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Abstract. The coupling of lattice vibrations to the crystalline electric field (CEF) states of 4f 
electrons plays an important role in rare-earth compounds. It is shown that under favourable 
conditions this magnetoelastic interaction can lead to a ‘bound state’ between CEF excitations 
and lattice vibrations. The existence of this bound state in the intermetallic Laves phase 
CeAI2 explains the results of inelastic neutron scattering investigations which have not been 
understood before. In this compound, a rrrscEFexcitation and low-lying vibrational modes 
of the Ce sublattice are involved in bound-state formation. The properties of this new type 
of excitation and its consequences for thermodynamic quantities are investigated. In addition 
the phonon softening at low temperatures found in CeA12 is discussed. 

1. Introduction 

In rare-earth (RE) compounds with a stable valence shell the ground-state multiplet with 
total angular momentumJis split into a series of crystalline electric field (CEF) states due 
to the electric field of the surrounding ions. The splitting of these states is generally of 
the order of 100 K so that they can be thermally populated. This leads to interesting 
temperature anomalies for many physical properties, notably the thermodynamic quan- 
tities and, for metallic CEF systems, also in the electronic transport coefficients. (For a 
review, see Fulde and Peschel 1972.) In addition the elastic (ultrasonic) properties are 
also strongly influenced at low temperatures (Liithi 1980, Fulde 1978, Gehring and 
Gehring 1975) as seen in numerous RE compounds. This is due to the magnetoelastic 
coupling mechanism, i.e. the strain-induced change in the cmpotential. This mechanism 
is also important for high-frequency phonons, not only at ultrasonic frequencies. This 
has been shown in a series of Raman scattering experiments in the RE halogenides 
(Schaack 1977, Ahrens 1980) where optical phonons are strongly influenced by the 
coupling to CEF states. This kind of phenomena can also be investigated by inelastic 
neutron scattering experiments, which give information about the phonon dispersion as 
well as the position of the CEF levels. The latter can usually be classified according to the 
site symmetry of the RE ion. It was therefore a great surprise that this classification 
scheme did not work for CeA12 which showed a CEF excitation spectrum not compatible 
with the tetrahedral site symmetry of Ce. Furthermore, in later experiments strong 
temperature anomalies in the CeA12 phonon branches were observed. It is the aim of 
this paper to show that these effects are due to an extraordinarily strong magnetoelastic 
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coupling in CeAlz which leads to the formation of a bound state between low-lying 
phonons and a CEF excitation. 

In § 2 the necessary experimental facts about CeA12 are discussed. In 0 3 the principle 
of magnetoelastic interaction is explained and applied to CeAlz. In the main part of § 3 
it is shown how this interaction can lead to a CEF-phonon bound state and to a strong 
phonon renormalisation. In addition § 4 investigates the consequences for thermody- 
namic quantities and D 5 gives the conclusions. 

2. Physical properties of CeAI2 

The intermetallic Laves phase CeA12 (figure 1) shows aremarkable variety of anomalous 
properties. At low temperatures this compound shows coexistence of Kondo lattice 

0 
AI 
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Ce 

Figure 1. Conventional cubic unit cell of MA12 (M = RE). The RE ions form a diamond-type 
sublattice. The A1 ions are placed on tetrahedrons. Lattice constant a = 8.062 A for CeA12. 

behaviour (Steglich et a1 1979) with a Kondo temperature of TK = 6 K and antiferro- 
magnetic ordering (Barbara et a1 1979) at TN = 3.8 K. The Ce ions are in a stable 3+ 
valence state with total angular momentum J = 3. Because of the tetrahedral site sym- 
metry this sixfold degenerate state should be split into a r7 doublet and Ts quartet by the 
crystalline electric field (CEF) of neighbouring ions. The r7 ground state has a single-ion 
magnetic moment of 0.71 ,uB/site whose exchange interaction with conduction electrons 
leads to typical Kondo lattice type anomalies in electronic properties. 

(i) A very high y value ( y c e ~ l 2  = 130 mJ K-2 mol-') in the specific heat compared 
with LaA12 where naAl2 = 3.45 mJ K-*mol-' (Steglich et a1 1979). This is attributed to 
strong mass enhancement of conduction electrons by sf scattering. 

(ii) Anomalies in the thermal expansion (Schefzyk eta1 1983), magnetic susceptibility 
(Aarts 1983) and thermopower (Bauer et a1 1982) which also suggest a Kondo effect. 

In CeA12 the (negative) exchange interaction is not strong enough to screen out the 4f 
moments completely at low temperatures. Therefore the effective RKKY interaction 
between 4f moments leads to an incommensurate antiferromagnetic ordering at TN = 
3.8 K and consequently CeA12 is one of the few compounds which shows a coexistence 
of the Kondo effect and magnetic ordering (Jullien et a1 1979). The magnetic ordering 
itself leads to additional anomalies in the electronic properties around T N .  Apart from 
its peculiar electronic properties, CeA12 has very abnormal lattice properties and, in 
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addition, a unique magnetic CEF excitation spectrum. This was found as a result of 
ultrasonic measurements (Godet and Purwins 1977, Luthi and Lingner 1979, Penney et 
a1 1982) and inelastic neutron scattering experiments (Loewenhaupt et a1 1979 (LRS), 
Parks er a1 1979, Reichardt 1983). Measurement of the elastic constants showed a 
pronounced softening of the cU elastic constant at low temperatures which is due to a 
strong magnetoelastic coupling of transverse strain components to the CEF states of Ce3+ 
ions. From the temperature behaviour of cU, a CEF splitting T7(O)-r,(A) of A = 100 K 
was deduced for the Ce3' 4f states (Luthi and Lingner 1979). However, inelastic neutron 
scattering (LRS) revealed a striking anomaly: instead of a single r7 + Ts transition in 
the magnetic cross section two clearly separated peaks at about A2 = 100 K and A I  = 
180 K (see figure 2(a)) have been observed. Somewhat larger values have been found 
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Figure 2. (a) Magnetic scattering rate as a function of energy transfer at T = 60 K (from 
LRS). ( b )  Phonon density of states (PDOS) corresponding to the six lowest LA, TA and LO, TO 
branches at T = 296 K (from Reichardt 1983). In the dispersionless model this is replaced by 
a single mode with fi* = 140 K. In the triangular model for the PDOS the acoustic tail is 
neglected. 

by Reichardt (1983): A2 = 107 K, A I  = 200 K. This seems to contradict the fact that the 
tetrahedral site symmetry of Ce3+ should lead to a cubic CEF which splits the] = 4 ground 
state into a r7 doublet and a Ts quartet and consequently only one inelastic CEF transition 
should be observed. This cannot be caused by a static Jahn-Teller splitting of Ts into 
two doublets; in this case it would be accompanied by a static lattice distortion. This has 
been ruled out by x-ray diffraction experiments (Steglich et a1 1979) which show that 
CeA12 is cubic to within an accuracy of A a / ~ = 1 0 - ~ .  Some clues to the origin of this 
anomalous magnetic excitation spectrum are given by the following experimental facts: 

(i) Apparently both inelastic transitions must originate from a conventional I'7 -+ 
Ts excitation. This follows (LRS) from the determination of the ratio Zin/Zel where 
Zi, = Zii) +Z,',2) is the total inelastic intensity and le, the intensity of quasielastic scattering 
which is entirely of r7 origin at low temperatures ( T -  5 K). The experimental 
value Zin/lel = 3.2 agrees with the expected value 9 for the intensity ratio 
z(r7+ r8)/z(r7+ r,) for normal r7, r8 CEF states. 
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(ii) The position of inelastic peaks and their splitting depends only weakly on the 
momentum transfer Q of neutrons, i.e. shows negligible dispersion. 

