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ABSTRACT

In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes
asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02)
of mass 0.10Me–100Me from the zero-age main sequence to the base of the giant branch, or to central hydrogen
exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along
adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer,
evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars,
dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped
of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of
defining the binary mass ratio as q ≡ Mdonor/Maccretor) above which this delayed dynamical instability occurs
increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors.
Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before
manifesting this instability. As they approach the base of the giant branch, however, and begin developing a
convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a
prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main
sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad = 2/3,
appropriate to a classical isentropic n = 3/2 polytrope. Our calculated qad values agree well with the behavior of
time-dependent models by Chen & Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap.
Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer,
nicely circumscribes the range in qad as a function of the orbital period in which they are found. These results are
intended to advance the verisimilitude of population synthesis models of close binary evolution.
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1. INTRODUCTION

Mass transfer is the defining characteristic distinguishing the
evolution of close binary stars from that of isolated single stars.
That mass transfer is typically triggered by the evolutionary
expansion of one of the binary components, but the rate at
which mass transfer proceeds depends on the interplay between
the structural response of the donor star to mass loss and the
dynamical response of the binary orbit (and with it, the tidal
limit or Roche lobe of the donor star). If the donor star can
remain lobe-filling only by virtue of its evolutionary expansion
or orbital decay through angular momentum loss, then the
donor star remains in thermal equilibrium, and mass transfer
proceeds on that evolutionary expansion/angular momentum
loss timescale. Examples of interacting binaries in this state of
slow mass transfer include classical Algol-type binaries and
(most) cataclysmic variables and low-mass X-ray binaries.
However, it is often the case that the donor star’s Roche lobe
does not expand as rapidly in response to mass loss as would
the donor star itself, if that star were to remain in thermal
equilibrium. In this case, the donor will be driven out of
thermal equilibrium. Depending on the thermal structure of the
donor’s envelope, that divergence from thermal equilibrium
may prevent the donor from expanding far beyond its Roche
lobe. The mass transfer rate is then governed by relaxation of
the donor toward thermal equilibrium; that is, it proceeds on a

thermal timescale. Examples of systems in thermal timescale
mass transfer are relatively rare because of their short lifetimes
in mass transfer, but they may include such strongly interacting
binaries as W Serpentis stars (Plavec 1980) and, most
prominently, supersoft X-ray sources (van den Heuvel
et al. 1992; Kahabka & van den Heuvel 1997). In other
circumstances, however, thermal relaxation cannot contain
expansion of the donor far beyond its Roche lobe. The mass
transfer rate grows inexorably, limited only by hydrodynamical
expansion of the donor envelope through the opening of the
Roche potential at the inner Lagrangian point (Paczyński &
Sienkiewicz 1972; Savonije 1978; Eggleton 2006), and can in
principle approach the mass of the donor star divided by the
orbital period. The prospect of dissipating an appreciable
fraction of the donor star’s binding energy on such a short
timescale has led to the suggestion that intermediate-luminosity
transient sources (see Kasliwal 2012) are triggered by such
dynamical mergers (Munari et al. 2002; Soker & Tylenda 2006;
Kulkarni et al. 2007; Ivanova et al. 2013).
As discussed at some length by Ge et al. (2010a, hereafter

Paper I) and outlined above, the threshold conditions for
dynamical timescale mass transfer depend on the response of
the donor star to mass loss, and on the dynamical response of
the orbit and donor Roche lobe to mass transfer, systemic mass
loss, and orbital angular momentum loss. Our focus in the
present paper is to build model sequences in which a donor
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star’s specific entropy profile and composition profile are held
fixed during mass loss. These adiabatic model sequences
describe the asymptotic response of donor stars to mass loss in
the limit that the timescales involved are so rapid that thermal
relaxation of the donor can be ignored, but not so rapid that the
donor departs in bulk from hydrostatic equilibrium. At their
simplest, previous adiabatic mass-loss models assumed simple
polytropic models or variants of them (Hjellming & Web-
bink 1987) or assumed locally polytropic equations of state
(Dai et al. 2013). Realistic models with sophisticated equations
of state have been studied by Hjellming (1989a, 1989b), Ge
et al. (2010a, 2010b), and Deloye & Taam (2010), as
computing resources have grown more powerful. We employ
here a fully realistic equation of state, as described in Paper I,
albeit retaining the simplification of one-dimensional models.

In this paper, we apply the construction of adiabatic mass-
loss sequences, as described in Paper I, to determining the
criteria for dynamical instability in binaries with radiative
donor stars (on the main sequence or in the Hertzsprung gap) or
with low-mass main-sequence donors. Stars with deep
convective envelopes, that is, those in later evolutionary phases
(giant branch and asymptotic giant branch), respond very
differently to mass loss and present additional issues regarding
the interpretation of our adiabatic mass-loss calculations. We
defer discussion of these later evolutionary phases to the next
installment in this series of papers. The present paper is
organized as follows. Section 2 introduces the construction
of a mass–radius diagram, which provides a useful graphical
context in which we can summarize our results in an
immediately accessible form. Section 3 summarizes the
distribution in mass and evolutionary stage (radius) of models
chosen to span that diagram. In Section 4 we identify the
physical processes that govern the responses of radiative stars
to rapid mass loss in binary systems and the relationship
between prompt and delayed dynamical instabilities of the
donor stars. Section 5 presents the results of our survey in both
tabular and graphical form, interpreted in terms of threshold
mass ratios assuming conservative mass transfer. In Section 6
we show that the threshold mass ratios deduced from our
adiabatic mass-loss sequences are qualitatively and quantita-
tively consistent with relevant time-dependent mass-loss
studies. An example of the application of these thresholds to
real binary systems, the cataclysmic variables, follows in
Section 7. We close (Section 8) with a brief summary of results
and a discussion of their limitations.

2. THE MASS–RADIUS DIAGRAM

An efficient vehicle for discussions of interacting binary
evolution is the mass–radius diagram, illustrating the radii of
stars at critical phases of their evolution. Given a companion
mass and orbital separation, this diagram enables one to
ascertain immediately the evolutionary stage of the donor star
when it fills its Roche lobe. Furthermore, given some
distribution of donor stars in mass and orbital separation (as
a proxy for Roche lobe radius), we can see immediately which
evolutionary channels are most frequently populated.

As an example of the construction of this diagram, consider
the evolution of a 5Me star. Its evolution in the theoretical
Hertzsprung–Russell diagram is shown in Figure 1. The
position of a star in that diagram immediately fixes its radius
via the blackbody law. The point in its evolution at which such
a star begins tidal mass transfer then occurs when it first fills its

Roche lobe (R = RL). In the context of close binary evolution,
then, the evolution of the donor star radius with time acquires
special significance, as shown in Figure 2. In the context of our
5Me example, we see that if R R0.434 log 0.827L( ) < it
first fills its Roche lobe during core hydrogen burning, while
still on the main sequence. If R R0.827 log 2.028L( ) < , it
does so as it crosses the Hertzsprung gap or during its initial
ascent of the giant branch, prior to core helium burning, and if

R R2.028 log 3.046L( ) < during ascent of the asymptotic
giant branch. But whenever an evolving star spontaneously
contracts, it cannot ordinarily initiate mass transfer, as it will
have done so during a prior phase of evolution.4 In the example
at hand, the 5Me star will not fill its Roche lobe during its
momentary contraction at the terminal main sequence, or
during core helium burning until it reaches a radius on the
asymptotic giant branch equal to its prior radius at helium
ignition. We refer to these excluded phases of contraction as
shadowed by one or more prior phases of evolution. Identifying
critical radii of stars in similar fashion throughout our library of
evolutionary models, we can construct a diagram of these
critical radii as a function of mass (Figure 3).
The mass–radius diagram is directly related to a mass-orbital

period diagram (Figure 4), useful in identifying which mass
transfer channels that observed binaries may follow. Using the
Eggleton (1983) approximation for the dimensionless Roche

Figure 1. Evolutionary track of a 5 Me star in the theoretical Hertzsprung–
Russell diagram. Important epochs in its evolution are labeled. Dotted portions
of the evolutionary track signify evolutionary phases in which the stellar radius
is smaller than in the preceding phase.

