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Abstract. States of the Ar II ion whose eigenvectors contain large components of single- 
hole configurations are observed in the (e, 2e) and t,~, e) reactions on the Ar I atom. 
The cross section is regarded as being proportional to the spectroscopic factor, that 
is the state expectation value of the single-hole configuration in the eigenvector. Spectro- 
scopic factors obtained from these reactions for f +  states are compared with those 
obtained by diagonalising an effective Hamiltonian in a model space, with radial matrix 
elements determined by fitting spectra for bound states. (e, 2e) and conventional spec- 
troscopy are compatible and provide complementary information about structure. Simple 
analysis of the present t), e) data does not lead to compatible information on spectroscopic 
factors. 

1. Introduction 

In conventional atomic and molecular spectroscopy the energy eigenvalues of the 
Hamiltonian are determined from the energies of emitted or absorbed photons. Cross 
sections for reactions in which a target system is ionised can. in principle, give infor- 
mation about the eigenvectors of the Hamiltonians for the target and the ion, pro- 
vided the reaction mechanism can be sufficiently well described. Both the (e, 2e) 
and photoionisation ( y ,  e) reactions have been used to obtain such structure informa- 
tion, but detailed agreement has not been obtained for information from these two 
different methods. 

Correct reproduction of information relevant to eigenvectors is a strong indication 
of the validity of the description of a reaction, at least in a limited range. 

The spectroscopic factors for states of the argon ion with total angular momen- 
tum J = 3 and parity .n positive have been obtained from (e, 2e) reaction theory 
applied to experiments (McCarthy and Weigold 1976, to be referred to as I). These 
are compared with similar information obtained from photelectron spectroscopy 
(Spears et al 1974). The spectroscopic factor for a single-hole configuration in a 
state is the state expectation value of that configuration. 
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The present work obtains the same spectroscopic factors from a diagonalisation 
of the Hamiltonian matrix in which the radial integrals are treated as parameters 
and are adjusted so that the eigenvalues fit as closely as possible the energy levels 
of positive parity states determined from photon emission and absorption. The calcu- 
lation parallels one due to Luyken (1972). 

The 3+ structure of the argon ion is chosen because it is simple in the sense 
that only four states are seen with significant strength in the (e, 2e) and ( y ,  e) reactions. 
Yet it is sufficiently complex to provide a test of the spectroscopy. 

Sections 2 and 3 introduce the notation, define the spectroscopic factors and 
review (e, 2e) and ( y ,  e) spectroscopy. Section 4 gives details of the present calculation. 
Section 5 gives a possible collective interpretation of the states of the argon ion 
excited in (e, 2e) reactions. 

2. (e, 2e) spectroscopy 

A matrix representation for the Hamiltonian is obtained in terms of an independent- 
particle model basis 4a, CI = ( N ,  J ,  M ) ,  where N is a radial quantum number and 
J ,  M characterise the angular momentum state. An eigenvector Yi is given by the 
expansion 

1 

In a convenient basis $ J ~  is a Slater determinant of single-particle functions $,!, 
P = ( n , i  ~4. 

In (e, 2e) spectroscopy the momenta kA, kB of two coincident emerging electrons 
are measured following an ionising collision initiated by an electron of momentum 
k,. In the experimental geometry that has proved adequate for spectroscopy the 
polar angles 0 of k, and k,, measured from k,, are equal and fixed at about 45", 
the energies of the two electrons are equal, and the azimuth of one of the detectors 
is varied to determine a cross section profile as a function of the recoil momentum 
q for each state of the ion. 

4 = ko - kA - kB. (2) 

Different states of the ion are resolved by the kinetic energy loss between initial 
and final states. 

The expression for the amplitude that is used in the interpretation of an experi- 
ment in which the ion is left in a state f is 

where K is a kinematic factor and PlZ  is the exchange operator. 
The essential assumption to be tested is that t is a two-body operator, independent 

of the ion coordinates [. In order to determine the momentum profile it is necessary 
to determine the distorted waves (continuum orbitals) x(*) from an optical model 
and to make an assumption for the form of t. There is strong evidence (Camilloni 
et al 1978) that the free Coulomb t matrix is a sufficient approximation for the 
two-body operator t. 
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However, the two-body force assumption results in the structure appearing in 
(3) only in the form of the target-ion overlap (Y f lYT) .  We use the form (1) for 
the target structure and a basis 4hp for the ion, in which single-hole orbitals $; 
are coupled to target configurations q5p in such a way that the ion state Yf  always 
has the total angular momentum and parity specified by a set of quantum numbers 
A. 

