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ABSTRACT

In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the
magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation
across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The
cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real
propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-
dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent
superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of
continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time
evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow
frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal
conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of
numerical simulations and the correct interpretation of observations.
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1. INTRODUCTION

Recent numerical simulations of magnetohydrodynamic
(MHD) waves in coronal arcades (Rial et al. 2010, 2013) and
in the interior of prominences (Kaneko & Yokoyama 2015,
shown later) have revealed the presence of MHD waves
propagating across the magnetic surfaces at slow velocities. It
is standard to associate propagation across magnetic surfaces
with fast magnetosonic MHD waves. However, the interpreta-
tion in terms of fast magnetosonic waves poses a problem since
the apparent velocity of the cross-field propagation reported in
those numerical studies is slower than that associated with a
fast MHD wave and even a slow MHD wave. Here we show an
example of cross-field superslow propagation. Figures 1(a) and
(b) show snapshots at a certain time of the simulation in
Kaneko & Yokoyama (2015), and Figure 1(c) shows the time
evolution of the velocity component perpendicular to the plane
along the slit in panel (a). In this simulation, radiative
condensation happens around a time of 3000 s, and the waves
are excited inside the flux rope. In Figure 1(c), at the region
apart from the center of the flux rope (distance of 2–7Mm) we
clearly find waves that propagate outward and whose
propagation speeds are decreasing with time. The propagation
speeds are 1–5 km s−1 (as shown by dashed lines in panel (c)),
which much slower than the characteristic propagation speeds
of the fast mode (∼160 km s−1 in our simulation settings) and
even the slow mode (∼70 km s−1). We think that the superslow
propagation can be explained as the apparent effect caused by
phase-mixing of standing Alfvén or slow waves trapped in the
closed loops of the flux rope. In the present paper, as a first
step, we argue that in magnetic structures of the solar corona as,
e.g., magnetic arcades, the phase-mixing of continuum Alfvén
waves and/or continuum slow waves can create the illusion of
MHD waves propagating across magnetic surfaces at velocities

smaller than the characteristic sound and Alfvén velocities of
the plasma. This cross-field propagation is apparent because
there is no real propagation of wave energy across the
magnetic field.
Continuum Alfvén waves and continuum slow waves live on

individual magnetic surfaces and are associated with the Alfvén
continuum and slow continuum of the linear MHD spectrum
(Appert et al. 1974). Each magnetic surface can oscillate at its
own local Alfvén frequency and local slow frequency without
interaction with neighboring magnetic surfaces in ideal MHD
and with negligible interaction in non-ideal MHD. If the
continuum Alfvén/slow waves on a collection of neighboring
magnetic surfaces are each excited at their own local Alfvén/
slow frequencies, an observer would see an apparent phase
propagation across the magnetic surfaces due to the variation of
the local Alfvén/slow frequency across those surfaces (Rial
et al. 2010, 2013; Kaneko & Yokoyama 2015). The apparent
phase velocity is related to the spatial variation of the local
Alfvén/slow frequency across the magnetic surfaces and is
slower than the Alfvén/sound velocities for typical coronal
conditions. The apparent propagation may be misleading for
the analysis of simulations and observations, since this
phenomenon could naturally be interpreted as fast MHD
waves. Therefore, understanding the nature of the apparent
wave propagation is important for the correct analysis of
numerical simulations and the correct interpretation of
observations.
Computations of the continuous spectra that are relevant for

the present investigation can be found in, e.g., Poedts &
Goossens (1987, 1988, 1991), Oliver et al. (1993), Tirry &
Poedts (1998), Arregui et al. (2004a, 2004b), and Terradas
et al. (2013). These investigations are concerned with two-
dimensional (2D) equilibrium models in Cartesian geometry
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that are invariant in the perpendicular direction to the 2D plane
(y-direction). Poedts & Goossens (1987, 1988, 1991) computed
the continuous spectrum of ideal MHD waves in 2D solar
coronal loops and arcades. They dealt with equilibrium models
with a purely poloidal magnetic field (Poedts & Goos-
sens 1987, 1988) and a mixed poloidal and toroidal magnetic
field (Poedts & Goossens 1991). They explicitly determined
how the slow continuum frequencies and the Alfvén continuum
frequencies change across the magnetic surfaces for specific
choices of the magnetic field and equilibrium density. Oliver
et al. (1993) computed the Alfvén continuous spectrum of a
pressureless coronal arcade with a poloidal potential magnetic
field. They neglected gravity and they removed the slow part of
the spectrum by using the assumption that the plasma is
pressureless. Tirry & Poedts (1998) studied MHD waves in
potential arcades as well considered by Oliver et al. (1993).
They determined the variation of the frequencies of Alfvén
continuum modes across the magnetic surfaces for a specific
density profile. Subsequently, Tirry & Poedts (1998) studied

the coupling of Alfvén continuum modes and fast modes in the
resistive driven problem for ¹k 0,y where ky denotes the
wavenumber in the y-direction (the direction in the magnetic
surfaces perpendicular to the magnetic field lines). Arregui
et al. (2004a, 2004b) studied MHD waves in potential arcades
as Oliver et al. (1993) and in force-free arcades. They
determined the variation of the frequencies of Alfvén
continuum modes across the magnetic surfaces for a specific
density profile corresponding to d = 6 in the notation of Oliver
et al. (1993). They used their results on Alfvén continuum
modes for a purely poloidal field and =k 0y as a starting point
to understand the coupling of Alfvén continuum modes and fast
waves in more complicated cases. Terradas et al. (2013)
computed the slow and Alfvén continuum for a 2D prominence
model with a purely poloidal magnetic field and gravity.
The aim of the present paper is to show that apparent

superslow propagation across the magnetic surfaces in solar
coronal structures is a consequence of the existence of
continuum Alfvén waves and continuum slow waves. To this
end we investigate the continuous spectrum for 2D equilibrium
models in Cartesian geometry that are invariant in the
y-direction and have a purely poloidal magnetic field. The
actual equilibrium configurations that we have in mind are 2D
coronal arcades (e.g., Oliver et al. 1993). The assumption that
there is no toroidal magnetic field leads to two separate
continuous parts. It simplifies the mathematical analysis and
enables us to understand the essential mechanism behind the
apparent superslow propagation.
The plan of the paper is as follows. In Section 2 we review

the concept of continuous spectrum of linear ideal MHD and
we recall the equations that govern the continuous spectrum for
a 2D magnetostatic equilibrium in Cartesian coordinates with a
purely poloidal magnetic field. In Section 3 we discuss the
solutions for the Alfvén continuum waves and slow continuum
waves. The apparent cross-field propagation caused by the
phase-mixing of continuum waves is studied in Section 4. In
Section 5 we use the theory of apparent superslow propagation
due to continuum Alfvén waves to explain the superslow
propagation observed in the numerical simulations by Kaneko
& Yokoyama (2015). Conclusions are formulated in Section 6.