4 Exceptions can occur, for example, through encounters with field stars, or
orbital variations driven by a more distant companion in a triple system
(Kozai 1962). For this reason, our survey of adiabatic responses encompasses
all phases of evolutionary expansion, including those shadowed by prior
evolution.
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lobe radius, rL = RL/A, with A the orbital separation, we have
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(g(1) = 1, by construction). Thus, the orbital period of a binary
with donor mass M fixes (to within a weak function of the mass
ratio) the radius of that prospective donor at which it fills its
Roche lobe (R = RL).

3. MODEL SELECTION

The evolutionary code employed for this study was based
on the stellar evolution code developed by Eggleton
(1971, 1972, 1973) and Paxton (2004). It is a one-dimensional
(spherically symmetric) non-Lagrangian code and includes a
treatment of convective overshooting as described by Schroder
et al. (1997) with overshooting parameter δov. A more detailed
account of the physics it incorporates can be found in Section
2.2 of Paper I.
The initial models for the mass-loss sequences reported in

this series of papers were selected from a library of stellar
evolution sequences of nominal Population I metallicity

Figure 2. Radius of a 5 Me star as a function of time. Fiducial events in its
evolution are labeled. Absent significant angular momentum loss, this star
cannot initiate mass transfer during those phases of its evolution when its
radius is smaller than during a preceding phase of evolution (dotted segments,
e.g., during core helium burning, or just beyond the point labeled terminal
main sequence). We refer to these forbidden evolutionary phases as
“shadowed.”

Figure 3. Mass–radius diagram, marking fiducial radii as functions of mass.
Solid lines mark the zero-age main sequence and radius maxima. Dotted lines
mark radius minima, shadowed by preceding evolutionary phases. The base
of the red giant branch is marked by a dash-dotted line. Core helium ignition
(where distinguishable from a radius maximum) is marked by a long-dashed
line, and the onset of thermal pulses on the asymptotic giant branch is
marked by a short-dashed line. Stellar wind mass loss has been neglected
throughout.

Figure 4. Mass-orbital period diagram corresponding to Figure 3. Mass ratio
q = 1 has been assumed. Line segments are coded as in Figure 3. The
background coloring reflects the historical classification of modes of mass
transfer according to the evolutionary state of the donor star at the onset of
mass transfer (Kippenhahn & Weigert 1967; Lauterborn 1969): Case A (central
hydrogen burning) is in dark blue, Case B (shell hydrogen burning leading to
helium ignition) in medium blue, and Case C (expansion post-helium ignition)
in light blue.
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(Z = 0.02), spanning the full range of normal stellar masses
(see Figure 5). We assume evolution at constant mass up to the
onset of tidal mass transfer, as this establishes a definitive
reference point in the absence of an a priori physical theory to
quantify mass loss. (Otherwise, one needs to introduce an
empirical mass-loss prescription that invariably involves
introducing additional, empirical model parameters.) This
assumption is clearly inappropriate to the most massive and
most luminous stars considered here, but to the extent that these
stars are roughly in thermal equilibrium as they reach their
Roche lobes, their response to mass loss depends only on their
instantaneous mass and composition profile, without regard to
prior mass-loss history. Our mass-loss models should therefore
capture the most important physical processes at play.

Altogether, 42 evolutionary sequences formed the basis of
this study. They were selected at intervals of Mlog 0.1D »
over the range M M1 log 2( ) -  , with additional models
at intervals of Mlog 0.05D » in the interval

M M0.7 log 0.3( )- < < , and one additional sequence at
M = 2.04Me marking the transition from degenerate to
nondegenerate helium ignition. Models consisted of 199–1299
mesh points, depending on the complexity of their structure at
advanced phases of evolution, with typically of order 103

models in each evolutionary sequence.
For each of these evolutionary sequences, initial models for

adiabatic mass-loss sequences were selected to coincide with
evolutionary extrema in radius, starting from the zero-age main
sequence. Additional mass-loss sequences were constructed at
intervals of Rlog 0.1D » during all phases of evolutionary
expansion, including those shadowed by prior evolution (as
these might still be relevant in dense stellar environments or
in multiple-star systems). The main sequence, up to central

hydrogen exhaustion, was sampled at intervals ΔXc ≈ 0.1 in
central hydrogen abundance. All told, our library numbers
1670 adiabatic mass-loss sequences (Figure 6), typically of
order 103 models per mass-loss sequence. Of these sequences,
680 fall within the scope of this paper (evolution to the base of
the giant branch), with the balance to be presented in the next
installment.
In this paper, we present results for a subset of these model

sequences, covering evolutionary phases from zero-age main
sequence, through central hydrogen exhaustion, up to arrival at
the base of the giant branch, which we take to coincide with
the luminosity minimum seen in the evolutionary tracks of
intermediate-mass and massive stars (see Figure 5). This
luminosity minimum does not exist for low-mass stars; we
include only up through central hydrogen exhaustion for these
low-mass stars. Tables 1 and 2 document the initial properties
of the donor stars at the beginning of each mass-loss sequence.
Table 1 is arranged in segments, by stellar mass, Mi. The

columns are as follows:

1. k—mass-loss sequence number;
2. t—age (year);
3. Mce—mass of the convective envelope (Me);
4. Mc—core mass (Me);
5. Mic—inner core mass (Me);
6. ψc—central electron chemical potential (μe, in units

of kT);
7. log cr —central density (g cm−3);
8. Tlog c—central temperature (K);
9. Xc—central hydrogen abundance (fraction by mass);

10. Yc—central helium abundance (fraction by mass); and
11. Xs—surface hydrogen abundance (fraction by mass).

Figure 5. Hertzsprung–Russell diagram for stellar models included in this
survey. Evolutionary tracks are labeled by mass (in solar units). Evolution
beyond the maximum radius for each mass has been omitted. Some masses
(0.22, 0.28, 0.36, 0.45, 0.56, 0.71, 0.89, 1.14, 1.439, 1.80, and 2.04 Me) have
been omitted for clarity.

Figure 6. The distribution in the mass–radius diagram of initial models for
adiabatic mass-loss sequences: circles mark the selected models, filled (•) if
unshadowed, open (◦) if shadowed. Only models that have not evolved beyond
the base of the giant branch are included in the present study.
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Age t is measured from the zero-age main sequence model
(excluding pre-main-sequence evolution). The mass of the
convective envelope Mce refers to the mass depth of the base of
the outermost convection zone. The core mass Mc refers to the
mass coordinate at which the helium abundance is halfway
between the surface helium abundance and the maximum
helium abundance in the stellar interior. The inner core mass
Mic identifies the mass coordinate at which the helium
abundance is halfway between the maximum helium abun-
dance in the stellar interior and the minimum helium abundance
interior to that maximum; in the absence of measurable helium
depletion in the hydrogen-exhaused core, Mic is set to a default
value of zero. The parameters Mc and Mic characterize the
range in mass over which hydrogen and helium are being
depleted during their respective core burning phases, and not
the amount of mass that has been consumed. Upon core fuel
exhaustion, Mc and Mic mark the midpoints in hydrogen and
helium depletion profiles, respectively. The dimensionless
central electron chemical potential ψc measures the degree of
electron degeneracy (ψc > 0).

