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Abstract
We study the dynamical response of suspensions of single-domain magnetic nanoparticles.
The effect of sample parameters on Néel and Brownian relaxation times which characterize the
response is studied. Their effect on the ac susceptibility is also investigated. As the relaxation
times are strongly size dependent we study the effect of polydispersity on the response
functions next. A procedure to extract particle-size distribution in polydisperse samples from
Cole–Cole plots is provided. Further, the presence of attractive and repulsive interactions
amongst MNP yields a distribution of clusters of varying sizes. We propose a model
incorporating the phenomena of aggregation and fragmentation to understand the formation of
clusters and their distributions. Finally, we compare our numerical results with the
experimental data. These comparisons are satisfactory.

1. Introduction

Single-domain magnetic nanoparticles (MNPs) and their
colloidal suspensions have attracted a lot of attention in
recent years [1–4]. The growing interest is due to a variety
of technological applications associated with them. These
range from mechanical and thermal applications involving
their usage as sealants, lubricants and coolants to challenging
applications in medicine for the purpose of magnetic resonance
imaging, targeted drug delivery and biomarkers and biosensors
to name a few. The main reason behind their wide applicability
is the ease with which they can be detected and manipulated
by the application of an external magnetic field. Their
response times are strongly size dependent, thus introducing
the possibility of synthesizing particles to yield application
tailored response times.

Most practical applications require surfactant coatings to
prevent agglomeration and sedimentation of MNPs. Many
biological and medical applications require nanoparticles with
biologically relevant coatings in order to use them as probes
and carriers [4–6]. The Néel and Brownian relaxation times
which characterize the dynamics of the suspension depend
not only upon the constituting material but also upon the
magnetic volume and the enhanced volume due to surfactant
coating. In this paper, we systematically analyse the effect of
the above parameters on the relaxation times. We also study

their effect on the ac susceptibility χ(ω), which is the most
commonly studied response function in the laboratory. As the
Néel and Brownian relaxation times have a strong dependence
on particle size, we find that polydispersity (inherent in
experimental samples) results in significant changes in the
response function. We have also worked out a procedure to
obtain particle-size distributions from the susceptibility data
via Cole–Cole plots when they are unavailable.

The above approach assumes the single-particle model [7]
applicable to dilute suspensions in which magnetic interactions
amongst particles may be ignored. When present in sufficient
concentration, clustering and chaining of MNP are rather
common as observed by electron microscopy or dynamic light
scattering studies [8–10]. This behaviour is undesirable in
many applications using magnetic fluids as sealants, coolants,
lubricants, printing inks, etc. where invariance of the
magnetic and fluid properties are paramount [1]. On the other
hand, magnetic domain detection, optical shutters, tagging of
surfaces and other entities benefit from clustering of MNP
[1, 11]. It is hence useful to understand clustering and its
dependence on sample parameters to introduce the possibility
of application tailored suspensions. In this spirit, we
introduce a model incorporating the competing mechanisms of
aggregation and fragmentation. We obtain steady-state cluster-
size distributions and mean-cluster sizes for different ratios
characterizing the relative strengths of the aggregation and
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fragmentation processes. Both these functions exhibit scaling.
We have then compared our results with sets of experimental
data to lend credence to the aggregation–fragmentation model.

The paper is organized as follows. Section 2 deals
with relaxation mechanisms and response functions of dilute
MNP suspensions. In section 2.1, we introduce the Néel
and Brownian relaxation times and identify regimes where
either or both relaxation times contribute. Polydispersity
and its characterization is introduced in section 2.2. The
calculation of the ac susceptibility χ(ω) for monodisperse
and polydisperse samples in the different regimes described
above is presented in section 2.3. In section 2.4, we provide a
procedure to obtain particle-size distributions (for polydisperse
samples) using Cole–Cole plots. Section 3 deals with aspects
of clustering occurring in samples which are no longer
governed by the single-particle approximation. Interactions
responsible for clustering are introduced in section 3.1. We
introduce the aggregation–fragmentation model in section 3.2.
The numerical results are presented in section 3.3. Their
comparisons with corresponding measurements in a variety
of experimental systems are presented in section 3.4. Finally,
we conclude this paper with a summary of results in section 4.

2. Relaxation mechanisms and response functions of
dilute MNP suspensions

We now study the relaxation properties and the response
functions in dilute MNP suspensions where inter-particle
interactions can be ignored. In this regime the particles
essentially behave as independent, single-domain, super
paramagnetic entities.

