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ABSTRACT

We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (H I)
in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as
additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a
similar amount of neutral hydrogen, although for a fixed halo mass, on average, the H I mass increases with
the sum of the neutrino masses. Our results show that H I is more strongly clustered in cosmologies with
massive neutrinos, while its abundance, ΩH I(z), is lower. These effects arise mainly from the impact of
massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small
scales and the abundance of dark matter halos. Modeling the H I distribution with hydrodynamic simulations
at z> 3 and a simple analytic model at z< 3, we use the Fisher matrix formalism to conservatively forecast
the constraints that Phase 1 of the Square Kilometre Array will place on the sum of neutrino masses,
Mν ≡ Σ mν. We find that with 10,000 hr of interferometric observations at 3 z 6 from a deep and narrow
survey with SKA1-LOW, the sum of the neutrino masses can be measured with an error σ(Mν) 0.3 eV
(95% CL). Similar constraints can be obtained with a wide and deep SKA1-MID survey at z 3, using the
single-dish mode. By combining data from MID, LOW, and Planck, plus priors on cosmological parameters
from a Stage IV spectroscopic galaxy survey, the sum of the neutrino masses can be determined with an error
σ(Mν); 0.06 eV (95% CL).

Key words: cosmological parameters – galaxies: ISM – large-scale structure of universe – neutrinos – radio
lines: ISM

1. INTRODUCTION

The standard model of particle physics describes neutrinos as
neutral spin-1/2, massless fermions, organized into three
families with three different flavors: νe, νμ, ντ. It has been
observed that neutrinos can change their flavor as they
propagate through space, however. This phenomenon, known
as neutrino oscillations, implies that neutrinos are massive.
Measurements of the neutrino oscillations from laboratory
experiments have allowed us to estimate the mass-square
differences among the different neutrino mass eigenstates to be
(Fogli et al. 2012; Forero et al. 2012):

 = ´ -m 7.5 10 eV 112
2 5 2 ( )

 = ´ -m 2.3 10 eV , 223
2 3 2 ( )

which implies that at least two of the three neutrino families are
massive. A lower bound on the sum of the neutrino masses can
be set from the above measurements: åºn nM m 0.06 eV.

i i

Unfortunately, the above constraints do not allow us to
determine which neutrino is the lightest, or whether it is
massless or massive. This gives rise to two different
hierarchies: a normal hierarchy in which 0�m1<m2<m3,
and an inverted hierarchy where 0�m3<m1<m2.

The fact that neutrinos are massive is one of the clearest
indications of physics beyond the particle physics standard
model, and so two of the most important questions in modern
physics are: (a) what are the masses of the neutrinos, and (b)
which hierarchy do they conform to? Answering these
questions with laboratory experiments is extremely challen-
ging. For instance, current bounds on the mass of the electron

anti-neutrino from the KATRIN4 experiment are
n <m 2.3 eVe( ¯ ) (Kraus et al. 2005) and are expected to

improve to n <m 0.2 eVe( ¯ ) in the coming years.
On the other hand, tight upper limits on the neutrino masses

have already been obtained by using cosmological observables
such as the anisotropies in the cosmic microwave background
(CMB), the clustering of galaxies, the abundance of galaxy
clusters, the distortion in the shape of galaxies by weak lensing,
the Lyα forest, etc. (Hannestad 2003; Reid et al. 2010;
Swanson et al. 2010; Thomas et al. 2010; Abazajian et al. 2011;
Saito et al. 2011; de Putter et al. 2012; Riemer-Sørensen et al.
2012; Xia et al. 2012; Zhao et al. 2012; Basse et al. 2013;
Costanzi et al. 2013, 2014; Costanzi Alunno Cerbolini et al.
2013; Hamann & Hasenkamp 2013; Planck Collaboration 2013,
2015; Battye & Moss 2014; Beutler et al. 2014; Giusarma
et al. 2014; Wyman et al. 2014; Palanque-Delabrouille et al.
2015a, 2015b). These constraints arise because massive
neutrinos delay the matter–radiation equality time and slow
down the growth of matter perturbation on small scales. At
linear order, the resulting effects on the CMB and matter power
spectrum are well known and understood, making cosmologi-
cal observables extremely useful tools for putting upper limits
on the sum of the neutrino masses.
Currently, the tightest upper limit on the sum of the neutrino

masses comes from combining data from the CMB, baryonic
acoustic oscillations (BAO) and the Lyα forest: Mν< 0.12 eV
(95% CL) (Palanque-Delabrouille et al. 2015a). These limits
also have strong implications for particle physics experiments
like neutrinoless double beta decay (Dell’Oro et al. 2015).
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A new cosmological observable has recently been proposed
that is expected to play an important role in future cosmology:
21 cm intensity mapping (Bharadwaj & Sethi 2001; Bharadwaj
et al. 2001; Battye et al. 2004; McQuinn et al. 2006; Chang
et al. 2008; Loeb & Wyithe 2008; Bull et al. 2015). The idea of
this technique is to measure the integrated 21 cm emission from
unresolved galaxies by performing a low angular resolution
survey (Santos et al. 2015). Since neutral hydrogen (H I) is a
tracer of the underlying matter distribution of the universe on
large scales, the H I power spectrum is expected to follow the
shape of the matter power spectrum, but with a different
amplitude (the H I bias). This should allow tight constraints to
be placed on cosmological parameters through measurements
of the power spectrum of the 21 cm field (Bull et al. 2015).

Intensity mapping therefore constitutes a promising new
cosmological observable that can be used to constrain the
neutrino masses (Loeb & Wyithe 2008; Pritchard &
Pierpaoli 2008; Tegmark & Zaldarriaga 2009; Metcalf 2010;
Abazajian et al. 2011; Oyama et al. 2013; Shimabukuro
et al. 2014). In order to do that, however, one needs to
understand how the 21 cm power spectrum is affected by the
presence of massive neutrinos. The aim of this paper is to
investigate the signatures left by massive neutrinos on the
21 cm power spectrum in the post-reionization universe, in
both the linear and fully nonlinear regimes.

We begin by studying the effects that massive neutrinos have
on the spatial distribution of neutral hydrogen in real-space. We
do this by running hydrodynamic simulations with massless
and massive neutrinos. We investigate how the presence of
massive neutrinos affects the H I abundance and clustering
properties and, ultimately, the signatures left by neutrinos in the
21 cm power spectrum.

We also forecast the constraints that the future Square
Kilometre Array (SKA) radio telescope will place on the sum
of the neutrino masses. We do this using the Fisher matrix
formalism, where the spatial distribution of neutral hydrogen is
modeled using hydrodynamic simulations at redshifts
3� z� 5.5 (a redshift range where SKA1-LOW will collect
data), and with a simple analytic model at redshifts z� 3 (the
redshift range covered by SKA1-MID). Our approach is
conservative in the sense that: (i) at z> 3 we compare models

of the H I distribution using four different methods; and (ii) we
embed the information from the 21 cm power spectrum in the
Fisher matrix forecasts in a conservative way.
This paper is organized as follows. In Section 2 we describe

the set of hydrodynamic simulations carried out for this work.
Our simulations do not account for two crucial processes
needed to properly model the spatial distribution of neutral
hydrogen: H I self-shielding, and the formation of molecular
hydrogen. We correct the outputs of our simulations
a posteriori to account for these effects, depicting the four
different methods we use to achieve this in Section 3. We also
describe the method we use to model the spatial distribution of
neutral hydrogen at redshifts z� 3, which is not covered by our
hydrodynamic simulations. In Section 4 we investigate the
effect of massive neutrinos on the abundance and spatial
distribution of neutral hydrogen. We present our forecasts on
the neutrino masses in Section 5 and, finally, draw the main
conclusions of this paper in Section 6.

2. HYDRODYNAMIC SIMULATIONS

We model the spatial distribution of neutral hydrogen by
running high-resolution hydrodynamic simulations in 14
different cosmological models. The values of the cosmological
parameters of our fiducial model are Ωm= 0.3175,
Ωcdm= 0.2865, Ωb= 0.049, Ων= 0, ΩΛ= 0.6825, h=
0.6711, ns= 0.9624 and σ8= 0.834, in excellent agreement
with the latest results from Planck (Planck Collaboration 2015).
In all simulations we have assumed a flat cosmology, and
therefore the value of ΩΛ is set to 1−Ωm, with
Ωm=Ωcdm+Ωb+Ων, with Ωνh

2≅Mν/(94.1 eV). A summary
of our simulation suite is shown in Table 1.
The simulations can be split into two different groups.

On one hand we have simulations in which the value of one
of the parameters, Ωcdm, Ωb, Ων, h, ns, As, is varied
(with respect to the value in the fiducial model) while
the values of the other parameters are kept fixed. We
use these simulations in our Fisher matrix analysis to
investigate degeneracies between cosmological parameters,
and to forecast the constraints that the SKA will place on the
neutrino masses. The simulations belonging to this group
are         n+ + - + - + - + -, , , , , , , , , .( )

Table 1
Summary of Our Simulation Suite

Name Box Ωcdm Ωb Ων ΩΛ Ωk h ns 109 As σ8,0
(h−1 Mpc)

 50 0.2685 0.049 0.0 0.6825 0 0.67 0.9624 2.13 0.834
n+ 50 0.2685 0.049 0.007075 0.675425 0 0.67 0.9624 2.13 0.778
n+m 50 0.261425 0.049 0.007075 0.6825 0 0.67 0.9624 2.13 0.764
n++

m 50 0.25435 0.049 0.01415 0.6825 0 0.67 0.9624 2.13 0.693
+ 50 0.287 0.049 0.0 0.664 0 0.67 0.9624 2.13 0.868
- 50 0.25 0.049 0.0 0.701 0 0.67 0.9624 2.13 0.797
+ 50 0.2685 0.055 0.0 0.6765 0 0.67 0.9624 2.13 0.816
- 50 0.2685 0.043 0.0 0.6885 0 0.67 0.9624 2.13 0.853
+ 50 0.2685 0.049 0.0 0.6825 0 0.71 0.9624 2.13 0.886
- 50 0.2685 0.049 0.0 0.6825 0 0.63 0.9624 2.13 0.777
+ 50 0.2685 0.049 0.0 0.6825 0 0.67 1.0009 2.13 0.846
- 50 0.2685 0.049 0.0 0.6825 0 0.67 0.9239 2.13 0.822
+ 50 0.2685 0.049 0.0 0.6825 0 0.67 0.9624 2.45 0.894
- 50 0.2685 0.049 0.0 0.6825 0 0.67 0.9624 1.81 0.769

