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Theory of averaged low energy electron diffraction data 
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MS received 19 May 1972 

Abstract. Recent work by Lagally, Ngoc and Webb has shown that averaged LEED spectra 
can be fitted with good accuracy by a curve of kinematic form. However, theoretical argu- 
ments show that a true kinematic average is impossible. The paradox is resolved by a new 
theory which shows that averages have a quasi-kinematic form with parameters different 
from those of the true kinematic theory. Some of the new parameters can be simply related 
to old ones, but others involve complicated corrections. Finally second order averaging 
schemes are proposed whereby more information can be extracted from experiments. 

1. Introduction 

Intensity/energy measurements made on electrons diffracted from a crystal surface have 
their form determined primarily by the scattering of ion cores immersed in a uniformly 
absorbing medium (the ion-core scattering model: Capart 1971, Jepsen et al 1971, 
Pendry 1969b, 1971% Strozier and Jones 1971). Sensitivity to ion cores and their posi- 
tions, especially those near the surface, maltes LEED a useful tool for structural investiga- 
tions. 

The simplest theories of LEED took their cue from x ray work, and assumed that ion- 
core scattering is weak, so that the wavefield incident on an atom is determined primarily 
by the original beam. 

exp ( i P  . v )  

where 

E is the energy of the incident electron relative to the vacuum, and V, is the ‘inner 
potential’ correction to take account of the lower potential energy inside the crystal. In 
the kinematic theory it is equal to the constant potential in between the ion cores, V,. 
V, also contains an imaginary component to reproduce effects of absorption of electrons. 

We wish to set down some important results of kinematic theory. Each ion core 
scatters the incident beam in a manner determined by the phase shifts. The jth ion core 
in the pth layer scatters a wave that far from the ion core is given by 
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where 

277 j0  T(6'(s)) = - __ 
IK(S)I 

(21 + 1) exp (is,) sin (6,) P,  (cos (6'cs))) (3) 

IK(S)12 = 2E - 2V0 (4) 
is the angle through which the electron is scattered and v j p  is the position of the j th 

ion core in the pth layer. Summing over all ion cores in a single layer parallel to the surface, 
and re-expressing the result in terms of diffracted beams, each differing from the 
incident beam in momentum parallel to the surface by a two dimensional reciprocal 
lattice vector of the surface, g, gives: 

vp is the coordinate of the ion core at the origin in the pth layer; Q, the area of unit cell 
of the layer and 6' the angle between K ( O )  and K ; .  

If each successive layer is displaced relative to its predecessor by a distance c, the 
pth layer has 

Yp = ( p  + t ) c  (8) 
Substituting for vp  into (5) and summing the diffracted amplitudes of all layers gives for 
the diffracted amplitude 

(9) is the famous kinematic expression for diffracted amplitudes. It has maxima when 
the Bragg condition is satisfied, 

real part ( S .  c )  = 277 x integer 

s = K(0)  - K -  
(10) 

(11) 

Absorption gives the scattering vector, S, an imaginary component preventing equation 
9 from becoming singular when the Bragg condition is satisfied. 

It is unfortunate that equation 9 does not describe the process of diffraction in most 
real crystals with any accuracy. It has the virtue of being a relatively simple expression for 
the reflected amplitudes, compared with the complexities of theories taking into account 
multiple rather than only single scattering events: Beeby (1968) Duke and Tucker (1969), 
Duke et al (1970), Kambe (19679, b), Jepsen et al (1971), McRae (1966, 1968a, b), Pendry 
(1969a, 1971b), Strozier and Jones (1971), Watts (1968). In consequence it is much more 
flexible from the point of view of computational simplicity. This is an important advantage 
for example in determining a complicated surface structure that can stretch the more 
sophisticated theories to the computational limit and beyond. 

