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ABSTRACT

We present bhlight, a numerical scheme for solving the equations of general relativistic radiation
magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport
equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime
between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which
global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing
equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We
also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in
axisymmetry.
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1. INTRODUCTION

Many of the brightest objects in the universe, including
quasars and the lesser active galactic nuclei, stellar-mass black
hole binaries, and gamma-ray bursts, are likely the results of
black hole accretion driven at least in part by the magnetorota-
tional instability (MRI; Balbus & Hawley 1991). The structure
of the luminous plasma surrounding the black hole remains
uncertain (see the recent review of Begelman 2014) because it
is difficult to resolve and because of physical complexity:
relativistic gravity, turbulence in a magnetized plasma, and
radiation transport all play some role in determining accretion
flow structure.

Nonetheless, accreting black holes may be partially classified
according to the ratio of their luminosity L to the Eddington
luminosity, LEdd≡ 4πGMc/κes.

For L 10−2LEdd, radiation is dynamically important. Up to
L ∼ LEdd, this regime can be modeled by the aligned thin α disk
model of Shakura & Sunyaev (1973), in which the disk is
geometrically thin and optically thick, and in which radiation
pressure exceeds gas pressure at radii where most of the disk
luminosity is produced. The radiative efficiency of the
accretion flow, h ºa L Mc( *) ( ˙ )2 , is expected to be approxi-
mately constant and determined by the dimensionless black
hole spin −1 < a* < 1. It is common to describe the accretion
rate Ṁ in units of an Eddington rate defined using a nominal
efficiency η = 0.1: h=m Mc˙ ˙ 2 LEdd. For L LEdd, the flow is
expected to resemble the slim disk solution of Abramowicz
et al. (1988), in which the flow becomes geometrically thick as
a result of long radiation diffusion times. An obstacle to fully
modeling the innermost, relativistic regions of flows with
 -ṁ 10 2 is the need for an efficient relativistic radiation

hydrodynamics scheme that can operate in both the optically
thick (disk midplane) and optically thin (disk atmosphere,
corona, funnel) regimes.

For L≪ LEdd, or ṁ 1, accretion is likely to occur through
a radiatively inefficient accretion flow (RIAF or ADAF; see the
recent review by Yuan & Narayan 2014) in which the cooling
time of a parcel of plasma is much longer than the time required
for it to fall into the black hole. Radiation plays no role in

determining the flow structure. RIAFs are believed to be
geometrically thick, optically thin, collisionless plasmas that
are at least partially supported by rotation. RIAFs are
commonly modeled numerically using relativistic magnetohy-
drodynamic (MHD) codes, but it is unclear how well the fluid
model describes the dynamics of the magnetized, collisionless
plasma. It is also unclear how best to model the electrons,
which are collisionally decoupled from the ions and determine
the radiative properties of the plasma. However, local models,
particularly numerical kinetic calculations, are beginning to
constrain the electron distribution function in this regime (e.g.,
Kunz et al. 2014; Riquelme et al. 2014; Sironi 2014).
Between thin disks and RIAFs lies an intermediate regime in

which radiation plays a modest role in the accretion flow; this
configuration may be thought of as an RIAF perturbed by
radiative effects. ADAF solutions evaluated at these accretion
rates indicate a flow that is optically thin to Compton scattering
(τ ∼ 10−5–10−3; Yuan et al. 2006) and optically thick only to
synchrotron self-absorption at long wavelengths. As accretion
rate increases the first non-negligible radiation-plasma interac-
tion is expected to be Compton cooling and synchrotron
cooling. For example, M87ʼs central black hole, an object of
interest for the Event Horizon Telescope (Doeleman
et al. 2009), is expected to reside in this intermediate regime
(  ´ -ṁ 6.3 10 6, based on a RIAF model; Kuo et al. 2014),
in Mościbrodzka et al. (2011) and Dexter et al. (2012). Such
systems exhibit nonlinear evolution of coupled gas and
radiation in strong gravity; predictive modeling is our primary
motivation for bhlight, a numerical scheme for general
relativistic radiation magnetohydrodynamics (GRRMHD).
In the nonrelativistic and  v c( ) regimes, many numerical

methods have been developed to solve the radiation hydro-
dynamics equations (see the comprehensive review of Castor
2004), including flux-limited diffusion. Of particular relevance
to black hole accretion flows is recent work on accretion in the
near-Eddington regime using flux-limited diffusion (Hirose
et al. 2009, 2014) and using the more accurate short
characteristics method, in which specific intensity is discretized
in angle for each grid zone (Stone et al. 1992; Jiang

The Astrophysical Journal, 807:31 (20pp), 2015 July 1 doi:10.1088/0004-637X/807/1/31
© 2015. The American Astronomical Society. All rights reserved.

1

http://dx.doi.org/10.1088/0004-637X/807/1/31


et al. 2012, 2014a, 2014b) and one obtains a full solution to the
gray transfer equation.

Close to the event horizon special and general relativistic
effects can produce order unity variations in the intensity.
These effects are particularly important for rapidly rotating
black holes. Numerical schemes for solving the equations of
GRRMHD have only been developed in the last few years. All
are frequency-integrated and use approximate closure schemes,
including the Eddington approximation (Farris et al. 2008;
Zanotti et al. 2011; and Fragile et al. 2012) and low-order
truncated moment closure (Shibata et al. 2011; Saḑowski
et al. 2013; and McKinney et al. 2014). These schemes are
formally accurate at high optical depth, but not for general
flows at the modest optical depths relevant to black holes in the
intermediate accretion rate regime.

An alternative treatment of radiation, the Monte Carlo
technique, has long been used for solving the full frequency-
dependent transport equation without recourse to any closure
model. Several radiation hydrodynamics schemes have recently
been employed in astrophysics that couple a Monte Carlo
representation of the radiation to a fluid model through
interactions evaluated on a per-sample basis, yielding a Monte
Carlo Radiation Hydrodynamics (MCRHD) scheme. This
technique has received particular attention in the stellar physics
community in Abdikamalov et al. (2012), Haworth & Harries
(2012), Noebauer et al. (2012), Wollaeger et al. (2013), and
Roth & Kasen (2014), who have variously investigated
extensions such as implicit methods and interfacing the Monte
Carlo representation with a continuum approximation in
regions of large optical depth and/or large ratio of radiation
to gas pressure, where the unadorned Monte Carlo technique
fails. MCRHD schemes have also been implemented for
studying star formation in Harries (2015) and have been used
to model Compton cooling of accretion disks around black
holes in flat space by Ghosh et al. (2011) and Garain et al.
(2012). Monte Carlo techniques are particularly attractive for
GRRMHD because they are algorithmically simple, naturally
incorporate frequency dependence (useful for treating Comp-
ton scattering) and the potentially complicated angular
dependence expected in an optically thin regime, and are
easily modified to include special and general relativistic
effects.

In what follows we develop a scheme for GRRMHD called
bhlight that is designed to model accretion flows with
modest to low optical depth. bhlight couples two existing
schemes: the GRMHD code harm4 (Gammie et al. 2003), and
the Monte Carlo radiative transport scheme grmonty5

(Dolence et al. 2009). The paper is organized as follows:
Section 2 recounts the governing equations as they are solved
in bhlight; Section 3 describes the numerical method;
Section 4 demonstrates that bhlight converges on a set of
test problems; Section 5 describes example applications to a
radiating Bondi flow and an M87-like disk model; and
Section 6 contains our conclusions.

2. BASIC EQUATIONS

We adopt a physical model in which emission, absorption,
and scattering of photons couple an ideal, magnetized fluid to

the radiation field. We consider the fluid and radiation sector in
turn. The basic equations are identical to those integrated in the
harm code (Gammie et al. 2003) and in the grmonty code
(Dolence et al. 2009), but are recounted here to define variables
and expose physical assumptions.

2.1. Fluid

We assume particle number conservation, which in a
coordinate basis is

r r¶ - = -¶ -( )( )g u g u , (1)t
t

i
i

0 0

where ρ0 is the comoving frame rest mass density and uμ is the
fluid four-velocity.
Energy and momentum conservation for the coupled fluid

and radiation system are given by

+ =n
m

n
m

m( )T R 0, (2)
;

where n
mT is the magnetohydrodynamic stress–energy tensor,

and n
mR is the radiation stress–energy tensor (not to be

confused with the Ricci tensor). In a coordinate basis,
Equation (2) becomes

¶ - =-¶ -
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where the radiation four-force density

º -n n m
mG R . (4);

In the ideal MHD limit uμ Fμν = 0 (Fμν≡ electromagnetic
field tensor), and one can show that
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where P≡ fluid pressure, u≡ fluid internal energy density, and
b2 = bμbμ, with bμ the magnetic field four-vector,

ºm mnkl
n lkb u F

1

2
, (6)

and  mnklº - -mnkl g[ ] is the Levi–Civita tensor.
Evidently bμuμ = 0, so bμ has only three degrees of

freedom, expressed as B i≡ *F it, where

= = -mn
mnkl

kl m n n mF F b u b u* 1

2
. (7)

Then

= m
mb B u g , (8)t i
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+

b
B b u

u
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t

The magnetic field evolution is determined by

¶ - = ¶ é
ëê

- - ù
ûú( ) ( )g B g b u b u , (10)t

i
j

j i i j

subject to the no-monopoles constraint

¶ - =( )g B 0. (11)i
i

4 Freely available; http://rainman.astro.illinois.edu/codelib/codes/harm/
harm.tgz
5 Freely available; http://rainman.astro.illinois.edu/codelib/codes/grmonty/
grmonty.tgz
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The equation of state is

g= -P u( 1) . (12)

To summarize, the governing equations for the fluid evolution
are Equations (1), (3), and (10), together with (11) and (12).