Note. The simulation name indicates the parameter that has been varied with respect to the fiducial, , model. The superscript, +/−, designates whether the variation is
positive/negative. The simulations n+m and n++

m are simulations with massive neutrinos having a value of Ωm equal to the one of the fiducial model.
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On the other hand we have simulations in which we vary the
value of Ων, but keep Ωm fixed. This is the most natural choice
to investigate the effect of massive neutrinos, since we assume
that a fraction of the total matter content of the universe is made
up of neutrinos. We have run one simulation with Mν= 0.3 eV,
and another with Mν= 0.6 eV. Even though these neutrino
masses are ruled out by the most recent constraints that
combine CMB, BAO and Lyα-forest data, our purpose in this
paper is to investigate the impact of neutrino masses on the H I

spatial distribution. Note that for a realistic sum of neutrino
masses, the effect will be very small and may be completely
hidden by sample variance in our simulations. Therefore, we
decided to run simulations with neutrino masses higher than
current bounds to properly resolve the effects of neutrinos on
the H I distribution. For the sum of the neutrino masses we use
to run the simulations, 0.3 and 0.6 eV, the neutrino masses are
almost perfectly degenerate, so there is no need to distinguish
between the three different families. We use these simulations
to investigate the impact of massive neutrinos on the matter and
H I spatial distribution. The simulations belonging to this group
are  n n+ ++, , .m m( )

In each simulation we follow the evolution of 5123 cold dark
matter (CDM) and 5123 baryon particles (plus 5123 neutrino
particles for simulations with Ων> 0) in a periodic box of size
50 comoving h−1 Mpc, down to redshift 3. For each simulation
we save snapshots at redshifts 5.5, 5, 4.5, 4, 3.5 and 3. Note
that evolving our simulations down to z= 0, for all the
cosmological models considered in this paper, would be
extremely computationally expensive, so at redshifts lower
than z= 3 we model the spatial distribution of neutral hydrogen
using a simple analytic model described in Section 3.5.

The simulations were run using the TreePM+SPH code
GADGET-III (Springel 2005). They incorporate radiative
cooling by hydrogen and helium, as well as heating by a
uniform UV background. Both the cooling routine and the UV
background have been modified to obtain the desired thermal
history, which corresponds to the reference model of Viel et al.
(2013) that has been shown to provide a good fit to the
statistical properties of the transmitted Lyα flux. In our
simulations, hydrogen reionization takes place5 at z∼ 12 and
the temperature–density relation for the low-density IGM
T= T0(z)(1+ δ)γ(z) − 1 has γ(z)= 1.3 and T0(z= 2.4, 3,
4)= (16,500, 15,000, 10,000)K. For every simulation we
generate 5000 quasar mock spectra at the snapshot redshifts,

and tune the strength of the UV background to reproduce the
observed mean transmitted flux of the Lyα forest; this
information is needed for two of the H I modeling methods
(the pseudo-RT 1 and pseudo-RT 2 methods, described below).
Star formation is modeled using the multi-phase effective
model of Springel & Hernquist (2003).
The simulation initial conditions are generated at z= 99

using the Zel’dovich approximation. We compute the transfer
functions of the different components using CAMB (Lewis
et al. 2000). In simulations with massive neutrinos, the initial
conditions were generated taking into account the scale-
dependent growth present in those cosmological models. We
note that the random seeds used to generate the initial
conditions are the same in all simulations.
We identify dark matter halos using both the Friends-of-

Friends (FoF) algorithm (Davis et al. 1985) with b= 0.2 and
SUBFIND (Springel et al. 2001; Dolag et al. 2009). We require
that a minimum of 32 CDM particles belong to the FoF halo to
identify it.

3. H I DISTRIBUTION

Our hydrodynamic simulations do not take into account two
crucial physical processes needed to properly simulate the
spatial distribution of neutral hydrogen: the formation of
molecular hydrogen (H2), and H I self-shielding. In this section
we describe the various methods we use to correct for those
two processes. We consider four methods here: two models
(pseudo-RT 1 and pseudo-RT 2) that aim to mimic the result of
a full radiative transfer calculation6, and two (halo-based 1 and
halo-based 2) that were constructed by taking into account the
fact that all H I should be within dark matter halos (Villaescusa-
Navarro et al. 2014b). These models have the objective of
providing the shape and amplitude of the function MH I(M, z)
(see Section 3.5 for further details). We summarize the main
features of each method in Table 2.
In this section, we also explain the way we model the spatial

distribution of neutral hydrogen at redshifts z< 3. This redshift
range is not covered by our simulations, but is needed to
forecasts the constraints that the SKA will set on the neutrino
masses.

Table 2
Differences between the Four Different Methods Used to Model the Spatial Distribution of Neutral Hydrogen

Method

Pseudo-RT 1 Pseudo-RT 2 Halo-based 1 Halo-based 2
(Fiducial Method)

H I self-shielding ✓ ✓ ✓ ✓

Molecular hydrogen ✓ ✓ × ×
Modeling MH I(M, z) function × × ✓ ✓

H I assigned to all gas particles ✓ ✓ × ×
H I assigned only to gas particles in halos × × ✓ ✓

Value of ΩH I(z) fixed a priori × × ✓ ✓

Reference work Rahmati et al. (2013a) Davé et al. (2013) Bagla et al. (2010) This work

5 Note that this reionization redshift is in slight tension with the latest Planck
results (Mitra et al. 2015; Planck Collaboration 2015). We do not expect our
conclusions to be affected by this however, since we use the same reionization
history for all models, and are only interested in studying relative effects.

6 In both pseudo-RT methods, we only account for the radiation from the UV
background and do not consider radiation from local sources (Miralda-
Escudé 2005; Schaye 2006; Rahmati et al. 2013b). We are interested only in
studying relative differences here, rather than absolute quantities, and do not
expect our conclusions to change by neglecting the radiation from local
sources.
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3.1. Pseudo-RT 1 (Fiducial Model)

In the first pseudo-radiative transfer method, neutral
hydrogen is assigned to every single particle in the simulation.
The H I self-shielding correction is modeled using the fitting
formula of Rahmati et al. (2013a) (see their Appendix A) that
was obtained by performing radiative transfer calculations on
top of hydrodynamic simulations. This correction states that the
photo-ionization rate seen by a particular gas particle is a
function of its density.

The H I masses obtained in this way are further corrected to
account for the presence of molecular hydrogen, which is only
assigned to star-forming particles. We assume that the ratio of
molecular to neutral hydrogen scales with the pressure, P, as

S
S

=
a⎛

⎝⎜
⎞
⎠⎟

P

P
, 3H

H 0I

2 ( )

where SH2 and ΣH I are the molecular and neutral hydrogen
surface densities, respectively. In our analysis we use (P0,
α)= (3.5× 104 cm−3 K, 0.5), where α is slightly different to
the value measured by Blizt & Rosolowsky (2006), α= 0.92.
The reason for this choice is purely phenomenological—using
α= 0.5, we obtain much better agreement with the abundance
of absorbers with large column densities than with α= 0.92.

We use the above procedure as our fiducial method to model
the spatial distribution of neutral hydrogen in the various
simulated cosmologies, and to investigate the effects induced
by massive neutrinos on the spatial distribution of neutral
hydrogen (see Section 4). To study the robustness of our SKA
neutrino masses forecasts, we also model the distribution of H I

using three other methods, that we describe in the following
subsections.

3.2. Pseudo-RT 2

The H I self-shielding correction can be implemented using a
method proposed by Davé et al. (2013). The authors of that
paper state that good agreement between this method and the
full radiative transfer simulations by Faucher-Giguère et al.
(2010) is achieved. It is also able to reproduce several
observations, such as the HIMF (Haynes et al. 2011) at
z= 0. We will briefly describe the method here, but refer the
reader to Davé et al. (2013) for further details.

For every gas particle in the simulation, the H I fraction in
photo-ionization equilibrium is computed by taking into
account the strength of the UV background and the physical
properties of the particle, such as its density and temperature.
Then, the H I column density, for every gas particle, is
computed by integrating the SPH kernel from the radius of the
particle up to a given radius (if it exists), rthres, where it reaches
a given threshold that we set to 1017.3 cm−2. The method
implements the H I self-shielded correction by assuming that
90% of the hydrogen between r= 0 and r= rthres is fully
neutral. Finally, the presence of molecular hydrogen is
accounted for using the procedure described in the previous
subsection.

3.3. Halo-based 1

In contrast with the above two methods, where H I is
assigned to each individual gas particle in the simulation
according to its physical properties, the method depicted in this
and in the next subsection are designed to assign H I to dark

matter halos (see Section 3.5 for further details). These
methods assume that a dark matter halo of mass M at redshift
z hosts an amount of H I given by the deterministic function
MH I(M, z).
Bagla et al. (2010) proposed a parametrization of the

function MH I(M, z) as


= +

⎧
⎨⎪
⎩⎪

M M z
f z

M

M M z
M z M

, 1
if

0 otherwise,

4H
3

max
min

I ( )
( )

( )
( )

( )

where the values of the parameters Mmin(z) and Mmax(z)
correspond to halos with circular velocities equal to
vmin= 30 km s−1 and vmax= 200 km s−1 at redshift z, respec-
tively. The value of f3(z) is tuned to reproduce the H I density
parameter ΩH I(z) (defined as the ratio between the comoving
density of neutral hydrogen at redshift z to the critical density at
z= 0). For the redshifts covered by our simulations
(3� z� 5.5), we assume that the value of ΩH I(z) does not
depend on redshift, and that its value is equal to 10−3, both for
halo-based 1 and for the halo-based 2 method. This is in
excellent agreement with observations.
In practice, this method works as follows: from a simulation

snapshot we identify all the dark matter halos. The total H I

mass residing in a particular halo of mass M at redshift z is
computed from Equation (4). Finally, the H I mass within the
halo is distributed according to some H I density profile, ρH I(M,
z). We model the last step by splitting the total H I mass in a
given halo equally among all the gas particles belonging to it.
In Villaescusa-Navarro et al. (2014b), it was shown that the

above method is capable of reproducing the damped Lyα
absorber (DLA) column density distribution function extremely
well at redshifts z∼ [2–4]. In Padmanabhan et al. (2015) the
authors showed that it also reproduces the H I bias at z= 0 and
the product bH I(z)×ΩH I(z) at z; 0.8 from 21 cm
observations.