The whole objective of averaging methods (Lagally et al 1971, Tucker and Duke 
1972) is to extract from complicated experimental curves requirhg multiple scattering 
theory to interpret them the simple easily interpreted kinematic component. 
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Condition (lo), for the occurrence of a maximum in the kinematic expression, 
depends only on ( K ' O )  - K ; )  . c not upon K(") and K ;  separately. This fact led Lagally 
et al to suggest that if an average of experimental results is taken over all possible values 
of K(O), keeping S . c  fixed, and plotted for several values of S . c ,  then the resulting 
function of S. c will have a kinematic form. The assumption is that multiple scattering 
acts so as to increase intensities above the kinematic value, as often as to decrease them, 
and to displace peaks as often to higher as to lower energies. Extra peaks introduced by 
multiple scattering mechanisms are assumed to be as likely to occur for one value of 
S .  c as another, and average to give a uniform background in the curves as a function 
of s. c. 

s.c lS@C 

Figure 1. Full curve, experimental average at constant S. c of 00 beam intensities from a 
nickel 111 surface. Broken curve, calculated kinehatic average using V,, = - 18 eV and 
V,, = -9 eV. The intensities are normalized at S.c S,.c = 5 .  After Lagally et al. 

Lagally et a1 (1972) have carried out this procedure for diffraction from a 111 nickel 
surface and their results are reproduced in figure 1. The theoretical curve is an average 
of kinematic calculations taken under the same circumstances as the experimental 
curves. Effectively, Vo was used as a parameter in the kinematic curves. It is clear that the 
experimental averages follow the kinematic curves very closely even allowing for the 
fact that the theoretical curve has been adjusted in intensity. 

There is one paradox that we shall come back to later: Voi, the parameter representing 
absorptive processes has to be chosen to be -9 eV to fit the experimental curves. This 
value is more than twice as large as the value of Voi = -4 eV deduced by comparing 
exact multiple scattering calculations in the same energy range with the unaveraged 
data (Pendry and Andersson 1972). 

2. Systematic effects 

We have already observed that an assumption of kinematic averaged data presupposes 
that features of the diffracted intensities are influenced in a random fashion by multiple 
scattering. There must be no systematic effects because these will not average to zero. 
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In this section we want to draw attention to a paradox. On the one hand the experi- 
mental results of Lagally et a1 clearly indicate that a curve of kinematic form fits the 
averaged data. On the other hand systematic effects do OCCUT in three separate quantities 
thus excluding the possibility of averaged curves being truly kinematic. 

2.1. intensities of peaks 

It is not the case that multiple scattering acts to increase intensities as many times as to  
decrease them. There are several processes which work systematically to decrease 
intensities. 

When multiple scattering is strong the electron pursues a much more tortuous path 
than in the kinematic case. Because electrons making up a multiple scattering spectrum 
have travelled a much longer path length in the crystal the effect of absorption is greatly 
increased. Figure 2 shows the decay of electron density in a beam incident on a crystal 
surface, for a multiple scattering and for a kinematic calculation at 300 K. It is clear that 
much more absorption is taking place in the multiple scattering calculation. Thus spectra 
are systematically reduced in intensity by multiple scattering effects. 

0 5 I O  
Number  of  layers 

Figure 2. Density of incident electrons normal incidence on a copper 100 surface E = 

150eV, V,, = -15 eV, V,, = -4eV Full curve, kinematic theory broken curve, multiple 
scattering theory T = 300 K 

Suppose that a Bragg peak is formed in the 00 beam. As the intense back reflected 
00 beam travels out of the crystal into the vacuum some of its intensity can be transferred 
by multiple scattering to other beams, a phenomenon known as beam sharing. 

There is a third effect, related to the last one : again suppose that the incident beam is 
being Bragg reflected into the 00 beam. Flux is multiply scattered out of the incident 
beam into other beams not necessarily in a Bragg reflecting condition, and flux is lost 
to the intensity of the peak in the 00 beam. 

So there are three effects which combine to reduce multiple scattering curves (ie the 
experimental ones) below the kinematic ones. Therefore the experimental average will 
have considerably less intensity than the kinematic result. 



Theory of averaged L E E D  data 2571 

2.2. Peak positions 

Multiple scattering peaks do not coincide with Bragg peaks in general. Multiple scattering 
pushes peaks away from the Bragg condition and we must assume that there is no 
systematic displacement of peaks to retrieve the proper average. In fact multiple scattering 
by the ion cores can shift peak positions systematically. For example in high energy 
electron diffraction (Hirsch et a1 1965) the ion cores behave as attractive potentials and 
in scattering the electrons lower their potential energy. The effect varies with incident 
energy and makes a contribution to the ‘energy dependent inner potential’. 

2.3. Wdths  of peaks 

It has been shown (Pendry 196913,1972, Anderson 1970) that peak widths in LEED spectra 
are limited by the amount of absorption taking place inside the crystal. 

