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Abstract. Following a Migdal-Kadanoff-type bond moving procedure, we derive the renor- 
malisation-group equations for the characteristic function of the full probability distribution 
of resistance (conductance) of a three-dimensional disordered system. The resulting recur- 
sion relations for the first two cumulants, K, the mean resistance and K ~ ,  the mean- 
square deviation of resistance exhibit a mobility edge dominated by large dispersion, i.e., 
K $ ’ ~ / K ,  = 1, suggesting inadequacy of the one-parameter scaling ansatz. 

The non-self-averaging nature of the quantum ohmic resistance of a disordered 1- 
dimensional resistor has been the subject of several recent investigations (Abrikosov 
1981, Mel’nikov 1980, Kumar 1985, Kumar and Mello 1985). These statistical fluctu- 
ations of residual resistance over the ensemble of macroscopically identical samples have 
been treated exactly for a strictly 1-dimensional system, i.e., for the 1-dimensional 1- 
channel case. But the results can presumably be generalised to the case of a physically 
thin wire that should correspond to the 1-dimensional n-channel case, with large n. It is 
the series randomness of 1-space dimensionality that seems to be the determining 
property. However, the question as to whether or not these fluctuations get harnessed 
by the multiple connectivity of higher space dimensions (d > 1) is still open, and may be 
crucial to the proper understanding of the physics at the mobility edge. Indeed, the 
results of the recent numerical analysis on a finite 3-dimensional lattice with off-diagonal 
disorder show a large dispersion of physical quantities such as the conductivity and the 
participation ratio at the mobility edge, indicating a breakdown of the ansatz of one- 
parameter scaling (Ioffe et a1 1985) suggested earlier by Abrahams et a1 (1979). This has 
prompted us to report some of our recent analytical results on this problem that lend 
support to this conclusion. We find that for the 3-dimensional case with extremely 
anisotropic disorder, the variance dominates the mean value of resistance on the insu- 
lating side of the mobility edge as expected. But on the ‘metallic’ side too the mean 
resistance and its dispersion remain comparable, even in the infinite-sample limit. We 
call this the “eta-metallic’ phase. The full probability distribution of resistance in this 
case has no non-trivial unstable fixed point. For the isotropic case we do have an unstable 
fixed point for the full distribution (the mobility edge) but that too is dominated by 
dispersion. 

Our starting point is the evolution equation for the probability distribution 
WF) ( p ,  I) of resistance p of a 1-dimensional disordered resistor of length I (Kumar 1985), 
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Here, the resistance p is measured in units of nfi/e2 and the length I in units of a 
microscopic length, namely the backscatter mean-free path calculated in the Born 
approximation. Defining the associated moment generating function # ( x ,  l) and the 
characteristic function (the cumulant generating function, or the 'free energy') 
K r ) ( x ,  I )  as 

e-"PW(d)(p, 1) d p  

we readily derive from (1) 

and 

We have in particular for the first moment py), (Fcumulant K:')) 

(3) p ( l )  E (p( l ) )  E = 1 21 
1 1 s(e - 11, 

where (. . .) denotes the ensemble average. 
Consider now a d-dimensional hypercubic lattice each site of which is occupied by a 

random 'elementary' scatterer with 2d incoming and 2d outgoing channels. Following 
Shapiro (1982), we partition the lattice into equal hypercubic blocks of edge b (the 
scale factor). The Migdal-Kadanoff procedure now involves singling out arbitrarily the 
direction of current flow and then cutting the bonds in the (d - 1) transverse directions. 
Thus each block now consists of b(d - l )  chains in parallel, each chain b scatterers long. 
Proceeding as in Shapiro (1982) but with a difference now that for a given realisation of 
randomness each chain has a different resistance in general, we can write for a block 

b(d -1 )  

where pj"(b) is the resistance of the ith 1-dimensional chain of length b in the d- 
dimensional block and ~ ( ~ ) ( b )  is the resultant block resistance. 

We will first consider the relatively simple, albeit somewhat unrealistic case of 
extreme anisotropy wherein the randomness evolves only along the chosen direction of 
current flow. For this case, we have p/"(b) = p(')(b) (independent of the chain index i) 
and the law of harmonic combination in (4a) simplifies to 

(4b) 

( 5 )  

p"f)(b) = b(d-l)p( l ) (b)  

giving 

x ( ~ ) ( x ,  b )  = (exp( - x b ( d - l ) p ( l ) ( b ) ) ) .  

To derive the recursion relation for the probability distribution in the differential form, 
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we set the scale factor b = 1 + d p and let d[+ O+.  We get at once 

Here (ax!)/al) ,  now signifies (ax!)/al) as given by ( 2 b ) ,  but with xg) on the right-hand 
side of (2b )  re-interpreted as xLd) in the sense of iteration. Here 1 is the actual size of the 
block at the present stage of length scaling. Also we have recalled the iterational relations 
d l  = 1 d 5 (or 5 = In 1 ) .  Here pf is the mean resistance of the block at the present length 
scale. 