2. THE CONTINUOUS SPECTRUM

The continuous part of the linear spectrum of ideal MHD
was first studied for one-dimensional (1D) magnetostatic
equilibrium models. Appert et al. (1974) were the first to give
a rigorous proof that the linear spectrum of ideal MHD contains
a continuous part. Their analysis applied to a 1D axisymmetric
circular plasma cylinder, known in the plasma physics literature
as the diffuse linear pinch. Waves belonging to the continuous
part of the spectrum are recognized by their singular behavior
at a magnetic surface. In the case of a 1D magnetostatic
equilibrium model (e.g., the plasma slab, the diffuse linear
pinch) the linear MHD equations can be reduced to the classic
Hain–Lust equation. The values of s2 that correspond to the
mobile regular singular points of the Hain–Lust equation (Hain
& Lust 1958; Goedbloed & Hagebeuk 1972) are associated
with non-square integrable solutions and define two separate
continuous parts of the spectrum, namely the Alfvén continuum
and the cusp or slow continuum (see, e.g., Goedbloed 1983;
Goossens 1991; Sakurai et al. 1991; Goossens et al. 1992;
Goedbloed & Poedts 2004). The solutions that correspond to
the Alfvén continuum and slow continuum are localized on the

Figure 1. Superslow propagation in Kaneko & Yokoyama (2015). Panels (a)
and (b) show the velocity component perpendicular to the plane and number
density at a certain time, respectively. The thin solid lines represent the
magnetic field. The thick solid line is the slit. Panel (c) shows the time
evolution of the velocity component perpendicular to the plane along the slit in
panel (a). The horizontal and vertical axes represent the time and distance from
the center of the flux rope, respectively.
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magnetic surfaces where the resonant conditions of the
respective wave dispersion relations are satisfied. In addition
they are characterized by motions in the magnetic surfaces,
which are perpendicular and parallel to the magnetic field lines.

For 1D equilibrium models the determination of the
frequencies of the continuous part of spectrum is relatively
straightforward: put the coefficient function of the highest
derivative in the Hain–Lust equation equal to zero. The
resonant frequencies are given by simple algebraic relations.
For 2D equilibrium models matters are more complicated. The
equations for the linear motions are partial differential
equations. The continuous spectrum is redefined as the
collection of frequencies for which the solutions show non-
square integrable singularities at a flux surface Y = Y .0 Pao
(1975) and Goedbloed (1975) were the first to independently
determine the equations that govern the continuous part of the
linear ideal spectrum for 2D toroidal equilibrium configurations
in the context of fusion plasma physics. They also derived basic
properties of the continuous spectrum that do not depend on the
details of the magnetic field. In particular they showed that in
the general case of a mixed poloidal and toroidal magnetic field
the Alfvén continuum and the cusp continuum become coupled
and the continuum modes are no longer polarized purely
parallel and purely perpendicular to the magnetic field lines.
When the magnetic field is purely poloidal the Alfvén
continuum and the slow continuum remain uncoupled and
the continuum solutions are polarized as in the 1D case of the
diffuse linear pinch.

In the astrophysical context, Poedts et al. (1985) and
Goossens et al. (1985) derived the equations that govern the
continuous spectrum for 2D equilibrium models in the presence
of gravity. Poedts et al. (1985) considered a toroidal
equilibrium model in cylindrical coordinates with invariance
in the j-direction. Goossens et al. (1985) used a Cartesian
model with invariance in the y-direction. Poedts et al. (1985)
and Goossens et al. (1985) confirmed the result known in
fusion plasma physics that the two continua are coupled when
the magnetic field has a component in the ignorable direction,
jB and By. In that situation both continua are affected by

gravity. For a purely poloidal magnetic field the two continua
are uncoupled and the corresponding solutions have the classic
properties known from analysis of the diffuse linear pinch.
Here the Alfvén continuum is not affected by gravity, but the
slow continuum is affected and it might be better referred to as
the slow-gravity continuum. The singular solutions of the
continuum Alfvén waves for 2D magnetostatic equilibrium
models with a purely poloidal magnetic field were discussed in
detail by Thompson & Wright (1993), Wright & Thompson
(1994), and Tirry & Goossens (1995).

2.1. Continuous Spectrum for a 2D Equilibrium

In the present investigation we use the equations for the
continuous part of the linear spectrum formulated by Goossens
et al. (1985). These authors derived the equations that govern
the continuous part of linear ideal MHD for 2D equilibrium
configurations in Cartesian geometry that are invariant in the
y-direction. The basic equations for the magnetostatic equili-
brium and the linear motions superimposed on this equilibrium
can be found in Section 2 of Goossens et al. (1985). We recall
the necessary equations from Goossens et al. (1985) and add
new information. The equilibrium quantities are functions of
the Cartesian coordinates x and z but not of y. Goossens et al.

(1985) implicitly specified the dependence on the ignorable
coordinate y and time t as

s-ik y i texp , 1y( ) ( )

with ky as the wavenumber in the y-direction and σ as the
frequency. It is standard practice to split the equilibrium
magnetic field in a poloidal magnetic field Bp and a toroidal
magnetic field =B 1B .t y y In the present paper we deal with
equilibrium configurations with a purely poloidal magnetic
field. In what follows =B 0.y
The poloidal magnetic field is written in terms of a magnetic

flux function Y x z,( ) as

= = -Y ´ =
¶Y
¶

-
¶Y
¶

B B 1 1 1x z x z x z
z x

, , , ,

2

p y x z( ) ( ) ( )

( )

where 1 1 1, ,x y z are the unit vectors in the x-, y- and z-
directions. The definition of Bp with the use of the flux function
Ψ implies that Y =B 0.p · Goossens et al. (1985) used a
local system of flux coordinates cY y, ,( ) with χ as the
poloidal variable. All equilibrium variables are functions of Ψ
and χ but not of y. The equilibrium magnetic field has
components cB0, 0,( ) in the cY y, ,( ) system of coordinates.
Expressions for the operators  , , div, rot2 can be found in
Equations (7)–(10) of Goossens et al. (1985). The unit vector
that is normal to the flux surfaces is Y1 and the unit vector in the
magnetic surfaces that is parallel to the poloidal magnetic field
is c1 . For completeness, we note that 1y is the unit vector in the
magnetic surfaces that is perpendicular to the poloidal
magnetic field lines and ky is the wavenumber in the direction
of 1 .y Hence = =c ^1 1 1 1, .y
The local system of flux coordinates is orthogonal so that
c Y = 0.· Hence

c l = Bx z, , 3p( ) ( )

with l x z,( ) a function that we can choose freely. The Jacobian
J of the transformation of the Cartesian system of coordinates
x y z, ,( ) to that of the local system of orthogonal flux
coordinates cY y, ,( ) and the elementary length in the local
system of orthogonal flux coordinates are

c
=

c
J

B

1
4

∣ ∣
( )

c= Y + +
c

cds
B

d dy J B d
1

. 52
2

2 2 2 2 2( ) ( ) ( ) ( ) ( )