2.1. Néel and Brownian relaxation times

If we assume that the anisotropy responsible for single-domain
MNP is uniaxial (in the z-direction say), the magnetic energy
is given by [12]

E = V K sin2 θ, (1)

where V = 4πr3
c /3 is the magnetic volume of a particle with

radius rc usually referred to as the core radius, K is the effective
magnetic anisotropy constant and θ is the angle between the
z-axis and n̂. Minimum energy occurs at θ = 0 and π defining
two equilibrium orientations corresponding to magnetizations
+V Mo and −V Mo. If thermal fluctuations are strong enough,
magnetic moment reversal takes place within the particle by
overcoming the energy barrier (of height V K). As a result
the time-averaged magnetization is zero and the particle is
paramagnetic. The reversal or switching time is called the
Néel relaxation time and is given by

τN = τoeV K/kBT , (2)

where τo is related to the inverse of the attempt frequency of
magnetic reversal.

There is another mechanism by which the magnetic
moment of a super paramagnetic particle suspended in a fluid
can relax. This mechanism of relaxation can be due to the
physical rotation of the particle within the fluid. It is referred

to as Brownian rotational motion as it occurs due to the
thermal fluctuations in the suspended medium. The Brownian
relaxation time is given by [3, 13]

τB = 4πη rh
3

kBT
, (3)

where η is the dynamic viscosity of carrier liquid and rh is the
hydrodynamic radius defined as the sum of the core radius rc

of the MNP and the surfactant coating δ over it.
As can be seen from equations (2) and (3), both Néel and

Brownian relaxation times are highly sensitive to the particle
size. While τN increases exponentially, τB grows linearly with
the particle dimension. It is customary to define an effective
relaxation time as follows [7, 14]:

1

τe
= 1

τN
+

1

τB

or
τe = τN + τB

τNτB
. (4)

Thus, it is possible to tailor time scales by an appropriate choice
of parameters, particularly K , rc and rh. With this in mind, we
have systematically studied the effect of rc and rh on τN and
τB and consequently τe for maghemite (Fe3O4) particles used
most commonly in making magnetic fluids.

In table 1, we summarize our evaluations of τN, τB and
τe for particles with varying magnetic core radius rc and the
thickness of the surfactant coating δ. In most experiments, the
latter is usually in the range 2–6 nm. As observed in table 1,
τB is practically unaffected by δ. For small particles, τN � τB

which results in τe ≈ τN. The relaxation then takes place by
rotation of the magnetic moment inside the particle. For large
particles, on the other hand, τB � τN. Consequently, τe ≈ τB

and the relaxation is due to a physical rotation of the particle
in the suspension. Thus, the choice of the relaxation mode is
primarily governed by the particle size. For critical particle
sizes, often called the cross-over radius r∗ (∼8 nm in table 1),
it is found that both mechanisms contribute to the relaxation
of the suspended particle.

We have studied the effect of temperature T , the surfactant
coating δ and the anisotropy constant K on the cross-over
radius r∗. Most applications require an operating temperature
in the range 270–320 K. We find that r∗ does not change
perceptibly in this range. Further, as seen from table 1 the
variation of δ does not significantly alter r∗. The anisotropy
constant K , on the other hand, leads to a substantial change in
the corresponding value of the cross-over radius. For instance,
our evaluations show that spherical MNP of Co having an
anisotropy constant K = 4 × 106 J m−3 has r∗ ∼ 2.5 nm
while spherical MNP of Fe having an anisotropy constant
K = 4 × 105 J m−3 has r∗ ∼ 5 nm. Thus, amongst the three
parameters of relevance, the anisotropy constant K affects the
cross-over radius r∗ the most.

2.2. Polydispersity

Monodisperse samples are an idealization. All experimental
samples have a distribution of particle sizes and are referred

2
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Table 1. Variation of the Néel (τN), Brownian (τB) and effective (τe) relaxation times as a function of the core radius rc of the MNPs. τB has
also been evaluated for three values of the surfactant coating δ. The corresponding τe for these values is also evaluated.

τB τe (s)
rc τN

(nm) (s) δ1 = 2 nm δ2 = 4 nm δ3 = 6 nm τe1 τe2 τe3

4 10−9 10−7 10−6 10−6 10−9 10−9 10−9

6 10−8 10−6 10−6 10−6 10−8 10−8 10−8

8 10−5 10−6 10−6 10−6 10−6 10−6 10−6

10 10−1 10−6 10−6 10−5 10−6 10−6 10−5

15 1020 10−5 10−5 10−5 10−5 10−5 10−5

20 1061 10−5 10−5 10−5 10−5 10−5 10−5

to as polydisperse. Transmission electron microscopy
(TEM) studies of several samples have revealed a log-normal
distribution for the variation of particle sizes [1, 14, 15]. Thus,
the probability density P(rc) drc of having particles within
radius rc and rc + drc can be written as

P(rc) drc = 1√
2π ln σ

exp
[− ln2(rc/r̄c)/(2 ln2 σ)

]
drc, (5)

where r̄c and σ are the mean and variance of the distribution.
Due to the strong dependence of both Néel and Brownian
relaxation times on particle size, it is evident that a distribution
of relaxation times will be obtained if the suspended particles
have a distribution of sizes. The presence of polydispersity
leads to a significant change in the behaviour of the response
function of the sample as we shall see in the following
subsection.