2.2. Radiation

The radiation field consists of photons with wave four-vector
kμ and momentum =m mp k . The photons follow geodesics,
with

l
=

m
mdx

d
k (13)

and

l
= -G

m

mn
l m ndk

d
k k , (14)

where G mn
l is the connection and λ is an affine parameter along

the geodesic. We assume that plasma dispersion effects are
negligible, so photons travel on null geodesics, kμ kμ = 0. The
frequency of a photon in a frame with four-velocity uμ is
ω = −kμuμ (n w pº (2 )).

In nonrelativistic radiative transfer one describes the
radiation field with the specific intensity Iν (here and
throughout we ignore polarization), which is frame-dependent.
However, Iν/ν

3∝ fR where fR is the radiation distribution
function

=m( )f x p
dN

d xd p
, , (15)iR 3 3

where d3p = dp1dp2dp3. Because dN, -d xp g ,t3 and

-d p p g( )t3 are invariant, fR is also invariant.
The evolution of fR is given by the Boltzmann equation

l
= é

ë
ù
û

Df

d
C f , (16)R

R

where λ is an affine parameter along a photon trajectory
(geodesic) and C f[ ]R accounts for interactions with matter:
emission, absorption, and scattering of photons. The Liouville
operator D/dλ is a derivative along the photon trajectory in
phase space.

One can rewrite the Boltzmann equation as the radiative
transfer equation,
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Here the extinction coefficient

c a sº +n n n, (18)

and the emission coefficient

h hº +n n n n( )j I , (19)s

where jν is the fluid emissivity, hn nI( )s is the scattering
contribution to emissivity, σν is the scattering extinction
coefficient, and αν is the absorption coefficient. Each of the
quantities in parentheses in (17) is invariant.

We neglect stimulated Compton scattering. The ratio of
stimulated to spontaneous scattering is the photon occupation
number in the scattered state. Models of highly sub-Eddington

accretion onto supermassive black holes commonly feature: (1)
relativistic electrons with Θe≡ kTe/(me c

2) > 1, corresponding
to a mean amplification factor after Compton scattering of
» Q16 e

2; and (2) a low frequency (millimeter or far-IR) peak in
the spectrum at νpk where the synchrotron absorption optical
depth is  (1). The energetically important single scattering
events therefore produce scattered photons with n n~ Q16sc pk e

2.
For moderate accretion rates (i.e., scattering depth τs < 1 for the
disk), the photon occupation number at νsc is small, so
stimulated Compton scattering will be negligible.
A consequence of our neglect of stimulated Compton

scattering is that in a purely scattering medium the radiation
field will approach a Wien (Boltzmann) distribution rather than
a Bose–Einstein distribution. We verify this in Section 4.2.
To summarize, the governing equations for the radiation are

(13), (14), and (17), together with appropriate expressions for
the emission, scattering, and absorption coefficients.

2.3. Radiation-fluid Interactions

In this section we adopt units such that c = 1 unless
otherwise stated. It is apparent from Equations (3) and (17)
that the fluid acts on the radiation through extinction and
emission coefficients cn and ην. The radiation acts on the fluid
through the four-force density Gμ. We want to make these
representations consistent. Begin with the manifestly covariant
expression

ò=
-

mn m nR
d p

g p
p p f . (20)

t

3

R
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R

3
R

The last equality follows from an expansion of D/dλ and an
integration by parts over momentum space (Lindquist 1966).
Using fR = Iν/(h

4ν3), and Equations (17) and (21)

ò nc n h n=
-

é
ëê

- ù
ûú

m m
n n n( ) ( )G
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1
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t3

3
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where ν, cn , Iν, and ην are all evaluated in a frame with four-
velocity uμ.
Gμ can be evaluated in an orthonormal tetrad frame

comoving with the fluid

=m m me e u, . (23)a t( ) ( )

We will call this the “fluid frame.” In the fluid frame,

ò n c h= W -n n n( )G d d I n , (24)a a( ) ( )

where nºn p h( )a a( ) ( ) . Then

=m mG e G , (25)a
a

( )
( )

which is manifestly consistent with energy–momentum gains
and losses by the radiation field.

3. NUMERICAL METHOD

bhlight combines a second order flux-conservative ideal
GRMHD integrator (Gammie et al. 2003) with a Monte Carlo
scheme for radiation transport (Dolence et al. 2009) through
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radiation–fluid interactions into a fully explicit GRRMHD
scheme that is second order in space and first order in time for
smooth flows. In this work we restrict ourselves to one- and
two-dimensional flows, although the scheme can be trivially
generalized to three spatial dimensions.

3.1. Fluid Integration

The fluid integrator in bhlight is taken from harm, a
conservative second order shock-capturing scheme on a two-
dimensional mesh with an arbitrary spacetime metric. Here we
give a brief summary of the method. Also, we adopt units such
that c = 1, and for black holes we set GM = 1.

The fluid sector in bhlight updates a set of conserved
variables U:

r= - ( )U g u T T B, , , , (26)t
t

t
i

t i
0

corresponding to the variables whose coordinate time deriva-
tives are given in Section 2.1. These conserved variables are
updated by fluxes F:

r= - -( )F g u T T B v B v, , , ˜ ˜ , (27)i
t

i
j

i i j j i
0

which in turn are calculated from the primitive variables P:

r= ( )P u v B, , ˜ , , (28)i i
0

where

gb
a

= +v v˜ , (29)i i
i

where v i = u i/u0 is the fluid spatial three-velocity,

g = + g u u1 ij
i j , a = - g1 00 is the lapse, and β i = g0i α

is the shift. Unlike v i, ṽi ranges over -¥ < < ¥ṽi . In the
Newtonian formulation all transformations between the
nonrelativistic analogs of U , F, and P are analytic, but in
the covariant formulation there is no general analytic form for
P U( ).
The fluid update each timestep maps Pn to its updated value

Pn + 1 by updating the conserved variables. Beginning with Pn,
the scheme calculates Un = U (Pn) and Fn = F (Pn) via
closed-form expressions, for Fn after a reconstruction step that
estimates Pn at zone boundaries from values at zone centers.
The update  +U Un n 1 over a timestep Δt is given by

= + D
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where U̇ represents the source terms such as those associated
with the spacetime connection, values at n + 1/2 are estimated
from a similar first-order step to Un + 1/2, and i, j here denote
spatial indices in x1 and x2, respectively. This forms a second
order, explicit timestepping scheme to t + Δ t, and then Pn + 1

is found by numerically solving U (Pn + 1) = Un + 1 (see Noble
et al. 2006 and Mignone & McKinney 2007).

The fluxes F(P) are evaluated at zone faces using Local Lax
Friedrichs fluxes. Primitive variables on either side of the zone
face are determined through slope-limited linear reconstruction.

We typically use the monotonized central limiter for recon-
struction, but it is trivial to use higher order methods as well.
Naively differencing the induction equation (10) will not

preserve a numerical representation of the no-monopoles
constraint (11); the monopole density will undergo a random
walk from zero with a step size determined by truncation error.
Unless directly controlled, the monopole density can grow
quickly and corrupt the solution. A variety of techniques for
avoiding or removing magnetic monopoles exist; bhlight
employs the flux-interpolated constrained transport (flux-CT)
scheme introduced by Tóth (2000). Although this introduces
some additional diffusivity into the scheme, it is simple and
effective. Details of the implementation are given in Gammie
et al. (2003).

3.2. Radiation Transport

bhlight uses nearly the same Monte Carlo implementa-
tion as grmonty, with a few important differences. The Monte
Carlo samples are referred to here as superphotons. Each
superphoton has a weight w (the number of photons carried by
the superphoton), a momentum pμ ( =m mp k and pμp

μ = 0),
and a position xμ.
The Monte Carlo representation of the the photon distribu-

tion function is

å d d= - -( )( )f w x x p p , (31)
k

k
i

k
i

j j kR,MC
3 3

,

where d d d d- = - - -x x x x x x x x( ) ( ) ( ) ( )i
k
i

k k k
3 1 1 2 2 3 3 , etc.