We use Equations (59)–(60) of Goossens et al. (1985). They
are two uncoupled ordinary differential equations for xy and xc
on a given magnetic surface Y = Y .0 The independent variable
is the coordinate along the field line, χ. The actual equilibrium
configurations that we have in mind are 2D arcades as studied
by Poedts & Goossens (1987, 1988, 1991), Oliver et al. (1993),
Tirry & Poedts (1998), Arregui et al. (2004b, 2004b), Rial et al.
(2010, 2013), and Terradas et al. (2013). A graphical
representation of the magnetostatic configuration can be found
in Oliver et al. (1993) and Rial et al. (2010). Equations (59)–
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(60) of Goossens et al. (1985) are

s x
mr

x= - F
1

6y y
2

0

2( ) ( )

s x
c c

x

r
r

x

=
+

+
¶
¶ +

¶F
¶

-

c c
c

c

c

c

c

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

v

v v
N

JB

v

v v J

B
F v F

B

1 1
,

1
. 7

2 S
2

S
2

A
2

2
2

S
2

S
2

A
2

0

0
0 C

2 ( )

The operator F is given by

c
=

¶
¶

F
J

1
. 8( )

Note that Goossens et al. (1985) used the notation F in stead
of F. In these equations, r Fp, ,0 0 0 are the equilibrium density,

pressure, and gravitational potential. In turn, v ,S
2 v ,A

2 and vC
2 are

the square of the local speed of sound, the local Alfvén
velocity, and the local cusp (or tube) speed defined as

g
r mr

= = =
+
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0
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where γ is the adiabatic index and μ is the magnetic
permeability. cN2 is the square of the Brunt–Vaisälä frequency
along the magnetic field lines. It is defined as

c r
r
c g c

= -
¶F
¶

¶
¶

-
¶
¶c

c c c

⎧⎨⎩
⎫⎬⎭N

JB JB p JB

p1 1 1 1
. 102 0

0

0

0

0 ( )

When Equations (6) and (7) are supplemented with boundary
conditions they define two uncoupled eigenvalue problems for
the frequency, σ. When the magnetic surface is varied, the
corresponding frequencies define the Alfvén continuum and the
cusp or slow continuum. Note that x x= ^y and x x=c . The
equation for xy is independent of gravity and hence the Alfvén
continuum is unaffected by gravity. The coefficient function of
xc in the equation for xc clearly depends on gravity. Hence the
slow continuum is affected by gravity. Note also that the
wavenumber ky does not appear in Equations (6) and (7), so
that the two continua are independent of ky. The corresponding
solutions spatially depend on y through the factor ik yexp .y( )

2.2. Normalized Variables

All of the equations so far have been written in terms of
dimensional variables. From here on we use normalized or
dimensionless variables. We introduce a reference length LR
and use it to define the normalized coordinates   x y z, , , the
normalized arc length så, and the normalized components of the
Lagrangian displacement  x xcy, , as

  

  x x x x

=

= =c c
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

x y z L x y z

s L s L

, , , , ,

, , , . 11

t t

y
t

y
t

R

R R

[ ] [ ]

( )

The operator  is transformed as  = L1 .R( ) Next we
introduce the reference value YR to normalize the magnetic flux
function Ψ, the variable χ, and the poloidal magnetic field Bp as

       



c cY = Y Y = Y
= = YB B

x y z x y z

B B L

, , , , , ,

, . 12p p

R R

R R R R

( ) ( )
( )

Equation (3) is then

  c l = Bx z, . 13p( ) ( )

A convenient choice for the multiplicative function l x z,( ) in
(13) is l = cx z B x z, 1 ,( ) (∣ ( )∣) so that

   

 


c c = =  =

= =

c

c

1 1
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B

, 1,
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. 14

B

R
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The expression (5) for the elementary length is in dimension-
less variables




  c= Y + +
c

ds
B

d dy d
1

. 152
2

2 2 2( ) ( ) ( ) ( ) ( )

Equation (15) tells us that for constant Y and constant yå

 c=ds d . 162 2( ) ( ) ( )

Hence  c = s , with så as the normalized arc length along a
poloidal field line. In addition, (8) can be simplified to

  



c

= =
¶
¶

=
¶
¶

cF
B

L
F F B B

s
, . 17R

R
( )

The equilibrium density and equilibrium pressure r p,0 0 are
normalized by the use of the reference values rR and p :R

 r r r= =p p p, . 180 R 0 R ( )

The local Alfvén velocity vA, the local speed of sound vS, and
the local cusp speed vC are normalized with the reference value
for the local Alfvén speed vAR:

  mr= =v B v v v v v v v, , , , , . 19AR
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Expressions for   v v v, ,A S C are
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The equilibrium potential F0 is normalized as

F = Fv . 210 AR
2 ( )

Finally, all frequencies are normalized by the use of the
reference Alfvén frequency sAR as

 s s s s s= = =c c
v

L
N N, , . 22AR

2 AR
2

R
2

2
AR
2 2 2
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2 2 ( )

The dimensionless square of the Brunt–Vaisälä frequency cN2

is
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1
. 232 ,

S
2

( )

cg is the dimensionless component of gravity along the field
line






=
¶F
¶cg

s
. 24( )

From here on only normalized quantities will be used and there
is no room for confusion. Hence we drop the subscript  for the
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sake of simplicity. Equations (6) and (7) for the Alfvén
continuum waves and the slow continuum waves can then be
rewritten as

s x
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3. CONTINUUM WAVES

3.1. Alfvén Waves

The Alfvén continuum waves are governed by Equation (25).
It is an ordinary differential equation of second order for
x x= ^.y We have deliberately kept the notation with the partial
derivative ¶ ¶s to make it clear that we are on a given
magnetic surface Y = Y .0 The continuum Alfvén waves live on
individual magnetic surfaces and the motions are in the
y-direction, i.e., in the magnetic surfaces and perpendicular to
the magnetic field lines. Let us rewrite Equation (25) as

x x s
x

¶

¶
+

¶
¶

¶

¶
+ =

s B

B

s s v

1
0. 27

y y
y

2 2

2

2

A
2

( )

Equation (27) agrees with Equation (15) of Terradas et al.
(2013), which was obtained from Equation (59) of Goossens
et al. (1985). Equation (27) is defined on the field line Y = Y .0

Let us denote the length of the field line as YL 0( ) and impose
the boundary conditions that the magnetic field lines of the
arcade are anchored in the dense plasma of photosphere

x x= = = Y =Y Ys s L0 0. 28y y, , 00 0 ( )( )( ) ( )