(iii) The structure of the excitation spectrum does not change if CeA12 is diluted 
with La which has no f electrons (Horn 1983). Both peaks are observed in Lal-  
.Ce,A12 down to a concentration of x = 0.07 and do not change their position. A 
similar behaviour is observed for S C ~ - ~ C ~ ~ A ~ Z  (Horn 1983) down to x = 0.6 where 
this alloy makes a transition to a mixed valence state so that both inelastic transitions 
merge into a broad quasi-elastic line whose width is characterised by the spin fluctuation 
time. 

The latter two points suggest that one still observes localised excitations which can 
be understood within a single-ion picture. An attempt was made in LRS to explain 
the excitation spectrum by assuming a dynamical Jahn-Teller effect (DJTE) in the 
excited Ts quartet. However, as the authors already noted one is forced to assume 
completely unphysical parameters for the DJTE model and therefore it has to be 
rejected. 

It has been proposed that the anomalous magnetic excitation spectrum of CeA12 can 
be explained by the formation of a bound state between low-lying phonons and a 
rrrs CEF excitation (Thalmeier and Fulde 1982). In this paper I want to investigate 
the nature of this bound state in detail and consider its implications for some ther- 
modynamic properties of CeAlz. In addition I will discuss the strong temperature 
dependence of some phonon branches in CeAl2 discovered recently (Reichardt 1983). 

The neutron scattering investigations performed by Reichardt (1983) gave the first 
clue to the nature of the magnetic excitations found by LRS. He discovered that there 
are low-lying acoustic and optical phonon branches whose corresponding density of 
states peaks strongly around an energy hw, -- 140 K (see figure 2(b)). (Phonon energies 
and CEF energies will be given in units of Kelvin i.e. kB = 1; 1 K = 0.086 meV, 
1 meV = 11.605 K). These phonons correspond to motions of the heavy-diamond- 
type Ce sublattice (figure 1) alone. Phonons which include motions of the lighter A1 
atoms have energies greater than 230K and will be neglected in all the following 
considerations. From figure 2 one can clearly see that the phonon peak lies just in 
between the two inelastic magnetic excitations at A1 and A2. At room temperature 
these phonons are hardly influenced by the coupling to the CEF excitations as will be 
explained later. Therefore, they should be very similar to the corresponding branches 
of the isomorphic LaA12 compound which has no 4f electrons. This has indeed been 
observed by Reichardt (1983) who also showed that a ten-parameter Born-von Karman 
model can fit the experimental phonon dispersion quite well at room temperature, 
At this place it is instructive to recall some basic facts about neutron scattering. In 
RE compounds, magnetic scattering and phonon scattering compete with each other. 
The two contributions to the coherent differential cross section are essentially given 
by 

Here J ,  and uIl are the components of the magnetic moment and lattice displacement 
field which are perpendicular or parallel to the momentum transfer Q respectively. 
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F ( Q )  is the magnetic form factor of the 4f shell, which decreases rapidly for Q larger 
than a few reciprocal lattice vectors. Because the phonon contribution increases -e2 
it is possible to separate the magnetic and phonon parts of the scattering cross section 
by going either to very low or very high momentum transfer Q .  The wavevector of 
the excitation is given by q = Q - K ,  with K the nearest reciprocal lattice vector. 

The position of the phonon peak in figure 2(6) suggests that these phonons are 
responsible for the observed splitting in the magnetic spectrum. In the next section 
I will describe the low-lying phonons in CeAlz in more detail and characterise their 
magnetoelastic interaction with the CEF states. It will be shown that this provides the 
mechanism for the anomalous excitation spectrum of CeAlz. 

3. Theory of the magnetic excitation spectrum and phonon softening in CeA12 

To find out how the magnetoelastic interaction can influence the magnetic excitation 
spectrum two approaches are possible. In a simplified model the phonon dispersion 
is neglected and the Hamiltonian is diagonalised in a finite subspace of zero- and 
one-phonon states. This approach was used previously (Thalmeier and Fulde 1982) 
to explain the essential properties of the inelastic scattering cross section observed by 
LRS. A short review of this dispersionless model will be given below. If phonon 
dispersion is not neglected one gains a deeper insight into the problem, especially the 
formation of bound states between phonons and CEF excitations. For this purpose a 
more formal many-body approach with Green function techniques will be used later. 
In addition this allows us to calculate the temperature dependence of the average 
phonon energy. To proceed in the way indicated here one first has to classify the 
phonons and their possible magnetoelastic interactions in CeAlz. 

3.1, A model for the interaction ofphonons and CEF excitations in CeAl] 

The phonons of interest here are those corresponding to the vibrations of the 
diamond-type Ce sublattice. Because one has two Ce atoms in the unit  cell there are 
three acoustic and three optical branches. This labelling is somewhat arbitrary because 
along the symmetry directions A[100] and A[111] the transverse modes TA. TO belong 
to the same representation As and 123, respectively, and therefore are of mixed acoustic 
and optical nature. This means that their eigenvectors depend explicitly on the force 
constants and are not determined by symmetry alone (see, for example. Lax 1974). A 
peculiar property of these phonon branches in CeAlz is the extremely small splitting of 
acoustic and optical branches at the zone boundary X(OO1) and L(111) points. Because 
the largest contributions to the phonon density of states (PDOS) come from these points. 
one observes a single sharp peak in the total PDOS of acoustic and optical modes (figure 
2(b)) .  The 'magnetoelastic coupling' of these phonons to the 4f CEF states of Ce3' is due 
to the distortion of the local environment of each Ce3' caused by each phonon mode 
(ks) .  The distortion can be decomposed into contributions which transform asirreducible 
representations of the tetrahedral point group symmetry. For example, at the r point 
the optical phonon has r2s. symmetry which produces local distortions of pure rs(TZg) 
type. As mentioned before the relative splittings of all six modes at the zone boundary 
are very small, therefore it is a fair approximation to describe them as a pair of triply 
degenerate modes having essentially the same r5-symmetry distortions as at the zone 
centre. In the present model it will therefore be assumed that the magnetoelasticcoupling 
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has only a contribution from local r5-type distortions. In any case the coupling strength 
of T5 distortions should be far larger than coupling by other symmetry distortions. This 
was suggested by point-charge calculations (Cullen and Clark 1977) and for CeA12 it was 
confirmed by ultrasonic measurements (Godet and Purwins 1977, Liithi and Lingner 
1979). 