Here Crnp is a Clebsch-Gordan coefficient and sums over projection quantum 
numbers are implied in the notation. 

When a large fraction of the reaction strength for states with quantum numbers 
A is in the continuum of the ion, it is best to evaluate the overlap directly by Green's 
function methods (Williams et a1 1977). However, in the present case we deal with 
bound-state configurations. 

If the Hartree-Fock configuration Cpo dominates the expansion (1) of the target 
ground state YT, then the overlap is 

where the sum runs only over different radial quantum numbers in the orbital set 
p. The optimum single-particle potential is the one in which only one term in this 
sum is significant. In our example of the i+ structure of the argon ion this is the 
3s orbital. The (e, 2e) cross section is then proportional to the spectroscopic factor 

sg) = (tL$)Z (7) 
which is simply the square of the coefficient of the single-hole state in the expansion 
(4) of the ion eigenvector 'Pf, The shape of the momentum profile is characterised 
by the orbital $,. 

It has been demonstrated (I) that the Hartree-Fock potential is optimum in this 
sense, and that the Hartree-Fock configuration is sufficient to describe the argon 
target. There are two reasons for this. Firstly the experimental momentum profile 
is not distorted from its 3s form as it would be if there were significant contributions 
to (Yf/Y,) from excited target configurations. These would give terms in (3) charac- 
terised by a different orbital (e.g., 3d). A more strict test of the target Hartree-Fock 
assumption is satisfaction of the spectroscopic sum rule for ion eigenstates with the 
same quantum numbers I,, 

1 Sbf' = 1 
f 

which is obtained from the normalisation and closure relations for 4hS and Yf, 
Present (e, 2e) experiments do not measure absolute cross sections. Argon cross 

sections for $+ states are compared with those for 3- and 3-. Since there is only 
one of each of the latter (corresponding to 3p orbitals with spin-orbit splitting at 
about 15.76 eV), we normalise the cross sections so that their spectroscopic factors 
are one. With this normalisation the sum of the spectroscopic factors for the observed 
f+ states is indeed found to be one. 
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We take the spectroscopic factor for the lowest 4+ state at 29.24 eV as our 
chief point of comparison for spectroscopies. The (e, 2e) value (I) is Sis9'24 = 
0.58 i. 0.06. 

The (e, 2e) reaction identifies the following further ++ states by their momentum 
profiles '(energy levels are given in eV with spectroscopic factors in parentheses): 
38.6(0.23), 41.2(0.13), 43.4(0.06), 48(small), Sl(smal1). The ionisation threshold for 
Ar 11 is at 43.4 eV. Therefore about 94% of the i+ strength is in bound states. 

3. Photoelectron spectroscopy 

The approximation commonly used for an interpretation of the photoionisation 
(y, e) reaction with electron energy E' and photon energy E is the dipole model: 

There are also corresponding approximations involving the velocity and acceleration 
operators of the electrons. This cross section is not strictly proportional to the spec- 
troscopic factor, but the approximation is often made that it is. The same states 
of the argon ion are observed in the ( y ,  e) reaction as in the (e, 2e) reaction. If 
we make this assumption and use the sum rule (7) we obtain S:s9'24 = 0.81 IO.01 
(Spears et al 1974). 

4. Diagonalisation of the argon ion Hamiltonian 

Using the matrix representation (5) the argon ion Hamiltonian is 

H = <d);y7lHl4;p). (10) 
The Hamiltonian H is known in terms of the electromagnetic interactions among 
the electrons and the nucleus. It includes spin-orbit, spin-spin and spin-other-orbit 
interactions as relativistic corrections. 

The independent-particle basis 4h0 spans the whole space including the continuum, 
so the set H of matrix elements is infinite. In practice the basis is truncated to a 
subset of all the configurations formed by an inert core and several active orbitals. 
The set of matrix elements in this model space is H,. 

H, = PM<4;'P'IHl4;P) (1 1) 
where P, projects onto the model space. 