2.3. Ac susceptibility measurements

The complex susceptibility χ(ω) of a suspension of
monodisperse MNP in the linear response regime has the
Debye form given by [12]

χ(ω) = χo

(1 − ιωτe)
, (6)

where χo = χ(ω = 0) = NV 2M2
o /kBT is the static

susceptibility of the sample comprising N monodisperse
particles of volume V with a saturation magnetization Mo.
The effective relaxation time τe is defined by equation (4).

The susceptibility response gets substantially altered in
the presence of polydispersity. For polydisperse samples χ(ω)

needs to be averaged over the particle-size distribution P(rc).
Thus,

χ ′(ω) = χo

∫
drcP(rc)

1

1 + ω2τ 2
e (rc)

(7)

and

χ ′′(ω) = χo

∫
drcP(rc)

ωτe(rc)

1 + ω2τ 2
e (rc)

. (8)

In the case of monodisperse samples, χ ′′(ω) versus ω exhibits
a symmetric Debye peak around ω = τ−1

e .
In figure 1, we plot χ ′′(ω) for monodisperse samples (open

circles) corresponding to three different values of rc = 4, 8
and 12 nm. The chosen values correspond to (a) rc < r∗,
(b) rc ≈ r∗ and (c) rc > r∗, respectively, for maghemite
particles used to generate data of table 1. All cases exhibit
the characteristic Debye form. To understand the effect

0
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χ′
′(ω

)

10
0

10
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10
10

0

0.5

ω
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(b)

(c)

r
c
 < r*

r
c
 ≈ r*

r
c
 > r*

Figure 1. Variation of χ ′′(ω) versus ω for monodisperse (open
circles) and polydisperse (filled circles) maghemite samples when
(a) r̄c < r∗ and Néel relaxation dominates, (b) r̄c ≈ r∗ and both
Néel and Brownian relaxations contribute and (c) r̄c > r∗ and
Brownian relaxation dominates. The values of r̄c in (a), (b) and (c)
have been chosen as 4 nm, 8 nm and 12 nm, respectively. The
surfactant coating δ and the temperature T were taken to be 2 nm
and 300 K, respectively, in these evaluations.

of polydispersity, we also plot equation (8) (filled circles)
in the same figure. The distribution P(rc) versus rc used
for the evaluations were obtained from a TEM analysis of
maghemite samples used in [14]. These distributions had
a log-normal form with a variance σ ≈ 0.35. The mean
value r̄c is the particle size of the corresponding monodisperse
evaluation.

As seen in figure 1, a broadening of the response function
is observed in all cases after the inclusion of polydispersity.
The response no longer has the symmetric Debye form. In
figure 1(a), the peak frequency provides information about the
mean core radius r̄c. The width of the log-normal distribution
often gives rise to a small Brownian peak although r̄c < r∗

and the particles predominantly exhibit Néel relaxation. A
pronounced two-peak response is obtained in figure 1(b) since
r̄c ≈ r∗. Both Néel and Brownian relaxations contribute in
this regime, the latter being the dominant mode. The larger
(Brownian) peak is an indication that a larger number of
particles are primarily undergoing Brownian relaxation. The
frequencies of the peak values yield information about the
average values of core and the hydrodynamic radii r̄c and
r̄h of the particles. Finally, when r̄c > r∗, the Brownian
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relaxation dominates and the frequency corresponding to the
peak provides information regarding the hydrodynamic radius
r̄h of the particle. Comparing figures 1(a) and (c), it is clear that
polydispersity affects Néel relaxation more significantly than
Brownian relaxation as expected (cf equations (2) and (3)).

2.4. Particle size distributions from Cole–Cole plots

The information on distribution of relaxation times can
be obtained from susceptibility measurements by empirical
models. The most frequently used models for this purpose
are the Cole–Cole and the Cole–Davidson models. The Cole–
Cole model is suitable for systems exhibiting a symmetrical
form of χ ′′(ω) about a vertical axis passing through its peak
value [16, 17]. The Cole–Davidson model, on the other hand,
is employed for asymmetrical forms of χ ′′(ω).