3.4. Halo-based 2

While the halo-based 1 model is capable of reproducing
many observables, it does fail at reproducing one: the bias of
the DLAs at z; 2.3 recently measured by the BOSS
collaboration: b= b 2.17 0.20 FDLA

0.22( ) (Font-Ribera et al.
2012), where βF is the Lyα forest redshift distortion parameter,
whose value is of order 1. Here we propose a simple model that
is capable of reproducing this observable as well. We propose a
functional form


=

⎧⎨⎩M M z
f z M M z M

,
if

0 otherwise,
5H

4 min
I ( ) ( ) ( ) ( )

where Mmin(z) is chosen to be the mass of dark matter halos
with circular velocities equal to vmin= 62 km s−1 at redshift z,
and f4(z) is a parameter whose value is set to reproduce the
value of ΩH I(z). This simple model predicts a value of the H I

bias at z= 2.3 (see Equation (7)) equal to 2.15, in perfect
agreement with the observational measurements.7

7 Note that we are making the assumption that the bias of the DLAs is the bias
of the H I. This assumption is reasonable since the amount of H I in Lyman
limit systems and in the Lyα forest is of order ∼10%.
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3.5. H I at z< 3

Running all of our high-resolution hydrodynamic simula-
tions down to z= 0 is infeasible given the computational
resources we have access to. On the other hand, the redshift
range 0� z< 3 may be important when forecasting the
constraints on the neutrino masses that will be achievable with
SKA. We therefore model the spatial distribution of neutral
hydrogen at z< 3 using a simple analytic model.

In Villaescusa-Navarro et al. (2014b) it was shown that the
fraction of H I outside dark matter halos in the post-reionization
era is negligible. One can therefore make the assumption that
all H I resides in dark matter halos. Under this assumption, and
following the spirit of the halo model (Cooray & Sheth 2002),
we can then predict the shape and amplitude of the H I power
spectrum, in real-space, if we have the following ingredients:
the halo mass function, n(M, z), the halo bias, b(M, z), the linear
matter power spectrum P k ,m

lin ( ) and the functions MH I(M, z)
and ρH I(M, z). The functions MH I(M, z) and r r M z,H I ( ∣ )
represent the average H I mass and density profile in a dark
matter halo of mass M at redshift z.

On large, linear, scales the H I power spectrum in real-space
does not depend on the r r M z,H I ( ∣ ) function, but only on
MH I(M, z), and it is given by

=P k z b z P k z, , , 6H H
2

mI I( ) ( ) ( ) ( )

where the H I bias, bH I(z) is given by

ò
ò

=

¥

¥b z
n M z b M z M M z dM

n M z M M z dM

, , ,

, ,
. 7H

0
H

0
H

I

I

I

( )
( ) ( ) ( )

( ) ( )
( )

The 21 cm power spectrum is given by

d b b= + +

´

⎜ ⎟⎛
⎝

⎞
⎠P k z T z b z z z

P k z

, 1
2

3

1

5
, , 8

b21 cm
2

H
2 2

m

I( ) ( ) ( ) ( ) ( )

( ) ( )

where β is the redshift-space distortion parameter given by
β(z)= f(z)/bH I(z), with f(z) being the growth rate at redshift z.
The third term on the right-hand side (rhs) arises from the
Kaiser formula (Kaiser 1987). The value of dT zb ( ) is given by

d =
+

W
⎛
⎝⎜

⎞
⎠⎟T z

H z

H z
z h189

1
mK, 9b

0
2

H I( ) ( )
( )

( ) ( )

where H(z) and H0 are the value of the Hubble parameter at
redshifts z and 0, respectively. h represents the value of H0 in
units of 100 km s−1 Mpc−1. Also, ΩH I(z) does not depend on
r r M z, ,H I ( ∣ ) but only on the function MH I(M, z):

òr
W =

¥
z n M z M M z dM

1
, , . 10H

c,0 0
HI I( ) ( ) ( ) ( )

The above equations make clear the central role played by the
function MH I(M, z) in studies related to 21 cm intensity
mapping in the post-reionization era. Modeling this function is
therefore all we need to predict the shape and amplitude of the
H I/21 cm power spectrum on linear scales.

We use the above equations to model the 21 cm power
spectrum at redshifts z< 3, with MH I(M, z) given by the halo-
based 1 prescription (Bagla et al. 2010). As discussed in
Section 3.3, the halo-based 1 model has three free parameters:

Mmin(z), Mmax(z) and f3(z). While the values of the parameters
Mmin(z) and Mmax(z) are chosen to correspond to halos with
circular velocities of 30 and 200 km s−1, the value of f3(z) is
fixed by requiring that ΩH I(z) reproduces the observational
measurements. Since at z< 3 observations disfavor models
with constant ΩH I, we follow Crighton et al. (2015) and
assume a redshift dependence ΩH I(z)= 4× 10−4(1+ z)0.6,
which fully determines the value of f3(z).
For the halo mass function and halo bias we use the Sheth &

Tormen (1999) and Sheth et al. (2001) models, respectively.
We use the matter power spectrum from halofit (Takahashi
et al. 2012) to evaluate Pm(k, z) for a given cosmological
model, and compute the H I/21 cm power spectra at redshifts
z= {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5}.
In cosmologies with massive neutrinos we use the CDM

+baryon field, instead of the total matter density field, to
compute the 21 cm power spectrum (last term on the rhs of
Equation (8)), and to evaluate the halo mass function and halo
bias (Ichiki & Takada 2012; Castorina et al. 2014).
We now briefly discuss the differences between applying the

halo-based 1 model to our hydrodynamic simulations and the
formalism we have described in this subsection. By putting the
H I in the gas particles belonging to the dark matter halos of our
simulations, we not only model the function MH I(M, z), but
also the H I density profile within halos, r r M z, ,H I ( ∣ ) which is
ignored in the method above. The above formalism also
implicitly assumes a scale-independent bias, and that the
redshift-space distortions are accounted for by the Kaiser
formula. The fully nonlinear clustering and redshift-space
distortions are taken into account by placing the H I in the
simulations, however. On large, linear scales, both methods
should give the same results, while on small scales the method
described in this section will break down.
As such, we conclude by emphasizing that the above

methodology is limited to linear scales, i.e., scales in which the
H I bias is constant, and redshift-space distortions can be
accounted for by using the Kaiser formula.

4. EFFECT OF MASSIVE NEUTRINOS

Here we study the effects induced by massive neutrinos on
the spatial distribution of neutral hydrogen. We investigate how
the H I abundance and clustering properties are affected by the
presence of massive neutrinos by comparing the distribution of
neutral hydrogen from the simulations n+m (Mν= 0.3 eV) and
n++

m (Mν= 0.6 eV) to the one from the fiducial simulation, 
(Mν= 0.0 eV).
In Figure 1 we show the spatial distribution of neutral

hydrogen (top row), matter (middle row) and gas (bottom row)
in a cosmology with massless neutrinos (left, simulation  )
and with Mν= 0.6 eV neutrinos (right, simulation n++

m ). The
images have been created by taking a slice of 2h−1 Mpc width.
The spatial distribution of (total) matter is shown over the
whole box (i.e., in a slice of 50× 50× 2(h−1 Mpc)3), while
the gas and H I images display a zoom over the region marked
with a red square. As can be seen, the differences in the spatial
distribution of matter, gas, and (in particular) neutral hydrogen
between the two models are very small.

4.1. H I Abundance

We now investigate how the presence of massive neutrinos
impacts the function MH I(M, z). By modeling the H I

5
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distribution using the pseudo-RT 1 method, we computed the
H I mass within each dark matter halo in the simulations with
massless and massive neutrinos. In the upper row of Figure 2
we show the results at redshifts z= 3, 4, 5.

For a fixed dark matter halo mass, we find that halos in the
massless and massive neutrino models contain the same H I

mass to well within one standard deviation, although halos in
the massive neutrino cosmologies do tend to host a slightly

higher H I mass. The H I mass excess with respect to the
massless neutrino case is ∼7% for the cosmology with 0.6 eV
neutrinos, decreasing to ∼3% for the 0.3 eV cosmology, with a
very weak dependence on redshift. Our results show that the H I

mass excess is not uniform in mass: the most massive halos
host a higher fraction of H I compared with the low mass halos.
The function MH I(M, z) presents a cut-off at low masses,

which can be seen clearly at z= 3. This cut-off is not physical,

Figure 1. Impact of massive neutrinos on the spatial distribution of neutral hydrogen (upper row), total matter (middle row) and gas (bottom row) at z = 3. Panels on
the left show the results for a massless neutrino cosmology while panels on the right are for a cosmological model with Mν = 0.6 eV neutrinos. The middle panels
display the spatial distribution of matter on in a slice of 50 × 50 × 2(h−1 Mpc)3, while top and bottom panels show a zoom into the region marked with a red square
(the width of those slices is also 2h−1 Mpc).
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but is due to the resolution of our simulations. In order to
explore the physical cut-off arising from the fact that a
minimum gas density and length is required to have self-
shielded H I, simulations with higher resolution are needed. We
leave this for a future work.