The sum is taken over all photon samples in the model, labeled
by the index k, and wk are the weights. Like fR, fR,MC is
invariant because wk, d - -x x g p( ) ( )i

k
i t3 , and d -p p( )j j k

3
,

-g pt (with pj covariant) are all invariant.
Using Equation (20), the stress–energy tensor is

å d=
-

-mn
m n

( )R
p p

g p
w x x . (32)

k

k k

k
t k

i
k
i3

This can be averaged over a three-volume Δ3x = Δx1Δx2Δx3

to obtain an estimate for mnR̄ :

ò å»
D

=
- D

mn mn
m n

R
x

d xR
g x

p p

p
w¯ 1 1

(33)
k

k k

k
t k3

3
3

where now the sum is taken only over photons within the three-
volume (zone) in question.

3.2.1. Initializing the Radiation Field

How should one initialize fR,MC? In bhlightʼs target
applications this question usually does not arise because fR
relaxes rapidly to a quasi-equilibrium, so one can set fR = 0 in
the initial conditions. In test problems, however, an accurate
initial fR may be required. In this case one wants to sample a set
of photons in a single zone centered at xc; that is, we want to
sample Δ3xfR(xc).
One strategy is to sample fR directly in a coordinate frame,

using the invariance of fR. For example, if fR is thermal in the
fluid frame, then the distribution function in any coordinate
frame is nnc B h( )2 4 3 , where Bν is the Planck function, and
n p= - m

mu k (2 ).
A second strategy, which we adopt, is to sample fR in the

fluid frame (comoving indices are denoted by parentheses).
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Then we must take care:D xf x( )c
3

R is not invariant, because the

volume element Δ3x is not invariant. But D -x g pt3 is
invariant, so D D ¢ = -x x g p p( ) ,t t3 3 ( ) where Δ3x′ is a
fluid frame volume element, and - =g 1 in the fluid
frame. Then D = D D ¢ D ¢ = -xf x x x x f g p p( ) ( ) ( )c

t t3
R

3 3 3
R

( )

D ¢x f3
R. This suggests that we can sample Δ3x′ fR in the fluid

frame and then multiply the photon number dN by the
corresponding -g p pt t( ) to obtain a fair sample of Δ3xfR
in the coordinate frame.

This second strategy can be described more explicitly in
terms of the Monte Carlo samples as follows. A list of photons
in a single zone is obtained by taking

ò å d= -
D

( )d x f w p p , (34)
x k

k j j k
3

R,MC
3

,3

where the sum is over photon samples in a single zone. This is
not invariant because δ3(pj − pj,k) is not invariant, so one must
take care in sampling pj,k and wk. Suppose we sample fRΔ

3x′ in
the tetrad frame. This gives us a list of weights and momenta.
We can transform back to the fluid frame using the invariance
of d- -g p p p( ),t

j j k, so that each wkδ(pj − pj,k) in the tetrad

frame becomes d- -w g p p p p( ) ( )k
t t

j j k
( )

, in the coordinate
frame. We can therefore obtain a fair sample by adjusting the
weights by a factor of -g p pt t( ) in transforming from the
fluid frame to the coordinate frame.

3.2.2. Geodesic Integration

The position and wavevector of each superphoton is evolved
individually by integrating Equations (13) and (14) numeri-
cally. Since evaluation of Christoffel symbols is costly, it is
sensible to minimize the number of evaluations per timestep.

We use the Verlet algorithm, a second order method that
requires only one evaluation of the connection (number of
evaluations is typically the order of the scheme). The algorithm
as used in bhlight is identical to that used in grmonty and
is described explicitly in Dolence et al. (2009).

The Verlet method may be applied iteratively without re-
evaluating the Christoffel symbols. For a fractional tolerance of

-10 3 and the timesteps (corresponding to the Δλ) taken in
bhlight, the scheme always converges. Although as of this
writing we integrate all four components of kμ, one could
potentially integrate three components and use kμkμ = 0 to
evaluate the fourth, suppressing numerical errors and computa-
tional expense by a factor of 4/3.

3.2.3. Units

The radiation sector uses cgs units, except that photon
wavevector components are measured in units of the electron
rest mass energy. We therefore have to convert between units
in the fluid sector and units in the radiation sector. For black
hole spacetimes, this is done by choosing a cgs value for the
fluid length unit and the fluid time unit, here

 =
GM

c
, (35)

2

and

 =
GM

c
, (36)

3

respectively. We also need a mass unit. Notice that the mass
unit is not provided by the black hole mass in the test fluid

r  M( )3 approximation used here. Instead we must scale
the density, or equivalently the mass accretion rate, by
choosing a cgs value for the mass unit . Then, e.g.,

 r r= .CGS FLUID
3

The components of the code photon wavevector kμ are
measured in units of mec

2. One might then be concerned about
consistency between the transfer equation and the geodesic
equation. The only condition for consistency is that the
differential optical depth dτν = (νκν) dλ, which in turn
requires that the νdλ = ds, i.e., that the units used in defining ν

and dλ be consistent and that the correct conversion be made
from fluid sector units to cgs. In practice, then, we evaluate νκν
in cgs units in the fluid frame and set t nk l=n nd d( ) , with
 º h m c( )e

2 .

3.2.4. Superphoton Weighting

The passive Monte Carlo code grmonty is designed to
maximize the signal-to-noise in the final spectrum, which is
measured in logarithmic intervals in frequency at spatial
infinity. The optimum allocation of weights would then place
equal numbers of superphotons in each bin in nlog . This
requires an estimate of the final spectrum; grmonty estimates
the final spectrum by integrating over the simulation volume,
assuming the flow is optically thin at all frequencies, neglecting
gravitational redshift and Doppler shift, and setting the weights
accordingly.
In bhlight, by contrast, the weights should be designed to

minimize errors in the dynamical evolution, i.e., in Gμ. The
momentum and energy exchange associated with each radia-
tion–fluid interaction is proportional to whν, where ν is the
fluid frame frequency. This suggests that we should distribute
energy uniformly among superphotons (as in Abbott &
Lucy 1985) to minimize the interaction noise, and thus set
w∝ 1/ν. This is not generally possible because the four-
velocity fluctuates across the simulation domain, but we will
not do too badly if we ignore Doppler shift and gravitational
redshift and thus set w∝ 1/ν when sampling the emissivity.
bhlightʼs constant-energy-per-superphoton weighting

scheme limits spectral resolution at low and high frequencies
where the specific energy density is small prior to scattering.
These parts of the spectrum have little impact on the dynamical
evolution, however, and higher quality spectra can be extracted
in post-processing using grmonty.

3.2.5. Emissivity

At each timestep we sample the emissivity in the invariant
four-volume - D Dg t x3 of each zone based on the fluid values
at the half-step. It is easiest to sample the fluid emission in a
comoving tetrad, where we have a simple expression for the
emissivity.
The emissivity is

n
=

- W
nj g

dE

d xdtd d

1
. (37)

3
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Using n=dE h dN where N is the number of photons, we can
write

ò n
W =

-nd j
h

g

dN

d xdtd log
. (38)

3

Since dN = w dNs where Ns is the number of superphotons, we
can then write for the number of superphotons produced per
logarithmic interval in a single zone with volume Δ3x:

òn n
= - D D W n

dN

d
g t x

hw
d j

log

1

( )
. (39)s 3

In writing (39) we have made use of the invariance of
-g d xdt3 . Here w(ν)∝ 1/ν, and the constant of proportion-

ality is set dynamically to keep the number of superphotons in
the computational domain approximately constant.

bhlight samples Equation (39) between minimum and
maximum frequencies νmin and νmax, where the limits are set so
that νjν is small outside this region in frequency space. It then
uses a rejection scheme, sampling a uniform distribution in

n n n< <log log logmin max and a uniform distribution in
n< <r dN d0 ( log )s max, where ndN d( log )s max is the max-

imum of Equation (39). A sample is rejected when
n>r dN d logs .

The angular distribution of photons is also sampled by
rejection. The photon direction is given by (θ,ϕ), where θ is the
angle between the magnetic field and photon direction in the
fluid frame and ϕ is the corresponding azimuthal angle.
bhlight samples a uniform distribution in q <⩽0 cos 1,
and a uniform distribution in 0 ⩽ r < 1. A sample is rejected if
r > jν(θ)/jν,max. It then samples a uniform distribution in
0 ⩽ ϕ < 2π. To ensure that the net force due to emission in the
fluid frame is zero to machine precision, photons are generated
in pairs. Thus, a second photon is generated with the same
frequency and q q¢ = -cos cos and ϕ′ = ϕ + π. In the fluid
frame, k t = ω, w q f=k sin cosx( ) , w q f=k sin siny( ) , and

w q=k cosz( ) , where e z( ) is parallel to the magnetic field. Once
we have a superphoton sample in the comoving frame it is
transformed to the coordinate frame using a pre-constructed
orthonormal tetrad me a( ) . The superphoton xμ is set to the zone
center to avoid additional orthonormal tetrad construction.6

Sampling is a subdominant computational expense in
bhlight, so although one could develop more efficient
sampling schemes, a simple rejection scheme is adequate.