The boundary conditions (28) were also used by Poedts &
Goossens (1987, 1988, 1991), Oliver et al. (1993), Arregui
et al. (2003, 2004a, 2004b), and Terradas et al. (2013).
Equation (27) and boundary conditions (28) define an
eigenvalue problem with eigenvalue s2 and eigenfunction
x Y s .y, 0

( ) There are infinitely many eigensolutions

s xY Y s, . 29n y nA,
2

0 ,A, , 0( ) ( ) ( )

The notation in (29) is as follows: the subscript A refers to
Alfvén waves and Y0 refers to the fact that we are on the
magnetic surface Y = Y .0 The number n is related to the
number of internal nodes of xy as a function of s, i.e., along the
field line. So, n = 1 corresponds to the fundamental mode, with
no internal nodes, n = 2 corresponds to the first overtone, with
one internal node, etc. (see Poedts & Goossens 1987, 1988;
Arregui et al. 2003, 2004a, 2004b). When we change Y0 from
YB to YE each of the frequencies s YnA,

2
0( ) maps out a

continuous range of Alfvén frequencies. Hence we have
infinitely many Alfvén continua

 s Y Y Y Y, , 30n B EA,
2 ( ) ( )

where we have used Ψ in stead of Y .0

Let us turn back to Equation (29). In general it does not
admit a closed analytical solution. The reason is that the
coefficient function of the first order derivative of xy in the left
member of Equation (29) is in general non-zero and the
coefficient function of xy in the left hand member of
Equation (29) is in general non-constant. The coefficient
function of the first order derivative of xy in the left hand
member of Equation (29) is zero only when the magnetic field
strength does not vary along the field line, i.e., when B is a flux
function = YB B .( ) However, there are situations where the
magnetic field strength does vary along the field line, e.g., as in
Poedts & Goossens (1987, 1988, 1991), Oliver et al. (1993),
Arregui et al. (2003, 2004a, 2004b), and Terradas et al. (2013).
The coefficient function of xy in the left member of
Equation (29) is constant if the Alfvén velocity vA is constant,
i.e., when vA is a flux function = Yv v .A A ( ) The combination of
B as a flux function = YB B ( ) and vA as a flux function

= Yv vA A ( ) implies that density ρ is a flux function r r= Y .( )
Again, in general the equilibrium density is not a flux function,
e.g., as in Poedts & Goossens (1987, 1988, 1991), Oliver et al.
(1993), and Terradas et al. (2013). Hence, in general
Equation (29) must be numerically solved. There are of course
exceptions.
Oliver et al. (1993) considered a coronal arcade model and

were able to obtain closed analytical solutions for the
eigenfrequencies and eigensolutions of continuum Alfvén
waves by the use of a clever choice of a non-constant
equilibrium magnetic field and a non-constant equilibrium
density. As a means for comparison, let us consider the case
that both the magnetic field strength B and the equilibrium
density ρ are flux functions: r r= Y = YB B , .( ) ( ) The
Equation (27) for continuum Alfvén waves can be simplified to

x s
x

¶

¶
+ =

s v
0, 31

y
y

2

2

2

A
2

( )

where now s v2
A
2 is a flux function and is independent of s.

The solutions to Equation (31) and the boundary conditions of
(28) are

s
p

Y =
Y

Y
n

L
v 32nA,

2
0

2 2

2
0

A
2

0( ) ( ) ( ) ( )

x d
p

= Y - Y
YY

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s

n

L
ssin . 33y n,A, , 0

0
0 ( ) ( )( ) ( )

The continuum Alfvén frequencies are

s
p

Y =
Y

Y

= Y Yc

n

L
v

k v . 34

nA, A

A

( )
( )

( )

( ) ( ) ( )

pY = Yck n L( ) ( ) is the local parallel wavenumber. Equa-
tion (34) or (32) defines infinitely many Alfvén continua since
= ¼n 1, 2, 3, :

p p
Y

Y
Y

Y
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

n

L
v

n

L
vmin ; max . 35A A( )

( )
( )

( ) ( )

The number of nodes along the field line in the eigenfunction
given by (33) is -n 1. Hence, n = 1 corresponds to the
fundamental mode without any internal nodes, n = 2 to the first
overtone with one internal node, etc. Equation (34) is very
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reminiscent of the classic result for 1D equilibrium models with
a straight field. For instance, for the diffuse linear pinch with a
constant straight field the Alfvén continuum frequencies are
given by

s =r k v r , 36zA A( ) ( ) ( )

with kz as the axial wavenumber or parallel wavenumber and
v rA ( ) as the Alfvén velocity that depends on the radial
coordinate r. Equation (34) is formally the same as the result in
Equation (25) of Arregui et al. (2003). In general there are
deviations from the simple result (34) when we consider 2D
equilibrium models. These deviations are due to the fact that B
and ρ are not flux functions but vary along field lines.

Numerical results for Alfvén continuum frequencies for a
magnetostatic equilibrium with a purely poloidal field are given
by Poedts & Goossens (1987, 1988), Oliver et al. (1993),
Arregui et al. (2003, 2004a, 2004b), and Terradas et al. (2013).
Our main interest is in the frequency of the fundamental
continuum mode and its variation across magnetic surfaces for
different magnetostatic equilibrium models. Oliver et al. (1993)
computed how the continuum Alfvén frequency varies across
the magnetic surfaces for different density variations obtained
by varying their parameter δ, namely the ratio of the magnetic
scale height to the density scale height. The value of δ controls
the variation of the local Alfvén velocity with height. In their
Figure 2(b) Oliver et al. (1993) plot the variation of the
frequency of the fundamental continuum Alfvén wave for
different profiles of local Alfvén velocity d = 1, 2, 3, 4, 6( ) as
a function of x0. The parameter x0 of Oliver et al. (1993) labels
the magnetic surfaces and can be related to Ψ. Oliver et al.
(1993) found that the variation of the frequency of the
fundamental Alfvén wave across the magnetic surfaces
depends on the value of δ. For d < 3 the frequency sA is a
strictly decreasing function of x0

s
" Î <x

d

dx
0; 1 : 0. 370

A

0
[ ] ( )

However, for d 3 sA is no longer a monotonous function of
x0. There is a critical point xC so that

s

s s

$ Î =

" Î < " Î >
⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

x
d

dx

x x
d

dx
x x

d

dx

0; 1 : 0

0; : 0, ; 1 : 0

38

C
A

C

0 C
A

0
0 C

A

0

[ ]

( )

This behavior of the frequency of the fundamental continuum
Alfvén mode was confirmed by Tirry & Poedts (1998) for
d = 3 and by Arregui et al. (2004a) for d = 6.