The coupled system of lattice vibrations and CEF excitations is described by the 
Hamiltonian H = HO + H I  where Ho is the non-interacting part and H1 the magneto- 
elastic interaction: 

The first part of HO describes the unperturbed CEF states of Ce3', i.e. the conventional 
rrr8 system whose energies are given by (r7) : ~7 = 0; (r8) : &8 = A .  Of course, A cannot 
be obtained directly from neutron scattering but only the strongly renormalised 
double-peak spectrum with energies A1 and Az. It is reasonable to assume that A is not 
much different from the average &(A, + A2) = 140-150 K. The explicit form of the CEF 
states 1 I';) (CY = multiplet, n = degeneracy index) for Ce3+ is given in table 1. The second 
part of HO describes the six (s = TA, LA, TO, LO) phonon branches of CeAl2. The 
unperturbed phonon energies hob do not yet include the effects of coupling to CEF states 
and correspond to those measured at room temperature where the effects of magneto- 
elastic coapling are negligible because of almost equally populated CEF states. 

With the help of Steven's operator equivalents the most important contribution to 
H I  of T5 type is given by 

- C IT 2 ks, g t ( k i ,  t ) (aks  + a L )  O,(R[ , )  exp(-ik . R / , ) .  (3) 

Here { 0,, y = 1,2,3} are quadrupolar operators for the CEF states at site &( 1 = lattice 
point, t = 1 , 2  = basis index) which transform like a triplet T5 representation under the 
tetrahedral point group Td. They are given by 

O2 = J z J x  + J x J z  

The coupling constantsg{(kst) determine how strongly each mode ( k s )  couples to the 
CEF states via a local ry distortion at each lattice site RI, .  In principle they could be 
calculated within a point-charge model, this is however very impractical for general k 
and an average coupling strength will be used later on. In the basis states of table 1 the 
quadrupolar operators are given by 

O1 = JJZ + J z J y  O3 = J X J y  + J y J x .  (4) 

0 2  

0 =[:;- 0 

0 

C Y =  1. 

0 
0 
0 
CY _ _ _ _  

- Y  
0 

1547, 

r8 

r7 

= 2.5820 

O1 and O3 can be expressed in a similar way. This shows that phonons have a r5-type 
coupling to r7-+ T8 and TS-) T8 CEF transitions. Because I-7 is a Kramers doublet, 
time-reversal symmetry requires that all quadrupolar r7 + r7 matrix elements vanish. 
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Table 1. The CEF states of Ce'- in terms of iJ = 4, M )  free-ion states a = (4) '  2: b = (a)' ' 

A measure for the relative weight of these transitions is given by the oscillator strengths 

which are independent of ,U because of cubic symmetry. We have = QS7 = 
= 2(/3' + J )  = 53.33 and QE8 = 4 2  = 5.33. This shows that the phonon coupling to the 
inelastic r7 fs T8 transitions is most important. 

3.2. The  dispersionless model  and the magnetic structure funct ion 

The dispersionless model is a reasonable first approximation considering the narrow 
phonon DOS in figure 2(b ) .  In this model the six phonon branches wk are replaced by a 
triply degenerate local oscillator of energy hwo = 140 K which produces rs-type strains 
at the Ce3- sites. In this case there is no difference between 'acoustic' and 'optical' 
modes, furthermore Td site symmetry requires g t  = go for the coupling constants. The 
Hamiltonian is then given by 

The eigenstates of H have been calculated within the twelve-dimensional subspace 
{ I  vK), K = 1 . . . , 12) of zero- and one-phonon states 1 r,, 0) (a = 7,8) and 1 r;, ,U) = 
a; 1 r?,O) with unperturbed energies 0, A ,   ha^ ( = A )  respectively (Thalmeier and Fulde 
1982). They were shown to consist of two quartets /Fsl)IF82) and two doublets IF6), 
I r 7 ) .  Their energies are given by 

E ' S ( 1 . 2 )  = $(A + hwo) t [+(A - boo)' + g & / ~ ] 1 ' 2  

E'6=hwo 0 (7) 

u . n  

The 1 I=gl, 2 ) )  states are linear combinations of purely electronic ~ I=8, 0) states and one- 
phonon states I l-7, ,U). They can be interpreted as bound and anti-bound states of a CEF 
excitation and phonons as shown in 9 3.3. The lF6) state has phonon character and 
therefore its energy is independent of A .  The IF,) is the original electronic Kramers 
doublet. The energy levels (7) were plotted as a function of A in Thalmeier and Fulde 
(1982) .  The dipolar matrix elements 

determine which transitions contribute to the magnetic scattering. One finds d76 = 0 and 
d7.81 = d7.** = 2.2 for A = hm. This explains the existence of two inelastic peaks of 
about equal strength in a natural way. They correspond to the F7 + Fg1 ~ Fg2 transitions 
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in the present model. Furthermore with d77 = 1.39 the rate of total inelastic-to-quasi- 
elastic scattering for kT/A  * 1 is given by (d7.g1 + d7.82)/d77 = 3.2. This is equal to the 
experimental value and also corresponds to the value which one would expect for a 
conventional TrTg scheme. 

The coupling constant go is the only fitting parameter in the model and it has been 
chosen as go = 6.3 K in order that and Eg2 agree with the experimental peak positions 
A I  and A2 respectively. The size of go will be discussed later on. In reality the inelastic 
magnetic excitations are broadened by the interaction with the conduction electrons of 
CeAlz, which is assumed to be of exchange type: 

Hex = -Zex(g - 1) s .I. (8) 

Here rex is the exchange constant, g the Land6 factor (gce3- = 8 )  and s and J conduction 
electron spin and 4f total angular momentum respectively. The relaxation of ordinary 
CEF excitations due to He, has been discussed by Becker er a1 (1977) using the 
Zwanzig-Mori formalism. This approach is also adopted here for the CEF-phonon bound 
states. Using the fluctuation-dissipation theorem, the magnetic cross section in equation 
(1) is given by 

S(w)  = [l - exp(-pw)] Im u(w)  

Here non-interacting RE ions have been assumed and therefore the spectral function 
S (U) is determined by the dynamical single-ion susceptibility u(w) .  In second-order 
perturbation theory, with respect to  H e x ,  one obtains (Becker et al1977): 

Im u ( w )  = w E uo(ij> Im ~ ; . : , , ~ , ( w )  
ij.i'j' 

where 

[PP i El = Ej 

and 
Rl ,~ j . , , (w)  = (2 ;  - il + w )  c?~,,~?' - i A l l , l ~ j ~ ( ~ ) ,  

Here i ,  j denote any of the states le), Ei their energies and p l  = exp(-pEl)/Z their 
thermal occupations, where Z is the partition function. 

The memory function matrix A leads to a damping of the various excitations described 
by the frequency matrix R .  Using the explicit form of A in second-order perturbation 
theory (-Z&) the spectral function S ( w )  has been computed. This is shown in figure 3 
for two temperatures. According to (9) this function should be directly proportional to 
the cross section and the qualitative agreement with figure 2(a) is quite obvious. A 
quantitative comparison is not yet possible because figure 2(a )  shows the raw scattering 
data which still includes the experimental resolution function. In figure 3 S ( w )  has been 
plotted instead of s ( w )  = S ( w )  + S ( - w )  as in Thalmeier and Fulde (1982); the fre- 
quency integral of S (w )  is not normalised to 2 4 5 ; )  as for S (  w). 
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Figure 3. Magnetic structure function S(w) in the dispersionless model. Broadening of 
transitions is due to exchange interaction with conduction electrons where Iex2V(0)  = 0.06 
is used. ( I , ,  is the exchange constant, N ( 0 )  is the electron DOS at the Fermi level). Full curve. 
T = 60 K;  broken curve, T = 80 K. 