Four-momentum is locally conserved and so superphoton
emission implies a back-reaction on the emitting fluid. A pair
of emitted superphotons with wavevectors mk1 , mk2 correspond
to a change in four-momentum Δpμ (in fluid code units):

D = +m m m( )p w k k , (40)1 2

where  = me , which in turn specifies the contribution to
the four-force density ΔGμ:

D = -
- D D

Dm mG
g x t

p
1

, (41)
3

where all geometric quantities are evaluated at zone centers.
Because photons are emitted in pairs, the spatial components of
kμ cancel in the fluid frame, and δpμ∝ uμ.

3.2.6. Absorption

grmonty treats absorption deterministically by continu-
ously decrementing w along a ray. A similar deterministic
procedure has been shown to suppress noise in Monte Carlo
radiation hydro schemes (e.g., Noebauer et al. 2012) in flat
space. However, formulating such a scheme in general
relativity, where photons move along geodesics, is more
complicated because the photons follow curved trajectories
through each zone.
In bhlight we treat absorption probabilistically. While

stepping a superphoton by Δλ along a geodesic, the
incremental optical depth to absorption t k n lD = Dna ,abs .
Here ν κν,abs is the invariant absorption coefficient, evaluated in
the fluid frame. An absorption occurs if

tD > - rlog , (42)a a

where 0 < ra < 1 is sampled uniformly; the absorption occurs at
tD = - rloga a. To process the event we push the superphoton

back, l l l t + D Dr(log )a a , put the superphoton four-
momentum into the fluid at that location, and annihilate the
superphoton.
The four-momentum change in the fluid Δpμ due to

absorption of a superphoton with wavevector kμ is

D =m mp wk . (43)

This can be expressed as a contribution to the radiation four-
force density ΔGμ:

D =
D

- D D
m

m
G

p

g x t
, (44)

3

where -g is evaluated at the zone center.

3.2.7. Scattering

We treat scattering probabilistically in bhlight, as in
grmonty. Scattering is similar to absorption, i.e., scattering
occurs when

tD > -( )r blog , (45)s s s

where 0 < rs < 1 is sampled uniformly, t k n lD = Dns ,s , and
νκν,s is the invariant scattering opacity. Because scattering
events are rare but energetically important we have intro-
duced a bias parameter bs > 1 to enhance the probability of
sampling scattering events. To process the event, we push the
photon back along the geodesic from λ + Δλ to
l l t+ D Dr blog ( )s s s . To preserve photon number a scat-
tered superphoton is created with weight ws = w/bs and the
original superphoton has weight set to w′ = w − ws.
In general, a superphoton is subject to both absorption and

scattering simultaneously. In a deterministic treatment, the code
must dynamically choose which process, if any, to apply to the
superphoton. To handle this in an unbiased manner, for each
photon assuming that at least one of the inequalities
Equations (42) and (45) has been satisfied, we choose which
interaction to process according to a similar weighted sampling.
That is, for

t t
-
D

<
-

D
r r

b

log log
, (46)a

a

s

s s

6 Because photons are created at zone centers, our scheme will fail when
individual zones become optically thick. Should this become a problem the
scheme can be modified so that new superphotons are distributed within a zone.
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the absorption interaction is chosen; elsewhere, scattering is
chosen. With this method, a large optical depth or bias in one
interaction will not serve to decrease the physical effect of the
other interaction, although it will increase the number of
superphotons required to resolve both interactions
simultaneously.

How should we set bs? Most of our models have t  1s , so
only ≈τs superphotons would produce scattering events if
bs = 1, and the energy per superphoton would increase by the
mean amplification factor7 » + Q + QA 1 4 16e e

2. This sug-
gests that we should set bs ∼ A to maintain constant energy per
superphoton. There are two failure modes to be avoided,
however. First, if bs 1/τs then each superphoton will scatter
more than once and the number of superphotons on the grid
will grow exponentially. Second, if Awhν is larger than the total
internal energy in the zone where the scattering occurs then the
zone energy will be negative after scattering (more on this in
the next subsection). Together, this suggests that we set

 n
=

æ

è
çççç - D

ö

ø

÷÷÷÷÷
b A

wh

u g x
MAX , . (47)s 3

Here  depends only on t and is dynamically adjusted to
control the number of scattered superphotons in the simulation.
The requirement bsτs ∼ 1 is equivalent to each superphoton
scattering once between emission and escape through the
boundary (neglecting absorption). Over a timestep Δt, one can
estimate the number of photons that escape through the
boundaries of a domain with linear dimension L as NcΔt/L,
where N is the desired total number of superphotons (which
sets the weights for emission as described previously). To
enforce the requirement that each superphoton scatter once,  is
calculated dynamically as the ratio of this estimate to the real
number of scattering events per timestep, averaged over some
timescale.

Each scattered superphoton is generated from an incident
superphoton wavevector kμ as follows. The four-momentum
pμ of the scattering electron is sampled from a thermal
(Maxwell–Jüttner) distribution according to the procedure
described in Canfield et al. (1987). The scattered superphoton
wavevector mks is sampled from the Klein–Nishina differential
scattering cross section in the rest frame of the scattering
electron and boosted to the fluid frame and then transformed to
the coordinate frame. It is then assigned a weight and entered in
the list of active superphotons.

Each scattering event generates a change in fluid four-
momentum,

D = -m m m( )p
w

b
k k (48)

s
s

and a corresponding contribution to the fluid through the four-
force density Gμ,

D =
D

- D D
m

m
G

p

g x t
, (49)

3

where -g is evaluated at the zone center.

3.3. Radiation Force in Fluid Evolution

The radiation force is treated in an operator-split fashion.
The fluid integrator initially updates the conserved variables U
from step n to +n 1 over the entire timestep Δt without
radiation, i.e., it performs  + ¢U Un n 1 as described in
Section 3.1. This fluid integration generates half-step fluid
primitive variables +Pn 1 2; these values are sent to the radiation
sector and used to evaluate the total radiation four-force density
m

+PG ( )n 1 2 for each zone. The fluid integrator then updates the

fluid variables with the radiation interaction + ¢ +U Un n1 1 by
considering only the radiation contribution to the conserved
energy and momentum variables:

- = - + D -n n n
+ + ¢( ) ( )g T g T t g G . (50)t n t n1 1

Un+1 then are the final conserved fluid variables at the
+n( 1)th step. The evolution is therefore first order in time.
The evolution is explicit and the radiation and fluid share a

common timestep Δt, which we set to the minimum grid zone
light crossing time ≈Δx/c, where Δx is a characteristic zone
lengthscale. As is well known, the radiation source terms are
stiff when the timescale for exchange of energy–momentum
between the fluid and radiation is smaller than a timestep. The
cooling time τcool≡ u/Λ, where Λ≡ cooling rate per unit
volume, l= ~m

mu G u crad mfp, where λmfp is a suitably
frequency-averaged absorption mean free path and

= mn
m nu R u urad is the radiation energy density in the fluid

frame (one can perform a similar estimate for Compton
cooling). Thus the source term is stiff if u/Λ < Δx/c or

lD >u u x( )( ) 1rad mfp , or when the optical depth across a
zone exceeds u/urad.
For our scheme we must also consider robustness in the

presence of Monte Carlo noise. Even if τcool/Δt > 1 the cooling
rate may fluctuate upward so that a zone loses all its thermal
energy in a single timestep. This can happen if

áL ñ Du x c2 1 2 . This will differ from the usual stiffness
condition only when the number of absorption events per
timestep in a zone is small compared to one. The condition for
robustness against this failure mode, “supercooling,” where a
single photon causes the zone to lose all its internal energy, is
that n < Dwh u x3 (where we have left out geometric factors).
Where, then, will bhlight fail? The radiation force source

terms are stiff when the optical depth across a single zone
exceeds u/urad. For black hole accretion applications we expect
this only for models in the high accretion rate regime,

 -M M˙ 10 ˙3
Edd, although the precise condition will depend

on details of the evolution and the numerical setup. This
problem could be remedied by using an implicit update, but
Monte Carlo is probably not the optimal method for studying
this regime anyway. The supercooling problem is more
relevant for our target application to intermediate accretion
rate black holes, and arises if the internal energy content of a
zone is small compared to the typical superphoton energy. This
can occur in low density regions over the poles of the black
hole, but the fluid evolution is inaccurate there in any case
(because the truncation error in internal energy is dominated by
the magnetic field evolution, to which it is coupled via the total
energy density), and negative internal energies are dealt with
by harmʼs floor routines, resulting in a small nonconservation
of energy.

7 This approximate expression overestimates A by 16% at Θe ≈ 1/2. A better
estimate, which underestimates A by 4% at Θe ≈ 0.02, is

- » Q - Q + QA 1 4 2 16e e
3 2

e
2.
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3.4. Parallelization

bhlight is a hybrid MPI/OpenMP scheme in which a
single node handles the fluid integration, multiple nodes evolve
the radiation, and a single additional node acts as gatekeeper
between the fluid and radiation sectors. During each timestep,
the only exchanges are an array of radiation four-force densities
to the fluid sector and an array of fluid variables to the radiation
sector via the gatekeeper node. The gatekeeper node distributes
the fluid variables to all radiation nodes, and reduces the four-
force density contributions from each radiation node.