The model diagonalisation, of course, produces different eigenvalues and eigenvec- 
tors from the true ones. This is corrected in the model space by defining a renorma- 
lised effective Hamiltonian R, which accounts for core polarisation and continuum 
effects by requiring that the set 

= ~ M ( 4 ; , 0 m J ; ! 3 )  (12) 

of renormalised matrix elements in the model space produces a finite set of eigen- 
values that are as close as possible to the experimental values. 
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The matrix elements for the electrostatic interaction are written in terms of radial 
integrals 

r: 
Rk(nala, nblb; n c l c ,  ndh) = e2 Rn,l,(r1)Rnblb(r2) 7 R n C l c ( r 1 ) R n d i d ( r 2 )  drl  dr, JOm > 

while the associated numeric coefficients can be calculated by means of the so called 
Racah algebra (Racah 1941, 1942, 1943). The radial integrals are treated as parameters 
in the energy-level fitting procedure. 

F k  and Gk parameters are defined as: Fk(naIa, nb/b) = Rk(nala, nJb; nala, nb&) and 

With the same algebraic techniques the spin-orbit matrix elements are written 
Gk(nala, nblb) = Rk(nala, %lb; nblb, nala). 

in terms of the radial integrals (parameters): 

l(naLa, nblb)  = R n a l a ( r ) ~ ( r ) R n b l b ( r )  dr.  

Apart from those contributions expressed in terms of the ordinary Slater parameters, 
Luyken (1972) used the two well known effective interactions (Rajnak and Wybourne 
1963): 

a(nala)L(L + 1) and P(nala)S(S + 1). 

They have been introduced to take into account the interactions with many far- 
lying configurations. This procedure in which CI and P are treated as parameters 
and the expressions L(L+ 1) and S(S + 1) as coefficients is normally called model 
interaction. 

L and S are the quantum numbers of the final state which means that the 
parameters CI and P contain the effects of excitations of two electrons out of the 
p orbital as well as out of other active orbitals. 

In the present calculation all bound eigenvalues with even parity are fitted by 
diagonalising submatrices for J = 0.5 to 45.  Experimental values are those of Minn- 
hagen (1963). The active orbitals used are 3s, 4s, 3p, 3d and 4d. Initial estimates of 
parameters are obtained by scaling integrals of Hartree-Fock orbitals, determined 
by Froese Fischer’s (1972) program. 

All parameters have been listed in table 1. Probably they are defined in the same 
way as those of Luyken, apart from the E parameters (configuration energy). The 
RMS deviation has been considerably reduced in our calculations by introducing a 
parameter a(4s). The values under the heading ‘Luyken’ are the final values obtained 
by Luyken in his energy-level fit. The third column, labelled ‘HF value’, gives the 
values obtained using the Froese Fischer program. The last column gives our final 
values. 

The model space is chosen to include four configurations, so that there are 14, 
19, 18, 10 and 4 basis states for J = 0.5, 1.5, 23, 3.5 and 4.5, respectively. A total 
of 60 levels are fitted first, by varying simultaneously 29 of the set of 30 parameters. 
The parameter R1(3p, 4s; 3d, 3p), being badly determined, has been adjusted in a 
final independent calculation. 

The energy levels are reproduced by the calculation with at least three-figure 
accuracy. The greatest deviation is 350cm-l. The number of levels for which the 
deviation is greater than 200 cm-’ is 12. These deviations have a negligible effect 
on the $+ eigenvectors. 
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Table 1. Parameters and RMS deviations for 3s23p43d + 3s23p44d + 3s23p44s + 3s3p6 
configurations. 

Parameter Luyken (1972) HF value This work 

E (3sZ3p43d) 
E (3s23p44d) 
E (3s23p44s) 
E (3s3p6) 
F:d(3P> 3P) 
F2,(3P, 3P) 
m 3 p .  3P) 
FZ (3p, 3 4  
F Z  (3p, 4 4  
G' (3p, 3 4  
G' (3p, 4 4  
G' (3p, 4s) 
G 3  (3p, 3 4  
G 3  (3p, 4 4  
5 3 d  (3P, 3P) 
C4d (3P, 3P) 
54s (3P> 3P) 
5 (3d  3 4  
5 (4d, 4 4  
R Z  (3p, 3d; 3p, 4d) 
R' (3p, 3d; 4d, 3p) 
R3 (3p, 3d: 4d, 3p) 
R Z  (3p, 4s; 3p, 3d) 
R' (3p, 4s; 3d, 3p) 
R' (3p, 3p; 3s, 3d) 
R' (3p, 3p; 3s, 4d) 

( 3 4  
r ( 4 4  
x (4s) 
/3 ( 3 4  

A (RMS) 

19 1 1 33( 5 17) 
220597(423) 
17288 l(626) 
141892(408) 
56300(887) 
55825(650) 
57075( 1062) 
30765(609) 
12915(599) 

7350(516) 
3783(714) 

