of simple power 
laws on the magnetization. From the model it is clear that spin 
fluctuations must be considered in understanding the temper
ature dependence of the anisotropy in MnBi. In this work, 
changes in the anisotropy due to lattice expansion have not been 
considered, but it is clear that ab initio results with different lat-
tice constants, but which represent zero temperature properties, 
must also include the effect of spin fluctuations to successfully 
understand the temperature dependent behaviour. Based on our 
results we suggest that it is the competition between a single 
ion in-plane and two-ion uniaxial anisotropies which causes the 
anomalous behaviour in MnBi. Further work should be done to 
understand the contributions of magneto-elastic coupling and 
the Bi spin orbit coupling to these two terms.
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