For the mass range accessible in our simulations, we find that
the MH I(M, z) function can be fitted by a function of the form:

= aM M z M M z, .z
H 0I ( ) [ ( )] ( ) In Table 3 we show the best fit

values of M0 and α for the three different cosmologies at
redshifts z= 3, 4, 5. The value of the slope, α, increases with
redshift for all of the models, while at fixed redshift, α
increases with the sum of the neutrino masses. This reflects a
well known property: at a given redshift, the spatial distribution
of matter on small scales in a cosmology with massive
neutrinos is effectively younger (has grown less) than its
massless neutrino counterpart (Marulli et al. 2011; Costanzi
et al. 2013; Villaescusa-Navarro et al. 2013a, 2014a; Castorina
et al. 2014; Massara et al. 2014, 2015).

Figure 3 shows ΩH I(z) in each cosmology. We find that our
fiducial model is capable of reproducing the values of ΩH I(z)
obtained from the observations of Songaila & Cowie (2010),

Figure 2. Upper row: function MH I(M) at redshifts z = 3 (left), z = 4 (middle) and z = 5 (right) for the cosmological models with massless neutrinos (black),
Mν = 0.3 eV (magenta) and Mν = 0.6 eV (green) when the H I is modeled using the pseudo-RT 1 method. For each dark matter halo we have computed the H I mass
within it; the lines represent the running median, and error bars show the scatter around the mean. The bottom panels display the results normalized by the MH I(M)
function of the massless neutrino model. Bottom row: same as above but for the H I column density distribution function. The observational measurements are from
Noterdaeme et al. (2012) (z = [2–3.5]) and Zafar et al. (2013) (using the whole redshift range: z = [1.5–5.0]) for the results at z = 3, and from Crighton et al. (2015)
(z = [3.5–5.4]) and Zafar et al. (2013) (using only the redshift range z = [3.1–5.0]) for the plots at z = 4 and z = 5.

Table 3
Best-fit Parameters for MH I(M, z) = (M/M0)

α as a Function of Redshift and
Cosmology

Mν z M0 α

(eV) (h−1Me)

0.0

3 0.012 ± 0.003 0.699 ± 0.006
4 0.015 ± 0.003 0.712 ± 0.005
5 0.032 ± 0.008 0.740 ± 0.006

0.3

3 0.015 ± 0.005 0.706 ± 0.007
4 0.031 ± 0.008 0.732 ± 0.006
5 0.033 ± 0.006 0.743 ± 0.005

0.6

3 0.016 ± 0.005 0.708 ± 0.007
4 0.027 ± 0.006 0.728 ± 0.006
5 0.061 ± 0.016 0.760 ± 0.007
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Noterdaeme et al. (2012), Crighton et al. (2015) extremely well
in the redshift range covered by our simulations. The redshift
dependence of the function ΩH I(z) is very weak, although it is
slightly more pronounced with increasing neutrino mass.

For a fixed redshift, the value of ΩH I(z) decreases as the sum
of the neutrino masses increases. This result can be understood
if we look at Equation (10) and take into account the fact that
MH I(M, z) barely changes among cosmologies with massive
and massless neutrinos. The reason for the decrement in ΩH I(z)
is therefore due to the suppression in the abundance of halos
that the presence of massive neutrinos induces (Brandbyge
et al. 2010; Marulli et al. 2011; Ichiki & Takada 2012;
Villaescusa-Navarro et al. 2013a; Castorina et al. 2014;
LoVerde 2014; Castorina et al. 2015; Roncarelli et al. 2015).
Using our fitting function to MH I(M, z) from Table 3 (with a
cut-off at M= 2× 109 h−1Me), we have checked that using the
massive/massless neutrino halo mass functions reproduces the
decrement in ΩH I(M, z) induced by neutrinos.

We have also computed the H I column density distribution8

for the cosmologies with massless/massive neutrinos; the
results are shown on the bottom row of Figure 2. At z= 3 we
compare our results with the measurements by Noterdaeme
et al. (2012). While these have a mean redshift á ñ =z 2.5, they
cover a redshift range z= [2–3.5], and we assume no redshift
evolution down to z= 3. The abundance of DLAs in our
simulations at z= 4 and z= 5 are compared against the recent
measurements of Crighton et al. (2015), which have data in the
redshift range z= [3.5–5.4]. The column density distribution
function of sub-DLAs in our simulations is compared at z= 3
against the measurements by Zafar et al. (2013), obtained by
using the whole redshift range z= [1.5–5.0], while at z= 4 and
z= 5 we only use data in the redshift range z= [3.1–5.0]. We
find that our fiducial model reproduces the observed abundance
of DLAs and sub-DLAs very well at all redshifts.

In the bottom panels we display the ratio between the H I

column density distribution function of the models with
massive and massless neutrinos. We find that massive neutrinos

suppress the abundance of DLAs and sub-DLAs at all redshifts,
although the effect is stronger at higher redshift. This is due to
the lower value of ΩH I(z) that is present in cosmologies with
massive neutrinos.
We conclude that, for a given mass, dark matter halos in

cosmologies with massless and massive neutrinos host, on
average, the same amount of neutral hydrogen. The suppres-
sion on the halo mass function induced by massive neutrinos
decreases the total amount of neutral hydrogen in the universe,
given the fact that only halos above a certain mass will host H I.
This manifests itself in a lower value of ΩH I(z), and in a deficit
in the abundance of DLAs and sub-DLAs in cosmologies with
massive neutrinos, with respect to the massless neutrinos
model.

4.2. H I Clustering

We now investigate the impact of massive neutrinos on the
clustering properties of neutral hydrogen. We focus our
attention in the H I power spectrum, PH I(k, z), the H I bias,
bH I(k, z), and the 21 cm power spectrum, P21 cm(k, z).
In the upper row of Figure 4 we show the H I power

spectrum for the models with Mν= 0.0, 0.3, 0.6 eV neutrinos at
redshifts z= 3, 4, 5 when the H I is modeled using the pseudo-
RT 1 method. Our results show that the H I is more strongly
clustered in cosmologies with massive neutrinos, with the
clustering of the neutral hydrogen increasing with the sum of
the neutrino masses.9 The bottom panels of that row show the
ratios of the H I power spectra for the massive and massless
neutrino cosmologies. We find that the increase in power in the
massive neutrino cosmologies, relative to the fiducial model, is
almost independent of scale. We find that differences in the H I

clustering between models increase with redshift, however. At
higher redshift, and for the Mν= 0.6 eV model, the increase in
power is also more scale-dependent than at lower redshift. We
emphasize that the H I power spectrum, defined as

*d d= á ñk kP k z z z, , ,H H HI I I( ) ( ) ( ) does not depend on the
value of ΩH I(z), which, as we have seen above, is different
for each cosmology.
We can easily see why the H I is more strongly clustered in

cosmologies with massive neutrinos if we take into account
that, for a fixed dark matter halo mass, the halo bias increases
with the sum of the neutrino masses (Marulli et al. 2011;
Castorina et al. 2014; Villaescusa-Navarro et al. 2014a). This
happens because, as we saw above, massive neutrinos induce a
suppression of the halo mass function. Thus, for a given mass,
halos in cosmologies with massive neutrinos are rarer, and
therefore they are more biased (for a detailed description see
Massara et al. 2014). Since MH I(M, z) barely changes among
the cosmologies (or, to be more precise, increases only slightly
with the sum of the neutrino masses), we should therefore
expect the neutral hydrogen to be more clustered in
cosmologies with massive neutrinos, as we find.10

In the middle row of Figure 4 we plot the H I bias, defined as
bH I(k, z)= PH I–m(k, z)/Pm(k, z), where PH I–m(k, z) is the H I-
matter cross-power spectrum. As expected, the stronger

Figure 3. Redshift evolution of ΩH I for cosmologies with massless neutrinos
(black), Mν = 0.3 eV (magenta) and Mν = 0.6 eV (green) when the H I is
modeled using the pseudo-RT 1 method. Values obtained from the
observations of Noterdaeme et al. (2012), Crighton et al. (2015), Songaila &
Cowie (2010) are shown with red, blue, and orange markers respectively.

8 See Appendix B of Villaescusa-Navarro et al. (2014b) for a description of
the procedure used to calculate this.

9 Note that neutral hydrogen is also more clustered in cosmologies with warm
dark matter than in the corresponding models with the standard CDM, as
shown in Carucci et al. (2015).
10 We are also implicitly assuming that the low-mass cut-off in the MH I(M, z)
function is the same mass in cosmologies with massless/massive neutrinos,
which we believe is a good assumption given the fact that that function barely
changes among the cosmologies in the mass range covered by our simulations.
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Figure 4. Upper row: power spectrum of the neutral hydrogen field for the fiducial model with massless neutrinos (black line), the model with Mν = 0.3 eV (magenta
line) and the model with Mν = 0.6 eV (green) at z = 3 (left), z = 4 (middle), and z = 5 (right) when the H I is modeled using the pseudo-RT 1 method. The bottom
panels display the ratio of the different H I power spectra to the fiducial model. The dashed vertical line represents the Nyquist frequency for our power spectrum
measurements. Middle row: same as above but for the H I bias, computed as bH I(k) = PH I–m(k)/Pm(k), with PH I–m(k) being the H I-matter cross-power spectrum. The
green dashed line is H I bias computed with respect to the CDM+baryon field (see text for details). Bottom row: same as above but for the 21 cm field.
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clustering of H I in massive neutrino cosmologies is reflected in
a higher H I bias in these cosmologies with respect to the
fiducial, massless neutrinos model. On large scales, the H I bias
increases by ∼10% for the model with Mν= 0.3 eV neutrinos,
and ∼30% for Mν= 0.6 eV, with respect to the Mν= 0.0 eV
cosmology. There is a very weak dependence on redshift. On
large scales, the H I bias is more scale-dependent at higher
redshift, as already noted by Carucci et al. (2015).