18 130( 1005) 
10364(735) 

1003(117) 
1148(146) 
1048( 148) 

6.1(55) 
8.3(52) 

27555(351) 

15750(777) 
16470(267) 
21633(1372) 
- 2975(279) 

(988) 
42858(611) 
29548(774) 

54.7( 12.7) 
28.0( 15.1) 

0 
486(76) 

167 

66425 
68025 
67825 
38185 

8295 
45510 

8805 
4083 

26705 
5390 
957 
996 
995 

12.6 
3.2 

14857 
19697 
11795 
- 6075 

62078 
27454 

168322(253) 
198260(279) 
148762( 195) 
142341(485) 
52861(574) 
55870(772) 
53000(388) 
31519(733) 
12399(711) 
27859(442) 

6742(637) 
3845(191) 

18281(1252) 
9679(893) 
11 30( 139) 
1090( 182) 
1055(181) 

18.8(61) 
20.7(64) 

15 124( 1001) 
16426(328) 
1959 1( 1656) 

(1178) 
- 3120(466) 

43690(704) 
28511(956) 

78.1(12.7) 
18.6( 18.5) 

269(61) 
279(77) 

203 

The calculation is illustrated by table 2, which shows the energy-level comparison 
and the principal components of the eigenvectors for the f+ states. The first and 
second columns give, respectively the experimental (Eex)  and calculated (Ecalc) energy 
levels in cm-l .  The third column gives the deviation 

In the fourth column we show the separation energy in eV for the states relevant 
to the (e, 2e) reaction, that is those with a significant contribution from the 3s-hole 
configuration, denoted 3s- I(%). The last four columns give the squared coefficients 
(thfp')' for the four most important states in each eigenvector, called state expectation 
values. These numbers sum to one for each eigenvector and for each basis vector 
state. 

The spectroscopic factor in this notation is the state expectation value for the 
basis state 3sC1('S). For the 29.24 eV state, 

Some insight into the validity of an ab initio shell-model calculation in the present 
model space is given by comparing some of the initial values of the Slater integrals 
obtained from Hartree-Fock orbitals with their effective values determined by fitting 

= 0.61. 
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Table 3. Comparison of eigenvectors for the main states observed by (e. 2e) calculated 
by fitting (e. 2e) data with a three-term basis and by fitting energy levels with a fourteen- 
term basis. 

Eigenvector 

Eigenvalue (eV) 3s-’(’S) 3d(‘D)’S 4d(’D)’S 

30.4 0.734 0,533 0,422 
38.8 0,494 - 0.844 0.207 
41.2 0.466 - 0.207 -0.883 

29.24 
38.58 
41.20 

0.781 0.569 0.255 
0,385 -0.713 0,420 
0.450 -0.232 -0.861 

energy levels (see table 1, columns 3 and 4). The effective values are always of the 
same order of magnitude. but differences of about 30% are common. Scaling factors, 
e.g. those known from analogous spectra, have been used in finding effective values. 

5. A collective model sub-basis 

A very interesting insight into atomic structure is provided by examining the eigenvec- 
tors in the model diagonalisation of the states observed by (e, 2e). Neglecting state 
probabilities less than about 0.05 (and therefore neglecting the 38.61 eV state), we 
notice that the three states at 29.24 eV, 38.58 eV and 41.20 eV are all described by 
a three-term basis 3s-l(’S), 3d(’D)2S and 4d(’D)’S, so that the structure can be 
approximately evaluated by diagonalising an effective Hamiltonian in this sub-basis. 

The configurations in the sub-basis may be considered in terms of a collective 
model. The first represents the direct knockout of an electron with orbital quantum 
numbers p = 3s from a target state with quantum numbers p = O + .  The second 
and third, respectively, represent the knockout of a 3d and 4d electron from a target 
state p = 2 + .  This can be considered as a vibrational excitation of the target, thus 
giving a tentative physical explanation for the dominance of these configurations. 

If one uses the three-term sub-basis for diagonalisation of the Hamiltonian for 
these three states then there are six independent matrix elements and six experimen- 
tally determined quantities, three eigenvalues and three spectroscopic factors. One 
therefore has a means of determining approximate experimental values of all the 
coefficients in the three-term eigenvectors for the three states from the (e, 2e) experi- 
ment. This calculation is reported in I. It is compared with the relevant part of 
the full diagonalisation in table 3. The same phase convention is used for both cases. 