We evolve radiation on each node independently from other
radiation nodes. After globally scaling the emission weights
and scattering bias to yield approximately the desired number
of superphotons at saturation, the code samples emission events
on each radiation node, each of which has access to the entire
array of fluid variables and maintains its own set of
superphoton samples. Emission, absorption, and scattering
events generate a four-force density contribution. At the end of
every timestep, these contributions are reduced by the primary
radiation node over MPI. Each radiation node is individually
parallelized under OpenMP, further dividing the superphoton
calculations across individual compute cores. We parallelize
the main compute loops for the fluid sector with OpenMP,
which enables completion in a reasonable clock time for an
axisymmetric calculation.

3.5. Implementation Details

In attempting to describe our numerical implementation in a
coherent narrative we have omitted certain secondary topics,
which we now collect here.

1. The radiation sector in bhlight makes extensive use of
random numbers. We use the Mersenne Twister algo-
rithm from the GNU Scientific Library, with a different
random seed for each MPI node and each OpenMP
thread.

2. In axisymmetric disk calculations, we implement a form
of static mesh refinement by using modified Kerr–Schild
(MKS) coordinates {t, x1, x2}. x1 and x2 are related
to the Kerr–Schild r, θ by = +( )r x rexp 1

0 and

q p p= + -x h x((1 ) 2)sin(2 )2
s

2 , where Î ¥r [0, )0
and Îh (0, 1]s are free parameters.

3. Truncation error in the geodesic integration causes kμ to
drift off the lightcone (this is a consequence of our
decision to integrate all four components). We destroy
superphotons with negative frequency in the fluid frame;
for torus runs as in Section 5.2, we find ∼1.1 × 10−6

destructions per geodesic update. This problem does not
occur in Cartesian coordinates in Minkowski space.

4. Scattered superphotons may scatter any number of
additional times during the same timestep, provided
sufficient optical depth to do so.

5. bhlight does not conserve momentum and energy to
machine precision because of truncation error in the
geodesic integrator. However, for the integrator toler-
ance and typical superphoton resolutions this is not
significant (for torus runs as in Section 5.2). At some
time, the average fractional error in energy relative to
the initial energy at emission is ∼few × 10−7; if this
were to become a leading source of error, increasing the
integrator tolerance is not a significant expense.

4. TEST SUITE

We have developed a suite of test problems for bhlight.
Since the fluid and radiation sectors of bhlight use well
tested codes, we focus on problems with coupling between the
two sectors. Good test problems are hard to find, since there are
few known exact solutions to the equations of radiation MHD
in either Newtonian or relativistic contexts. We substitute
approximate solutions to the full equations, such as some of the
shocks we consider below. We do not consider pure transport
tests that are trivially satisfied by a Monte Carlo scheme, such
as shadow tests, expanding pulses, and dynamic diffusion.8

4.1. Optically Thin Cooling

We consider the temperature evolution of an optically thin,
radiating, stationary, ideal, and homogeneous gas initially at
temperature T0. The gas obeys a γ-law equation of state i.e.,
p = (γ − 1)u. The density and velocity of the gas are fixed;
only the temperature is allowed to evolve. The bremsstrahlung-
like emissivity is

n= -n
- ( )j Nn T h k Texp , (51)2 1 2

B

Figure 1. Optically thin cooling of one static fluid zone. Approximately
5 × 108 superphotons were created.

Figure 2. Convergence of the optically thin cooling test. Ns is directly
proportional to the number of superphotons created.

8 Such tests can be performed with the freely available grmonty code.
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where = ´ - - - -N 5.4 10 cm K s Sr Hz39 3 1 2 1 1 1 is a constant.
The associated cooling rate Λ is given by

ò n pL = - = W =n
du

dt
d d j

k n N

h
T4 , (52)B

2
1 2

which implies a temperature evolution

=
æ

è
çççç

-
ö

ø

÷÷÷÷÷
T t T

t

t
( ) 1 (53)

f
0

2

valid from ti = 0 to g p= -t hT Nn(( 1) )f 0
1 2 , the time at

which the temperature of the fluid reaches zero.
For this realization we choose γ = 5/3, tf = 108 s, and

T0 = 108 K. Figure 1 shows the resulting numerical evolution
plotted against the analytic solution. Convergence in the
L1 norm,

åº -L f f f( ) (54)
i

i i
1

num, reference,

is expected to scale as -Ns
1 2; this can be seen in Figure 2,

which is evaluated near t = tf.

4.2. Compton Cooling

Consider a closed, one-zone model in which Compton
scattering is the only permitted interaction between an ideal,

Figure 3. Evolution of the Comptonization problem. The top panel shows radiation and gas temperatures approaching the analytic final temperature. The middle panel
shows the initial and final uν for the radiation, along with the analytic result for the final state. The bottom panel shows the residuals for the final spectrum; the
numerical spectrum is apparently unbiased even at frequencies with low sampling resolution (shaded regions).

Figure 4. Dispersion relation for eigenmode of the transfer and energy
equations as a function of optical depth per wavelength. Solid line shows
analytic expectation, while points show bhlight results. At this resolution,
the fractional error is » -10 3.

Figure 5. Convergence for the linear mode of the transfer and energy
equations, with Ns directly proportional to the number of superphotons.

Table 1
Radiation-modified Slow Mode

ω −0.155954250795 + 0.506371984839i

δρ 0.992522043854
δu 0.0115437955397 + 0.00253571930238i
δu1 −0.0799889439467 − 0.024635280384i
δu2 −0.0804556011602 − 0.0252291311891i
δB2 −0.00672014035309 − 0.00465692766557i
δE 0.0129233747759 + 0.0201394332108i
δF1 0.00205715652365 − 0.00136719504591i
δF2 −3.27455464963 × 10−5 + 5.02957595074 × 10−5i

9

The Astrophysical Journal, 807:31 (20pp), 2015 July 1 Ryan, Dolence, & Gammie



γ = 5/3 gas initially at temperature Tg,i and a swarm of
photons all with initial frequency ν = ν0. Fluid motion is
suppressed; only the internal energy is allowed to evolve. The
number of photons is conserved, and in thermal equilibrium
Tg,f = Tr,f = Tf, the radiation approaches the Wien distribution,

p
n=

æ

è
çççç

ö

ø

÷÷÷÷÷
-

g ( )( )f
n c

kT
h k T

8
exp , (55)

f
fR

3

B

where nγ is the number density of photons. This tests the
scattering kernel and Compton heating and cooling of the fluid.

We set the electron number density n = 2.5 × 1017 cm−3,
Tg,i = 5 × 107 K, ν0 = 3 × 1016 Hz, and nγ = 2.38 × 1018 cm−3.
The characteristic (Compton) relaxation time is the photon

mean free time s -n c( )Te
1 divided by the fractional energy

change per scattering,~kT m c( )e
2 , yielding a Comptonization

timescale ;0.02 s. We can predict the final state using: (1)
thermal equilibrium; (2) conservation of photon number;
(3) that the final photon distribution is Boltzmann; (4)
conservation of total energy. This yields Tf = 5.19 × 106 K.
Figure 3 shows fluid and gas temperatures equilibrating at the
correct temperature on approximately the estimated timescale,
and nºnu dE d x d( log )3 plotted against the anticipated
distribution along with associated residuals. Note that we
define º gT E n k(3 )r r B (Er is the radiation energy density),
which assumes a Wien distribution, and so this value is strictly
valid only at late time.

4.3. Linearized Transfer and Energy Equations

As a test of the full transfer equation in one-dimensional
(1D) with gray absorption, consider a sinusoidal temperature
perturbation in a static gas. Mihalas & Mihalas (1984) show
that in this case the full transfer equation plus gas energy
equation admit damped solutions. The eigenmode has pertur-
bationsµ -i kx t texp( ( ))RR for wavenumber k and decay time
tRR. The dispersion relation is

sk
r

a a
=

é

ë
ê
ê

æ
è
ççç

-
æ
è
ççç

ö
ø
÷÷÷
ö
ø
÷÷÷
ù

û
ú
ú

-
-

t k
T

c k k
( )

16
1 cot , (56)

v
RR

0
3

0 1 0
1

where T0 is the mean temperature, ρ is the material density, α0

is the frequency-integrated extinction coefficient, and cv is the
specific heat capacity. We simulate this problem in bhlight
by initializing one wavelength in a 1D box in local radiative
equilibrium with 64 grid zones and periodic boundary
conditions. The amplitude of the initial perturbation is 0.05
T0. We evolve this system for a variety of optical depths per
wavelength τ by varying α0. We obtain a decay time from the
amplitude of the best fit sinusoid at t = tRR. We find good
agreement with Equation (56) in both optically thin and
optically thick regimes, as shown in Figure 4.
We also examine convergence for τ= 1 (with 100 grid

zones); this result is shown in Figure 5. Evidently the errors
scale as -Ns

1 2, as expected.