The inequality is 

AE > 2VOi (12) 

and is valid for both multiple scattering and kinematic theories. In the case of kinematic 
spectra the limiting width is achieved as can be shown from equation 9. No peaks are 
narrower than kinematic peaks. 

Averaging a series of peaks, some displaced up in energy and some displaced down, 
must give an averaged peak that is wider than the original peaks by something like the 
average displacement of the peaks. Since it is known as an experimental fact that peaks are 
often displaced from the kinematic positions by large amounts, it follows that widths of 
averaged peaks will be much broader than those of true kinematic peaks. This result is 
reflected in the fact that Lagally et a1 needed to use a much larger value of Voi to reproduce 
widths of averaged peaks (Voi = -9 eV) than the true value of Voi = -4 eV. 

Thus several systematic effects can be pinpointed, spoiling the validity of the kinematic 
averaging postulate. Nevertheless it is true that averaged peaks do have a kinematic 
form as figure 1 makes clear. The only conclusion open to us is that parameters used in 
a kinematic-like tit to averaged data do not correspond directly with those of the true 
kinematic theory. Averaged intensities are said to be quasi-kinematic. 

3. Quasi-kinematic intensities 

In several theories of LEED it is usual to divide up the crystal into layers of ion cores 
parallel to the surface. Then multiple scattering events fall into two classes: those taking 
place consecutively within a single layer, and those that scatter between layers. Let us 
neglect for the moment multiple scattering within a single layer. 

In 5 1 we saw how to calculate single scattering events. The incident wave propagates 
to the pth layer (factor of exp (iK‘O). r,)) is back-scattered there through an angle 0 into 
another beam (--i7’(0)/C&~~) and propagates to point r (exp {iK;(r - r,)}) ,  the total 
being given in equation 9. Representing propagation by lines and scattering by dots we 
draw the kinematic process schematically in figure 3. 

There are other contributions to the scattered amplitude, for example by propagation 
to the pth plane (factor of exp(iK(O). r,))  scattering there through angle 0 into another 
forward travelling beam ( -  iT(Op2KO) propagation to the qth layer (exp [Xi . (rq - r , ) ] )  
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Figure 3. Contributions to kinematic amplitudes. 

and scattering through angle 8' into a backward travelling beam ( -iT(O')/Q2rcg,) and 
finally propagation to point Y (exp {X; . (Y, Y,)}) giving a total 

Several processes of this nature are shown in figure 4. 

Figure 4. Some contributions to multiple scattering. 

Spectra taken at a given direction of incidence will contain contributions to diffracted 
intensities from both processes mentioned, and from others as well. Applying the 
expression (13) and equation 8 for rq it will be seen that processes shown in figure 4 sum 
to give maxima when 

( K :  - K ; )  . c = S' .  c = 2n x integer (14) 
in contrast with the kinematic condition 

(K(O) - K ; ) .  c = S .  c = 2n x integer 

When angles of incidence are changed, keeping S. c constant, S'. c will not be constant 
and secondary peaks caused by the processes of figure 4 will change their positions, and 
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any interference terms between kinematic and secondary processes are changed too. 
Averaging over many angles of incidence and plotting the results as a function of S. c 
gives a uniform background from secondary contributions plus the kinematic peak that 
always occurs at the same value of S. c. Interference terms will average to zero. 

The whole argument hinges on conditions for peaks caused by higher order scattering 
processes depending on variables other than S . c  so that after averaging, multiple 
scattering peaks contribute only to the uniform background. Any higher order diagrams 
producing peaks at the kinematic condition spoil the kinematic nature of the average. 

Figure 5. Zero angle scattering contributions to quasi-kinematic amplitudes. 

There are several sets of diagrams that do just this. In figure 5 are shown a series of 
processes in which at all scattering events except one the electron is scattered through 
zero angle. Therefore it follows the same path through the crystal as the kinematic beam 
and therefore peaks depend on S . c ,  and will make a contribution to structure in the 
averaged data. When making a theory of averaged data the diagrams of figure 5 must 
be included. 