As observed in figure 1, the response functions of
typical MNP suspensions are indeed asymmetrical. Therefore,
these can be conveniently represented by the Cole–Davidson
expression for the ac susceptibility [18]:

χ(ω) = χc

(1 + iωτc)β
, (9)

where τc is the central relaxation time about which all the other
relaxation times are distributed and β is a fitting parameter with
limits 0 � β � 1. When β = 1, the above equation reduces
to the Debye form of equation (6) characterized by a single
relaxation time. Separating the real and imaginary parts of
equation (9) results in

χ ′(ω) = χo cos φβ cos βφ (10)

and
χ ′′(ω) = χo cos φβ sin βφ, (11)

where φ = arctan ωτc.
Cole and Cole proposed a method of graphically

representing the effects of multiple relaxation times [16, 17].
The method consists of plotting χ ′′(ω) for a certain frequency
against χ ′(ω) at the same frequency. When β = 1, the
Cole–Cole plot is semicircular. The plot is symmetrical
about the vertical line passing through the point χ ′(ω) =
χo/2 when χ ′′(ω) is maximum at a frequency ω = τ−1

c .
Other values of β yield a ‘skewed arc’ in the Cole–Cole
plots which characterizes the presence of multiple relaxation
times. The parameter β can be determined from the Cole–
Cole plot by a graphical construction. It may also be
determined by the best fits of equations (10) and (11) to the
experimental data.

In figure 2 we show the Cole–Cole plots for the same
polydisperse samples that were used to obtain data of figure 1.
Cases (a), (b) and (c) correspond to r̄c < r∗, r̄c ≈ r∗

and r̄c > r∗, respectively. The skewed arcs observed in
all the cases are a consequence of multiple relaxation times
introduced due to polydispersity in the samples. Further,
the asymmetry in the particle-size distributions is reflected
in the asymmetry of the arcs. The Cole–Cole plots are
distinct in each of the regimes. In particular, the cross-over
regime is characterized by a two-humped form signifying a

0

0.5

  
0

0.5

χ′
′(ω

)

0 0.5 1 1.5
0

0.5

χ′(ω)

(a)

(b)

(c)

β =0.44; τ
c
=2x10 –8 s

β
1
 =0.3; τ

c
1

=2x10–6s

β
2
 =0.13; τ

c
2

=5x10–7s

β = 0.78; τ
c
=0.5x10–6s

Figure 2. Cole–Cole plots (open circles) for data of figure 1 when
(a) r̄c < r∗ and Néel relaxation dominates, (b) r̄c ≈ r∗ and both
Néel and Brownian relaxations contribute and (c) r̄c > r∗ and
Brownian relaxation dominates. The plots exhibit a two-humped
structure when both relaxation times contribute (case b). The β and
the τc values obtained from the Cole–Davidson equations are also
indicated in the figures.

contribution of both Néel and Brownian relaxations to the
response function. Thus, significant information regarding
the experimental sample can be inferred from the Cole–Cole
plots.

We now provide a simple procedure for evaluating the
particle-size distribution P(rc) versus rc in the experimental
sample when the response function exhibits multiple relaxation
times. Assuming a log-normal form, P(rc) versus rc is
characterized by its mean r̄c and variance σ signifying the
spread in the particle-size distributions. While the evaluation
of r̄c is straightforward, the variance σ needs to be estimated.
Recalling that multiple relaxation times are a consequence of
polydispersity, it is imperative to connect β with σ . In order
to find this relationship, we have gone through the following
sequence of steps. Firstly, χ ′(ω) and χ ′′(ω) were evaluated
using equations (7) and (8) for a chosen value of r̄c and σ .
The corresponding values of τc and β were then obtained by
fitting the above susceptibility data with equations (10) and
(11) of the Cole–Davidson model. This procedure was then
repeated for a number of σ values in the range 0.1–0.5, keeping
r̄c constant. Larger values of σ were not considered as they
resulted in extremely broad log-normal distributions which are
not of relevance in experiments. The above evaluation was then
performed for three different values of K . The results obtained
are plotted in figure 3 on a semi-logarithmic scale. The solid
lines follow the equation

σ = A(K)e−Bβ. (12)

The parameters A(K) and B in each case are obtained from
the best fits of the above equation to the evaluated data. We
find that B = 2.45 ± 0.05 and is independent of K . We also
find that equation (12) and the parameter B are unaffected by
r̄c, which was varied from 4 to 12 nm.