Figure 6. Convergence for the radiation-modified slow mode.

Table 2
Radiation-modified Fast Mode

ω −0.000695187092855 − 3.6761842859i

δρ 0.0528655837266 − 0.000203781373769i
δu 0.704834313006 − 0.00203965222393i
δu1 0.0309307265333 − 0.000125078175647i
δu2 −0.00191512771962 + 0.000183786243559i
δB2 0.0512475714061 − 0.000472212042911i
δE 0.704838422737
δF1 −4.41864621469 × 10−5 + 0.00198608271502i
δF2 0.000397994468532 − 0.00462049532989i

Figure 7. Convergence for the radiation-modified fast mode.

Figure 8. Numerical gas and radiation energy densities vs. analytic gas and
radiation energy densities. The bhlight calculation and Su-Olson results
show excellent correspondence at this late time.
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4.4. Relativistic Radiation MHD Linear Modes

We now also consider linear modes of the full equations of
1D radiation magnetohydrodynamics; that is, we now include
momentum exchange and magnetic fields. Acquiring even a
linear solution to these equations with full transport is
challenging, and so we resort to the approximate, relativistic
Eddington closure scheme of Farris et al. (2008) with gray
opacity κ from which to extract plane-wave solutions P.
Details of our calculation for a perturbation δP for
d w~ -t ikxexp( ) about a thermal equilibrium P0 are given
in Appendix C. With a magnetic field =B B B( , , 0)i

0 0 we
follow the nonrelativistic treatment of Jiang et al. (2012) by
confining variation to a plane (suppressing Alfvèn waves):

r r dr d= = + +P u u u B B E F F u u( , , , , , , , , ) ( , ,1 2 1 2 1 2
0 0

d d d d d d+ +u u B B B E E F F, , , , , , )1 2
0 0

2
0

1 2 . bhlight is not
designed to evolve perturbed equilibria; we focus on cases
which accomodate both bhlightʼs numerical limitations as
well as the discrepancy between the Eddington closure and
bhlightʼs full transport (i.e., we consider only many optical
depths per wavelength). We study convergence of two specific
cases with significant radiation pressure: a nonrelativistic
radiation-modified slow MHD mode, and a relativistic radia-
tion-modified fast MHD mode. In this section, c = kB = 1. For
all calculations, we use a box of length L = 1 with 128 grid
zones, evolve to final time tf, set the wavenumber of the
perturbation k = 2 π, and normalize the δP to be1% of the
P0 for all P.9 The ratio of radiation to gas pressure
b rº a P (3 )r R

3 4 , and the optical depth per wavelength
t krº L.

4.4.1. Radiation-modified Slow Mode

For a magnetized fluid in the presence of radiation, the
MHD modes are damped in a similar fashion to the
radiation hydrodynamic case. We first consider the radiation-
modified slow mode solution. We set γ = 5/3, ρ = 1, u = 0.01,

=B 5 60 , βr = 1, and τ = 20 and evolve the
initial conditions in bhlight to tf = 2.5, nearly half an
e-folding time. The eigenmode is given in Table 1.
Expected convergence at tf in the average number of extant
superphotons Ns for Monte Carlo-dominated error is shown in
Figure 6.

4.4.2. Radiation-modified Fast Mode

We now consider the radiation-modified fast mode solution,
for a relativistic equilbrium. We set γ = 4/3, ρ = 1, u = 10,

=B 5 60 , βr = 1, and τ = 20 and evolve the initial
conditions in bhlight to tf = 1.7, approximately a wave
period. Note that radiation damping is not significant during

Table 3
Parameters for Farris Shocks

Case γ κ Left State Right State

1 5/3 0.4 ρ0 = 1.0 ρ0 = 2.4
P = 3.0 × 10−5 P = 1.61 × 10−4

u x = 0.015 ux = 6.25 × 10−3

E = 1.0 × 10−8 E = 2.51 × 10−7

2 5/3 0.2 ρ0 = 1.0 ρ0 = 3.11
P = 4.0 × 10−3 P = 0.04512
u x = 0.25 ux = 0.0804
E = 2.0 × 10−5 E = 3.46 × 10−3

3 2 0.3 ρ0 = 1.0 ρ0 = 8.0
P = 60.0 P = 2.34 × 103

u x = 10.0 ux = 1.25
E = 2.0 E = 1.14 × 103

4a 5/3 0.4 ρ0 = 1.0 ρ0 = 1.165
P = 0.1 P = 0.1233
u x = 0.5 ux = 0.4292
E = 0.3 E = 0.3763

Figure 9. Gas and radiation variables for radiative shock Case 1. The result from bhlight is shown as a red solid line, and the analytic solution is shown as a
dashed line.

9 The SageMath notebook used to evaluate these modes may be accessed via
SageMathCloud at http://bit.ly/1CCi82y
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this time. The eigenmode is given in Table 2. Expected
convergence at tf in the average number of extant superphotons
Ns for Monte Carlo-dominated error is shown in Figure 7.

4.5. Su–Olson Problem

Su & Olson (1996) found a solution in terms of integrals to
the coupled energy balance and radiative transport equations in
the diffusion approximation for a semi-infinite slab of static,
initially cold fluid (with heat capacity =c Tv

3) with gray
absorption coefficient α, and a Marshak (isotropic incident
radiation) condition at the left boundary with incident flux F.
The solution is given in terms of dimensionless gas and
radiation energy densities u and v, respectively, versus the

dimensionless spatial coordinate a=x z3 and dimensionless
time coordinate a= ¢t a c t4 R , where aR is the radiation
constant. u and v are defined as:

º
æ
è
çç

ö
ø
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è
ççç
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÷÷÷u x t

c E x t

F
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, (57)
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v x t
c a T x t

F
( , )

4

( , )
, (58)R

4

where E is the radiation energy density.
In replicating this solution with bhlight, we adopt

parameters such that the solution remains optically thick,
without being so optically thick across a grid zone that our

Figure 10. Gas and radiation variables for radiative shock Case 2. The result from bhlight is shown as a red solid line, and the analytic solution is shown as a
dashed line.

Figure 11. Gas and radiation variables for radiative shock Case 3. The result from bhlight is shown as a red solid line, and the analytic solution is shown as a
dashed line.
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Monte Carlo transport scheme fails. We use 1024 grid zones on
=x [0, 50 3 ] and evolve the system to t = 500 (when the

solution is approximately in equilibrium). Results are shown in
Figure 8.

4.6. Radiative Shocks

We now turn to dynamical tests: here, 1D radiative shocks.
We will use nearly the same suite of relativistic, radiative
shocks considered by Farris et al. (2008) in testing their
GRRMHD code, which was based on a nonequilibrium
Eddington closure. Because we solve the full transfer equation,
we expect disagreement on scales of order the photon mean
free path.

The Farris et al. tests assume a gray opacity κ and are set in
Minkowski space. The solutions are described by ρ0, the x
component of the fluid four velocity ux, the gas pressure P, and
the comoving-frame radiation energy density E and x-
component of the radiation flux four-vector Fx. The latter
vanishes far from the shock. We consider only the shock-frame
(unboosted) version of the tests, initialized as shock tubes. All
tests are purely hydrodynamic: the magnetic field plays no role.

Our tests are identical to those given in Farris et al. (2008)
except that we modify case (4), which has radiation pressure a
factor of 10 larger than gas pressure upstream from the shock.
Due to this large radiation pressure, bhlight cannot integrate
this case stably with the numerical resources available to us.
Instead, we set the upstream radiation pressure equal to the gas
pressure, and call this case (4a). The shock parameters are listed
in Table 3. Units are such that c = 1; aR (equivalently, ) is
determined by enforcing thermal equilibrium r=E a P( )R 0

4

far from the shock.
Case 1 is a nonrelativistic strong shock with gas pressure

much greater than radiation pressure, and consequently the
fluid variable profiles resemble a nonrelativistic shock.
bhlight output and the analytic solution are shown in
Figure 9. Correspondence is good except for small deviations
in the radiation variables near the shock interface, as expected
for our full transfer solution.

Case 2 is a mildly relativistic shock with somewhat larger
radiation pressure than in Case 1. bhlight output and the
analytic solution are shown in Figure 10. The profiles of E and

Fx show qualitative differences between the bhlight result
and the analytic solution: a discontinuity in the analytic
solution does not appear for the case of full transfer. This is
unsurprising given the approximate nature of the Farris
solutions. Note that for this case the approximate Eddington
solution contains an unphysical discontinuity in the coordinate
frame radiation energy density.
Case 3 is a highly relativistic shock with dynamically

important radiation field. bhlight output and the analytic
solution are shown in Figure 11. We find significant differences
within a few photon mean free paths of the shock, particularly
for the radiation flux. Figure 12 shows the expected N −1/2 self-
convergence in the radiation variables. A similar self-
convergence trend also appears in the fluid variables until grid
resolution becomes the dominant source of error.
Case 4a is a modestly relativistic wave with upstream

radiation and gas pressure nearly equal. bhlight output and
the analytic solution are shown in Figure 13. We find good
agreement in all variables, despite the relatively strong
radiation field. Note also that even with a large number of
samples it is difficult to suppress noise in Fx when it is much
smaller than E.