3.2. Slow Waves

The slow continuum waves are governed by Equation (26).
It is an ordinary differential equation of second order for
x x=c . Again we have kept the notation with the partial
derivative ¶ ¶s to make it clear that we are on a given
magnetic surface Y = Y .0 The continuum slow waves live on
individual magnetic surfaces and the motions are in the χ
direction, i.e., in the magnetic surfaces and parallel to the

magnetic field lines. Let us rewrite Equation (26) as

x x
x

¶

¶
+ Y

¶

¶
+ Y =c c

cs
F s

s
G s, , 0. 39

2 2

2 0 0( ) ( ) ( )

The functions YF s,0( ) and YG s,0( ) are
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A
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0

0

S
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C
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C
2

S
2

S
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( )

( )
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Equations (39) and (40) agree with Equations (12)–(14) of
Terradas et al. (2013) when it is taken into account that cg of
the present paper is equal to -gs of Terradas et al. (2013).
Equation (39) is defined on the field line Y = Y .0 Let us

impose the boundary conditions

x x= = = Y =c cY Ys s L0 0. 41, , 00 0 ( )( )( ) ( )

In the same way that the continuum Alfvén waves of
Equation (39) and the boundary conditions of (41) define an
eigenvalue problem with eigenvalue s2 and eigenfunction
xc Y s ., 0

( ) There are infinitely many eigensolutions

s xY c Y s, . 42n nS,
2

0 ,S, , 0( ) ( ) ( )

The notation in Equation (42) is similar to that used for
continuum Alfvén waves in Equation (29). When we change Y0

from YB to YE each of the frequencies s YnS,
2

0( ) maps out a
continuous range of Alfvén frequencies. Hence we have
infinitely many slow continua

 s Y Y Y Y, . 43n B ES,
2 ( ) ( )

Let us now turn back to Equation (39). In general it does not
admit closed analytical solutions. Also, gravity is an ingredient
that complicates simple mathematical analysis. Let us consider
the case that gravity is absent. Equation (26) or (39) can then be
simplified to

s x
r

r
x

= -
¶
¶

¶
¶c

c
⎪ ⎪

⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭s

v B
s B

1
. 442

C
2 ( )

In general the equilibrium quantities r B v v v, , , ,S
2

A
2

C
2 are not

flux functions and do also depend on s. As a means for
comparison, we consider the case that the magnetic field
strength B, the equilibrium density ρ, and the cusp velocity are
flux functions: r r= Y = Y YB B v, , .C( ) ( ) ( ) The condition
that the density and the cusp velocity are flux functions implies
that pressure p and temperature T are also flux functions:
= Y = Yp p T T, .( ) ( ) Equation (44) for continuum slow

waves can then be simplified to

x s
x

¶

¶
+ =c

cs v
0, 45

2 2

2

2

C
2

( )
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where now s v2
C
2 is a flux function and is independent of s.

Equation (45) is identical to Equation (31) for continuum
Alfvén waves with vA

2 replaced with v .C
2 Hence we can repeat

the analysis for continuum Alfvén waves from Equation (33)
up to (35). In particular the continuum slow frequencies are

s sY =
+

Y

= Y Yc

v

v v

k v . 46

n nS,
S

S
2

A
2

A,

C

( ) ( )

( ) ( ) ( )

The local parallel wavenumber Yck ( ) is given by the same
expression as for Alfvén waves (34). As for the Alfvén
continuum we can refer to the classic result for 1D equilibrium
models with a straight field. For instance, for the diffuse linear
pinch with a constant straight field the slow continuum
frequencies are given by

s =r k v r , 47zS C( ) ( ) ( )

with kz as the axial wavenumber or parallel wavenumber and
v rA ( ) as the Alfvén velocity that depends on the radial
coordinate r. In general there are deviations from the simple
result (46) when we consider 2D equilibrium models. These
deviations are due to the fact that r B v v v, , , ,S

2
A
2

C
2 are not flux

functions and also vary along the field lines and depend on s.
Numerical results for slow continuum frequencies for a

magnetostatic equilibrium with a purely poloidal field are given
by Poedts & Goossens (1987, 1988) and Terradas et al. (2013).
In particular Poedts & Goossens (1988) show that the variation
of the frequency of the slow continuum modes depends on the
structure of the magnetic field, the density stratification, and on
the plasma beta β. The variation of the frequency of the slow
continuum modes across the magnetic surfaces can be both
monotonic and non-monotonic with a local minimum, as can
be seen in Figure 4 of Poedts & Goossens (1988).

3.3. Closed Magnetic Surfaces

In this subsection, we consider waves on closed magnetic
flux surfaces. These closed surfaces could correspond to the
nested flux surfaces near the core of a prominence, which are
detached from the lower atmospheric layers (at least in a 2D cut
of the model; see, e.g., the simulations in Kaneko & Yokoyama
2014, 2015). For example, we can consider a magnetic field
with flux surfaces that are concentric circular cylinders.
Because of the assumed y-invariance of equilibrium configura-
tion and in particular of the equilibrium magnetic field, we can
concentrate on the x z,( ) plane. The intersections of the flux
surfaces with the x z,( ) plane define concentric circular field
lines with a prescribed length pY = YL R2( ) ( ), where YL ( )
and YR ( ) denote the length of the circular field and its radius
on each closed magnetic surface. Note that a possible magnetic
field that satisfies the condition for magnetostatic equilibrium is

Y = YB B R R .0 0( ) ( ( )) Otherwise, we need a pressure gradient
in the radial direction for magnetostatic equilibrium. On these
closed flux surfaces different boundary conditions have to be
considered because Equations (28) and (41) assume that the
velocity perturbations are suppressed in a lower atmospheric
layer with high inertia. The boundary conditions on closed

magnetic surfaces are modified to

x x

x x

= = = Y

= = = Yc c

Y Y

Y Y

s s L

s s L

0 and

0 . 48

y y, , 0

, , 0

0 0

0 0

( )
( )

( )
( )

( )

( ) ( )

The difference is that the velocity components do not need to
be zero at = = Ys L0 ,0( ) but that the velocity components
just need to be periodic functions of s, because the latter is a
periodic coordinate as well.
Let us first focus on the Alfvén wave solutions, and let us

once again consider that the magnetic field = YB B ( ) and the
density r r= Y( ) are flux functions. As explained previously,
the eigenvalue problem for Alfvén waves then reduces to
Equation (31):

x s
x

¶

¶
+ =

s v
0, 49

y
y

2

2

2

A
2

( )

with a boundary condition

x x= = = YY Ys s L0 . 50y y, , 00 0 ( )( )( ) ( )

This is of course a well-known problem with a standard set of
solutions. The general solution is
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where we have used the notation n′ for half the number of
nodes along the flux surface (and it is thus slightly different
than the meaning in Sections 3.1 and 3.2). As expression for
the Alfvén frequency continuum s ¢nA, we thus find

s
p

Y =
¢

Y
Y¢

n

L
v

2
. 52nA, A( )

( )
( ) ( )