4



J. Phys. D: Appl. Phys. 42 (2009) 245006 V Singh et al

0.2 0.6 1.0

10
–1

10
0

β

σ

 

 

k=5X103 Jm–3

k=20X103 Jm–3

k=48X103 Jm–3

Figure 3. Variation of σ as a function of β for three different
anisotropy constants on a semi-logarithmic scale.
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Figure 4. The reconstructed particle-size distribution along with the
particle-size distribution obtained using TEM for comparisons (refer
text in section 2.4 for details).

We test the procedure for extracting particle-size
distribution from the susceptibility data on maghemite
nanoparticle suspensions provided in [14]. From the Cole–
Cole plots of these data, we evaluated the best-fit values
of τc and β. These were found to be 2 × 10−8 s and
0.44, respectively. The average core radius r̄c, evaluated
from τc using equation (2), was found to be 4.2 nm.
The value of σ characterizing the spread of the log-
normal distribution was then obtained using equation (12)
and was found to be 0.36. The reconstructed particle-
size distribution is shown in figure 4. The particle-size
distribution obtained using TEM measurements has also been
provided in the figure for comparisons. In general, we
find that this procedure reproduces the original distributions
rather well when the response function has one dominant
peak, be it in the Néel or in the Brownian relaxation
regime.

3. Clustering in MNP suspensions

The properties of the magnetic fluid are considerably affected
by the aggregation of particles (in spite of surfactant coating)
due to the presence of attractive and repulsive interactions. It is
hence instructive to consider the different interaction energies
in MNP suspensions and understand their interplay which leads
to the formation of aggregates or clusters of different sizes.

3.1. Interactions in MNP suspensions

The primary interaction energies in these systems are
enumerated below [1]:

1. Dipolar interaction. The dipolar interaction energy
between two MNPs, each having a magnetic moment µ is
given by

Ed(s) = − µo

4 π

(
3 µ · (µ · �s)�s

s5
− µ2

s3

)
, (13)

where s is the center-to-center separation between the two
nanoparticles and the permeability of free space µo =
4π × 10−7 H m−1.

2. van der Waal interaction. This arises spontaneously
between neutral particles because of the fluctuating
electric dipolar forces and is attractive in nature. Hamaker
calculated this interaction for identical spheres separated
by a surface-to-surface distance l to be [19]

Ev = A

6

{
2

l2 + 4 l
+

2

(l + 2)2
+ ln

(
l2 + 4l

l2 + 4l + 4

)}
. (14)

In the above equation, the Hamaker constant A =
10−19 N m.

3. Steric interaction. The steric energy comes into play
due to the presence of long chained surfactant molecules
coating the particles. This mechanism prevents the
particles from approaching very close to one another. This
repulsive energy for spherical particles has been calculated
by Papell and is given by [20]

Es = E

1.325

(
2δ − s

2

) 5
2
(rc + δ)

1
2 . (15)

In the above form, E is the Young’s modulus which is
usually of the order of 106 Pa for polymeric matrices and
biological membranes.

Apart from the above interaction energies, the thermal
energy responsible for the Brownian motion of the suspended
particles also plays an important role in the aggregation
dynamics. We expect the thermal degrees of freedom, in
conjunction with steric repulsion, to not only hamper the
aggregation process but also remove particles from the parent
cluster leading to its fragmentation. At this juncture we define
a parameter � as the ratio of energies leading to aggregation
to those which lead to fragmentation as follows:

� = Ed + Ev

Es + kBT
. (16)

It is expected that the distribution of cluster sizes and the
mean-cluster size will be governed by the ratio �. In the
following subsection, we present a model which incorporates
the competing mechanisms of aggregation and fragmentation.

5
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3.2. The aggregation–fragmentation model

The formulation introduced by Smoluchowski is especially
useful to model a suspension of MNPs [21, 22]. To begin
with, we assume that the suspension contains identical, single
particles executing Brownian motion. The latter leads to
aggregation of two particles if they come within an appropriate
range of one another and the net interaction between them
is attractive. The resulting cluster of size two also executes
Brownian motion, but with a reduced diffusion rate till it
encounters a particle or a cluster of particles. The process
goes on and eventually a single large cluster comprising all the
particles is formed. Such a cluster is usually referred to as an
infinite aggregate. In most useful suspensions, however, there
is a distribution of clusters of varying sizes. As discussed in the
preceding subsection, the combined effects of thermal energy
and inter-particle repulsion can introduce fragmentation in the
cluster dynamics thereby preventing the formation of large
aggregates. We thus include this additional mechanism in the
rate equations which describe the evolution of clusters.