Like Table 1, Table 2 is arranged in segments, by stellar
mass, Mi. The columns are as follows:

1. k—mass loss sequence number;
2. Rlog —radius (Re);
3. Tlog e—effective temperature (K);
4. Llog —stellar luminosity (Le);

5. Llog H—hydrogen-burning luminosity (Le);
6. Llog He—helium-burning luminosity (Le);
7. Llog Z—heavy-element (carbon, oxygen, etc.)-burning

luminosity (Le);
8. Llog∣ ∣n —log neutrino luminosity (Le, with an asterisk, *,

appended to signify that this is a negative contribution to
the net stellar luminosity);

9. Llog th∣ ∣—gravothermal luminosity (Le, with an asterisk,
*, appended where the gravothermal luminosity is
negative); and

10. I/MR2
—dimensionless moment of inertia.

4. ADIABATIC MASS LOSS

4.1. Mass Outflow near L1

The mass transfer rate in a binary system is determined by
fluid flow through the region around the inner Lagrangian
point, L1, where Roche potentials open to the companion star.
Far from the inner Lagrangian point, the donor star departs
negligibly from hydrostatic equilibrium, as shown by Pac-
zyński & Sienkiewicz (1972) and Eggleton (2006), so long as
the radial excess beyond its Roche lobe is small. This allows
us to adopt a semiphysical one-dimensional (1D) model
(described in the appendix to Paper I) relating the mass loss
rate from the donor star in question to the structure of its
envelope beyond the inner critical surface far from the inner

Table 1
Interior Properties of Initial Models

k t Mce Mc Mic ψc log cr Tlog c Xc Yc Xs

(year) (Me) (Me) (Me) (g cm−3) (K)

5.0000 Me

1 2.232372E+04 0.0000 1.2380 0.0000 −4.227 1.277 7.423 0.700 0.280 0.700
2 2.589656E+07 0.0000 1.5601 0.0000 −4.340 1.265 7.430 0.602 0.379 0.700
3 4.490234E+07 0.0000 1.4860 0.0000 −4.436 1.262 7.439 0.509 0.472 0.700
4 6.151553E+07 0.0000 1.4051 0.0000 −4.533 1.268 7.450 0.405 0.576 0.700
5 7.390986E+07 0.0000 1.3283 0.0000 −4.614 1.283 7.462 0.305 0.676 0.700
6 8.414729E+07 0.0000 1.2465 0.0000 −4.683 1.314 7.478 0.197 0.783 0.700
7 9.095053E+07 0.0000 1.1770 0.0000 −4.714 1.366 7.498 0.106 0.875 0.700
8 9.572705E+07 0.0000 1.1155 0.0000 −4.656 1.486 7.539 0.023 0.957 0.700
9 9.680205E+07 0.0000 1.0988 0.0000 −4.260 1.800 7.627 0.000 0.980 0.700

(This table is available in its entirety in machine-readable form.)

Table 2
Global Properties of Initial Models

k Rlog Tlog e Llog Llog H Llog He Llog Z Llog∣ ∣n Llog th∣ ∣ I/MR2

(Re) (K) (Le) (Le) (Le) (Le) (Le) (Le)

5.0000 Me

1 0.4342 4.2276 2.7323 2.764 −23.257 K 1.577* 0.443* 0.0606
2 0.4819 4.2201 2.7975 2.827 −22.843 K 1.638* −0.767* 0.0551
3 0.5288 4.2111 2.8552 2.884 −22.446 K 1.694* −0.955* 0.0502
4 0.5854 4.1976 2.9144 2.943 −21.984 K 1.751* −1.159* 0.0451
5 0.6452 4.1804 2.9652 2.994 −21.501 K 1.800* −1.184* 0.0407
6 0.7165 4.1565 3.0124 3.041 −20.889 K 1.846* −1.009* 0.0363
7 0.7828 4.1321 3.0471 3.076 −20.158 K 1.880* −0.823 0.0330
8 0.8270 4.1190 3.0832 3.111 −18.675 K 1.915* 0.515 0.0304
9 0.7685 4.1662 3.1551 3.130 −15.587 K 1.934* 2.225 0.0296

(This table is available in its entirety in machine-readable form.)
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Lagrangian point. In reality, this is at best a rough approxima-
tion. It assumes laminar flow along equipotential surfaces, with
the specific enthalpy of the flow along any streamline described
in terms of the pressure, density, and adiabatic exponents at the
source of that streamline. Real streamlines will inevitably be
broken up by turbulence and Coriolis effects (which impede
mass loss) and readily cross equipotential surfaces. In radiative
envelopes, stable density stratification (negative buoyancy)
inhibits upwelling from the stellar interior, so mass flow toward
the inner Lagrangian region can be expected to be dominated
by surface flows. In contrast, mass loss from convectively
unstable envelopes can be expected to be dominated by
upwelling along the line of centers and may exceed our 1D
estimates by some unknown factor.

It follows from the preceding discussion that the onset of
dynamical timescale mass transfer cannot be instantaneous, but
accelerates from an initial trickle to full-blown dynamical
instability as it surpasses the stellar thermal timescale rate, that
is, as the flow asymptotically becomes adiabatic. Accordingly,
we define the onset of dynamical timescale mass transfer not
from the instant a donor star fills its Roche lobe, but rather from
the instant at which the Roche lobe penetrates deeply enough
into the stellar envelope to drive thermal timescale mass
transfer. A detailed account of this formalism may be found in
Paper I. We calculate the critical mass ratio for dynamical
instability as the limiting mass ratio for which the adiabatic
mass-loss sequence just reaches thermal timescale mass
transfer.

Note that this estimate assumes that we can reasonably
approximate the structure of the donor star envelope beyond its
Roche lobe using adiabatic mass-loss models. In reality, the
outer envelope of a star relaxes to thermal equilibrium much
faster than does the star as a whole. For stars with radiative
envelopes, this thermal relaxation is characterized by absorp-
tion of energy from the radiation field, so the overflow layers
will have higher specific entropy than modeled by pure
adiabatic expansion. We should therefore expect that radiative
stars drive higher mass transfer rates than our adiabatic mass-
loss models predict, and therefore a shallower degree of
overflow is needed to drive thermal timescale mass loss.
Accordingly, our critical mass ratios for radiative stars are
likely systematically overestimated. That is, thermal relaxation
within a radiative envelope tends to make a star more unstable
against rapid mass transfer. However, because specific entropy
varies extremely rapidly with mass in the outer envelopes of
radiative stars, we expect this effect to be small, as evidenced in
Section 6 below.

In contrast, thermal relaxation in the outer envelopes of
convective stars tends to depress specific entropy near the
surface; energy may be lost to the radiation field of the star,
whence it is radiated from the stellar photosphere. We see the
result in the rapid superadiabatic expansion of the surface
layers in adiabatic mass-loss sequences calculated using
standard mixing-length models for initial models. At face
value, this excessive expansion would suggest that our
algorithm for finding the critical mass ratio for dynamical
timescale mass transfer exaggerates the tendency toward
runaway mass transfer, and so underestimates the critical mass
ratio.

As emphasized by Woods & Ivanova (2011), for example,
thermal relaxation within the superadiabatic outer layers of a
surface convection zone is extremely rapid, even for dynamical

outflow rates. To a first approximation, the entropy profile of
that superadiabatic region migrates homologously inward in
step with mass loss, as can be seen in Figure 2 of Woods &
Ivanova (2011). Clearly, our adiabatic mass-loss sequences
suppress this thermal relaxation, but we can mimic it for
purposes of evaluating critical mass ratios by constructing
artificial mass-loss sequences in which the outer convection
zone is replaced by a completely isentropic envelope, with
specific entropy fixed at the base of that convection zone. The
construction of these artificially isentropic envelope models is
described in more detail in Paper I, where they were termed
pseudo-models. Their initial radii, Ri˜ , are inflated with respect
to more realistic (mixing-length) models (of radii Ri); we
characterize the degree of inflation by the parameter

R Rlog i iexp ( ˜ )D º . Our premise, then, in constructing artifi-
cially isentropic envelope mass-loss sequences is that their
outer entropy profiles migrate homologously inward with mass
loss, as do the profiles of realistic models with thermal
relaxation, so the artificial sequence closely parallels a time-
dependent sequence, but with nominal radii inflated by a factor
of 10 expD . We therefore consider the threshold mass–radius
exponent and corresponding limiting mass ratio for conserva-
tive mass transfer as derived from the artificially isentropic
envelope models ( R Mln lnad ad

˜ ( ˜ )z º ¶ ¶ and qad˜ , respec-
tively) to be more realistic than those derived from adiabatic
mass-loss sequences for standard mixing-length models
( R Mln lnad ad( )z º ¶ ¶ and qad). For the low-mass main
sequence stars included in this paper, convection is generally
quite efficient, even near the stellar surface, and so the
difference between mixing-length envelopes and isentropic
ones is minimal. But we shall see in the next paper in this series
that this is not necessarily the case for giant branch and
asymptotic giant branch stars.