It is also worth pointing out that at z= 3, while the H I bias is
flat for wavenumbers k 1hMpc−1 in the Mν= 0 eV model,
the models with massive neutrinos exhibit a H I bias that does
depend mildly on scale. There are two explanations for this: (1)
the bias is higher in cosmologies with massive neutrinos, and
therefore more scale dependent; and (2) the H I bias, defined as
above, is scale-dependent in massive neutrino cosmologies.
The second option arises because it has recently been found
that the halo bias in cosmologies with massive neutrinos is
scale-dependent, even on very large scales (Castorina et al.
2014; Villaescusa-Navarro et al. 2014a). In Castorina et al.
(2014) it was pointed out that if the halo bias is defined, in
cosmologies with massive neutrinos, as Ph–cb(k)/Pcb(k), where
cb denotes the CDM plus baryons field, then it becomes scale-
independent on large scales and universal. We have checked
whether defining the H I bias as bH I(k, z)= PH I–cb(k, z)/Pcb(k,
z) helps to decrease the scale-dependence of the bias at z= 3
for the cosmologies with massive neutrinos. The middle-left
panel of Figure 4 shows the results of defining the H I bias with
respect to the CDM+baryons field (dashed green line). We find
that by using this definition, the amplitude of the H I bias
decreases because the CDM+baryon field is more strongly
clustered that the total matter field in cosmologies with massive
neutrinos. We do not see a significant suppression of the scale-
dependence, however. We therefore conclude that H I bias is
more scale-dependent in cosmologies with massive neutrinos
because its value is higher (Scoccimarro et al. 2001; Cooray &
Sheth 2002; Sefusatti & Scoccimarro 2005; Marín et al. 2010).

In the bottom row of Figure 4 we show the 21 cm power
spectrum for the models with massless and massive neutrinos.
The amplitude of the 21 cm power spectrum is lower in
massive neutrino cosmologies than in the massless neutrinos
model. While this result may seem surprising, since we have
seen above that H I clustering increases with the neutrino
masses, it is straightforward to understand if we take into
account that

d=P k T z P k , 11b
s

21 cm
2

H I( ) ( ) ( ) ( )

where P ks
H I ( ) denotes the H I power spectrum in redshift-space,

and that dT zb ( ) depends linearly on the value of ΩH I(z) (see
Equation (9)). In other words, the amplitude of the 21 cm
power spectrum not only depends on the H I clustering, but also
on the value of ΩH I(z). Therefore, even if the H I is more
clustered in cosmologies with massive neutrinos, the lower
value of ΩH I(z) in those cosmologies drives the suppression of
power we find in the 21 cm power spectrum.

In contrast with what happens with the H I power spectrum,
the ratio of the 21 cm power spectra in the massive and
massless neutrinos cosmologies exhibits a characteristic
dependence on scale. On very small scales the ratio is flat,
while it decreases around k∼ 2–3 hMpc−1. The ratio appears
to reach a minimum around k∼ 0.3 hMpc−1, although more
realizations would be needed to confirm that this is not an
artifact of sample variance.

We conclude that the H I is more strongly clustered in
cosmologies with massive neutrinos. This is because, for a
fixed halo mass, the halo bias and H I mass increase with the
sum of the neutrino masses. On the other hand, the amplitude
of the 21 cm power spectrum decreases as the neutrino masses
increase because it depends on the total amount of neutral
hydrogen, ΩH I(z), which is lower in massive neutrino
cosmologies.

5. SKA FORECASTS

In this section we present Fisher forecasts for the neutrino
mass constraints that will be achievable with measurements of
the 21 cm power spectrum from future intensity mapping
experiments. We consider two surveys, both with Phase 1 of
the SKA: a wide and deep survey at low redshift (0 z 3),
using the SKA1-MID array, and a narrow and deep survey at
higher redshift (3 z 6) using SKA1-LOW. The forecasts
for the latter use 21 cm power spectra measured from our high-
resolution hydrodynamic simulations, which extend into the
nonlinear regime, while the former use only linear modes from
power spectra derived using halofit (Takahashi et al. 2012).
In all cases we include a number of nuisance parameters

related to the method used to model the spatial distribution of
neutral hydrogen, and introduce conservative priors from
contemporary experiments to break degeneracies between
cosmological parameters. We also consider more pessimistic
choices of instrumental parameters than given in the baseline
designs of the SKA1 sub-arrays. The result is a conservative set
of forecasts for the neutrino mass constraints that one can
expect to obtain with the SKA. Nevertheless, a number of
systematic effects could further degrade the constraints; we
assess their likely importance at the end of this section.

5.1. Fisher Matrix Formalism

To produce our forecasts, we adopt the Fisher matrix
formalism for 21 cm surveys that was described in Bull et al.
(2015). The Fisher matrix can be derived from a Gaussian
expansion of the likelihood for a set of 21 cm brightness
temperature fluctuation maps about a fiducial cosmological
model. For a single redshift bin, the Fisher matrix can be
written as

ò p q q
=

¶
¶

¶
¶

kF
d k

V
P k P k1

2 2

log log
, 12ij

i j

3

3 eff
21 cm 21 cm

( )
( ) ( ) ( ) ( )

where {θ} is a set of cosmological and astrophysical
parameters to be constrained or marginalized over, and we
have neglected cosmological evolution within the redshift bin.
The effective survey volume is given by

=
+

⎛
⎝⎜

⎞
⎠⎟kV V

P

P P
, 13

N
eff phys

21 cm

21 cm

2

( ) ( )

with Vphys the comoving volume of the redshift bin. The
measured power spectrum is a combination of the cosmological
21 cm brightness temperature power spectrum and the instru-
mental noise, Ptot= P21 cm+ PN, where we have assumed the
noise to be Gaussian and uncorrelated, as well as uncorrelated
with the signal. These are reasonable assumptions in the
absence of more detailed instrumental simulations, and if shot
noise is negligible (this should be the case; see Santos
et al. 2015).
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The form of the noise power spectrum depends on the type
of radio telescope used to observe the 21 cm emission. The
basic division is between interferometers, which coherently
cross-correlate the signals from pairs of receivers to observe
certain Fourier modes on the sky (with mode wavelength
corresponding to the inverse separation of the receivers), and
autocorrelation experiments, which construct sky maps pixel-
by-pixel from the detected (autocorrelation) signals from
individual receivers for many different pointings. The relative
merits of the two types are discussed in Bull et al. (2015),
where models for their noise power spectra are also derived.
We will simply quote them here. The basic expression is


n

=
n

-
^
-


P

r r

T S

t
B B , 14N

2

sys
2

area

tot 21 cm

1 2 ( )

where Tsys is the system temperature, Sarea is the total survey
area, ttot is the total observing time, ν21 cm is the rest frame
21 cm emission frequency (≈1420MHz), and rν= c (1+ z)2/
H(z). The system temperature is approximately the sum of the
sky temperature, Tsky≈ 60 K (ν/300MHz)−2.5, and the instru-
mental temperature, Tinst. There is an effective beam in the
radial (frequency) direction due to the frequency channel
bandpass, which we model as

dn

n
= -

n



⎛
⎝
⎜⎜

⎞
⎠
⎟⎟B

k r
exp

16 log 2
,

2

21
2

( )

where δ ν is the channel bandwidth (assumed to be 100 kHz),
and k is the Fourier wavenumber in the radial direction. The

remaining factor of ^
-B 2 describes the sensitivity as a function

of angular scale, and is given by

q^
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

n d

k r

N N

FOV interferometer

exp
16 log 2

1
autocorrelation .

d b

B
2( )

( ) ( )

( )

For interferometers, the important factors are the instantaneous
field of view (FOV) and the baseline density distribution, n(d),
where d is the baseline length (related to the transverse Fourier
wavenumber by k⊥r= 2πd/λ). For autocorrelation, we have
assumed a Gaussian beam of FWHM θB for each element of an
array with Nd dishes, and Nb beams per dish.

The model for the 21 cm (signal) power spectrum depends
on the range of redshifts and physical scales in question. Our
high-resolution simulations, described above, cover signifi-
cantly nonlinear scales at z 5.5, but cannot be extended into
the linear regime or beyond z= 3 due to resolution require-
ments. For z� 3, we use the pseudo-RT 1 model as our fiducial
H I model. We take the 21 cm power spectrum measured from
the simulations at each redshift, and then extrapolate it to larger
scales using the halofit matter power spectrum, multiplied by a
(scale-independent) bias that matches the amplitude of the
spectra at k= 0.2 hMpc−1. These scales are sufficiently linear
for the halofit power spectrum to be a good approximation, and
the bias has become almost scale-independent by this k value at
all relevant redshifts, as shown in Figure 4.

At redshifts z< 3, we restrict ourselves to approximately linear
scales only, k� 0.2 hMpc−1. The power spectra are calculated by
multiplying the halofit matter power spectrum by a bias function

and brightness temperature model derived from the halo-based 1
prescription for the function MH I(M, z); see Section 3.5.
In all cases, we assume that only the monopole of the

redshift-space 21 cm power spectrum can be recovered. In
principle, one could use the full redshift-space power spectrum,
which would also allow constraints on the linear growth rate to
be extracted, but we forego this to keep our analysis
conservative, and because the higher order multipoles extracted
from the high redshift simulations are noisier than the
monopole, making it more difficult to numerically differentiate
them reliably.
We calculate the derivatives of Plog 21 cm required by

Equation (12) numerically, using central finite differences:
¶ ¶ » + D - - D Df x f x f x 2 ,[ ( ) ( )] where Δ is the finite
difference step size and all other parameters are held fixed at their
fiducial values. While central differences require twice as many
simulated spectra as forward differences, they are more accurate
for sufficiently small step sizes. The step size chosen for each
parameter can be found from the list of simulations in Table 1.