Let P(k, t) denote the probability of having a cluster
containing k particles at time t . The time evolution of P(k, t)

is governed by the following rate equations:

∂P (k,t)

∂t
=

∑
i+j=k

Kij P (i,t)P (j,t)−P(k,t)

∞∑
j=1

KkjP (j,t)

+ωP(k+1,t)−ωP(k,t), k>1, (17)

∂P (1,t)

∂t
=−P(1,t)

∞∑
j=1

KkjP (j,t)+ω

∞∑
j=2

P(j,t), k=1.

(18)

In equations (17) and (18), Kij is the aggregation kernel
which describes the coalescence of a cluster containing i

particles with another containing j particles to yield a larger
aggregate comprising k = i + j particles. It is assumed to
have a mass-dependent form defined by Kij = D(i−µ + j−µ)

to take into account the reduced mobility of large clusters.
A value of µ = 0 implies a mass-independent mobility, i.e.
clusters of all sizes diffuse with the same ease. Non-zero
values of µ results in a slower mobility of larger clusters and
consequently a slower growth rate of clusters. In the limit
of µ = ∞, only monomers are mobile. The choice of µ is
dictated by the experimental parameters as we shall see in a
short while. The parameter ω, on the other hand, describes
the loss or fragmentation of a particle from a parent cluster.
The parameters D and ω define the relative strength of the
aggregation and fragmentation processes.

The first and the third terms in equation (17) are referred
to as the gain terms which result in the formation of clusters
of size k. The former describes the aggregation of two
clusters to yield a cluster containing k particles while the latter
describes the generation of a cluster comprising k particles due
to fragmentation of a particle from a cluster of size k + 1. The
second and the fourth terms on the other hand, are referred
to as the loss terms which describe processes leading to loss
of clusters of size k. This could be due to aggregation of a
cluster of size k with another or its fragmentation. The terms

of equation (18) can be interpreted similarly. It is easy to check
that the following sum rule is satisfied:

∂

∂t

( ∞∑
k=1

P(k, t)

)
= 0 or

∞∑
k=1

P(k, t) = 1, (19)

as required by conservation conditions.
The condition ∂P (k, t)/∂t = 0 describes the steady state

which is of interest to us. In the absence of the fragmentation
term, equation (17) reduces to the Smoluchowski equation
describing coagulation phenomena [22]. There have been
a few studies of this model, both analytical and numerical,
to predict scaling forms associated with cluster growth and
cluster-size distributions [23–29]. The growth of clusters with
time is a power governed by the relation 〈k(t)〉 ∼ t z. Choosing
µ = 1, the value of z was estimated to be � 0.5. The steady
state in this model was found to be an infinite (single) aggregate
comprising all the N particles. Note that in the absence of
fragmentation, the constant D can be absorbed by redefining
t as Dt in equation (17), making the latter independent of the
aggregation rate.

To mimic those physical situations which do not have
an infinite aggregate as a steady state but rather have
a distribution of clusters of varying sizes, it is essential
to include fragmentation as a competing mechanism to
aggregation. Of relevance in the context of this study is
the model incorporating mass-independent aggregation and
mass-dependent evaporation processes reported in [27]. The
competition between aggregation and evaporation leads to
several asymptotic outcomes of the steady-state solution of
this model. For instance, if evaporation dominates over
aggregation, the steady-state cluster-size distribution P(k)

versus k decays exponentially. On the other hand, for a critical
evaporation rate, the distribution decays as k−5/2.

3.3. Numerical results

We now solve the set of equations defined by equations (17)
and (18) numerically to obtain the steady-state cluster-size
distribution P(k) versus k. It is useful to define the ratio R

characterizing the relative strengths of the aggregation and
fragmentation mechanisms:

R = D

ω
. (20)

Identifying the physical origin of D in the attractive
interactions between clusters and that of ω in the disordering
agents (such as repulsive interactions and temperature), we
can expect R to have the same qualitative effect as the
ratio � defined in equation (16) on steady-state cluster-size
distributions. We use this correspondence to bring contact
between numerical results and experimental observations on
cluster formation in MNP suspensions.