4.2. Structural Response of Radiative Stars

Stars with very shallow or nonexistent surface convection
zones contract rapidly in response to adiabatic mass loss. This
response is a consequence of several factors. Radiative stars
generally have much more centrally condensed mass distribu-
tions than do stars with deep surface convection zones, so a
given decrement of mass loss removes a proportionately larger
volume of material from radiative envelopes than from
convective envelopes. Within radiative envelopes, stellar
opacity is typically dominated by free–free and bound–free
absorption. These opacities are Kramers-like (κ ∝ ρT−7/2) and
so increase rapidly with decreasing temperature and pressure as
the envelope is decompressed. The radiative flux through the
envelope is therefore choked off, the surface luminosity and
stellar radius decrease precipitously, and the surface density
increases rapidly, accompanied by a relatively modest decrease
in surface temperature.
This chain of events is illustrated in Figure 7 for a 5Me star

midway in crossing the Hertzsprung gap. This star has
exhausted hydrogen in a nondegenerate core surrounded by a
thick hydrogen-burning shell centered at mass 1.101Me.
It is expanding rapidly toward the giant branch (R Ṙ =
2.83 10 year5´ , compared to a thermal timescale of order
GM2/RL = 3.24 × 104 year). Roughly 9% of its nuclear
luminosity is absorbed in driving this expansion. Near the
surface of this star, the scale height for thermodynamical
variables (density, temperature, pressure, entropy) becomes
extremely small, so removal of the outermost mass layers
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results in a rapid decrease in specific entropy at the stellar
surface and with it the rapid increase in density described
above, leading to the precipitous initial decrease in radius seen
in Figure 7(a). This decrease is so rapid that the donor star is
initially stable against dynamical timescale mass transfer for
any mass ratio of interest. Roche lobe overflow may then be
driven by thermal relaxation of the donor star or by its
evolutionary expansion. However, as mass loss proceeds,
surface entropy gradients (which are fixed in mass by the
adiabatic assumption) become shallower, and the rapid
contraction in stellar radius moderates in the adiabatic limit.
If the binary mass ratio is high enough (M M 4.73donor accretor >
for conservative mass transfer), this donor star may develop a
delayed dynamical instability, as described in Paper I. As seen
in Figure 7(b), the temperature profile marches inward as mass

loss proceeds with relatively little change in shape until the star
is nearly stripped to its helium core. That profile is tied closely
to the pressure profile (not shown) and reflects the rapid
decrease in pressure scale height near the instantaneous stellar
surface as mass loss proceeds. Figure 7(c) shows the dramatic
drop in stellar luminosity that results from the rapid increase in
Kramers-like opacity under decompression, as described
above. In contrast, the nuclear luminosity (Figure 7(d)) is
affected relatively little until the stellar mass approaches the
hydrogen-burning shell.

5. RESULTS

Table 3 summarizes the quantitative results of our
investigation for both those model sequences derived from
initial models with standard mixing-length convective

Figure 7. Adiabatic response to mass loss of a 5 Me star in the Hertzsprung gap (sequence k = 14 in Tables 1–3). Snapshot interior profiles as functions of remaining
mass (5, 4, 3, 2, and 1 Me) are shown for (a) radius, (b) temperature, (c) luminosity, and (d) nuclear luminosity. The difference between local luminosity (c) and
interior nuclear luminosity (d) reflects energy absorption (or release) by the decompressed stellar envelope.

Table 3
Thresholds for Conservative Dynamical Timescale Mass Transfer

Mixing-length Convection Isentropic Convection

k Rlog i MKH Rlog KH Rlog KH* ζad qad Δexp MKH˜ Rlog KH˜ Rlog KH
˜*

adz̃ qad˜
(Re) (Me) (Re) (Re) (Me) (Re) (Re)

5.0000 Me

1 0.4342 2.9669 0.1873 0.1885 3.406 2.373 0.0003 2.9662 0.1873 0.1885 3.409 2.374
2 0.4819 3.0121 0.2048 0.2062 3.739 2.529 0.0002 3.0115 0.2048 0.2062 3.741 2.530
3 0.5289 3.0535 0.2236 0.2252 4.069 2.684 0.0002 3.0529 0.2236 0.2252 4.072 2.685
4 0.5855 3.0987 0.2488 0.2505 4.463 2.868 0.0003 3.0981 0.2487 0.2504 4.467 2.870
5 0.6453 3.1432 0.2782 0.2801 4.869 3.059 0.0003 3.1426 0.2782 0.2801 4.873 3.060
6 0.7166 3.1932 0.3169 0.3191 5.337 3.278 0.0003 3.1925 0.3168 0.3191 5.342 3.281
7 0.7829 3.2385 0.3557 0.3582 5.763 3.478 0.0004 3.2377 0.3556 0.3582 5.769 3.481
8 0.8271 3.2724 0.3780 0.3807 6.120 3.646 0.0005 3.2715 0.3779 0.3807 6.127 3.650
9 0.7688 3.2582 0.3135 0.3160 6.195 3.682 0.0003 3.2576 0.3135 0.3160 6.200 3.684

(This table is available in its entirety in machine-readable form.)
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envelopes (columns 2–7) and those sequences derived from
initial models with artificially isentropic convective envelopes
(columns 8–13). For each set of sequences, it identifies critical
points marking the onset of runaway (dynamical timescale)
mass transfer and the (critical) initial conditions (mass–radius
exponent and mass ratio) corresponding to those critical points.
As noted in Section 4.1, the onset of dynamical timescale mass
transfer is not instantaneous, but is preceded by an episode of
accelerating mass transfer. We associate the transition to
dynamical timescale mass transfer with the mass transfer rate
equaling the nominal thermal timescale rate of the initial model
of the sequence, M R L GMi i iKH˙ = - ; beyond that rate, the
response of the donor becomes asymptotically adiabatic. We
then define the critical mass ratio for dynamical mass transfer
as the minimum initial mass ratio for which Ṁ reaches MKH˙ .

Like Tables 1 and 2, Table 3 is arranged in segments, by
stellar mass, Mi. The columns are as follows:

1. k—mass-loss sequence number;
for models with standard mixing-length convective envelopes:

2. Rlog i—initial radius (Re);
3. MKH—mass threshold at which M M KH˙ t= - ;
4. Rlog KH—Roche lobe radius at which M M KH˙ t= - ;
5. Rlog KH* —stellar radius when M M KH˙ t= - ;
6. ζad—critical mass–radius exponent for dynamical time-

scale mass transfer;
7. qad—critical mass ratio for dynamical timescale (con-

servative) mass transfer;
and for models with artificially isentropic convective envelopes:

8. R Rlog i iexp ( ˜ )D º —superadiabatic expansion factor;
9. MKH˜ —mass threshold at which M M KH˙ t= - ;
10. Rlog KH˜ —Roche lobe radius at which M M KH˙ t= - ;
11. Rlog KH

˜* —stellar radius when M M KH˙ t= - ;
12. adz̃ —critical mass–radius exponent for dynamical time-

scale mass transfer; and
13. qad˜ —critical mass ratio for dynamical timescale (con-

servative) mass transfer.

Columns (3)–(5) and (9)–(11) refer to the points in the
critical mass-loss sequences at which Ṁ just reaches MKH˙ , the
characteristic mass-loss rate that we identify with the transition
from thermal to dynamical timescale mass transfer. The
corresponding initial conditions leading to these critical points
are found in columns (6) and (7) (ζad and qad, respectively) for
the mixing-length convection models, and in columns (12) and
(13) ( adz̃ and qad˜ , respectively) for the isentropic convection
models. For reasons outlined above, we consider the critical
mass–radius exponents and mass ratios for these models, adz̃
and qad˜ , respectively, the more realistic, and we adopt them in
preference to adz and qad below in applying our results to real
systems.