5.2. Survey Specifications

Most current and planned 21 cm intensity mapping experi-
ments are optimized either for detecting the baryon acoustic
oscillations at z∼ 1, or studying the epoch of reionization
(EoR) at z 6. While it is not a dedicated IM experiment,
Phase 1 of the SKA will be able to cover the entire redshift
range of interest here—from z= 0 to z∼ 6—so we adopt it as
the reference experiment for our forecasts.
SKA1 will consist of two sub-arrays: SKA1-MID, a mid-

frequency dish array to be situated in South Africa, and SKA1-
LOW, an array of low-frequency dipole antennas that will be
constructed in Western Australia. SKA1-MID will support
receivers that cover several different bands, spanning the
frequency range from 350MHz up to ∼14 GHz. Only Bands 1
and 2 are relevant for detecting redshift 21 cm emission; these
are currently planned to cover the ranges 350–1050MHz and
900–1670MHz respectively. For simplicity, however, we will
assume a single band from 350–1420MHz with the specifica-
tions of Band 1 (summarized in Table 4).
The MID array is expected to consist of approximately 200

dishes of diameter 15 m, primarily designed for use as an
interferometer. It will be able to perform IM surveys much
more efficiently if used in an autocorrelation mode, however
(assuming that technical issues such as the effects of correlated
noise can be mitigated; see Bull et al. 2015; Santos et al. 2015),
so we will assume an autocorrelation configuration in our
forecasts. With this setup, a total survey area of ∼25,000 deg2

should be achievable for a 10,000 hr survey; we take these
values as our defaults in what follows, but also study the effect
of changing Sarea in Section 5.7.
SKA1-LOW will cover the band 50� ν� 350MHz

(3� z� 27), making it one of the few proposed IM experi-
ments that overlaps with the redshifts of our simulations,
3 z 6. (The Murchison Wide Field array11 also partially
covers this range, 80� ν� 300MHz, 3.7� z� 16.8.) We use
only the high frequency half of the band, and modify the
maximum frequency slightly to 375MHz in our forecasts, to
better fit with the redshift coverage of our simulations. We use
a baseline distribution based on the description in Dewdney
et al. (2013). All other specifications are given in Table 4.

11 http://www.mwatelescope.org/
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The instantaneous FOV of SKA1-LOW is 2.7 deg2 at z= 3,
increasing to 6 deg2 at z= 5. As our default, we consider a deep
10,000 hr survey over 20 deg2. This is comparable to what will
be required to detect the 21 cm power spectrum from the EoR.
A proposed “deep” EoR survey with SKA1-LOW will perform
1000 hr integrations in the band 50–200MHz at five separate
pointings on the sky, for example, with each pointing covering
∼20 deg2 at the reference frequency 100MHz (Koopmans
et al. 2015). These pointings cover a total survey area of
∼20 deg2 at the center of our chosen SKA1-LOW band
(≈290MHz), so the surveys could be performed “commen-
sally.”We assume double the total survey time, however; while
the EoR survey may be limited to observing only on winter
nights to mitigate ionospheric and foreground contamination
(Koopmans et al. 2015), these effects are less of a restriction at
higher frequencies. The dependence of our results on Sarea and
ttot is studied in Section 5.7.

5.3. Model Uncertainties and Nuisance Parameters

As mentioned above, the neutrino mass constraints depend
on being able to accurately measure the shape and amplitude of
the 21 cm power spectrum, also as a function of redshift. While
the power spectra derived from our simulations are self-
consistent given a particular H I model, most models are
calibrated off current, imperfect data, and can be inconsistent
with one another. Our forecasts are therefore subject to a
number of modeling uncertainties, which we attempt to take
into account in this section. (We also explore the dependence of
our forecasts on the assumed fiducial model in Section 5.6.)

An important but poorly constrained contribution to the H I

power spectrum is the H I bias, which is a function of both
redshift and scale. To take into account the uncertainty
associated with the bias model, we incorporate a simple
template-based bias parametrization into our signal model. This
is constructed by first measuring the bias from the simulations
as a function of scale and redshift, b(z, k). We then introduce an
amplitude, A, and shift parameter, α, into the definition of the
monopole of the redshift-space 21 cm power spectrum in each
redshift bin, such that
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We marginalize over the amplitudes in all of our forecasts, but
the shift parameters are only marginalized for the high-redshift
survey; the low-redshift forecasts use only linear scales by
construction, where the bias has no scale-dependence, so the
{αi} are unconstrained. This marginalization procedure is
pessimistic in that it assumes no prior constraints on the
redshift evolution of the H I bias; Ai is left completely free in
each bin, while there are in fact some existing constraints on its
value. The Ai parameter also absorbs the uncertainty in other
parameters that affect the normalization, such as β, which we
do not attempt to constrain separately. We have assumed
somewhat more about the scale dependence—the overall shape
of the function is fixed—but by allowing the shift parameter
(and thus the scale at which scale-dependence kicks in) to be
free in each redshift bin, we are still being reasonably
conservative with our model.

5.4. Prior Information

Without additional information about the cosmological
model parameters, the Fisher matrix can suffer from degen-
eracies, severely degrading the forecast constraints. As well as
presenting results for the SKA1-LOW and MID surveys alone,
we also include Fisher matrix priors for two datasets that will
be available contemporary with SKA1: a full-sky CMB
experiment (Planck), and a future spectroscopic galaxy redshift
survey (e.g., Euclid or DESI).
For the CMB prior, we used an approximate Fisher matrix

based on the 2015 Planck-only temperature + polarization
constraints on a two-parameter (Mν+ Neff) extension to
ΛCDM.12 To construct it, we took the public Planck MCMC
chains for this model, calculated the covariance matrix for all
parameters of interest, and then inverted it. This procedure
discards the non-Gaussian part of the posterior distribution,
which enforces consistency with the Gaussianity assumption of
Fisher forecasting but loses some information compared with
the actual Planck constraints. Considering the other caveats and
simplifications inherent in Fisher forecasting, and the approx-
imate Gaussianity of most subspaces of the posterior distribu-
tion, this is a reasonable approximation. Note that this method
results in a prior that has been implicitly marginalized over a
large number of systematic and instrumental effects, such as
foregrounds and calibration errors. We also marginalized over
the effective number of relativistic degrees of freedom, Neff,
assuming that only the CMB gives information on this
parameter.
For the galaxy redshift survey prior, we performed separate

Fisher forecasts for a future spectroscopic survey of ∼6× 107

galaxies over 15,000 deg2 from 0.65 z 2.05, as was also
used in Bull et al. (2015). This is a similar specification to the
planned Euclid mission, and has comparable properties to
DESI. Following Amendola et al. (2013), we took the bias to
be = +b z z1 ,( ) marginalized as a free parameter in each
redshift bin of width Δz= 0.1. We also assumed that the
information from the broadband shape of the power spectrum
and redshift-space distortions can be used, and marginalized
over a nonlinear damping of small scales in redshift-space, σNL.
Conservatively, we assumed that no information on the
neutrino mass is obtained from the galaxy survey. When

Table 4
Array Specifications Assumed in Our Forecasts

SKA1-LOW SKA1-MID

Tinst (K) 40 + 0.1Tsky 28
Nd × Nb 911 × 3 190 × 1
νmin (MHz) 210 375
νmax (MHz) 375 1420
Aeff(νcrit) (m

2) 925 140
Sarea (deg

2) 20 25,000
ttot (hr) 10,000 10,000

z bin edges

2.75, 3.25, 3.75, 0, 0.125, 0.375, 0.625,
4.25, 4.75, 5.25, 0.875, 1.125, 1.375,
5.75 1.625, 1.875, 2.2, 2.8

Note. More detailed specifications are given in Santos et al. (2015).

12 We used the base_nnu_mnu_plikHM_TT_lowTEB MCMC chains; Neff
is the effective number of relativistic species.
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combining the galaxy survey Fisher matrix with the low-
redshift SKA1-MID IM Fisher matrix, we also assumed that
the surveys are independent, although in reality they both probe
the same underlying matter density field. We do not expect the
effect of partially overlapping survey volumes to be large (and
note that the SKA1-LOW survey volume has no overlap).

With the priors included, we are therefore forecasting for the
following parameter set:

a sW W + +nh A n M A b, , , , , , ,c s s i i jb base bias NL gal.{ }{ } { }

5.5. Neutrino Mass Constraints

The results of our forecasts are summarized in Table 5 and
Figures 5 and 6. All forecasted errors are quoted at the 2σ
(95%) CL.

For our approximate Planck 2015 Fisher matrix, the
constraint on Mν is 0.46 eV, which is consistent with the

actual Planck 2015 temperature + polarization upper limit of
0.49 eV (Planck Collaboration 2015).13 Our forecasts suggest
that intensity mapping surveys with SKA1-MID and LOW will
be able to moderately surpass the Planck constraints, yielding σ

(Mν)≈ 0.3 eV without the addition of any prior information to
break the strong correlations that exist between some of the
cosmological parameters for the IM surveys. This improves to
≈0.2 eV when LOW and MID are combined. Adding a Planck
prior on the cosmological parameters only (i.e., ignoring
information on Mν from the CMB data) improves the constraint
slightly, reaching ∼0.15 eV for MID + LOW, but it is the
inclusion of spectroscopic redshift survey data that most
strongly breaks the cosmological parameter degeneracies; for a

Table 5
Marginal 2σ (95% CL) Constraints on the Neutrino Mass, for Various Combinations of Surveys and Prior Information

σ(Mν)/eV (95% CL)

 +Planck CMB + Planck CMB
Massive Neutrino Data Sets + Spectro-z

Planck Mν L 0.461 0.094

SKA1-LOW 0.311 0.208 0.118
SKA1-MID 0.268 0.190 0.104
SKA1-LOW + SKA1-MID 0.183 0.145 0.082

SKA1-LOW + Planck Mν L 0.089 0.076
SKA1-MID + Planck Mν L 0.071 0.065
SKA1-LOW + SKA1-MID + Planck Mν L 0.067 0.058

Figure 5. Forecast 2σ marginal constraints on Mν and several cosmological parameters, for various combinations of surveys. SKA1-MID constrains the cosmological
parameters significantly better than LOW, but the neutrino mass constraints are comparable.

13 These figures can be compared with pre-data release forecasts for Planck
(e.g., Kaplinghat et al. 2003; Perotto et al. 2006; Kitching et al. 2008), which
predicted σ(Mν) ∼ 0.3–0.9 eV (95% CL).

13

The Astrophysical Journal, 814:146 (19pp), 2015 December 1 Villaescusa-Navarro, Bull, & Viel



Planck CMB + spectro-z prior, we expect σ(Mν)≈ 0.08 eV for
SKA1-LOW + MID.