Analogously, one may derive the expression for the slow
continuum and their eigenfunction in such a configuration of
closed flux surfaces. As in Section 3.2, the eigenfunction will
have the same form as Equation (51), but then for the xc
component. Likewise, the continuum frequencies for the slow
waves will be

s
p

Y =
¢

Y
Y¢

n

L
v

2
. 53nA, C( )

( )
( ) ( )

4. APPARENT CROSS-FIELD PROPAGATION DUE TO
PHASE MIXING OF CONTINUUM WAVES

In this section we show how the phase-mixing of Alfvén/
slow continuum waves creates the illusion of wave propagation
across the magnetic surfaces. We stress that this cross-field
propagation is not real and derive the apparent propagation
phase velocity. Since the analysis is similar for Alfvén waves
and slow waves, first we focus on the case of Alfvén waves and
later we extend the results to slow waves.
Let us consider a situation where standing Alfvén continuum

waves each with their own continuum frequency are excited on
magnetic surfaces  Y Y YB E with amplitude YA ( ) so that

x sY = Y YYs t A f s i t, , exp . 54y A, A( )( ) ( ) ( ) ( ) ( )
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The properties of perturbations with this form also occur in a
magnetospheric context where they have been considered by
Wright et al. (1999). We have dropped the subscript n on
s Y .A ( ) The function YfA, is the solution of (27) for the
corresponding continuum frequency s Y .A ( ) In (54) we have
assumed that there is no phase difference between the standing
continuum Alfvén waves on different magnetic surfaces. Time t
in (54) is dimensionless. It is equal to dimensional real time
multiplied with s .A,R The waves defined in (54) are standing in
the χ direction and (apparently) propagating in the Ψ direction.
Let us now determine the apparent propagation of the phase in
(54). The motion defined in (54) is multi-dimensional and its
phase depends on position and on time. Its dependence on
position is in general not linear. For a multi-dimensional wave
with phase j x t,( ) so that there is an exponential dependence

j xi texp , , 55( ( )) ( )

an instantaneous local frequency σ, and an instantaneous local
wave vector k that can be defined as

s
j

j=
¶

¶
= -

x
k x

t

t
t

,
, , . 56

( ) ( ) ( )

Note that the wave vector k is dimensionless. It is equal to the
dimensional physical wave vector multiplied with L1 .R A
phase velocity can be defined in any direction (see, e.g., Born
& Wolf 1999). We adopt the traditional version and choose the
direction normal to the wave front, i.e., the direction of k so
that

s
=v

k
1 . 57kph ∣ ∣

( )

Herej s= Yx t t, A( ) ( ) so that the local frequency σ defined in
(56) is s Y .A ( ) The local wavenumber k is

s
s

s

s
c

=-  Y

=-
Y
Y

Y
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Y
Y

Y
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Y
Y

Y

Y

Y
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1

t
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d

t
d

d

t
d

d
B , . 58

A ( )
( )

( ) ∣ ∣

( ) ( ) ( )

The last line of (58) follows from the fact that
c cY = Y = YB B, , .p∣ ∣ ∣ ( )∣ ( ) Equation (58) tells us that

the phase vector k is antiparallel to s Y .A ( ) Hence an increase
/decrease in s YA ( ) with Ψ corresponds to apparent downward/
upward propagation:

s

s

Y
Y

<

Y
Y

>

d

d
d

d

apparent upward propagation: 0

apparent downward propagation: 0. 59

A

A

( )

( ) ( )

Equation (58) also shows that (1) k∣ ∣ increases linearly in time,
generating scales that decrease inversely proportional to time t
(as was also found by Mann et al. 1995), (2) k has only a
component in the Ψ-direction, i.e., normal to the magnetic
surfaces, and (3) =  Y1 1k , where the ± sign corresponds to

s Y Y < >d d 0, 0.A ( ) The phase velocity vph is

s
s c

= -
Y
Y

Y
Y

Yv 1
t d

d
B

1 1

,
. 60ph

A

A

( )
( ) ( )

( )

Equation (60) is a key result as it shows that there is an
apparent propagation of phase when continuum Alfvén waves
are excited on magnetic surfaces. There is apparent upward/
downward propagation when > <v v0, 0ph ph , which
according to (60) happens when (59) applies. In general k and
vph are functions of cY, and time t. In case the magnetic field
strength and the equilibrium density are flux functions we can
rewrite Equation (60) as

= -

Y
Y
Y
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Y

Y
Y

Y
Yv 1

t
v

dv

d L
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d
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1 1
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The condition for apparent upward/downward propagation
(59) can now be rewritten as

Y
Y
Y

<
Y

Y
Y

Y
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>
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d

v

dv
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upward propagation:
1 1

downward propagation:
1 1

.

62
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A

( )
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( )
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( )
( )

( )
( )

( )

Equivalent formulae to our Equations (59)–(62) have been
derived elsewhere and used to infer magnetospheric structure
based upon the direction and speed of the observed phase
motion. The interested reader is directed to the summary given
by Wright & Mann (2006). Regarding the closed magnetic
field, the number of nodes can affect the phase velocity. When
one particular node is dominant, Equation (61) and condition
(62) are available without any modification (substitute
Equation (52) or (53) to (60)). If the multiple nodes exist on
a magnetic surface, the appearance of the apparent propagation
will become more complicated. It is straightforward to adapt
the preceding analysis to include an initial phase difference
between the excited Alfvén continuum waves. We denote the
initial phase difference as j Y .0 ( ) The expression (60) for the
apparent propagation speed becomes

s
s j c

= -
Y

Y
Y

+
Y

Y
Y

Yv 1
t

d

d

d

d
B

1

,
. 63ph

A

A 0

( )
( ) ( ) ( )

( )

Here, we present an example of upward and downward
propagation by using a simple model. We consider the
semicircular magnetic field described as

q p= < <qB 1 0 , 64( ) ( )

where q1 is the unit vector in the θ direction in a system of polar
coordinate in x z,( ) plane (see also the magnetic configuration
in Figure 2). In this particular case, the flux surface Y = Y0

corresponds to =r r0 due to the uniform unit field strength in
the whole domain. The solution of the fundamental standing
Alfvén wave on each flux surface r is

x q s q=r t r t, , sin sin , 65y A( )( ) ( ) ( )

where s p=r v r L r2A A( ) ( ) ( ) and p=L r r.( ) Since the
magnetic field is not force-free, a pressure gradient in the
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radial direction is required for magnetostatic equilibrium. We
do not concern ourselves here with pressure. Our focus is on
continuum Alfvén waves and from the discussion in Section 3.1
we recall that pressure has no effect on the Alfvén continuum
waves. The distribution of Alfvén velocity is set as

= ⎜ ⎟⎛
⎝

⎞
⎠v r

r

a
exp , 66A ( ) ( )

where =a 0.55. In this setting, the wave vector and phase
speed of apparent cross-field propagation are computed from
Equations (58) and (61) as