It should be noted here that the initial radii listed in Table 3
for the mass-loss sequences differ slightly from those of the
corresponding evolutionary models listed in Table 2. By
modifying the surface-boundary condition imposed on the
adiabatic sequences (see Paper I), we insure that the luminosity
of our mass-losing stars is continuous through the photosphere
and satisfies the blackbody relation, but at the cost of
introducing very small differences in the stellar radii.
Comparing the entries of column (3) of Table 3 with those of
column (3) of Table 2, the reader can verify that the difference
in Rlog i is in all cases negligible in magnitude, never
exceeding 0.0012, and averaging only 0.00004.

The critical mass ratios found in Table 3 are presented
graphically in the form of contour plots in Figures 8 and 9 for
mixing-length and isentropic envelope models, respectively. It
is immediately apparent that the solutions for qad and qad˜ differ

Figure 8. Critical mass ratios, qad, for the onset of dynamical timescale mass
transfer as derived from standard evolutionary models in the mass–radius diagram.

Figure 9. Critical mass ratios, qad˜ , for the onset of dynamical timescale mass
transfer as derived from modified evolutionary models with isentropic surface
convection zones, in the mass–radius diagram. These models mimic the effects of
rapid thermal relaxation in the outer layers of convective stellar envelopes by
suppressing the destabilizing effect of superadiabatic expansion, thus providing
more realistic estimates of critical mass ratios than the models shown in Figure 8.
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very little from each other qualitatively, although qad˜ is
systematically larger than qad. The quantitative difference is
small, except for low-mass main sequence stars, which have
deep but efficient surface convection zones, and for massive
stars, where the growing dominance of radiation pressure
throughout their interiors makes their radii very sensitive to
small differences in photospheric density (and entropy).

The most striking feature of Figures 8 and 9 is the nearly
uniform trend toward larger critical mass ratios with larger radii
in the Hertzsprung gap, a feature as well of stars within the
main sequence band itself. These intermediate-mass and
massive stars have very thin surface convection zones, if any
at all, and typically contract very rapidly in response to
adiabatic mass loss. Their critical mass ratios for dynamical
timescale mass transfer are then set by the delayed dynamical
instability described in Paper I, wherein a protracted episode of
thermal timescale mass transfer develops into dynamical
instability as mass loss encroaches on the nearly isentropic
core of the donor star. That core, as defined in Table 1, scarcely
grows in mass as the star evolves through core hydrogen
burning and contracts toward helium ignition. The growing
stellar radius then demands ever more radical contraction
during the thermal mass transfer phase before triggering
dynamical instability.

A contributing factor to the increase in qad˜ with increasing
radius is the convergence of dynamical and thermal timescales
for stars of high luminosity with extended envelopes. The
ratio of global stellar thermal to dynamical timescales,

G M R Lth dyn
3 5 5 2 1 2( )t t » , varies from 1014 in the lower left

corner of the mass–radius diagram, to 101 at the extreme upper
right corner of this diagram. The very short thermal timescales
for these luminous, extended stars means that the adiabatic
limit can only be reached when the mass transfer rate is
extremely large, and so the relative depth of Roche lobe
overflow, R R RKH KH KH( ˜ ˜ ) ˜* - , needed to reach dynamical
mass transfer becomes so large that our 1D treatment of
mass transfer becomes increasingly inadequate. Indeed, among
very luminous stars, the donors will have overfilled an outer
critical surface before reaching the transition to dynamical
timescale mass transfer. We shall explore this phenomenon,
and its implications for the mass transfer process, in a future
study.

As intermediate-mass and massive stars approach the base
of the giant branch, they develop surface convection zones
that grow rapidly in extent. When the mass of the
convective envelope (Mce) reaches approximately 10−3 Mi,
the critical conditions for dynamical timescale mass transfer
undergo an abrupt, but continuous, transition from delayed
to prompt instability (Figure 10). No longer is dynamical
instability preceded by an extended (and extensive) episode
of thermal timescale mass transfer, but mass transfer
accelerates directly to dynamical instability. In Table 3,
cases where critical conditions are set by a prompt
instability can be identified by their small differences
between Mi and MKH (or MKH˜ ). This difference is much
larger for delayed dynamical instability. For the most
luminous, extended stars, however, the convergence of
thermal and dynamical timescales greatly blurs the distinc-
tion between prompt and delayed instability.

Main sequence stars with masses 1.1Me have surface
convection zones of sufficient depth to be subject to prompt
dynamical instability. These surface convection zones increase

rapidly in depth with decreasing main sequence mass, with adz̃
converging toward the classical limit for fully convective
n = 3/2 polytropes (ζad = −1/3, corresponding to qad ≈ 2/3
for main sequence stars of mass M M0.4 ).

5

6. COMPARISON WITH TIME-DEPENDENT MASS-LOSS
MODELS

How well do the threshold mass ratios for dynamical
timescale mass transfer, as deduced from the adiabatic mass-
loss sequences presented here, replicate the results of time-
dependent mass-loss calculations? To the extent that they
concern donor stars within the main sequence or the
Hertzsprung gap, the threshold mass ratios for dynamical
timescale mass transfer in common use in binary population
synthesis models (e.g., Portegies Zwart & Verbunt 1996;
Belczynski et al. 2008) derive largely from the early adiabatic
mass-loss studies by Hjellming (1989b). Where our models
overlap his in mass and evolutionary state, our results are
broadly consistent with his, but of much broader scope.
However, time-dependent calculations suitable for comparison
with our adiabatic mass-loss models are a rarer commodity.
Ivanova & Taam (2004) surveyed a relatively narrow range of
parameters (1 < M1/Me < 3.5, with Porb = 1d or 2d), and
within that range they deduced threshold mass ratios in good
accord with those presented here.
A broader, more suitable comparison between adiabatic and

time-dependent models is afforded by the studies of mass
transfer from donor stars in the Hertzsprung gap by Han
et al. (2000) and Chen & Han (2002, 2003). They modeled
mass transfer from donor stars in the mass range

M M0.0 log 0.91( )  , first filling their Roche lobes early,
midway, and late in crossing the Hertzsprung gap. For each
combination of initial mass and radius, time-dependent mass-

Figure 10. The critical mass–radius exponent ζad and mass ratio qad as
functions of stellar radius for the 5 Me models shown in Figures 7 and 2,
illustrating the abrupt transition from delayed dynamical instability to prompt
dynamical instability at R = 35 Re, as the star approaches the base of the giant
branch. The solid curve corresponds to models with standard mixing-length
envelopes (ζad and qad), and the dotted curve to models with artificially
isentropic convective envelopes adz̃ and qad˜ .

5 The reader may note that ζad and qad diverge from the polytropic limit over
this same mass range, and indeed qad may even become negative. In this case,
all mass ratios would be unstable, and the solutions for qad are purely formal
ones. For these stars, thermal timescale mass transfer is so slow that even very
modest superadiabatic expansion can drive mass transfer rates beyond the
thermal rate.
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loss models were calculated for each of five initial mass ratios
(qi = 1.1, 1.5, 2.0, 3.0, 4.0). This grid of models was calculated
under various assumptions (with or without convective over-
shooting and/or mass and angular momentum loss), of which
the set of models with convective overshooting but conserva-
tive mass transfer of Chen & Han (2003) correspond most
closely to the assumptions adopted in our adiabatic mass loss
models. The underlying stellar structure code employed by
Chen & Han shares the same basic platform as that used to
generate our family of initial models, differing significantly
only in the algorithm used to calculate mass transfer rates from
the degree to which the donor star overfills its Roche lobe. The
Chen & Han survey does not specifically aim to quantify
critical mass ratios for dynamical timescale mass transfer, but it
does identify cases in which the initial models succumb directly
to dynamical mass transfer (prompt dynamical instability),
those which become unstable as they reach the red giant branch
(delayed dynamical instability), and those which remain in
stable mass transfer—thermal or nuclear timescale—through-
out. These results can be used to bracket the critical mass ratio
for dynamical timescale mass transfer for comparison with our
results, as shown in Table 4.