Similar precision can be gained by combining either of the
IM surveys with the full Planck data (including the neutrino
mass constraint), however, without the need to add the
spectroscopic galaxy survey: we obtain σ(Mν)= 0.067 eV for
SKA1-LOW + MID + Planck. This is a result of the IM and
CMB constraints having different correlation directions for the
covariances between Mν and certain cosmological parameters
—Figure 6 shows how the IM and CMB data have somewhat
complementary correlation directions in the Mν–σ8 plane, for
example, and Figure 5 shows correlations with other
parameters. This complementarity is also present in other
types of large-scale structure survey (Abazajian et al. 2011;
Carbone et al. 2011). Adding the spectroscopic survey data
improves the constraints on other cosmological parameters
somewhat, resulting in a slight further improvement to σ
(Mν)= 0.058 eV for the combination of SKA1-LOW +MID +
Planck. For a best-fit value of Mν= 0.06 eV (i.e., at the
minimum bound), this final figure would be sufficient for a
2σ detection of non-zero Mν from cosmological data alone.
This would be a significant improvement over the 95% upper
limit of Mν< 0.17 eV from the Planck 2015 release, which
combines CMB temperature and polarization data with a
compilation of BAO constraints (Planck Collaboration 2015),14

and the best current upper limit of Mν< 0.12 eV, from Planck
CMB + BAO + Lyα data (Palanque-Delabrouille et al.
2015a). Note that an upper limit of Mν< 0.095 eV would also
be enough to rule out the inverted hierarchy (Lesgourgues &
Pastor 2006).

It has been shown before that various large-scale structure
surveys, including IM surveys, can provide strong constraints
on Mν (e.g., Pritchard & Pierpaoli 2008; Mao et al. 2008;
Abazajian et al. 2011; Carbone et al. 2011; Audren et al. 2013;
Font-Ribera et al. 2014; Pritchard et al. 2015; Sartoris
et al. 2015). For example, Pritchard & Pierpaoli (2008) found

a similar constraint, σ(Mν)= 0.075 eV at 1σ, when forecasting
for Planck + SKA at z  8 (during the EoR). Font-Ribera et al.
(2014) forecast a significantly stronger constraint from Planck
+ DESI at lower redshift of σ(Mν)= 0.024 eV, improving to
0.011 eV when Euclid, LSST, and Lyα forest data are also
included. These studies all used different intrumental and
modeling assumptions however, and marginalized over differ-
ent cosmological and nuisance parameters, so a direct
comparison is not possible. To put our result into context, we
therefore also produced Fisher forecasts for the spectroscopic
survey with Mν now included as a parameter, finding σ
(Mν)= 0.060 eV for the combination of spectro-z + Planck Mν.
Up to the same forecasting assumptions, the combination of IM
surveys here should therefore be competitive with future
spectroscopic surveys like Euclid and DESI in terms of a
neutrino mass measurement.
Perhaps more significant is the forecast of σ(Mν)= 0.089 eV

for SKA1-LOW + Planck. While not quite enough for a 2σ
detection ofMν= 0.06 eV, it is nevertheless a strong constraint,
using a completely different redshift range and observation
technique to other planned surveys. This is despite our
pessimistic analysis, which marginalizes over the amplitude
and scale-dependence of the bias in each redshift bin, and uses
only the monopole of the redshift-space power spectrum. The
redshift range we assumed for LOW (z∼ 3–6) has several
advantages for matter power spectrum measurements—non-
linear effects are important only on significantly smaller scales
than at lower redshifts, and radiative transfer processes that
affect the 21 cm signal at higher redshift, in the EoR (Semelin
& Iliev 2015), are not present. An IM survey, piggy-backed on
the deep EoR survey that will be performed by SKA1-LOW
anyway, may therefore be an interesting prospect for a more
“systematic-tolerant” neutrino mass measurement survey
(although foreground contamination and instrumental systema-
tics are still serious issues that would need to be resolved; see
e.g., Alonso et al. 2015; Chapman et al. 2015; Wolz
et al. 2015).

5.6. Dependence on H I Prescription and Bias

The various methods used to model the spatial distribution of
H I discussed in Section 3 give somewhat different predictions
for the amplitude of the 21 cm power spectrum, especially at
high redshift. Clearly this can impact the Mν constraints by
(e.g.) changing the SNR of the power spectrum detection, so in
this section we investigate the senstivity of σ(Mν) to this
choice. We concentrate on the SKA1-LOW + Planck
constraints, including the Planck Mν information. There is a
spread of σ(Mν) values (at 95% CL), ranging from 0.089 eV for
the default pseudo-RT 1 method, to 0.097 eV (pseudo-RT 2),
0.080 eV (halo-based 1), and 0.083 eV (halo-based 2);
corresponding forecasts for Mν versus σ8 for each H I

prescription are shown in Figure 7.
At low redshift, uncertainty in the bias amplitude parameters

is a potential limiting factor for the neutrino mass constraint.
Without any bias priors, we find that SKA1-MID (plus the
Planck prior) should achieve σ(Mν)= 0.071 eV. A 1% prior on
the bias in all redshift bins improves this slightly to σ
(Mν)= 0.066 eV, while a 0.1% prior further reduces it to
0.058 eV. A high-precision bias model is therefore of some use
in improving the neutrino mass constraints at these redshifts,
although the gains are too small to justify the difficulty of
reaching this level of accuracy in practise. At high redshifts, the

Figure 6. Forecast marginal 1- and 2σ constraints on Mν and σ8, for SKA1-
LOW and Planck, and for the combination of all experiments considered here.
The combined constraint (red) is much better than the individual constraints
because multiple parameter degeneracies are broken by combining the datasets.
The lower bound, CMB+BAO+Lyα, and Planck 2015 95% limits are shown
as vertical dashed lines from left to right respectively.

14 These are the Planck TT,TE,EE+lowP+BAO constraints; see Equation
(54d) of Planck Collaboration (2015).
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constraints are also relatively insensitive to the bias priors—for
the combination SKA1-LOW + Planck, σ(Mν) improves to
0.082 eV when a 1% prior is applied to the Ai parameters. An
additional 1% prior on the αi parameters yields σ
(Mν)= 0.079 eV.

The low redshift forecasts use 21 cm power spectra
calculated from the Bagla et al. (2010) H I model for the
function MH I(M, z), which has two free parameters—vmin and
vmax—as described in Section 3.5. These effectively set the
normalization of the 21 cm power spectrum, and are con-
strained by the need to reproduce the observed H I density
evolution. They are nevertheless subject to some uncertainty,
so we also check the effect of allowing them to be free
parameters. We find that there are strong correlations between
vmin and vmax and the bias parameters, to the point where a
weak prior on one of the two (e.g., σ(vmax)∼ 100 km s−1) is
needed to make the Fisher matrix invertible for SKA1-MID
alone. Once this has been applied, however, there is essentially
no correlation between the Bagla parameters and Mν, meaning
that their effect on σ(Mν) is limited to changing the signal-to-
noise ratio of the 21 cm power spectrum detection.

5.7. Dependence on Survey Parameters

Finally, we check the dependence of our results on the
assumed IM survey parameters. Figure 8 shows σ(Mν) as a
function of the total survey area, Sarea, for SKA1-LOW and
MID, combined with the full Planck Fisher matrix. Figure 9
shows the same as a function of survey time, ttot.

For a fixed survey time of ttot= 104 hr, the dependence on
survey area is relatively mild for both surveys—SKA1-LOW
yields essentially the same constraints for survey areas up to
100 deg2. Similarly, the MID constraints improve relatively
little above Sarea≈ 2000 deg2. In both cases the fiducial survey
areas are close to optimal for the chosen survey time.

Fixing the survey areas to their fiducial values, we find a
greater sensitivity to the chosen ttot. Larger survey times than
the fiducial value of 10,000 hr are largely impractical, but
would be required for the constraints for either survey to cross
the minimum mass value (0.06 eV) at the 2σ level—MID

would require 30,000 hr to reach this limit, while LOW would
require 100,000 hr. MID provides a useful improvement over
the current best constraint for a minimum survey time of
ttot 600 hr, while LOW requires ttot 3000 hr. Note that all
survey times should be thought of as “effective” values, as
foreground cleaning and other effects will increase the noise
level, requiring an increase in survey time to compensate.

6. SUMMARY AND CONCLUSIONS

Neutrinos are one of the most enigmatic particles in nature.
The standard model of particle physics describe them as
massless particles, while observations of the so-called neutrino
oscillations imply that at least two of the three neutrino species
must be massive. Massive neutrinos are therefore one of the
clearest indications of physics beyond the standard model. As
such, one of the most important currently unanswered
questions in modern physics is: what are the masses of the
neutrinos?
Constraints on the neutrino masses arising from laboratory

experiments are not very tight, n <m 2.3 eVe( ¯ ) (Kraus

Figure 7. Forecast 2σ constraints on Mν and σ8 for SKA1-LOW + Planck, for
the different methods used to model the H I (see Section 3). The largest ellipses
are obtained by employing the pseudo-RT 1 method (green, solid line) and the
pseudo-RT 2 method (gray, dashed line); the smallest are for the halo-based 1
method (red, solid) and halo-based 2 method (blue, dashed).

Figure 8. Forecast 2σ constraints on Mν as a function of survey area, for the
SKA1-LOW and SKA1-MID surveys combined with Planck. The current best
upper and lower limits on the sum of the neutrino masses are shown as dashed
lines. The fiducial survey areas are marked as crosses.

Figure 9. Forecast marginal 1σ constraint on Mν as a function of survey time,
for the same combination of surveys as in Figure 8. The SKA1-LOW IM
survey is taken to be 20 deg2.

15

The Astrophysical Journal, 814:146 (19pp), 2015 December 1 Villaescusa-Navarro, Bull, & Viel



et al. 2005), but are expected to shrink down to
n <m 0.2 eVe( ¯ ) in the coming years. On the other hand,

constraints obtained by using cosmological observables are
very tight: å <nm 0.12 eV

i i (95% CL) (Palanque-Delab-
rouille et al. 2015a). This constraint is obtained by combining
data from CMB, BAO, and the Lyα-forest (Palanque-
Delabrouille et al. 2013).