From ( 2 b ) ,  (2c)  and (6), we get the equation for the cumulant generating function 

- - 9 - = - ( d - l ) x - + 1 [ X 2 -  a K ( d )  a KF) a 2  KIP, 
a In1 ax a x 2  

This equation contains full information on the problem in question. The fixed points of 
the probability distribution, if any, are obtained by setting a KY) /d  In 1 = 0. The resulting 
second-order differential equation in x as independent variable is to be solved subject 
to the boundary conditions K f ) ( x  = 0, I )  = 0 and ( - a K f ) ( x ,  l ) / dx ) ,= ,  = KY)  ( s p y ) ,  
the mean resistance). The solution, however, also contains pi"' parametrically and the 
probability distribution so obtained must, therefore, reproduce p'p) self-consistently . 
This fixes the value pi"' as the fixed-point. More explicitly, we obtain from (7)  the 
equations for the first two cumulants by series expansion of KLd) on both sides of (7) in 
powers of x and equating the coefficients of x and x 2 .  We get 

Equation (8) is, of course, the same as the one obtained by Shapiro (his equation (4), 
the unit of resistoner being 2nfi/e2 and not nh/e2 as here). The new information about 
dispersion is contained in (9). Straightforward analysis shows that for d = 3, 
( a d d ) / a  In 1) = 0 gives pid)* = 1.96 which together with ( a ~ f $ ) / a  In I )  = 0 gives KY)' 
< 0 indicating that there is no non-trivial fixed for the full distribution! However, it is 
readily seen that for pi"' > p',"', both the average resistance (~(1:) and its variance 
( K $ ) ) ~ / ~  grow with the size 1 leading to the insulating phase with the variance expo- 
nentially dominating the mean value. More interestin ly, for p y )  <,pi"* both the mean 
and the variance flow to the 'metallic' fixed-point ~ b *  = 0 = K;: . In this regime we 
have IC!:, K:: 

'P 

1 and (8) and (9) lead to 

This gives (d In Kjdd2/d In K : ) ) ) = ~  = 1 showing that the mean and the variance remain 
comparable in the metallic regime even in the infinite-sample limit. For this reason we 
prefer the term 'metal-metallic' for this phase. 
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We now pass on to the physically more relevant case of isotropic disorder. Here the 
equation (4a) must be retained as such since p/ ’ ) (b) ,  for i  = 1, 2, 3, , . . t h d - l ) ,  are no 
longer equal, but identically distributed independent random variables. It is convenient 
to re-write (4a) in terms of the conductance ( g / ” ) ,  rather than the resistances ( p / ’ ) ) ,  as 

b ( d - 1 )  

g(d)(6) = g;’)(b). (12) 
i =  1 

Correspondingly, we can re-write our starting equation (1) in terms of Wf)(g, r)  and 
proceed as before. There is, however, a technical problem arising from the circumstance 
that WF)(g, 1) associated with (1) gives infinite algebraic moments g” = (g”) for v > 4. 
While in principle one could still carry out the above programme, as the associated 
cumulant generating function KF)(I, x )  always exists, albeit now non-analytic at x = 0, 
certain intermediate mathematical operations cannot be carried out as we shall presently 
see. It will be quite apt to resort to a mathematical artifice of terminating the 1-dimen- 
sional chains so as to include a non-zero boundary resistance. Indeed this is inherent in 
the treatment of Abrikosov (1981) who gets instead of (1) the equation 

that differs from (1) by the replacement p’ = p + 1. With (13) one has 

(14) p(l)’ = - ( p ’ )  = i(e2’ + 1) = pi’) + I .  

Thus pj’) is the ‘internal’ resistance sans boundary. Here pj” -+ 1 as A + 0. This clearly 
displays the boundary resistance, and makes all moments of conductance finite. The 
associated probability distribution W$) of conductance g’ obeys 

Now we introduce respectively, the moment and the cumulant generating functions 
x$) and K $ )  as before and get 

Steps leading to (16) from (15) involve taking the Laplace transform on both sides of 
(15) and interchanging the order of integration and differentiation, e.g., 

It is precisely this operation that becomes inadmissible when the moments do not exist 
as noted above. 

Proceeding now as before, we get the recursion relation for Kid) in the differential 
form 
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An essential complexity of (18) for the cumulant generating function Wb4(x7 I> of 
conductance g is that it involves parametrically the mean resistance p‘p). We can still 
carry out an approximate analysis by writing the equations for the first two cumulants 
K\: and Ki: from (18). We have 

Above we have replaced pi  by 1 + p1 where p1 tunes the intrinsic disorder. We could 
approach the fixed point from the metallic side, i.e., when p\4 is small. Neglecting ~ $ 2  and higher order cumulants, and approximating very crudely p y ’  = we 
get from (19a) 

Equation (20) clearly shows that a p-function (=a In .:)/a In 1) depending only on the 
conductance K!: does not exist even in the metallic regime, (Abrahams et aZ1979). The 
approximate fixed point for (19), neglecting the d4 and assuming pi4 = ( K ~ ~ ) - ’  

large statistical dispersion of conductance. This fixed point turns out to be a saddle point, 
unstable along the K:: -like eigen-direction and stable along the K:: -like eigen-direction, 
Detailed numerical analysis of (18) and (19) and comparison with the numerical results 
of Ioffe et aZ (1985)’ McKinnon and Kramer (1983) and of McMillan (1985) will be 
reported elsewhere. 

In conclusion we have shown that the dispersion of resistance remains comparable 
with its mean value even in the ‘metallic’ regime for the 3-dimensional anisotropically 
disordered conductor. For the isotropic case this remains true at the mobility edge 
indicating inadequacy of the one-parameter scaling ansatz. 

turns out to be K;: = 0.92 and K::* = 2.35. Again ( K ~ ~  3g(4* ) 112 /K;:* = 1.67 suggesting 
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