In figure 5(a), we look at the variation of the mean-cluster
size 〈k(R, t)〉 as a function of t for different values of R on
a double logarithmic scale. The parameter µ was chosen to
be 2.0. After an initial growth period obeying a power law,
the cluster size attains a steady-state value of 〈k(R)〉 due to
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Figure 5. (a) Variation of the mean-cluster size 〈k(R, t)〉 as a
function of time t for µ = 2 and different values of the ratio R
specified in the figure. The inset shows the steady-state value of the
mean-cluster size 〈k(R)〉 as a function of R on a double logarithmic
scale. The best-fit line to data has a slope 0.85 ± 0.02, respectively.
(b) Scaled data of (a) with the scaled axes as indicated in the figure.
The initial growth of clusters obeys a power law characterized by
the exponent z = 0.38 ± 0.02. Similar data corresponding to µ = 1
are also indicated in the inset. For these data, the growth exponent
z = 0.78 ± 0.02 as indicated.

the competing mechanisms of aggregation and fragmentation.
As expected, 〈k(R)〉 increases with increasing values of R.
In fact, we find that 〈k(R)〉 ∼ Rα with α = 0.85 ± 0.02 as
can be seen in the inset. Further, in the diffusion-dominated
regime (R � 0.5) the data in figure 5(a) can be scaled by
replotting 〈k(R, t)〉/〈k(R)〉 versus t/ts where ts is the time
taken to attain the steady state. The initial cluster growth is
of the form 〈k(t)〉 ∼ t z. We find that the growth exponent
z = 0.38 ± 0.02. The scaled data are shown in figure 5(b) on
a double logarithmic scale. The best-fit line with a slope of
0.38 is also indicated. The value of the growth exponent also
depends upon the value of µ. For µ = 1.0, our simulations
yield z = 0.78 ± 0.02. The corresponding scaled data and the
power law fit are also shown in the inset of figure 5(b). The
faster growth of clusters is a consequence of increased mobility
due to a lower value of µ.

Next in figure 6(a) we plot the steady-state distribution
P(k) versus k corresponding to µ = 2 for the same set of
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Figure 6. (a) Steady-state distribution P(k) versus k for µ = 2 for
indicated values of ratio R. (b) Scaled data of (a) with the scaled
axis as indicated in the figure.

R values considered above. We find that the tails of the
distributions fit well to a power law in k. In figure 6(b),
we plot 〈k(R)〉P(k) verus k/〈k(R)〉 where 〈k(R)〉 is the
steady-state average cluster size for the corresponding value
of R. These plots indicate that the distribution functions
P(k) corresponding to different values of R obey scaling in
the diffusion-dominated regime. The scaling relation can be
summarized in the following equation:

P(k) = 1

〈k(R)〉f
(

k

〈k(R)〉
)

, 〈k(R)〉 ∼ Rα. (21)

3.4. Comparisons with experimental data

We now compare our simulation results with the experimental
data on average cluster sizes in a variety of MNP suspensions.
Eberbeck et al studied the aggregation of various MNPs
in a variety of media such as water, phosphate buffered
saline, calf serum, bovine serum and human serum [30, 31].
The experimental measurements were performed at room
temperature. In all cases, formation of dimers and trimers
were reported by the authors. To make comparisons with the
simulation results of our model, we first calculate the ratio �
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Table 2. Calculated value of the ratio � and the corresponding
estimated value of the cluster size for a variety of MNP used in
experiments by Eberbeck et al [30, 31]. The experimental
parameters associated with each sample are also specified.

MNP sample Core Shell � 〈k〉
DDN128 Fe3O4 carboxydextran 0.5364 2.3
FluidMagD5 Fe3O4 starch 0.36 2.0
MagBSA Fe3O4 BSA 0.676 2.5
Resovist Fe3O4 Carboydextran 0.51 2.4
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Figure 7. Data from [8] on average chain length as a function of
time for different volume fractions replotted on scaled axes as shown
in the figure. The solid line corresponds to a slope of 0.78 obtained
from a numerical solution of the aggregation–fragmentation model
with µ = 1 (refer the inset of figure 5(b) and corresponding text).

defined in equation (16) for each of the samples. These along
with the sample specifications are tabulated in table 2. As can
be seen in column 4, � is in the range 0.35–0.70. Referring to
the plot of 〈k(R)〉 versus R for µ = 2 in the inset of figure 5(a),
a value of R in the above range yields dimers and trimers in
the steady state.

A set of experimental measurements which we find
especially relevant in the context of the aggregation–
fragmentation model are reported in [8]. In this paper, the
authors have studied aggregation dynamics in very dilute
emulsions of ferrofluid droplets in water. The ferrofluid
droplets were small Fe3O4 grains in kerosene coated with a
surfactant to prevent agglomeration. The data on average chain
lengths as a function of time for different volume fractions and
applied fields were obtained using dynamic light scattering
experiments. We reproduce a scaled form of these data in
figure 7. On the x-axis, we plot t/ts, where ts is the time taken
to reach the steady-state value of the average cluster. The
y-axis has been scaled by the steady-state value of the average
chain length. The unscaled data are also provided in the inset
for reference. As can be observed in figure 7, the scaled form
(as well as the unscaled form) of the experimental data bears
a qualitative resemblance to figure 5(b) which results from the
numerical solution of the aggregation–fragmentation model
defined by equations (17) and (18). The slow initial growth,
the power law form at intermediate times and saturation to a

steady-state value as time progresses are borne by both sets
of data.