In figure 3 A = h o ,  = 140 K was assumed which means that r7+ r8(,.?) should have 
equal intensities because of d7.81 = d7.82. In fact, due to coupling of all the inelastic and 
elastic transitions via the non-diagonal parts of the memory matrix A(o), (lo),  the 
intensity is shifted to lower frequencies so that the height of the r7 + f g l  peak is reduced. 
For high temperatures, kT 3 A ,  only a broad quasi-elastic line remains. 

Finally I want to discuss whether the size of go = 6.3 K as determined from the l='g1- 

r g 2  splitting is reasonable and make a comparison with other MA12 compounds (M = 
RE). A useful test is the comparison with the properly normalised coupling constants of 
cU transverse sound modes. They produce local rs-type distortions and therefore have 
the same magnetoelastic coupling mechanism as the h o ,  phonons in the model discussed 
above. The coupling of long-wavelength phonons is usually described in the continuum 
approximation. For c44 modes one has: 

Here E), etc are the transverse strain components and O,,, O,, and 0,) etc are the same 
as in (4). 

For a sound wave with wavevector klli and polarisation e l l f ,  the expansion of E,, in 
the phonon coordinates leads to 

H m e ( C U )  = -2 lk  g3(k)  qkeOxz(l)  exp(ik * R I )  (12) 

where /g3 1 '  = &+(hk?/2M"k). A wavevector-independent measure of the coupling 
strength is then given by &/hwk =&+/Vcjq where V is the volume per Ce atom. This 
constant is determined by measuring the temperature dependence of the c44 elastic 
constantwhichisgiven byc44(T)/c44(0) = [l - (g$'c44V)u~(T)]  where U Q (  T)isthe static 
quadrupolar susceptibility. This leads tog$/c44V = 368 mK (Luthi and Lingner 1979). 
The Hamiltonian (12) is of the same form as the interaction part in (6), the 
wavevector-independent coupling strength &( k ) / h o ,  = & + / V C ~ ~  should be comparable 
with &/ha,. For go = 6.3 K, as derived from the AI--A* splitting and hu,, = 140 K this 
leads to &/ho, = 283 mK, which agrees with ~ $ / V C ~ ~  to within thirty per cent. This is 
strong evidence that the magnetoelastic coupling is responsible for both the elastic 
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constant anomaly and the peculiar magnetic excitation spectrum. The coupling strengths 
(g$'Vc44)1'2 have been measured for a whole series of MA4 components (M = RE) 
(Lingner and Luthi (1983) and references cited therein). They are given in table 2. One 
can see that the coupling strength for CeA12 is larger by at least one order of magnitude 
compared with the other MA12. In a point-charge model (PCM) these constants can be 
computed and one obtainsg3 = Cr,a,(?)4fwhere Cr, is a constant depending on the site 
coordination and strain type (T5) and aJ and (?)4f are the Stevens factor and mean- 
square radius which characterises the 4f ground state. Although the point-charge values 
for g3 show a tendency to increase from TmAl2 towards CeA12, the PCM is clearly unable 

Table 2. The magnetoelastic coupling constants (&/VCU)'" are given for some MA12 com- 
pounds (M = RE) (from Lingner and Luthi 1983). In the point-charge model they should be 
proportional to a ~ ( ? ) ~ f .  (aais theBohrradius). Thecouplingconstants have beendetermined 
by ultrasonic experiments. 

(dlVQ4)'IZ ! (yl1 (P) 41 

MA12 (mKL") (lo-zaa) 

CeAl2 19.07 6.86 
PrA12 2.01 1.14 
NdA12 1.08 0.64 
TmAIZ 0.55 0.65 

to explain the exceptionally large value of g3 in CeA12. It is reasonable to assume that 
the origin of a large g3 and equivalently go lies in the hybridisation of the 4f electron shell 
in Ce3- with conduction electrons. This mechanism is strong for many intermetallic Ce 
compounds because the weakly bound 4f1 state is closely below the Fermi energy. It is 
also known to be responsible for the anomalously large exchange interaction and result- 
ing T, reduction in the Lal-,Ce,A12 compounds (Maple 1976). 

In principle an arbitrary small coupling constant go would lead to a splitting into l=sl 
and bound states in the dispersionless model which would be unobservable if it is 
smaller than the linewidth due to exchange scattering. This might explain why similar 
states have not been observed in other MA12 assuming the position of their CEF levels 
and phonon energies was not too unfavourable already. On the other hand, inclusion of 
phonon dispersion will show that even without taking extrinsic damping by conduction 
electrons into account, a minimum threshold value for the coupling strength go is 
necessary to observe the splitting into p81, rs2 states which justifies calling them 'bound 
states' of a CEF excitation and phonons. 

3.3. Green functions and the CEF-phonon bound states 

To gain more insight into the nature of the bound states it is necessary to consider the 
coupling of CEF excitations to a whole band of phonon states instead of a single oscillator 
mode with energy hw. In analogy to the dispersionless model the eigenstates of the 
interacting systems could be written as superpositions of zero- and one-phonon states 
but with a summation over all phonons (ks) included: 
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Here U and U are the zero- and one-phonon amplitudes of the eigenstate, respectively. 
1 r:), where 1 is the site index. The eigenvalue equations are then integral equations for 
these amplitudes. Such an approach would be very similar to the one used in the theory 
of exciton-phonon bound states in semiconductors (Toyozawa and Hermanson 1968) 
except that excitonic transitions are replaced by CEF transitions. In the present problem, 
however, it is better to adopt a more formal many-body approach which can be more 
directly interpreted in terms of physical processes. For this purpose the temperature 
Green functions for phonons and CEF states are needed. Their Fourier transforms are 
given by 

Do(kS, wm) = 2wk~/[(iw,,,)' - U&] 0, = 2mx7 

Go(l , i ,w,)  = [ i w , , - ( ~ , + A ( / ) ) ] - '  w,=(2n+ 1)nT (14) 

for phonons and CEF excitations respectively. The Abrikosov pseudo-fermion technique 
is used which represents CEF states 1 i) with energy E( with fermion Green functions that 
have an adjustable chemical potential A( l )  (1 = site index). Although this representation 
introduces unphysical states they have no effects if at the end of the calculation a proper 
limit A( l )  5 is taken. For a detailed description of this technique see Fulde and Peschel 
(1972). In this pseudo-fermion basis the Hamiltonian is (cf ( 2 ) ,  (3)) 

The c; are the pseudo-fermion operators for the CEF states 1 i) and their non-interacting 
Green function is given by Go. The basis index t and polarisation index s have been 
suppressed in H I .  The interacting CEF-phonon system is described by the Dyson equa- 
tions for the renormalised CEF and phonon Green functions and the usual diagrammatic 
methods can be applied. The Dyson equations in the RPA approximation for the self- 
energies are shown in figure 4. 