In the near future, 21 cm intensity mapping observations in the
post-reionization era will be introduced as a powerful new
cosmological tool (Bull et al. 2015). These observations can also
be used to place extremely tight constraints on the neutrino masses.
In order to extract the maximum information from these surveys,
one needs to understand, from the theory side, the impact that
massive neutrinos have on the spatial distribution of neutral
hydrogen, both at linear and fully nonlinear level.

In this paper we study, for the first time, the detailed effects that
massive neutrinos have on the neutral hydrogen spatial distribution
in the post-reionization epoch, focusing our attention on their
impact on the H I clustering and abundance. We do this by running
hydrodynamical simulations with massless and massive neutrinos
that cover the redshift range 3� z� 5.5. The output of our
simulations is corrected a posteriori to account for H I self shielding
and the formation of molecular hydrogen. We use four different
methods to model those processes. In our fiducial method (pseudo-
RT 1), the H I self-shielding is corrected by employing the fitting
formula of Rahmati et al. (2013a), while we use a phenomen-
ological relation where the fraction of molecular hydrogen depends
on the hydrodynamical pressure, based on the Blizt & Rosolowsky
and THINGS observations (Blitz & Rosolowsky 2006; Leroy
et al. 2008), to model the formation of molecular hydrogen.

We find that neutral hydrogen is more clustered in
cosmologies with massive neutrinos, although its abundance,
ΩH I(z), is lower. These differences increase with the sum of the
neutrino masses, and are mainly due to the impact that massive
neutrinos have on the spatial distribution of matter, which is
well known (see appendix): they suppress the amplitude of the
matter power spectrum, and thus the abundance of dark matter
halos, on small scales. The reason for the differences in the
spatial distribution of neutral hydrogen between the massless/
massive neutrino cases is mainly due to the different
cosmologies; massive neutrinos barely modify the function
MH I(M, z). That is, for a fixed dark matter halo mass, the H I

mass in cosmologies with massive/massless neutrinos is very
similar, although on average it increases slightly with the sum
of the neutrino masses.

We find that the MH I(M, z) function can be well fitted by
MH I(M, z)= (M/M0)

α in the redshift and mass range covered
by our simulations. The value of α decreases with redshift and,
for a fixed redshift, increases with the sum of the neutrino
masses. This points out another well-known effect of massive
neutrinos: in cosmologies with massive neutrinos, the spatial
distribution of neutral hydrogen on small scales can be viewed
as the spatial distribution of H I in the corresponding massless
neutrino model at a earlier time.

In terms of the H I column density distribution function, we
find that our fiducial massless neutrinos model reproduces
observational measurements in the redshift range 3� z� 5
very well. In cosmologies with massive neutrinos we find a
deficit in the abundance of DLAs and sub-DLAs, which can be
explained by the lower value of ΩH I(z) present in those
cosmologies.

As stated above, the H I is more strongly clustered in
cosmologies with massive neutrinos. The reason is that MH I(M,
z) barely changes, but halos of the same mass are more
clustered in massive neutrino cosmologies; this happens
because massive neutrinos suppress the abundance of dark
matter halos, and therefore halos of the same mass will cluster
more strongly in cosmologies with massive neutrinos, since
they are rarer in those models.
Even though the H I is more clustered in massive neutrino

cosmologies, we find that the amplitude of the 21 cm power
spectrum is lower in those models with respect to the model
with massless neutrinos. The reason for this is again that ΩH I(z)
is lower in those models.
We have forecasted the constraints that the future SKA

telescope will place on the sum of the neutrino masses by
means of 21 cm intensity mapping observations in the post-
reionization era. We did this using the Fisher matrix formalism,
modeling the spatial distribution of neutral hydrogen in 14
different cosmological models from redshift z= 0 to z≈ 6. At
redshifts z> 3 we use hydrodynamic simulations to simulate
the spatial distribution of neutral hydrogen, while at z< 3 we
use a simple analytic model based on halofit.
Our forecasts are summarized in Table 5. We find that with

10,000 hr of observations in a deep and narrow survey, SKA1-
LOW, employing the interferometer mode, will be able to
measure the sum of the neutrino masses with an error σ
(Mν); 0.3 eV (95% CL), lower than the one obtained from
CMB observations alone (Planck Collaboration 2015). A
slightly tighter constraint can be placed with 10,000 hr of
observations with SKA1-MID, using single-dish (autocorrela-
tion) mode for a wide 25,000 deg2 survey.
Combining the SKA results with CMB data, we forecast that

the sum of the neutrino masses can be constrained with a much
smaller error, as various degeneracies with cosmological
parameters are broken. For instance, by using CMB constraints
on cosmological parameters alone (i.e., neglecting information
onMν from the CMB), we find that SKA1-LOW+CMB will be
able to measure the sum of the neutrino masses with an error σ
(Mν); 0.21 eV (95% CL), while the combination SKA1-MID
+ CMB will improve this to σ(Mν); 0.19 eV (95% CL). On
the other hand, if we do include the information on Mν

contained in the CMB, we find that σ(Mν); 0.09,0.07 for
SKA1-LOW + CMB and SKA1-MID + CMB, respectively.
Finally, by also including a prior on the cosmological

parameters from a spectroscopic redshift survey such as Euclid
or DESI, we see a modest further improvement. For instance,
by combining data from the CMB (neglecting information on
the sum of the neutrino masses), a spectro-z survey, and the
SKA (either SKA1-LOW or SKA1-MID), we find that σ
(Mν); 0.1 eV. As expected, the tighter constraint on the sum
of the neutrino masses can be obtained by combining the full
data (including the CMB Mν constraint), a spectro-z survey,
and data from both SKA1-LOW and SKA1-MID: σ
(Mν)= 0.058 (95% CL), which represents a significant
improvement over the current tightest bound arising from
CMB+BAO+Lyα-forest data of Mν< 0.12 eV (Palanque-
Delabrouille et al. 2015a).
In order to check the robustness of our forecasts for SKA1-

LOW, which were obtained by running high-resolution
hydrodynamic simulations and modeling the H I using the
pseudo-RT 1 method, we have repeated the analysis by
modeling the spatial distribution of neutral hydrogen using
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three completely different methods. We find that our results are
very stable against the model used to assign the H I, as can be
seen in Figure 7.

Our forecasts depend only weakly on the assumed survey
area (see Figure 8), but are more sensitive to the total
observation time available (Figure 9). A 10,000 hr survey
performed “commensally” with a deep EoR survey over five
pointings on the sky with SKA1-LOW is a realistic prospect
however, and should be able to put strong constraints on the
sum of neutrino masses.

We conclude that massive neutrinos imprint distinctive
signatures on the 21 cm power spectrum in the post-reioniza-
tion era, and that future 21 cm intensity mapping surveys with
(e.g.,) the SKA will be able to place very tight constraints on
the sum of the neutrino masses.
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APPENDIX
IMPACT OF NEUTRINOS ON THE TOTAL MATTER

DISTRIBUTION

Here we briefly discuss the impact of massive neutrinos on
the total matter spatial distribution (see Figure 1 for a visual
comparison of the spatial distribution of total matter, i.e., CDM

+baryons+neutrinos+stars, between cosmologies with mass-
less/massive neutrinos). We note that this has already been
studied in many different works (Ma & Bertschinger 1994,
1995; Lesgourgues & Pastor 2006; Brandbyge et al. 2008;
Saito et al. 2008, 2009; Wong 2008; Brandbyge et al. 2010;
Viel et al. 2010; Agarwal & Feldman 2011; Bird et al. 2012;
Wagner et al. 2012; Ali-Haïmoud & Bird 2013; Lesgourgues
et al. 2013; Villaescusa-Navarro et al. 2013b; Blas et al. 2014;
LoVerde 2014; Massara et al. 2014; Rossi et al. 2014; Führer &
Wong 2015; Inman et al. 2015; Peloso et al. 2015), but remark
that the majority of N-body simulations with massive neutrinos
are not hydrodynamic, with the exception of Viel et al. (2010),
Villaescusa-Navarro et al. (2013b), Rossi et al. (2014), and one
simulation in Bird et al. (2012).
In Figure 10 we show the total matter power spectra for the

cosmologies with Mν= 0.0, 0.3 and 0.6 eV neutrinos at z= 3,
z= 4 and z= 5, i.e., using the simulations  , n+m and n++.m We
find that massive neutrinos induce a suppression in the
amplitude of the total matter power spectrum. The suppression
increases with the sum of the neutrino masses and is almost
redshift-independent. The suppression has its physical origin in
the fact that the large thermal velocities of the neutrinos
prevents their clustering on small scales. The bottom panels of
that figure display the ratio between the matter power spectrum
of the massive neutrinos to the massless neutrino model. We
obtain the typical shape induced by massive neutrinos on that
ratio, which can be explained by the extension of the halo
model presented in Massara et al. (2014).
In Figure 11 we show the halo mass function of the

cosmological models with massless and massive neutrinos at
redshifts z= 3, z= 4, and z= 5. We find that massive neutrinos
suppress the abundance of dark matter halos, with the
suppression increasing with the sum of the neutrino masses,
with the halo mass, and with redshift. The weaker clustering of
matter in cosmologies with massive neutrinos, with respect to
their massless neutrino counterpart, is also what induces the
suppression in the abundance of dark matter halos.

Figure 10. Impact of massive neutrinos on the total matter power spectrum obtained from our high-resolution hydrodynamic simulations. Black lines show the matter
power spectrum for the model with massless neutrinos at z = 3 (left), z = 4 (middle) and z = 5 (right). Magenta and green lines show results for the cosmologies with
Mν = 0.3 eV and Mν = 0.6 eV neutrinos, respectively. The bottom panels display the ratio between the matter power spectrum of the cosmologies with massive
neutrinos to the massless neutrinos model. The vertical lines display the Nyquist frequency value of the grid used to measure the power spectrum.
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