Fortunately zero angle scattering can be taken account of in a simple manner. First 
we observe that potentials constant over the entire unit cell are the only ones that produce 
zero angle, but no other, scattering. If a constant potential V, exists in each unit cell, 
the scattering produced per unit cell is 

Rv, (15) 
where R is the volume of the unit cell. On the other hand each ion in the unit cell con- 
tributes t(0) to zero angle scattering. Taking the case of one ion per unit cell we have 

v, = t(O)/R (16) 
If more than one ion were present in the unit cell, t(0) would be replaced by a sum over 
the t(0) for each separate ion. 

Thus our prescription for taking account of zero angle scattering contributions to  
the average is to add to the self energy of the electron, V,, the term, V,, and then calculate 
the kinematic average using this modified self energy in place of V,. Equations 6 and 7 
must then be rewritten 

K, = + (2E - 2V0 - 2 6  - IK\p" + g / 2 ) 1 ' 2  

K:' = [(q?)' + g I x ,  (qp" -I- g I y ,  K $ ]  (18) 

(17) 
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and K(')' itself satisfies 

/K""I2 = 2E - 2V 0 - 2V f 

The new average, using kinematic theory with modified parameters, is referred to as 
a quasi-kinematic average. 

Modification of Vo by V, meets many of the objections raised in $2. The real part 
of V, shifts the kinematic peaks in energy thus correcting for the general lowering (or 
raising) of inner potential caused by ion core scattering, and meeting the objection of 
$2.2. The imaginary part of V, produces more absorption thus reducing intensities 
(obiection of $2.1) and, through equation 12, increasing peak widths (objection of $2.3). 

The physical interpretation of this term is that V,i is given from (16) by the imaginary 
part of the zero angle scattering, which from the optical theorem gives the total elastic 
scattering by the ion core. This term takes account of all flux removed from the kinematic 
beam by multiple scattering, and therefore effectively lost to the kinematic process. 

- 2  O\ 5 

Figure 6. Corrections to the self energy m nickel from zero ,Ingle scattering +real part 
++ imaginary part 

Using equations 3 and 16 it is easy to calculate V, directly from the phase shifts. In 
figure 6 we show V, evaluated in this way for nickel-ion cores, as a function of incident 
energy. Corrections to the real part of the self energy are of the order of 2-3 eV, and those 
to the imaginary part, fairly constant at 4-5 eV. Lagally et al found that their best value 
for the inner potential was - 18 eV. From comparison of band structure calculations 
for nickel with work function data (Pendry and Anderson 1972) Vor is found to be - 18 
eV for incident energies below 100 eV. There is some evidence from multiple scattering 
LEED calculations for a reduction in magnitude of Vor above 100 eV. Thus Vor + V,, 
varies from - 17 to -21 eV over the range of averaging of the experimental data of 
Lagally et al, in reasonable agreement with their inner potential. In fitting the averaged 
data with a kinematic curve Lagally et a1 found it necessary to use an extinction distance 
inside the crystal corresponding to an imaginary part of the self energy of -9 eV. This 
value is to be compared with a value of Voi of -4 eV, found by fitting exact calculations. 
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A 

150 160 I70  180 I 9 0  200 

Figure 7 .  Calculations of the 00 beam for normal incidence on a nickel 100 surface at 7 = 0 K :  
8 kinematic theory using V,, = -18 eV, Voi = -4eV;  * quasi-kinematic theory using 
V” + v,. 

to experiment, plus Ki = -5 eV giving -9 eV in good agreement with Lagally’s value. 
Note the importance of including 

In figure 7 we present calculations of kinematic and quasi-kinematic intensities to  
point to the differences that V, produces in spectra. Intensities are much lower and peak 
widths broader. 

in this last expression. 

4. Extracting more information from averaging 

One of the disadvantages of averaging is that it throws away a lot of structure in spectra, 
containing information that may be of use. For example the processes shown in figure 4 
averaged for constant S . c give a uniform background as a function of S .  c from which no 
structural information is available. 

The expression (13) gives the amplitude of one of the processes in figure 4. The sum 
over all processes has a peak in intensity when S’. c not S. c satisfies a Bragg condition 
(equation 14). That is why averaging at constant S .  c gives a uniform background. If 
instead a new sort of average is taken keeping S’. c constant, the processes of figure 4 
will give rise to structure in the new average. Such an average could be called a ‘second 
order average’. It corresponds to averaging one reflected beam whilst keeping the 
scattering vector for some other beam constant. 