Figure 4. Diagrammatic Dyson equations in RPA for the Green functions of CEF states (GO, 
G:  broken lines) and phonons (DO, D:  wavy lines). Single lines correspond to the bare Go. 
DO and double lines to the renormalised G, D. 
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3.3.1. The "self-energy and the existence of a bound state. The renormalised CEF 
pseudo-fermion propagator is given by 

G = (Go' - Zc)- '  
-1 

G ( I , i , ~ ~ ) = ( i w ~ - A ( l ) - ~ ~ - Z ~ ( l , i , w , J )  . (16) 
Zc is the self-energy of a CEF-pseudo-fermion state I i) due to the virtual excitation of 
intermediate phonons of arbitrary (ks) (figure 4(a)) and a simultaneous virtual CEF 
transition I i) c-, 1 j ) .  This virtual excitation of a phonon cloud happens at a given site I, 
intersite processes do not contribute to Zc in the RPA of figure 4(a). Explicitly, Zc is given 
by 

Summation over Matsubara frequencies results in 

Here n(wk)  = [exp(/3wk) -1I-l is the Bose factor and the first and second terms in (18) 
correspond to virtual-phonon emission and absorption respectively. As long as kT is 
appreciably smaller than the average phonon frequency h ~ ,  n(wk) -- 0 and only the 
first term is important. After analytic continuation and with the definitions 

G(z, w) = G(i,  U + A) zc(i, w) = Zc(i, U + A) (19) 

one obtains 

- 1  

G ( i ,  U)  = ( U  - E, - 2c(i, 01 + iq) . (20) 

Without coupling Zc = 0 and G has poles at the undisturbed CEF energies .zi (er,  = 
0, E~ = A) ,  i.e. its spectral function &(i, w)  = -C' Im G ( i ,  w) is a Sfunction at E ~ .  It 
will now be discussed how a non-zero magnetoelastic self-energy Cc changes the spectral 
function of the propagators G (i, 0). For this purpose two approximations will be made 
to calculate Zc(i, w): 

(i) gP = go is independent of k, p;  in this case the k-summation in (20) can be changed 
to an integration over the phonon density of states. 

(ii) The phonon density of states (PDOS) is described by a triangular DOS function 
normalised to unity: (y, = y - w l )  

(2/wb)2(u - 01)  0 1  < < WO 

D ( u )  = i (2/@)2(W*- w )  WO< w2 (21) 
elsewhere. 

Here the minimum, average and maximum energies are given by ?'iol = 120 K, h~ = 
140 K and h y  = 160 K respectively. The real PDOS of figure 2(b) is simulated rather well 
by D ( w ) .  Here h~ is the average unrenormalised phonon energy at high (room) 
temperatures. 
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With the approximations described before one obtains 

~ ( w  - E ] )  = Z l ( i ,  0) + iZ2(i ,  w) 

H(w) = Hl(w) + iH2(0) = P l s d w ’  - inD(w). (22) 

The real part Hl(w)  can be obtained by a simple integration: 

This function is antisymmetric with respect to w = 00; it is shown in figure 5(a ) .  The 
inflection points are at w = w1,2 with 1 f ( ~ ~ , ~ ) 1  = 4 In 2/wb. 

With the knowledge of Zc( i ,  w) one can discuss the spectral properties of 
G(i ,  w) for several interesting cases. Explicitly, the self-energies for r7 and Ts are given 
by 

gi2Zc:rS, 0) = f&~(w) + &i(w - A )  - h(yi@(w) + Y@(O - A ) )  

go2gc(r7,  U)  = fal(~ - A )  - ~ . . T ~ D ( w  - A) .  (24) 
Here 

Y ;  = Z i(r;ioPlr~)12 = 40 Y T  = ir;ioPirr)i2 = 4 
,m w 

where n denotes any of the r8 states. The spectral function is given by 

Sc(z, 0) = - -Im G(i,  w) 1 
n 

Again for Zc = 0, this describes a &function at w = ~ i .  For non-zero Zc, Sc(i, w) can 
exhibit two features: 

(i) If wis in a region where &(i, w) # 0, Sc(z, w) is a smooth function which describes 
the possible decay of the CEF state / i )  into the phonon continuum. 

(ii) In regions where 22(i, 0) = 0 ,  &(i, U)  may have &function contributions whose 
positions are given by the solutions of 

w - E, - Z&, w) = 0. (26)  
If z1 is small, they correspond to the original &peaks at .si shifted by a small energy. If 
f l  is large, one has a qualitatively new situation with new &peaks occurring far away 
from the original peak at the undisturbed E ~ .  With (24) this can be studied in detail. The 
terms of the order of ~ in the rs self-energy are due to virtual T8 * T8 scattering. For 
the interesting region fiw = A ,  fiw one can write 

g i 2 W 8 ,  U)  = ?a l (w)  + Y ? : H ~ ( O )  - i’~J&(w). 

sc(r8, 0) = 

(27) 
Inserting this into (25) one obtains (lim,+ implied) 

(28) 
&@(w> + 11 

( U  - A t  - d?im4)2 + (ga?WN2 + v2 
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where A r  = A  + dH1(0)  is the r8-energy renormalised by diagonal Tg - T8 scattering. 
This correction is small and A' = A can be assumed. For the r7 Green function around 
w = 0 only non-resonant self-energy terms contribute to (24): 

20-7, = giJoHd - A).  (29) 

Therefore the corresponding function will again be a &function shifted from E? = 0 by 
the amount given in (29) which is small and will therefore be neglected. Consequently 
the r7 propagator is essentially unchanged by the process shown in figure 4(a): 

G(r7, w )  2: I/(@ + iq). (290) 

The more interesting case is the r8-spectral function (28) which includes the resonant 
contributions of rrrs virtual excitations. Three different situations may occur corre- 
sponding to the possible solutions of (26 )  and the behaviour of (25). Fori  = Ts (26) leads 
to 

a-2( o - A )  = Hi( W )  2 = giy20. (30) 

These solutions can be found graphically as shown in figure 5. 
(i) If o? is small and A is outside [w l ,  4, only one solution exists, whose energy is 

approximately given by A r  = A + o?H1(A) and which describes the position of a 6 
contribution to Sc(r8, U). 

(ii) For o? small but A inside [ wl ,  y], the Sfunction is broadened into a Lorentzian 
with centre A' = A + o?H(A)  and width r = o?D(Ar) ,  describing the possible decay of 
the T8 excitation into the phonon continuum. 

-0 .16 i  

Figure 5 .  ( a )  Graphic solution of equation (30). The straight lines correspond to the LHS of 
(30) for different A ,  a. (i), non-resonant renormalistion of A to A ' ;  (ii), A inside [U, .  w] 
and weak coupling E broadening into a lorentzian: (iii), strong coupling case: bound- and 
anti-bound-state solutions occur outside the phonon continuum [ U , ,  w]. 0. position of bare 
A ;  0, poles of G(r8, U ) ;  8. position of lorentz. ( b )  Analytic structure of G(TR. z )  for case 
(iii). 
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(iii) If 2 is sufficiently large, two solutions A= exist far below A (and wl) and far 
above A (and Q), i.e. outside the phonon continuum. These solutions correspond to a 
bound state (A-) and an anti-bound state (A,) of a Ts excitation and the phonons in the 
band w1 < w < W .  Irrespective of whether A was inside or outside [wl, Q], A,  corre- 
spond to &function contributions to Sc(Ts, U), i.e. poles of G(Ts, U) lying on the real 
axis which do not have an intrinsic linewidth. 