= - -⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠k 1

t

r a r

r

a

2 1 1
exp , 67r ( )

= -
-

v 1
t

ar

r a

1
. 68rph ( )

The condition for upward/downward propagation is

<

>

a r

a r

upward propagation:
1 1

downward propagation:
1 1

. 69( )

Hence, the condition for upward propagation is satisfied for the
region with <r a and that for downward propagation is
satisfied in the region wit >r a. Figure 2 shows the snapshots
of the time evolution of the standing wave solution described as
Equation (65). Figure 3 is the time–height plot along x = 0 of
Figure 2. The dividing line between the regions of upward and
downward propagation matches the criteria (69). It is also
evident in Figures 2 and 3 that the apparent wave vector
increases with time as derived in Equation (67), which is the
nature of phase-mixing. Moreover, the apparent phase speed is
getting slower and slower as time goes on, which agrees with
Equation (68). If the standing waves are retained for a long
time before they are dissipated by some instabilities or the local
diffusivity during phase-mixing, the phase speed is getting
slower and slower, resulting in superslow propagation.
Let us now go back to the coronal arcade model of Oliver

et al. (1993). According to (58) and (59) it follows that the
apparent propagation of the phase is always upward for models
with d < 3. For models with d 3 the apparent propagation of
phase is upward for " Îx x0;0 C[ [ and downward for
" Îx x ; 1 .0 C] ]
Let us focus on a particular example that might be illustrative

of the application of Equation (60). Oliver et al. (1993) found
an analytic solution for the potential arcade (see Figure 4) with
d = 0. In this case these authors found that for the fundamental
mode with n = 0, the dependence of the Alfvén frequency on
the footpoint position (x0) is

s
p

= L
x

v x
2

cos . 70BA
0

A0 0( ) ( )

In this expression mr=v BA0 0 0 is the Alfvén speed at z = 0
and is independent of the x-coordinate.
Using the flux function it is straightforward to relate Ψ with

x0, since

Y = - L L - LB x ecos , 71B B
z

0 B( ) ( )

at z = 0 we simply have that

Y = - L LB xcos . 72B B0 0( ) ( )

Figure 2. Snapshots of time evolution of Equation (65). The color contour
represents the amplitude orthogonal to the plane. The solid lines show the
assumed magnetic field of Equation (64). The triangles and inverse triangles
mark the same phase (F = 20.5), and show the upward and downward
propagation, respectively.

(An animation of this figure is available.)

Figure 3. Time–height plot along x = 0 of Figure 2. The horizontal and vertical
axes represents time t and height z, respectively. The dashed line shows the
border of upward and downward propagation derived by criteria (69). The
color contour, triangles, and inverse triangles have the same meaning as in
Figure 2.
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The next step is to evaluate the derivative of the Alfvén
frequency with respect to Ψ. This is done using the fact that

s s
Y

=
Y

d

d

d

dx

dx

d
. 73A A

0

0 ( )

Using Equations (70) and (72) we find

s p
Y

=- L +
L
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d x
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1
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1
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1
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B
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B

B

A

0
A0

0
0 0

0 0

( ) ( )

( ) ( )

Now we need the expression for cYB , .( ) Since it depends on
the coordinate along the particular field line we concentrate at
the position where it has a minimum and therefore the phase
velocity has a maximum. This position is simply at x = 0 in our
arcade configuration, i.e., at the center of the arcade where
there is only a horizontal component of the magnetic field. The
horizontal component of the field line crossing the center of the
arcade that has its footpoint at x0 is LB xcos .B0 0( ) Hence the
phase velocity in the z-direction at the center of the arcade is

=
L

L +
L

L
v

t

x

x
x x

1 sin

1
cos

1
sin

. 75z
B

B
B

B

ph
0

0
0 0

( )
( ) ( )

( )

It is interesting to note that according to (75) the apparent phase
speed, which is always pointing upward for d = 0, is
independent of the value of the magnetic field and only
depends on the geometrical aspects of the magnetic
configuration.

Equation (75) can be written in terms of the height at the
center of the arcade, at x = 0, by using the relationship with the

footpoint position

= L- Le xcos . 76z
B0B ( ) ( )

We have used this expression to plot the dependence of the
phase velocity as a function of height in Figure 5. The absolute
value of this magnitude decreases with z for low heights, i.e.,
small x0. The dependence in this regime is of the form

Lx t .B0
2 ( ) For large heights it asymptotically approaches L tB

as it is inferred from (74) in the large limit of x0. Hence the
strongest change in the phase speed takes place at low heights.
Now we turn to slow continuum modes and follow an

equivalent process to that for Alfvén continuum modes. Let us
consider a situation where the slow continuum waves, each
with their own continuum frequency, are excited on magnetic
surfaces  Y Y YB E with amplitude YS ( ) so that

x sY = Y Yc Ys t S f s i t, , exp . 77S, S( )( ) ( ) ( ) ( ) ( )

The function YfS, is the solution of (39) for the corresponding
continuum frequency s Y .S ( ) Since Equation (77) for continuum
slow waves is formally identical to Equation (54) for
continuum Alfvén waves, we can copy the equations for
Alfvén continuum waves and replace s YA ( ) with s Y .S ( ) In
particular we can use Equation (63) to find that the apparent
propagation speed of the phase of slow continuum waves is

s

s j
= -

Y

Y

Y
+

Y

Y

Y
Y1v

t
d

d

d

d

1
. 78ph

C

C 0

( )
( ) ) ∣ ∣

( )

5. APPLICATION TO SIMULATION RESULTS

In this section, we apply the theory of the apparent
propagation due to the phase-mixing to the cross-field super-
slow propagation in the simulation of Kaneko & Yokoyama
(2015) shown as Figure 1. We show that this superslow cross-
field propagation can be explained as being caused by the
continuum standing Alfvén waves inside the flux rope.
Expressions for the apparent wavenumber and phase speed
are given by Equations (58) and (61). We regard the flux rope
as a concentric cylinder, and assume F =d dr B r( ) and
s p= =r v r L r v r r2A A A( ) ( ) ( ) ( ) , where r is the distance
along the slit and the length of one closed loop is p=L r r2 .( )

Figure 4. Magnetic field lines in the potential coronal arcade studied by Oliver
et al. (1993). The magnetic field is given by = L - LB B x ecos ,x B

z
0 B( )

= - L - LB B x esin ,z B
z

0 B( ) with pL = L2B , and L as half the arcade width.
On each field line Ψ is constant. The magnetic field lines can be identified by
their footpoints, x0, at z = 0, or equivalently, by the value of Ψ.