4.7. Black Hole Atmosphere

Next we turn to a general relativistic equilibrium test.
Consider a Schwarzschild black hole surrounded by a static
atmosphere. The atmosphere is bounded by static, concentric
spherical shells at >r GM c2i

2 and >r ro i, and is in radiative
equilibrium. The shells are reflecting boundaries and exchange
no heat with the atmosphere, which has a gray opacity κ and
adiabatic index γ = 5/3.
In the Newtonian limit radiative conduction would drive the

atmosphere toward T = const. In a relativistic atmosphere the
gravitational field causes the atmosphere to come into a
different equilibrium in which redshifted temperature,

º -¥T T g00 , is constant.
In the Eddington approximation the atmospheric structure is

determined by the conditions =¥T const, and mechanical
equilibrium, =T 0r

rr
; . Note that any radiation source terms

vanish in thermal equilibrium; in fact, the Eddington
approximation solution turns out to be an exact solution to
the transfer equation, as we show in Appendix B.
Once the inner and outer radii are specified, there are three

dimensionless parameters that describe the solution (although
their interpretation is purely Newtonian): the ratio of the
atmospheric scale height at the inner boundary to the local
radius g mºh k T r m GM( )i i pB (where μ is the mean molecular
weight), the ratio of radiation pressure to gas pressure at the
inner boundary b m rº m a T k(3 )r p i iR

3
B , and the characteristic

optical depth t krº -r r( )i o i .

We set =r GM c3i
2, =r GM c20o

2. We set h≈ 2.66,
βr≈ 0.23, and τ≈ 5.0. We use a 1D domain with 128 zones;
the errors are dominated by Monte Carlo noise. The solution is
shown in Figure 14. We also find the comoving spectrum at
fiducial radius r≈ ri to match our expectation for thermalized
radiation (with free vertical scale), as shown in Figure 15.
Evidently the redshifted temperature is indeed constant.

Figure 12. Self-convergence of all variables in radiative shock Case 3. Ns is
directly proportional to the number of extant photons in the simulation. Dashed
lines correspond to the -Ns

1 2 trend expected for Monte Carlo integration in the
absence of resolution errors in the hydrodynamics solver.
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5. APPLICATIONS

5.1. Radiating Bondi Accretion

Here we report a preliminary investigation of spherically
symmetric accretion onto a Schwarzschild black hole with
radiative coupling. The fully dynamical problem has been
studied analytically (although not with a full transport solution,
frequency dependence, or magnetic fields) by Vitello (1984),
Park (1990), and Nobili et al. (1991). Frequency-integrated
numerical studies have also been performed in Fragile et al.
(2012), Roedig et al. (2012), and McKinney et al. (2014) over
many GM/c2. Here we obtain a full transport solution with
frequency dependence and magnetic fields. We include
synchrotron emission, synchrotron absorption, and Compton
scattering, with associated heating and cooling.

We set M = 6.6 × 109Me and describe the spacetime with
MKS coordinates (Section 3.5). All simulations are performed
in 1D, with Îr M M[1.5 , 50 ] for 64 zones. As initial
conditions for the fluid, we adopt the nonradiative Bondi
solution of Hawley et al. (1984; which we hold constant at the
outer boundary), except we set γ = 13/9 and place the sonic
point at r = 200M. We vary the accretion rate by varying the
density (or equivalently the mass unit ) of the flow.
The magnetic field is initialized as a radial, monopolar field,

which has no effect on the fluid motion. We set a=B r1 3,
where α is chosen such that b º »P b2 1302 at r = 2M in
the initial (GRMHD) conditions. No radiation is present
initially. The radiation is allowed to flow freely out of the
computational domain at the radial boundaries, with no inflow
of radiation.

Figure 13. Gas and radiation variables for radiative shock Case 4a. The result from bhlight is shown as a red solid line, and the analytic solution is shown as a
dashed line.

Figure 14. Rest-mass density and both gas and radiation temperatures for the static atmosphere test at t = 150M. Dashed lines represent the analytic solutions.
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The luminosity L(r), evaluated once the flow has settled and
become almost time-independent, is

òº -L r g dx dx R( ) . (59)2 3
0

1

We average L r( ) over radial shells between =r GM c30 2 and
=r GM c50 2 to obtain an average luminosity L. This is

equivalent to time-averaging at a single radius.
We perform five calculations at different accretion rates. We

evolve each system until the luminosity becomes stable. At
high accretion rate this can take as long as GM c400 3. The
characteristic number density for each simulation, mass

accretion rate

ò rº - -M g dx dx u˙ (60)2 3 1

(evaluated at the event horizon), and L are given in Table 4.
The resulting profiles of these five cases, along with that of
Case 5 with Compton scattering disabled, are shown in
Figure 16. The lack of cooling in the pure synchrotron case
indicates that Compton cooling dominates over synchrotron
cooling for the highest accretion rate model. The relationship
between luminosity and accretion rate when Compton scatter-
ing is active is shown in Figure 17.
We have checked self-convergence of a solution with

n = 1.51 × 1010 cm−3 (between Cases 4 and 5 in Table 4) in
steady state at t = 200M. The expected convergence behavior
for Monte Carlo-dominated error is shown in Figure 18.
Our models show that Compton cooling is important for

Bondi accretion near the Eddington rate, and that—for our
assumed field configuration—synchrotron cooling is compara-
tively unimportant. Although here we find appreciable cooling
only close to the Eddington rate, we expect that for near-
Keplerian accretion flows Compton scattering will become
dynamically important at lower accretion rates, as individual

Figure 15. Spectrum of superphotons at r ≈ ri for the radiating atmosphere
test, showing good correspondence to the expected Planck spectrum.

Table 4
Parameters for Radiating Bondi Accretion

Case n ṁ L
(cm−3) LEdd

1 3.0 × 106 4.01 × 10−7 2.03 × 10−14

2 3.0 × 107 4.01 × 10−6 1.46 × 10−12

3 3.0 × 108 4.01 × 10−5 2.08 × 10−10

4 3.0 × 109 4.01 × 10−4 5.81 × 10−7

5 3.0 × 1010 4.01 × 10−3 3.05 × 10−4

Figure 16. Fluid and radiation profiles for the radiating Bondi problem. Case 1
is shown in purple, Case 2 in teal, Case 3 in red, Case 4 in green, and Case 5 in
blue. The dashed line shows Case 5 without Compton scattering.

Figure 18. Self-convergence for the radiating Bondi problem near the
Eddington limit. Dashed lines show convergence µ -Ns

1 2.

Figure 17. Efficiency of accretion for the radiating Bondi problem.
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fluid elements will have more time to cool (their radial velocity
is lower) before accreting onto the black hole.

5.2. Axisymmetric Radiating Kerr Black Hole Accretion

As another preliminary application of bhlight we consider
the effect of radiation on an intermediate accretion rate black
hole accretion flow. Recall that for systems with L ∼ 10−9 LEdd
(like Sgr A*) radiation will have little effect since the cooling
timescale is long compared to the accretion timescale. This is
the classical RIAF regime. For systems with L ∼ 10−5 LEdd
(like M87) the effect of radiation depends on temperature and
the distribution function of the electrons, but in certain
circumstances radiation interactions—especially Compton
cooling—can cool the flow on timescales comparable to or
shorter than the accretion timescale.

Figure 19. Torus temperature Θe and comoving radiation energy density mn
m nR u u at t = 1500M.

Figure 20. Comparison of gas density ρ between GRMHD and bhlight torus calculations. Note especially that for the bhlight result, the disk is relatively thin.

Figure 21. Shell-averaged density-weighted temperature for the torus problem
in bhlight and ideal GRMHD at t = 2000M.
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Here we consider an axisymmetric accretion flow with
parameters inspired by M87. We set black hole mass
M = 6.6 × 109Me following Gebhardt et al. (2011) and
dimensionless spin a* = 0.9375, and we adjust  so that

» ´ -ṁ 6.3 10 6 (Kuo et al. 2014). Although the distribution
functions for ions and electrons in M87-like systems probably
contain multiple components, we adopt thermal distributions
for both and set the ion and electron temperatures Ti = Te. Ti/Te
may strongly affect the dynamics of this system; essentially, it
controls the cooling rate. We set the adiabatic index γ = 13/9,
appropriate for ionized hydrogen when kT m ci p

2 and

kT m ce e
2. We include synchrotron emission for a relativis-

tic, thermal distribution of electrons (emissivity given by
Equation (72) of Leung et al. 2011), thermal absorption, and
Compton scattering. Bremsstrahlung is neglected, as it is a
small correction to the emissivity within ∼103 M of the black
hole for such intermediate accretion rate systems (e.g., Narayan
& Yi 1995).