Table 4 summarizes the constraints on the threshold mass
ratio for dynamical timescale mass transfer as inferred from
Chen & Han (2003). Each line of this table refers to a family of
time-dependent mass-loss calculations spanning the five trial
mass ratios identified above, but sharing a common evolu-
tionary state for the donor star. Columns (1) through (4) list
donor mass, luminosity, radius, and effective temperature
(averaged over minor variations in Llog , Rlog , and Tlog e

among the trial mass ratios). Since the susceptibility to
dynamical instability increases with increasing mass ratio of
donor to accretor, the largest mass ratio to avoid dynamical
instability in the time-dependent calculations presumably sets a
lower limit (qℓ, column (5)) to the threshold mass ratio for
dynamical timescale mass transfer, while the smallest mass
ratio to trigger dynamical instability sets an upper limit (qu,
column (7)) to that threshold mass ratio. Critical mass ratios
interpolated from our adiabatic mass-loss sequences (qad˜ ) are
found in column (6). The final column (8) of Table 4 identifies
the nature of the mass transfer instability: P, prompt dynamical
instability; D, delayed dynamical instability; and T, thermal
timescale instability.
The close agreement demonstrated in Table 4 between time-

dependent and adiabatic thresholds for dynamical instability
give confidence that the approximations inherent in the
adiabatic approach are of mior consequence. While our results
do not always satisfy the expected inequality, q q qℓ uad˜< < ,
qad˜ rarely strays as much as 10% outside those bounds, except
for the very most massive and luminous stars included in the
Chen & Han survey. The singular exception to this close
agreement between adiabatic and time-dependent critical mass
ratios occurs for the very most luminous and extended model in
the Chen & Han survey. We attribute this discrepancy to a
shortcoming in the prescription used in their studies to relate Ṁ
to the extent of Roche lobe overflow. While adequate when that
overflow extent R R RL L( )- is small, their prescription for Ṁ
breaks down for stars with extended envelopes because it fails
to reflect the natural dynamical timescale, τdyn ∼ (Gρ)−1/2 ∝
Porb (see Eggleton 2006, pp. 132–134). It thus overestimates

Table 4
Comparison of qad˜ with Time-dependent Models (Chen & Han 2003)

M/Me L Llog  R Rlog  Tlog Ke qℓ qad˜ qu Mode

1.000 0.240 0.140 3.752 2.000 1.984 3.000 P
1.000 0.332 0.218 3.736 1.500 1.452 2.000 P
1.000 0.354 0.298 3.701 1.100 0.968 1.500 P
1.259 0.688 0.322 3.773 2.000 3.300 3.000 D
1.259 0.691 0.357 3.756 2.000 2.941 3.000 D
1.259 0.609 0.392 3.718 1.100 1.073 1.500 P
1.585 1.088 0.492 3.788 3.000 3.825 4.000 D
1.585 1.107 0.522 3.778 3.000 3.406 4.000 D
1.585 1.095 0.556 3.758 2.000 2.570 3.000 D
1.995 1.531 0.654 3.818 4.000 4.570 L T
1.995 1.545 0.701 3.797 4.000 4.616 L T
1.995 1.538 0.746 3.773 3.000 4.216 4.000 D
2.512 1.907 0.724 3.877 3.000 4.545 4.000 D
2.512 1.982 0.835 3.840 4.000 4.738 L T
2.512 1.956 0.945 3.778 4.000 4.713 L T
3.162 2.381 0.800 3.957 4.000 4.344 L T
3.162 2.403 0.977 3.874 4.000 4.625 L T
3.162 2.345 1.155 3.770 4.000 4.482 L T
3.981 2.791 0.865 4.027 3.000 4.281 4.000 D
3.981 2.812 1.121 3.904 4.000 4.758 L T
3.981 2.730 1.374 3.757 4.000 4.170 L T
5.012 3.132 0.903 4.093 3.000 4.138 4.000 D
5.012 3.205 1.244 3.941 4.000 4.748 L T
5.012 3.109 1.589 3.744 4.000 4.793 L T
6.310 3.536 0.974 4.159 3.000 3.980 4.000 D
6.310 3.577 1.385 3.963 4.000 4.813 L T
6.310 3.482 1.796 3.734 4.000 6.135 L T
7.943 3.887 1.045 4.211 2.000 3.875 L D
7.943 3.924 1.515 3.985 4.000 4.856 L T
7.943 3.828 1.987 3.726 3.000 5.841 4.000 D
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Table 5
CVs with Robust WD Mass Determinations

System Porb Sourcea Mwd M2 q Methodb References
(min) (Me) (Me)