For the latter case the analytic structure of G(T8, z )  in the complex z plane is indicated 
in figure 5(b) .  It is interesting to investigate how much weight is concentrated in the 
bound- and anti-bound-state poles of G(T8, w). Their contribution to G is given by 

whereZ, = ( 1  - c?H;(A,)I-’ withH;(w) =dHl(w)/dw are the weightsof the poles at 
A ? ,  From (23) one obtains 

In the symmetric case (A = t2.q) 2- Z-. The variation of Z, with coupling strength 
go is shown in figure 6(b)  for two cases. The inequality Z- + 2- s 1 is always fulfilled 
because the spectral function Sc(Ts, w)  is normalised to one. The quantity 1 - 
(2, + 2-) is the spectral weight of the cut; i.e. 

1 - (Z- + Z-) = (33) 

If A is inside [wl, m] and abecomes small then at a critical size cu,, the A ?  poles merge 
into the phonon continuum while Z, 0 for a 3 cu,. For LY < ac all the spectral weight 
is concentrated in the cut interval [wl, 41. If A were outside [w l ,  Q] (say above m) 
then for CY+ ac the bound state at A- merges into the continuum with Z +  0 and the 
anti-bound state approaches the energy A ’  of the renormalised T8 level. 

It is easy to calculate the threshold value acfrom (30) and by inspection of figure 5(a) 
when at least one of the bound states vanishes. The condition is 

&c = ghyo = AWb( 1 + 2 / x  1 )  ‘’* 
A = 4(2 In 2)-L12 X = (WO - A)/Wb yo= (40)”*= 6.3. (34) 

The critical coupling constantgS(A) is shown in figure 6(a) .  The shaded area corresponds 
to parameter pairs ( A ,  go) which are compatible with bound-state energies and weights 
of CeA12. Clearly this compound is far into the bound-state region. This figure shows 
that even without extrinsic broadening by conduction electrons the bound states can 
only be observed if the magnetoelastic coupling go is larger than a certain threshold value 
g6. At this point it is useful to consider the dispersionless model as the limit h o ,  + 0 of 
the present model. In this case 

1 
Hl(U) = P J- D(w’)  - 

w -  w’ w - 0 0  (35) 
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Figure 6. ( a )  Existence criterion for bound states as a function of (go, A).  I ,  no bound states; 
11, bound states exist; but R = min ( Z , ,  Z-)/max ( Z - ,  Z - )  < 0.3; 111, bound states exist and 
R > 0.3. The full curve gives the threshold valuegf,(A). The shaded area is compatible with 
the situation in CeA12. ( b )  Weight of bound-state poles as a function of coupling strength. 
Middle curve, Z- = Z- for A = 140 K ( = f i w o ) ;  in this case ZI + 0.5 for large go. Upper and 
lower curves correspond to A = 150; Z- + Z- < 1 always. 

whose solutions are identical to those in equation ( 7 ) .  Therefore the (anti-) bound-state 
poles correspond to the and p82 states of the dispersionless model. Furthermore 2, 
= 11 + d / ( A z  - O O ) ~ ~  + t for h a -  0 and A = hw. According to (33) no spectral 
contribution to Sc(I'8, w) from the cut is left. This agrees with the fact that the f 6  state in 
the dispersionless model has no electronic component. 

3.3.2. The magnetic cross section and the problem of vertex corrections. Until now it has 
been assumed that the bound-state poles of the CEF pseudo-fermion Green function 
G(i, w )  directly show up in the magnetic scattering cross section. The reason for this has 
to be investigated closer. According to (9) the dynamical susceptibility u(w) is the 
quantity of interest. It can be calculated by simply replacing G,,(i, 0) with the renor- 
malised G(i, w )  in the diagram for the susceptibility. This diagram is shown in figure 
7 ( a )  where the vertex operator V = J ,  is used. This leads to 
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Figure 7. ( a )  Diagrammatic representation for the single-ion susceptibility corresponding to 
(37). First diagram on the rhs represents PPA expression for the dipolar ( V  = J , )  or quad- 
rupolar ( V  = 0,) susceptibility. (0 = V ) .  ( b )  Vertex corrections to the susceptibility. The 
open circles represent H I .  

Here M ,  = (i/J,I j )  and the proper limit lirn*+= exp( -pA)Z;' has been assumed. 
Because the renormalised Green function (16) with i = T8 has a cut along the real axis 
in the interval [A + 01, A + 4, the summation over on, in (37) is very difficult to perform 
in general. Therefore the cut contributions are neglected for simplicity, i.e. the approxi- 
mate Green functions (29a) and (31) are used which have poles only. This leads to 
( ion+ w + iq) 

Here A A , ~  = EA, - EA and p i  =Zi'  exp( - PEA) (20 is the partition function), EA = 0, 
A+ and A- are the pole positions of G ( r 7 ,  U) and G b ( r 8 ,  o), andpj, is the corresponding 
thermal occupation. Furthermore, the matrix elements lMh12 are given by the original 
CEF matrix elements, multiplied by 2, and 2-, the weight of the (anti-) bound-state 
poles if A, A' = r s - ( A + ) ,  r s _ ( A - ) .  

For example 

/ f i 7 7 I 2  = I M 7 7 I 2  

l G 7 8 - 1 2  = Z-IM78I2 l w h + 1 2  = Z+IM,~I~. (39) 

The magnetic cross section (9) is proportional to Im u(o) .  According to (38) this 
leads to &peaks at the energies A + ,  A-  whose weights are given by /A&+I2 and 
Ifi78-i2. In the limit fro,+ 0 one has Z, + 2- + 1. This agrees with the results of the 
dispersionless model of 0 3.2. As long as fio, is finite 2, + 2- < 1 and the 
remaining intensity required to fulfil the sum rule is due to the cut contribution to 
u(o) .  This would be a smooth function of o restricted to the interval [wl, y]. 
Additional inclusion of broadening due to exchange interaction as in the dispersionless 
model could in principle also be done within the present Green function formalism 
along the lines given by Fulde and Peschel (1972). However, the main purpose here 
was to demonstrate that the bound-state poles of G(r8, U)  show up directly in the 
magnetic cross section if the LHS of figure 7(a) is the correct diagrammatic represen- 



4170 P Thalmeier 

tation for u(w).  That this is so can be justified by considering the influence of vertex 
corrections: as shown in figure 7(a), equation (37) means a summation of an infinite 
series of diagrams of a particular type. This series produces the characteristic 
bound-state contributions in Im u(w)  only if vertex correction diagrams such as those 
shown in figure 7(b) can be neglected. The first vertex correction in figure 7(b) is 
given by 

V l ( W )  = z I-$FLYp,K.(W) 
KT 

r$= E p rs.nm 2 ( p s i v ~ ~ ) ~ ~ o , l ~ n ) ( ~ n ~ ~ ~ m ) ( m ~ ~ , I p s ) .  (40) 

F,p,m(w) is a complicated function whose w dependence is not of interest here. Again 
C$KT denote the CEF multiplets, RSNM are degeneracy indices and p = 1 ,2 ,3 .  For 
the dipolar vertex V = J ,  the summation leads to the result 

This shows that vertex corrections to the diagrams with (Cup) = (r7rB) in figure 7(a) 
are identical to zero and therefore the summation leading to the LHS of figure 7(a) 
is justified. The vertex corrections for (cup> = (TJ,) in figure 7(a)  are non-zero but 
they influence Im u(w)  only for w = 0 and not in the bound-state region. 