Figure 5. Modulus of apparent phase velocity in the z-direction of Alfvén
waves as a function of height at the center of the potential coronal arcade
(d = 0). The dashed line corresponds to the limiting case = Ltv .Bph∣ ∣ For
visualization purposes in this plot we have imposed that t = 1.
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We also assume that the Alfvén waves inside the flux rope are
excited simultaneously at time =t t .i Under these assumptions,
the apparent wavenumber and phase speed as a function of r
and t are derived as

= -
-

-⎜ ⎟⎛
⎝

⎞
⎠k r t

t t

r

dv

dr

v

r
, , 79i A A( ) ( )

= -
- -

v r t
t t

v r
dv r

dr

v r

r

,
1

. 80
i

ph
A

A A
( ) ( )

( ) ( ) ( )

Figure 6 shows the profile of the mean Alfvén velocity along
the slit at time = 5000 s. We adopt the harmonic mean of
Alfvén velocities at the top and the bottom of the loop as the
representative value of the Alfvén velocity on each magnetic
surface. Note that we use the in-plane Alfvén velocity

pr= +v B B 4x zA
2 2( ) ( ) , though the simulation includes the

finite magnetic component perpendicular to the plane By. The
reason for neglecting By is that we are considering the
projection of the wave path onto the plane (e.g., p=L r r2( ) )
. As shown in Figure 6, the mean Alfvén velocities are constant
in the region of 2.5 Mm < <r 6.2 Mm. Since =dv dr 0,A

Equations (79) and (80) can be simplified to

l
p p

= =
-

r t
k r t

r

t t v
,

2

,

2
, 81

i

2

A
( )

( ) ( )
( )

=
-

v r t
r

t t
, , 82

i
ph ( ) ( )

where l r t,( ) is the apparent wavelength. The dashed lines in
Figure 1(c) are the use of Equation (82) for different values of
vph. We set =t 3000i s, corresponding to the time when the
waves are excited by radiative condensation. Equation (82)
explains the superslow phase speed in the simulation. Figure 7
shows the wavelength in the r-direction at r = 4Mm. The solid
line in Figure 7 represents the apparent wavelength computed
by the inverse of Equation (81), with the local Alfvén velocity
of =v 70A km at r = 4Mm (see Figure 6). The wavelength of
the superslow propagation can be explained by Equation (81).

Our conclusion is that the cross-field superslow propagation in
the simulation is an apparent phenomenon due to the phase-
mixing of continuum Alfvén waves in the flux rope. The
formulae derived in the previous section can correctly predict
the apparent wavelength and phase speed.

6. DISCUSSION

In this paper we explored the continuous MHD spectrum for
2D equilibrium models in Cartesian geometry that are invariant
in the y-direction and have a purely poloidal magnetic field.
The actual equilibrium configurations that we have in mind are
2D coronal arcades (see, e.g., Oliver et al. 1993). We showed
that continuum Alfvén waves and continuum slow waves that
live on individual magnetic surfaces are phase-mixed as time
evolves. This process creates the illusion of waves propagating
across the magnetic surfaces at very slow velocities. This
phenomenon could be erroneously interpreted as fast magne-
tosonic waves. We derived expressions for the apparent cross-
field phase velocity. This quantity depends on the spatial
variation of the local Alfvén/slow frequency across the
magnetic surfaces. For typical conditions in solar coronal
arcades, the apparent phase velocity is slower than the local
Alfvén/sound velocities.
The theory developed in the present paper can be used to

understand the numerical simulations of Rial et al.
(2010, 2013) and Kaneko & Yokoyama (2015) of MHD
waves in coronal arcades and prominences. In their simula-
tions, these authors obtained the apparent superslow propaga-
tion discussed here. For instance, Kaneko & Yokoyama (2015)
find isotropic propagation at a superslow speed of 3 ± 2 km s−1

to be compared with a fast wave velocity of about 160 km s−1

and a slow wave velocity of about 70 km s−1, and the speed
gets slower with time. The superslow isotropic propagation
found in the simulation of Kaneko & Yokoyama (2015) can be
explained as apparent propagation due to continuum waves.
The phenomenon of apparent propagation should be taken into
account in the future to correctly analyze the result of
numerical simulations.
In addition, apparent propagation may be an alternative

explanation to the recent observations by Schmieder et al.
(2013) of MHD waves in a solar prominence with an

Figure 6. Mean Alfvén velocities along the slit. The horizontal axis shows the
distance along the slit. r = 0 is the center of the flux rope.

Figure 7. Wavelength in the r-direction (dots) and the apparent wavelength
computed by Equation (81) (solid line) at r = 4 Mm.
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essentially horizontal magnetic field. Schmieder et al. (2013)
report upward propagation with a speed of 5 ± 3 km s−1 and
downward propagation with a velocity of 5 ± 2 km s−1.
Schmieder et al. (2013) interpreted their observations with a
model based on fast magnetosonic waves. However, the
interpretation in terms of fast magnetosonic waves poses a
problem since the velocity of the observed propagation is
slower than that associated with a fast wave. In order to arrive
at phase velocities comparable to the observed velocities
Schmieder et al. (2013) had to assume values of the density that
were larger than the typical prominence densities and relatively
small projection angles. As can be seen from Equation (60) the
speed of the apparent propagation depends on time as t1 . This
implies that it is very slow for large values of time t, i.e., when
the waves are observed long after their excitation, but fast right
after the excitation of the waves. Also, the spatial variation of
the local Alfvén frequency s YA ( ) plays a role. A slow spatial
variation of s YA ( ) causes a rapid propagation, while a fast
variation of s YA ( ) leads to slow propagation. The observations
of Schmieder et al. (2013) could also be interpreted as apparent
waves, which would naturally have an apparent phase velocity
smaller than the velocity associated with a fast wave. However,
a detailed investigation of those observation is beyond the
scope of the present paper and is left for future works.

The present paper offers, to the best of our knowledge, the
first detailed discussion of superslow propagation due to
continuum waves in solar physics. However, this physical
mechanism is common to MHD waves in a variety of non-
uniform plasma environments. It has been brought to our
attention by the referee that this phenomenon has been studied
in the context of magnetospheric physics (e.g., Mann
et al. 1995; Wright et al. 1999) and reviewed by Wright &
Mann (2006). Actually, some formulae in Section 4 correspond
to the equations derived in Mann et al. (1995) and Wright et al.
(1999). In magnetospheric physics the phenomenon of phase
motion is an important element in the discussion of explaining
the generation of Alfvén waves. This generation involves the
Alfvén resonance and requires that the turning point of the fast
wave is sufficiently close to the resonant point so that the wave
has to tunnel only over a short distance to get to the resonant
point. In the solar case, it can be argued that many slow and
Alfén waves are excited at the photosphere by convective
motions and propagate to the chromosphere and corona. The
solar atmosphere is a very likely place to find apparent
propagation due to phase-mixing. The apparent motion can be
a clue for finding evidence for phase-mixing in the solar
atmosphere.
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