OV Booc 66.6 ZSG 0.892 ± 0.008 0.0575 ± 0.0020 0.0647 ± 0.0018 e 1, 2, 3
SDSS 1433+1011 78.1 ZSG 0.865 ± 0.005 0.0571 ± 0.0007 0.1115 ± 0.0016 e 1, 4, 5
WZ Sge 81.6 ZSG 0.85 ± 0.04 0.078 ± 0.006 0.092 ± 0.008 d, g, sp 6, 7
SDSS 1501+5501 81.9 ZSG 0.767 ± 0.027 0.077 ± 0.010 0.101 ± 0.010 e 1, 4
SDSS 1035+0551 82.1 ZSG 0.350 ± 0.009 0.0475 ± 0.0012 0.0571 ± 0.0010 e 1, 8
NZ Bood 84.8 ZSG 0.709 ± 0.004 0.0781 ± 0.0008 0.1099 ± 0.0007 e 1, 4
SDSS 0903+3300 85.1 ZSG 0.872 ± 0.011 0.099 ± 0.004 0.113 ± 0.004 e 1, 4
XZ Eri 88.1 ZSG 0.769 ± 0.017 0.091 ± 0.004 0.118 ± 0.003 e 1, 9
SDSS 1227+5139 90.7 ZSG 0.796 ± 0.018 0.0889 ± 0.0025 0.1115 ± 0.0016 e 1
OY Car 90.9 ZSG 0.840 ± 0.040 0.086 ± 0.005 0.102 ± 0.003 e 4, 10
DI Phee 94.4 ZSG 0.935 ± 0.031 0.101 ± 0.003 0.1097 ± 0.0008 e 1
SDSS 1152+4049 97.5 ZSG 0.560 ± 0.028 0.087 ± 0.006 0.155 ± 0.006 e 1
EX Hya 98.3 WR 0.484 ± 0.393 0.080 ± 0.054 0.166 ± 0.075 d, e 36, 37, 38
OU Vir 104.7 ZSG 0.703 ± 0.012 0.1157 ± 0.0022 0.1641 ± 0.0013 e 1, 11, 12
HT Cas 106.1 ZSG 0.61 ± 0.04 0.09 ± 0.02 0.15 ± 0.03 e 13
HT Cas 106.1 WR 0.842 ± 0.099 0.124 ± 0.032 0.147 ± 0.032 d, r, e 39, 40, 13
IY UMa 106.4 ZSG 0.79 ± 0.04 0.10 ± 0.01 0.125 ± 0.008 e 14
VW Hyi 107.0 ZSG 0.71 ± 0.22 0.11 ± 0.03 0.148 ± 0.004 g 15, 16
Z Cha 107.3 ZSG 0.84 ± 0.09 0.125 ± 0.014 0.20 ± 0.02 e, d 17, 18
Z Cha 107.3 WR 0.857 ± 0.181 0.122 ± 0.026 0.142 ± 0.003 d, e 41, 17, 18
DV UMa 123.6 ZSG 1.098 ± 0.024 0.196 ± 0.005 0.1778 ± 0.0022 e 1, 9
V1258 Cenf 128.1 ZSG 0.736 ± 0.014 0.177 ± 0.021 0.240 ± 0.021 e 1
V1239 Herg 144.1 ZSG 0.91 ± 0.03 0.223 ± 0.010 0.248 ± 0.005 e 1, 19
AM Her 185.7 ZSG 0.78 ± 0.15 K K sp 20
DW UMa 196.7 ZSG 0.87 ± 0.19 >0.16 >0.24 e 21
IP Peg 227.8 ZSG 1.16 ± 0.02 0.55 ± 0.02 0.48 ± 0.01 e 22
IP Peg 227.8 WR 1.032 ± 0.100 0.416 ± 0.042 0.403 ± 0.014 d, r, e 42, 43, 44, 45, 40, 46, 47
GY Cnc 252.6 ZSG 0.99 ± 0.12 0.38 ± 0.06 0.387 ± 0.031 e 23
GY Cnc 252.6 WR 0.892 ± 0.146 0.366 ± 0.071 0.410 ± 0.050 d, e 48, 23
U Gem 254.7 ZSG 1.20 ± 0.09 0.42 ± 0.04 0.35 ± 0.05 d, g, sp 24, 25, 26, 27, 28, 29
U Gem 254.7 WR 0.982 ± 0.255 0.352 ± 0.057 0.359 ± 0.041 d, e 49, 27, 25
BD Pav 258.2 WR 0.962 ± 0.100 0.466 ± 0.100 0.485 ± 0.064 d, r, e 50, 49
SDSS 1006+2337 267.7 ZSG 0.78 ± 0.12 0.40 ± 0.10 0.51 ± 0.08 e 30
DQ Her 278.8 ZSG 0.60 ± 0.07 0.40 ± 0.05 0.66 ± 0.04 d 31
DQ Her 278.8 WR 0.593 ± 0.128 0.369 ± 0.082 0.623 ± 0.099 d, r, e 31, 51
EX Dra 302.3 WR 0.696 ± 0.120 0.464 ± 0.097 0.666 ± 0.076 d, r, e 52, 53, 54
RW Tri 333.9 WR 0.618 ± 0.219 0.456 ± 0.152 0.739 ± 0.116 d, r, e 55, 56, 57, 58
V347 Pup 334.0 ZSG 0.63 ± 0.04 0.52 ± 0.06 0.83 ± 0.05 d 32
V347 Pup 334.0 WR 0.616 ± 0.041 0.497 ± 0.050 0.806 ± 0.049 d, r, e 59, 32
EM Cyg 418.9 ZSG 1.00 ± 0.06 0.77 ± 0.08 0.77 ± 0.04 d 33
EM Cyg 418.9 WR 1.026 ± 0.069 0.903 ± 0.099 0.880 ± 0.052 d, r, e 60, 61, 62
AC Cnc 432.7 ZSG 0.76 ± 0.03 0.77 ± 0.05 1.02 ± 0.04 d 34
AC Cnc 432.7 WR 0.760 ± 0.042 0.774 ± 0.044 1.018 ± 0.052 d, r, e 63, 34
V363 Aur 462.6 ZSG 0.90 ± 0.06 1.06 ± 0.11 1.17 ± 0.07 d 34
V363 Aur 462.6 WR 0.898 ± 0.094 1.039 ± 0.097 1.157 ± 0.108 d, r, e 64, 34
BT Mon 480.7 WR 1.062 ± 0.218 0.914 ± 0.086 0.861 ± 0.164 d, r, e 65, 66
AE Aqr 592.8 ZSG 0.63 ± 0.05 0.37 ± 0.04 0.60 ± 0.02 d 35
AE Aqr 592.8 WR 0.864 ± 0.035 0.609 ± 0.054 0.704 ± 0.034 d, r 67, 68, 69
U Sco 1772.0 WR 1.501 ± 0.485 0.821 ± 0.231 0.547 ± 0.102 d, e 70, 71

Notes.
a ZSG: compilation by Zorotovic et al. (2011); WR: analysis by Webbink & Ritter (2005).
b Basis of analysis: (e) eclipse light curves; (d) radial velocity curves; (g) gravitational redshifts; (sp) spectrophotometric modeling; (r) rotational velocity of donor star.
c SDSS 1507+5230.
d SDSS 1502+3334.
e CTCV 2354–4700.
f CTCV 1300–3052.
g SDSS 1702+3229.
References. (1) Savoury et al. (2011), (2) Littlefair et al. (2007), (3) Patterson et al. (2008), (4) Littlefair et al. (2008), (5) Tulloch et al. (2009), (6) Steeghs et al. (2007), (7)
Long et al. (2004), (8) Littlefair et al. (2006b), (9) Feline et al. (2004a), (10)Wood et al. (1989), (11) Feline et al. (2004b), (12) Feline et al. (2004c), (13) Horne et al. (1991),
(14) Steeghs et al. (2003), (15) Smith et al. (2006), (16) Sion et al. (1997), (17) Wade & Horne (1988), (18) Wood et al. (1986), (19) Littlefair et al. (2006a), (20) Gänsicke
et al. (2006), (21) Araujo-Betancor et al. (2003), (22) Copperwheat et al. (2010), (23) Thorstensen (2000), (24) Echevarría et al. (2007), (25) Zhang & Robinson (1987), (26)
Sion et al. (1998), (27) Long & Gilliland (1999), (28) Naylor et al. (2005), (29) Long et al. (2006), (30) Southworth et al. (2009), (31) Horne et al. (1993), (32) Thoroughgood
et al. (2005), (33)Welsh et al. (2007), (34) Thoroughgood et al. (2004), (35) Echevarría et al. (2008), (36) Belle et al. (2003), (37) Vande Putte et al. (2003), (38)Mukai et al.
(1998), (39) Young et al. (1981), (40) Catalán et al. (1999), (41)Marsh et al. (1987), (42) Hessman (1989), (43) Smak (2002), (44) Beekman et al. (2000), (45)Martin et al.
(1989), (46)Marsh (1988), (47)Wood & Crawford (1986), (48) Shafter et al. (2000), (49) Friend et al. (1990), (50) Axer (1988), (51) Smak (1980), (52) Fiedler (1994), (53)
Billington et al. (1996), (54) Baptista et al. (2000), (55) Still et al. (1995), (56) Poole et al. (2003), (57) Horne & Stiening (1985), (58) Smak (1995), (59) Still et al. (1998),
(60) Stover et al. (1981), (61) North et al. (2000), (62) Mumford & Krzeminski (1969), (63) Schlegel et al. (1984), (64) Schlegel et al. (1986), (65) Smith et al. (1998), (66)
Robinson et al. (1982), (67) de Jager et al. (1994), (68) Eracleous et al. (1994), (69) Casares et al. (1996), (70) Schaefer & Ringwald (1995), (71) Thoroughgood et al. (2001).
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mass transfer rates and the propensity toward dynamical
instability in that limit. As we shall demonstrate in the next
installment in the present series of papers, a physically realistic
model for Ṁ is essential in evaluating critical mass ratios for
stars with extended envelopes.

7. AN APPLICATION: CATACLYSMIC VARIABLE
STARS

Our stability limits reproduce with considerable fidelity the
observed range of mass ratios as a function of orbital period for
cataclysmic variables (CVs) with reliable structural parameters.
We adopted the sample of 32 CVs from Zorotovic et al. (2011)
judged by them to have robust mass determinations, supple-
mented by 17 CVs (11 in common with Zorotovic et al.) from
an unpublished study by Webbink & Ritter (2005), as detailed
in Table 5. These systems must be stable against dynamical and
thermal timescale mass transfer, and indeed all of them lie
within the bounds permitted by the dynamical and thermal
stability limits (Figure 11). As expected, those systems with
mass ratios q > 1 lie in the period range P5 . 8 12h

orb
h< < ,

where stability constraints are weakest. Among shorter-period
systems (P 4 . 5orb

h< ), the observed mass ratios fall progres-
sively further below our derived stability limits. (In this
period range, stability against dynamical timescale mass
transfer poses the stronger constraint.) We interpret this
divergence as an artifact of pre-CV common envelope
evolution, which disfavors survival of systems producing
low-mass white dwarfs.