In this way much more useful information could be extracted from the beams than 
by the simple first order averaging procedures. Of course, the theoretical second order 
average is a little more difficult to calculate than the kinematic average, but not so much 
so as to lose all advantages of simplicity over a full multiple scattering theory. 

It remains to be seen whether averaging procedures are sensitive enough to detect 
structure in second and even in higher order averages. Such averages would be useful in 
treating structure in extra beams introduced by an overlayer on the surface. Most of 
the detailed structure in these beams is caused by second order processes involving 
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scattering by both the overlayer and the substrate. Only second order averaging can pick 
out such structure. 

5.  Further corrections 

Zero angle scattering is not the only process that modifies the kinematic nature of 
averaged peaks. There are some contributions from multiple scattering within a layer. 

The kinematic expression (5) for scattering through angle 8 from beam K'O) to beam 
K ;  is 

2n 
T(e) = - __ C (21 + 1) exp (id,) sin (6,) PI  (cos (e))  FO)/ I = O  

?- m + I  

x - "(Q(zP)))( - )" (20) 
where Q(K; )  is the angular direction of K ; .  Beeby (1968) has shown how to take account 
of multiple scattering within a layer to give TJB). Using Pendry's (1971a) notation 

x { 1 + x + X' + . . .)lm,l,m,{( i)"(-)m'&...m,(a(K'o)))} (21) 
If only the zeroth power of X is included, (21) reduces to (20). The nth power of X includes 
nth order scattering processes within the layer. 

Once more we must beware of terms producing peaks in intensity at the kinematic 
condition. Many multiple scattering events within a layer do average away to a constant 
background but terms which do not can be identified. Figure 8 shows a series of such 

( 0 )  ( 6 )  

Figure 8. Corrections to amplitudes of quasi-kinematic peaks ( U )  from intralayer. (b) from 
interlayer, multiple scattering. 
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terms. Scattering from one atom to another in the layer is shown by a loop beginning and 
ending in the layer. After being scattered twice in the first layer, the beam emerges to be 
diffracted kinematically subsequently. The loop provides a factor that is the same for 
all terms in figure 8a. On changing angles of incidence and energy but keeping only the 
scattering vector S . c  constant, the factor for the loops will change and in this way 
interference effects with other processes average to zero. But the intensity peaks from 
this set of terms do not average to a uniform background. Each term differs from the 
others in the same manner as a kinematic term and therefore the terms add coherently 
at the kinematic condition. 

In addition the averages of these terms must be corrected for zero angle scattering. 
They add to the intensities of peaks in the averaged spectra, but since their contributions 
have the same widths (determined by Voi + Ki) and shape as kinematic peaks, do not 
distort the shape or change the positions of the averaged peaks. 

Multiple scattering within a layer is not the only process that can add to strengths 
of averaged peaks. The processes in figure 8b involving multiple scattering between 
layers make contributions similar to those of 8a. It is not hard to think of many more 
diagrams that produce averaged peaks at the kinematic condition. 

It is possible to make corrections for these terms but since this involves taking detailed 
account of certain multiple scattering processes, the simplicity of kinematic theory is 
lost and the whole point of averaging removed. 

Under certain circumstances there is some hope that corrections other than those 
from zero angle scattering (these are always large) will be small. Contributions of the 
type shown in figure 8n will be small if the electron scatters into the layer only weakly. At 
normal incidence when the temperature is high it is reasonable to suppose that the two 
scatterings through 90" involved will have small amplitudes and can be neglected to  
a first approximation. It can also be argued that contributions shown in figure 8b are 
relatively weak because two layers have to be penetrated before any back-reflection 
takes place. 

Consequently to eliminate these processes so far as possible we would recommend 
that experiments are performed at high temperatures and averages made over angles of 
incidence not too far from the normal. 

Nevertheless there must still remain some doubt about these additional contribu- 
tions to averaged data. It seems that the corrections for zero angle scattering enable 
us to find the parameters for inner potential (Vor + Vft) and absorption (Voi + Ki) in 
quasi-kinematic calculations, but the effective scattering factors, giving intensities of 
the averaged peaks, involve complicated contributions from processes outlined above. 

It is clear that some extension of this theory must be made to find a simple way of 
calculating effective scattering factors in order that the averaging technique can be 
applied with confidence to structural determinations. 
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