On the quantitative side, we find that the experimental data
are well represented by a growth exponent z = 0.78 ± 0.02
obtained with µ = 1 in our simulations. The corresponding
line is depicted in figure 7. It is pertinent to recall here that
the dipolar interaction becomes dominant in the presence of
the applied magnetic field thereby increasing the diffussivity
of the clusters. In the aggregation–fragmentation model, the
latter can be achieved by an increase in the value D as well
as a decrease in the value of µ. Consequently, we find that
our data on 〈k(R, t)〉 versus t for a value of µ = 1 rather than
µ = 2 results in accurate comparisons with the experimental
data. We note here that theoretical studies on systems of this
kind were so far based on Smoluchowski kinetic equations
for irreversible aggregation [23, 24]. However, the observed
growth exponent does not conform with the predicted value of
z = 0.5 (also obtained with µ = 1) of this model.

A similar set of experimental results were obtained in
[9] where the power law prediction for cluster growth was
checked by performing a large number of experiments on
aqueous solutions of super paramagnetic polystyrene beads
having a uniform distribution of Fe3O4 particles. The data
were obtained for five values of the volume fraction in the
presence of low field strengths and higher field strength
using optical microscopy. The exponent z describing the
cluster growth in these studies was found to be much larger
than the predicted value of 0.5 especially for small volume
fractions and low field strengths. These observations further
reiterate the appropriateness of introducing fragmentation
along with aggregation especially in the above limits
where the thermal energy plays a significant role in the
dynamics.

4. Summary

We conclude this paper with a summary of results presented
here. Our main interest was to understand the factors governing
the dynamical response of suspensions of single-domain
MNPs. Such an understanding introduces the possibility of
synthesizing particles with application tailored response times.
The effect of sample parameters on the Néel and Brownian
relaxation times which characterize the response was studied.
Amongst all the parameters of relevance, the anisotropy of the
constituting material and the particle size alter the relaxation
time most significantly. In fact, the dominant relaxation time
is also decided primarily by the particle size. We also studied
how these parameters affect the ac susceptibility χ(ω) which is
the most commonly studied response function in the laboratory.
This understanding proves to be useful in estimating relaxation
times as well as sample parameters from the measurement of
χ(ω) in the laboratory.

We have then studied the effect of polydispersity, an
inherent feature of all samples on the response characteristics.
These exhibit significant changes due to the strong dependence
of relaxation times on particle sizes. The primary effect is
the broadening of response functions and in some cases the
latter exhibits a two peaked structure. We have also worked
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out a procedure to obtain the particle-size distribution from
χ(ω) using Cole–Cole plots and the analysis of Cole and
Davidson. This provides an alternative procedure to TEM
analysis which is usually employed to obtain particle-size
distributions.

The above studies assumed a single-particle model
applicable to dilute suspensions. However, in many cases
the inter-particle interactions cannot be ignored. Clustering
of particles is inevitable in such suspensions. While the
formation of clusters is undesirable in some applications,
it is beneficial in many others. Hence, we have tried to
understand the mechanisms responsible for clustering and
the experimental parameters which govern the properties of
cluster-size distribution and the average cluster size. This
knowledge is useful for the synthesis of application tailored
suspensions.

A model incorporating the phenomena of aggregation and
fragmentation was used to understand aspects of clustering.
The steady-state cluster-size distributions of the model were
obtained by numerically solving the rate equations describing
the evolution of clusters. We have obtained scaling forms for
the cluster-size distributions and the average cluster size. Our
results agree well with experiments where clustering or chain
formation has been observed.

An interesting extension of this work is to small
ferromagnetic particles with an antiferromagnetic coating
which have recently generated considerable research interest
[32–34]. The resulting ferromagnetic–antiferromagnetic
interfaces, under suitable experimental conditions, yield
an anisotropy referred to as exchange bias. The
latter results in locking of the magnetic moment of
the superparamagnetic particle. As a result, we can
expect the relaxation behaviour of these particles to be
quite different from that of superparamagnetic particles
considered in this paper. At present, we are attempting to
develop a theoretical framework to understand the response
behaviour of a suspension MNPs with exchange bias. We
believe that it will be possible to formulate the necessary
arguments.
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