3.4.  Temperature dependence of the renormalised phonons 

Until now only the magnetic scattering cross section has been considered. As mentioned 
in the beginning however, at large momentum transfer the phonon scattering cross 
section dominates. In this way the phonon branches of CeAlz could be determined in 
great detail at room temperature (296 K) (Reichardt 1983). At lower temperatures 
(77 K, 4 K) some typical branches have also been measured and it was found that they 
show a pronounced softening over the whole Brillouin zone (Reichardt 1983). Because 
this softening is absent in LaA12 its origin in CeAlz must again lie in the magnetoelastic 
coupling to the 4f states. The phonon scattering cross section can be related to the 
phonon Green function D(ks,  w) by using the FDT theorem and equation (1): 

- [l - exp( -pw)] Im D(ks,  U).  (&LO". 
Here polarisation factors and the form factor have been suppressed. The Dyson equation 
for the renormalised D(h, w) is expressed by figure 4(b) in the RPA. It leads to 

D(h, U)-' = Do(ks, U)-' - X Q ( k s ,  U) 

The quadrupolar self-energy XQ is determined by the quadrupolar single-ion suscepti- 
bility U Q  which in the RPA is equivalent to the 'bubble' diagram figure 4(b). Explicitly the 
RPA expression is 

This in independent of p due to the cubic symmetry. A,i = E, - E , ;  E, are the unperturbed 
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CEF excitation energies and pi their thermal occupations. One might question whether 
the RPA is sufficient for the quadrupolar susceptibility because in the expressions for the 
dipolar susceptibility, (37) and (38), the renormalised Green functions G(i,  w) were 
used for the calculation of the susceptibility 'bubble' of figure 7(a). However, this was 
only reasonable because the vertex corrections in figure 7(b )  could be neglected. For 
the quadrupolar susceptibility this is not possible. Using the quadrupolar vertex V = 
0, ( p  = 1 ,2 ,3 )  in figure 7 and equation (40) one f indsrg  + 0 for (ap) = (KT) = (78), 
(87). Therefore the contributions in figure 7(a) with (ap) = (78), (87) have strong 
vertex corrections of the type shown in Fig. 7(b). Because UQ(CO) cannot be expressed 
directly by G(i ,  U) as in figure 7(a), it will not have a double-peak structure due to 
(anti-) bound states as did the dipolar u(w). Instead, it is reasonable to assume that 
the proper UQ(W) will have a similar structure as the RPA expression with a single peak 
at A which, however, should be strongly broadened due to the higher-order processes 
in figure 7. This will be simulated by a temperature-independent linewidth r for the 
rrra transition at A, i.e. the replacement A-, A + iT is made in (44). Because the 
functional dependence of g& on ks is not known gk =go is assumed and therefore 
only the temperature dependence of the average phonon energy hw,, can be calculated 
from (43) and (44). At high temperatures k T B  Ahw,, = hw, the centre of the 
unrenormalised PDOS. For the phonon spectral function one obtains: 

where according to (43) and (44) the real and imaginary parts of 2 are given by 

and 

with 

and 

f ( T )  = p 7 - p 8 = ; [ 1  - exp(-pA)]/[l + 2exp(PA)]. 

The coupling constant go = 6.3 K is the same as has been determined before from the 
magnetic structure function. The rrr* linewidth r is the only adjustable parameter. 
Figure 8 shows a plot of 02( w) = Im D( w )  for several temperatures. The average phonon 
frequency hwav has to be interpreted as the peak of Sph(w). At room temperature fiwav 
is almost the same as hw, because thenf(T) and therefore X1(w) is already quite small. 
Lowering the temperature leads to a strong reduction in hwav because of the increasing 
magnetoelastic self-energy. In figure 8(b)  the renormalised phonon frequency hwav is 
plotted as a function of temperature for r = 25 K. The experimental values (Reichardt 
1983) at T = 296,77 and 4 K are indicated for comparison. These values are uncertain 
by about t 5 K because it is not easy to extract a proper average value hw,, from the 
measured branches. However, the general agreement isquite reasonable. The calculated 
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hw,, does not depend dramatically on the phenomenological linewidth r. For compar- 
ison the case r = 0 which corresponds to the RPA for ua(w) (44) is also shown. In this 
approximation hw,, corresponds directly to one of the poles of D ( w )  in (43). There is an 
additional pole present originating from the CEF excitation at A ,  whose weight is strongly 
suppressed by a finite r. Its remnant can still be seen in figure 8(a) as a small hump at 

h w  I K I  

296  K I 

130- 

100 , , . , . , , , . , . , , , 
0 80 160 240 

T I K )  

Figure 8. (a)  Spectral function of renormalised phonons for several temperatures: A ,  300 K ;  
B, 100 K; C, 60 K ;  D, 10 K.  Here values of A = 150 K and linewidth = 25 K have been 
chosen. ( b )  Temperature dependence of the average phonon frequency hwa, for r = 0 = 

RPA (broken curve) and r = 25 K (full curve). Squares are from experimental results of 
Reichardt (1983). 

hw = 170 K which is probably smaller than the experimental background. One also 
observes from figure 8(a) a broadening of the phonon spectral function when Tdecreases. 
This has actually been observed. To describe this effect properly, however, a better 
theory for u ~ ( w )  without a phenomenological would be necessary. 
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4. Influence of the CEF-phonon bound state on the thermodynamic properties of CeAh 

It is well known that CEF states have a pronounced effect on thermodynamic properties 
because their energies are of the order s 100 K and can therefore be thermally populated. 
The most common quantities which show a strong T-dependence in the range of the CEF 
energies are the specific heat C, (Schottky anomalies), the magnetic susceptibility xm 
and the thermal expansion coefficient p. A review of the theory and some experimental 
examples for these quantities in conventional CEF systems have been given by Fulde 
(1978) and Luthi (1980). It is quite simple to calculate C,, xm and ,f3 for a normal T- 
T8 CEF system. In this chapter I want to discuss the qualitative influence of the existence 
of bound states in CeA12 on these quantities. A quantitative discussion is difficult because 
of Kondo-type anomalies and cooperative magnetic effects in CeA12 (Steglich eta1 1979). 
The thermodynamic quantities will be calculated within a single-ion approximation (no 
cooperative effects) using the dispersionless model for the bound states. 