6. Comparison and conclusions 

We first consider the validity of the assumptions made in using the various spectro- 
scopies as a measure of the structure of the Ar II ion. 

The ionisation spectroscopies, (e, 2e) and (y, e), observe certain states of Ar 11, 

namely those that have a significant component of the 3p-hole or 3s-hole configur- 
ations. Use of particular orbitals to form the basis already implies a particular 
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single-particle model. The first great advantage of the (e, 2e) reaction is that it selects 
a particular orbital set, namely the Hartree-Fock orbitals, by the fact that they give 
the experimental momentum profiles for 3p and 3s cases. 

States with J n  not equal to the single-hole values f-, 4-, ++ may be excited 
either if there are significant components of excited configurations in the Ar I ground 
state or if the reaction is capable of exciting such configurations in ‘two-step’ processes 
in which the distorted waves x(’) have inelastic as well as elastic components. In 
the present case both these effects are small. This is shown by the absence of states 
that can be identified by momentum profiles as having ‘forbidden’ values of 571. 
It is confirmed by the satisfaction of the spectroscopic sum rule. Note that in the 
case of helium, forbidden states are identified. They give a very sensitive measure 
of correlations in the helium ground state (Dixon et a1 1976). 

The whole of the ++ strength of Ar 11 is identified by (e, 2e). About 6% of 
it is not identified as a model space state, so it is due to contributions either from 
the collective nd series ( n  3 5), or from the continuum, both of which are compatible 
with the obtained energy value. 

Momentum profile shapes have not been observed for the ( y ,  e) reaction. Because 
of kinematic restrictions, variation of 4 requires variation of the incident energy. 
This means that a very detailed description of the reaction mechanism would be 
required to obtain reliable confirmation of a particular structure model. It would 
enhance the use of photoelectron spectroscopy if there were a simple proportionality 
relationship between spectroscopic factors and cross sections. If there is, then there 
is a conflict between (p, e) and (e, 2e), for which Si: 24 = 0.81 i: 0.01 and 0.58 rt 0.06, 
respectively. However, the analysis of (p, e) does not so far have the advantage of 
a correct description of momentum profiles or the satisfaction of the spectroscopic 
sum rule that the analysis of (e, 2e) has. The conflict is resolved by the diagonalisation 
of the effective Hamiltonian, which produces the value Si: 24 = 0.61, thus giving 
further confirmation of the validity of (e, 2e) spectroscopy. 

The matrix diagonalisation description of conventional spectroscopy suffers from 
a disadvantage. It does not attempt to describe all the structure of the ion for a 
particular Jn,  since continuum states are not normally observed. In the case of the 
$+ structure of Ar 11 only about 6% of the strength is not found in the model 
space, so one would expect close correspondence between the spectroscopic factors 
and those of (e, 2e). However, since the 6% high-energy strength is forced into the 
model space states, one must expect spectroscopic factors for the higher-energy states 

Table 4. Comparlson of eigenvalues and spectroscopic factors determined by (e, 2e) and 
diagonalisation of the effective Hamiltonian. 

~~ 

Eigenvalue (eV) Spectroscopic factor 

Diagonalisation (e. 2 4  Diagonalisation (e, 2 4  

29.24 

38.61 
41.20 

29.3 f 0.1 0.61 

0.02 
38.6 f 0.1 

41.2 5 0.2 0.20 
43.4 f 0.1 
48 
51 

0.58 I 0 0 6  

0.23 f 0.02 

0.13 5 0.02 
0.06 0.02 
small 
small 
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to be somewhat unrealistically high. This distortion of the eigenvectors would con- 
tinue down to the lower eigenvectors, but one would not expect it to affect the 
lowest eigenvector (29.24 eV) very much. Hence the use of this state as our main 
point of comparison. The detailed comparison of spectroscopic factors for (e, 2e) 
and the diagonalisation is given in table 4. The discrepancies would of course be 
reduced by including more terms in the basis. 

In view of the limitations of both methods the correspondence of the relevant 
eigenvector state probabilities for (e, 2e) and the analysis of spectra is very satisfactory. 
With the availability of cross checks from momentum profiles and the spectroscopic 
sum rule, one might expect the (e, 2e) values to represent the best estimates of the 
spectroscopic factors. Photoelectron spectroscopy awaits experiments with varying 
incident energy and a detailed description of the reaction mechanism before it can 
provide the same information. The analysis of spectra, of course, gives a much more 
complete description of the structure of Ar 11, since it takes into account many bound 
states that cannot be observed in the ionisation spectroscopies. 
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