The dynamical and thermal stability limits derived here
assume conservation of mass and orbital angular momentum.
The fact that observed systems appear to obey these limits
implies that any temporary accumulation of angular momentum
in the accretion disk or in rotation of the accreting white dwarf
must be restored to the binary orbit on a timescale short
compared with the growth timescale of any mass transfer
instability triggered by nonconservative mass transfer.

8. DISCUSSION AND CONCLUSIONS

This study is the first of a pair (the second to deal with stars
on the giant and asymptotic giant branches) that attempt for the
first time to survey systematically the thresholds for dynamical
timescale mass transfer over the entire span of possible donor-
star evolutionary states. These thresholds mark bifurcation
points in close binary evolution, separating evolutionary
channels proceeding on a thermal timescale (or slower) from
those proceeding on a (typically) far more rapid timescale
leading to common envelope evolution. Its most obvious
immediate application, then, is as input to population synthesis
studies of close binary evolution that seek to quantify the
frequency and properties of various possible evolutionary
channels.

We are confident that the families of adiabatic mass-loss
calculations presented here not only capture the qualitative
trends of dynamical thresholds with evolutionary state of the
donor, but are quantitatively reliable so long as the donorʼs
dynamical timescale is much shorter than its thermal timescale
(justifying the adiabatic approximation). Where we can test our
results against observational constraints, as exemplified above
in the application to cataclysmic variables, they appear robust,
but such direct comparisons are very rarely possible. Some

cautionary remarks concerning the limitations of our calcula-
tions are therefore warranted.
Foremost among the approximations we have employed is

the treatment of the donor response to mass loss as one of
adiabatic expansion throughout the donor interior. This
approximation may be valid throughout the bulk of the interior
once the mass loss rate significantly surpasses the thermal
timescale rate, but as noted above it must break down near the
stellar photosphere, where radiative relaxation becomes
extremely rapid. More significantly, one must recognize that
the growth to suprathermal mass transfer rates generally
extends over many thermal timescales, while we approximate
the donor response even in these circumstances as purely
adiabatic. An estimate of the amount of mass lost during the
acceleration to the dynamical timescale can be had from the
difference M MKH- in Table 3. For stars with moderately
deep surface convection zones, thermal relaxation during this
acceleration phase is probably of little consequence because
convection zones tend to respond as coherent entities (the
specific entropy rises or falls more or less uniformly throughout
the convection zone), but more significantly because such stars
are subject to prompt dynamical instabilities that cut short the
acceleration phase. Among stars with radiative envelopes, on
the other hand, dynamical instability is generally of the delayed
variety, and thermal relaxation during the long run up to
dynamical instability may be extensive. That relaxation
typically involves absorption of a large fraction of the interior
luminosity in the outer envelope, as described in Section 4.2
and illustrated in Figure 7. That energy absorption is directed
toward rebuilding the strong, positive entropy gradient in the
outer envelope that characterizes the structure of radiative stars
in thermal equilibrium (see Figure 1 in Paper I). Since thermal
relaxation in radiative envelopes drives expansion of the
surface layers (relative to purely adiabatic expansion), it tends
to drive higher mass transfer rates than we would calculate
from our adiabatic models. Those higher rates may tend to

Figure 11. Mass ratio distribution for cataclysmic variables with robust mass
determinations. Filled circles denote masses drawn from Zorotovic et al.
(2011), and open circles denote masses drawn from an unpublished analysis by
Webbink & Ritter (2005). Black curves map upper limits to the mass ratio for
stability against dynamical timescale mass transfer; red curves map the
corresponding upper limits to the mass ratio against thermal timescale mass
transfer. Solid lines mark limits for donor zero-age main sequence stars; dotted
lines mark the upper envelopes of limits for evolved donors.
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drive the donor toward dynamical instability, but for reasons
we elaborate below, we expect that in most cases mass transfer
will be cut short by contact with the accreting star before a
delayed dynamical instability is manifested.

It is quite likely that the great majority of binaries with mass
ratios exceeding qad˜ for the delayed dynamical instability will
in fact evolve into contact before actually reaching the point of
instability if they have nondegenerate accretors. Because qad˜ is
in most cases relatively large (q 3ad˜ > ), orbital contraction
during mass transfer is severe, whereas the accreting stars tend
to expand far beyond their thermal equilibrium radii. In their
survey of case A mass transfer (mass transfer initiated while the
donor star is still in central hydrogen burning), Nelson &
Eggleton (2001) found that practically all intermediate-mass
donors with q qad˜> suffered this fate. Since qad˜ increases as
stars evolve from the terminal main sequence to the base of the
giant branch, while orbital contraction during mass transfer
scales very roughly as q−1, these more evolved donors likely
also reach contact before developing dynamical instability. If
the accretor is compact, it is likely that rapid mass transfer is
very nonconservative (super-Eddington winds tend to be
strongly stabilizing); it remains to be seen whether delayed
dynamical instabilities can be manifested in this case.

The most massive, extended stars in this survey have
dynamical timescales that are scarcely a factor of 102 shorter
than their thermal timescales. In reality, stars in the upper
reaches of our mass range generally suffer quite extensive mass
loss in stellar winds and tend to show intrinsic variability as
luminous blue variables. Those losses and variability are
neglected here, and while our results may still be useful in
framing expectations for the behavior of these stars as donors,
they are unlikely to be quantitatively reliable.

Finally, with respect to the dynamical response of a binary
orbit to mass transfer and mass loss, we again emphasize that,
for the sake of clarity and economy, we have assumed
conservation of total mass and of total orbital angular
momentum, neglecting rotational contributions to the total
angular momentum of the binary, and adopted the usual
approximations for the tidal limit (Roche lobe) of the donor
star. Of course, in reality the response of the donor starʼs Roche
lobe to mass transfer depends on systemic losses of mass and
angular momentum, as well as on angular momentum transport
within the binary. At this juncture, no robust theory exists for
quantifying those processes, and they are typically parameter-
ized using ad hoc prescriptions for the fraction of mass lost by
the donor but retained by the accretor, the specific angular
momentum carried away by systemic mass loss, and the
coupling between stellar rotation and the binary orbit. All of
these processes introduce additional dimensions to the problem
of quantifying thresholds for dynamical timescale mass
transfer.

Given a prescription for how the donor Roche lobe responds
to mass loss, our adiabatic mass-loss sequences are in principle
applicable to nonconservative mass transfer as well. It bears
emphasizing that the adiabatic mass–radius exponent, adz̃ , is
intrinsic to the donor star. Within the context of the
approximations employed in this study, it depends on the
binary mass ratio only through the function f(q) in Paper I
(Equation (A10)), which dependence is extremely weak.
Limiting mass ratios for dynamical stability in the case of
nonconservative mass transfer, q ,ad

nc( ) can therefore be

calculated by solving the relationship

q ,L ad
nc

ad( ) ˜( )z z=

where

q
R q

M

ln

lnL
L

nc

( )
( )⎜ ⎟⎛

⎝
⎞
⎠z =

¶
¶

is the Roche lobe mass–radius exponent appropriate to the
adopted nonconservative treatment of mass transfer. If the
donor is subject to prompt dynamical instability (possesses a
nonnegligible surface convection zone), the resulting value of
qad

nc( ) should be robust because we can then neglect higher-order
terms in the dependence of Rln and Rln L on Mln in the initial
phases of mass transfer. If the donor is subject to delayed
dynamical instability, on the other hand, the solution for qad

nc( )

may be subject to larger systematic errors, depending on the
details of the adopted nonconservative treatment. Greater
accuracy then requires detailed knowledge of R(M) along the
adiabatic mass-loss sequence. The necessary details are
available from the authors upon request.
In the next (third) installment in this series of papers, we will

take up the adiabatic responses of stars with convective
envelopes—those on the giant and asymptotic giant branches.
Those models present new issues of interpretation, but are
prime candidates for systems prone to common envelope
evolution. The following (fourth) installment will deal directly
with the energetics of common envelope evolution, circum-
scribing conditions under which survival of common envelope
evolution is energetically allowed. It will be followed by a
survey of critical conditions for the onset of thermal timescale
mass transfer, some initial results of which were employed in
the survey of cataclysmic variable stability discussed above.
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