4.1. Specific heat 

In a conventional CEF system the Schottky contribution to C, is given by -T' 
(d2FddT2) where F, is the free energy due to CEF excitations. This leads to the 
following molar specific heat ( R  is the gas constant) (Luthi 1980): 

CJR = ((2) - ( E ) ~ ) / ( ~ T ) ~ .  (47) 

Here ( A ) =  Z-' ZIAl exp( - &, /kT)  is the thermal average. This formula can also be 
used if CEF-phonon bound states are present, provided the thermal average is redefined 
as 

(A)  = 2 - 1  X A ,  exp( - EJU) where i = {IF;), i = 1,. . . ,24} 
I 

are the eigenstates of the coupled CEF-phonon system starting from a decoupled system 
that includes all the zero- and one-phonon states. The partition function is given by 
2 = Zl exp( - k,/,/kT). This has to be done in order to ensure factorisation Z = ZphZ into 
phonon and CEF partition functions in the limit go -0. A reasonable approximation is 
to use the E, of 0 3.2 for i = 1,. . . , 12 and the undisturbed El = A + hw, for i = 
13, . . . ,24. The specific heat C m  calculated with (47) by using (A)  contains all the 
contributions of one-phonon excitations. These have to be subtracted in order to obtain 
the explicit expression for C, which corresponds to the CEF contribution modified by the 
existence of bound states 

C,,,/R = CJR - 3x2 exp(x)/[3 + exp(x>]' x = hwo/kT. (48) 
Because fiw is the temperature-independent bare-phonon frequency, (48) should be 
associated with the experimental difference CgP = CE'(CeA12) - C:'(LaAl2) where 
C,O'is the total molar specific heat. This is not really the Schottky contribution in CeA12 
because the phonon frequencies for CeAlz are themselves temperature dependent. In 
the limit go- 0, (48) reduces to (47). 

A plot of C, for a conventional r r r8 system and for the bound-state system is shown 
in figure 9. One can see that the Schottky peak of the rrrs system is broadened due to 
the presence of two inelastic excitations in the system with bound states. A comparison 
with experiment is difficult because C:P has not been measured accurately (Deenadas 
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Figure 9. The CEF contribution to the molar specific heat C,. ( R  is the gas constant). A.  
Conventional T-Ts system: B. system with bound states according to figure 3 with A = 
150 K.  

et ai 1970): it is very small compared with C,"'. Better measurements are now being 
performed (Schefzyk et a1 1983). One should not expect quantitative agreement with 
(48) because the phonons have been treated in a very simple model. One would expect 
that (48) is not good for kT 4 hm and kT b ha,. However the basic feature of a 
broadened rrrs Schottky peak due to the splitting between (anti-) bound states should 
be observable. 

4.2 .  Magnetic susceptibility 

The magnetic susceptibility can be calculated by a similar generalisation from the 
conventional CEF expression for x, (Fulde 1978). The details will not be given here 
because the result is not very significant. The inclusion of bound-state effects changes 
xm only within 2% compared with a normal rrrs system. Recent susceptibility measure- 
ments (Aarts et a1 1983) show that for T b 50 K the experimental slope of xi1 ( T )  is 
smaller by about 20% compared with the prediction of a single-ion susceptibility cal- 
culation. The origin of this discrepancy is not known at present. 

4.3.  Thermal expansion 

In materials without magnetic ions the thermal expansion coefficient /3 = V- ' (dV /dT) ,  
is determined by the anharmonic part of the lattice potential. If ions with CEF states are 
present an additional, at low temperatures much stronger contribution exists which is 
caused by the fully symmetric magnetoelastic interaction. It is given by Luthi (1980) 

(K is the compressibility). Here yj = - d In ~ ~ / a  In Vis the 'Gruneisen parameter' of the 
CEF level 4.  This formula is quite similar to (47) for C,. In fact, for a conventional 
two-level system, e.g. r7, Ts; ($7) = yo($) and ( ~ y )  = yo(&) where yo corresponds to the 
upper (Ts) level. This leads to p - C,; i.e. they should have the same T dependence. 
Now in CeAlz the l-8 level is split into bound states whose 'Griineisen parameters' yz will 
be different from each other, therefore 0 - C, cannot be expected to hold for CeA12. 
Using (7) yz can be calculated under the assumption that d(hm)/dV = 0, i.e. the lattice 
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Griineisen parameter is zero. This leads to 

D ( X )  = [$(1 - X)! + g;,,<+hw()] x = ~ o ~ J A .  (50) 

Here 3 = - (a In Alti In V )  is the Gruneisen parameter of the original CEF gap. Using 
(49). Q(T)  is calculated and the ratio Q( T ) / C m ( T )  is plotted in figure 10. As mentioned 
this is expected to be a constant for a true two-level system. However. a strong \ariation 
of this ratio below 100 K is predicted for CeA1:. Experimentally this has not yet been 
tested. Experiments which are under way (Schefzyk et a1 1983) should be able to test this 
prediction. although the situation is complicated by Kondo contributions at low 
temperatures. 

5. Summary 

It has been demonstrated that the magnetoelastic interaction of phonons and 4f states 
is responsible for the previously unexplained magnetic excitation spectrum which has 
been observed in CeAll and its alloys with La  and Sc. This interaction leads to bound- 
and anti-bound states below and above the region of maximum phonon density of states. 
The intensity sum rule can be explained naturally by this model. The  coupling strength 
as determined from bound-state splitting agrees reasonably well with results from elastic 
constant measurements. In all the other MA12 (M = RE)  the existence of the bound state 
is less likely because the coupling constants are generally smaller. Within the disper- 
sionless model the qualitative features of the magnetic structure function could be 
explained by assuming an  exchange interaction with conduction electrons. In addition. 
the magnetoelastic coupling leads to a strong temperature-dependent renormalisation 
of the phonons which can be adequately described by a quadrupolar response function. 

The existence of bound states should also influence thermodynamic properties. 
notably the specific heat where one would expect a broadening of the Schottky peak. 
Furthermore, the ratio of thermal expansion and specific heat should be strongly tem- 
perature dependent instead of being a constant as for a conventional two-level CEF 
system. 

One  could imagine several improvements and extensions of the theory presented 
here. The  properties of phonons and their coupling to 4f states have been treated in a 
rather simple way in which only the PDOS and a single coupling constant enters. A more 
detailed calculation which incorporates the wavevector and polarisation dependence of 
phonon frequencies and coupling parameters would be desirable. The  quadrupolar 
response function which leads to  the phonon temperature dependence should be cal- 
culated in a better approximation. The consequences of bound states for transport 
properties. resistivity and thermopower etc should also be investigated, especially 
because Ce,Lal - yAI: is usually taken as a model Kondo system where onlyconventional 
rrrp states are used. 

It will be interesting to look for  CEF-phonon bound states in other compounds. Ce  
compounds are the most likely candidates due  to the unusually strong lattice interaction 
of the Ce3--4f states. Recent Raman scattering experiments (Schaack eta1 1983) indicate 
that these states may also have been observed in CeF3. It is possible that similar states 
also exist in 3d compounds (Wagner and Koidl 1980). In CeAI2 it would be interesting 
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Figure 10. Inset: thermal expansion p as function of T. (K is the compressibility; yo is the 
'Griineisen constant', R is the gas constant). The ratio of p/C, is plotted for the level system 
with l=,l 2 )  bound states. For a conventional r7r8 system B/C, would be independent of T 
(broken line). 

to investigate the effects of an external magnetic field on the bound states and the 
phonon temperature anomalies. Spin-polarised neutron scattering would probably be 
very helpful for further investigations on CeA12 but unfortunately this is experimentally 
not possible at present. 
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