The initial conditions are a Fishbone–Moncrief torus (Fish-
bone & Moncrief 1976) with an inner radius at GM c6 2 and
pressure maximum at GM c12 2. We extend this configuration
by adding a weak poloidal magnetic field that follows
isodensity contours, using the same procedure as in McKinney
& Gammie (2004), but with the vector potential modified by a

qcos factor to produce a two-loop configuration. The field
strength is normalized so that β has a global minimum value of
100. Small perturbations are applied to the internal energy to
efficiently initiate the MRI. No radiation is present in the initial
conditions.

We use the MKS coordinates (see Section 3.5), with r0 = 0
and hs = 0.3. The grid runs from =r 0.98

+ - a GM c(1 1 )
*
2 2 to =r GM c40 2, and from θ = 0 to

θ = π. We impose outflow boundary conditions on both the
fluid and radiation at the inner and outer radial boundaries, and
reflecting polar boundary conditions. In this instance we adopt

the piecewise parabolic method for reconstruction. We set the
CFL number to 0.7, and evolve the system until t = 2000M.
To accurately sample cooling due to scattering events, we

bias the scattering via the method given in Section 3.2.7 such
that µ Qbs e

2. To determine the absolute number of super-
photons in steady state, we require only that the bolometric
light curve be satisfactorily resolved (here, ∼1.1 × 106 super-
photons at any one time). In the future we will more carefully
consider the resolution requirement for these models.
We find qualitative differences between the radiative torus

simulated in bhlight and the same model evolved with
ideal GRMHD due mainly to Compton cooling in the hot,
dense regions of the flow. Figure 19 shows fluid temperature
and comoving radiation energy density at =t M2000 .
Figure 20 shows density contours at t = 2000M for the two
models. Figure 21 shows shell-averaged density-weighted
temperature,

ò
ò

r

r
Q º

- Q

-

g dx dx

g dx dx
, (61)e

2 3
e

2 3

as a function of radius for both bhlight and ideal GRMHD
calculations; evidently the plasma is significantly cooler in the
model with radiation interactions. Notice, however, that our
single temperature model may be having an unrealistically
strong dynamical effect; at these accretion rates the ions are
likely imperfectly coupled to the electrons.
We evaluate the luminosity L, Equation (59), at large radius

by integrating over all zones in a spherical shell. Figure 22
shows L and the radiative efficiency h = L Mc˙ 2. The mean η
we find between t = 1750M and t = 2000M, há ñ = 0.51, where

ò
ò

h º
dt L

dt Mc˙
, (62)

2

is high compared to the thin disk value, »0.18 (for this a*).
Most of this energy is extracted by Compton scattering at

Figure 22. Torus luminosity, instantaneous efficiency η, and mass accretion rate as a function of time. The dashed line denotes the thin disk efficiency at this spin. The
gray region indicates the portion of η prior to the onset of accretion across the horizon which we omit.
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~ -r GM c10 15 2. This high efficiency is a consequence of
the flow having not yet reached steady state.

We plan to explore radiative flows at intermediate accretion
rates with more sophisticated treatments of the electron physics
in future work.

6. CONCLUSION

We have introduced bhlight, which in coupling a second
order Godunov scheme to a frequency-dependent Monte Carlo
radiative transfer scheme, provides a full solution to the
equations of GRRMHD. bhlight displays convergence on a
number of test problems, and we have demonstrated evolution
of our target application: relativistic accretion flows at
moderate accretion rate. bhlight enables more nearly
ab initio study of flows in this regime, which have historically
proven resistant to other methods of inquiry.

Numerical schemes have limitations. Apart from failure modes
related to large optical depths and large radiation pressures
mentioned previously (which prohibit near-Eddington studies as
of this writing), Monte Carlo techniques are simply expensive,
particularly when geodesics are nontrivial. The axisymmetric
torus problem we reported was performed on one eight-core node
(using mpirun to alternate between fluid and radiation MPI
sectors) for 146 hr, achieving approximately 9.5 × 104 super-
photon updates (interactions and geodesic steps) per core-second.

In comparison, the pure GRMHD torus run required only 69 core-
hours, about 17 times less expensive even at this low superphoton
resolution. The true minimum relative cost of bhlight over
harm, however, will depend on the required resolution in the
specific intensity for the particular problem at hand.
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APPENDIX A
RADIATION BOUNDARY CONDITIONS

In the general coordinate frame, certain boundary conditions on the superphotons required for test problems in bhlight are more
complex than in the nonrelativistic case. Here we review such boundaries as used.

A.1 Reflecting Boundary Conditions

The static atmosphere test in Section 4.7 uses reflecting boundaries that are aligned with the coordinates. How should one apply
the reflecting boundary conditions to the radiation field? This is not trivial in Kerr–Schild coordinates where the naive approach of
simply changing the sign of the radial component of the wavevector is wrong, because the radial component of the shift does not
vanish.

When a photon crosses the boundary, we build an orthonormal tetrad with time component =me u( , 0, 0, 0)t
t

( ) (i.e., the tetrad is

stationary in the coordinate, and hence the boundary, frame) and one spatial component that is normal to the boundary. We transform
the wavevector to the tetrad frame, reverse the normal component of the wavevector, and transform back to the coordinate frame.

A.2 Equilibrium Boundary Conditions

For problems with fluid inflow across the boundary (e.g., the relativistic shocks in Section 4.6) the fluid advects a thermal radiation
field with it across the boundary. How should one sample the incoming photons on the boundary? The problem is that one is
sampling a flux rather than the distribution function itself.

We have found that the simplest procedure is to sample the distribution function and multiply the weights in the sample by qcos ,
where θ is the angle between the wavevector and the normal to the boundary.

APPENDIX B
THE RADIATING ATMOSPHERE UNDER FULL TRANSFER

We revisit the analytic solution to the radiating atmosphere problem described in Section 4.7, in which fluid and radiation confined
in the Schwarzschild spacetime between two reflective spherical shells maintain a static atmosphere, without resorting to any closure
for describing the radiation.

Consider the relativistic transfer equation in invariant form (ignoring scattering),

l n n
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which may be rewritten in terms of the invariant differential optical depth t na lº nd d (and noting that the Planck function

a=n n nB j , i.e., Kirchoffʼs law applies) to give

t n n n

æ
è
ççç

ö
ø
÷÷÷ =

æ
è
ççç

ö
ø
÷÷÷ -

æ
è
ççç

ö
ø
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n n nd

d

I B I
, (64)

3 3 3

where all quantities in brackets are again invariant.
We adopt the ansatz for the fluid temperature distribution - = ¥g T r T( )00 from Section 4.7. Consider also the frequency

w = - m
mk u of a superphoton at radius r in the Schwarzschild spacetime. The four-velocity of a local frame not moving with respect

to the coordinate system is = -mu g(1 , 0, 0, 0)00 : then, w = - -k g0 00 . The invariant Planck function n =nB 3

nh c f h k T( ) ( )4 2
B . However, n p= - ¥h k T hk k T2B 0 B is constant along geodesics; nnB 3 is therefore also constant along every ray.

For reflecting boundary conditions, rays of the intensity Iν do not terminate; they instead repeatedly reflect off the boundaries all
the way back to t  ¥d . Because nnB 3 is constant along every ray, for the stationary system we have n n=n nI B3 3 everywhere.
Our assumed temperature distribution is therefore consistent with the full transfer equation, and the solution presented in Section 4.7
is exact for all optical depths.

APPENDIX C
LINEAR MODES IN RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS

We present the linearized equations of radiation magnetohydrodynamics in flat spacetime, assuming the Eddington closure (Farris
et al. 2008) with a gray absorption opacity κ and setting kB = c = 1. The governing equations are then given in terms of divergences
of the matter four-current and the MHD and radiation stress–energy tensors, along with the magnetic induction equation. In plane-
parallel symmetry, we search for wave solutions of the form r=P u u u B( , , , , ,1 2 1 r dr= +B E F F u, , , ) ( ,2 1 2

0 0

d d d d+ +u u u B B B, , , , ,1 2
0 0

2 d d d+E E F F, , )0
1 2 (i.e., we confine variation to a plane), where d wµ -t ikxexp( ) is a small

perturbation, and g r= -E a u(( 1) )0 R 0 0
4 to enforce radiative equilibrium of the background state. We write the linearized systems

in the form ωδP = AδP; the dispersion relation is then w- =Adet( ) 0. We find that the matrix A is

r

k
k r

g kr

g kr kr

g kr kr

k
kr

kr

g kr kr

g kr kr

æ

è

ççççççççççççççççççççççççççççççççççççççççççççççççç

-
-

-

- - -

+

- -

+
-

- - - -

-

+
-

- -

- -

+

- -

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

ik

E
E

u
ik u

ik C

C

iB k

C B

C

C

B

C

ik B

C

iB k

C B

B

C

C

C

ikB ikB

E
E

u
ikE ik

ikC E

C

ikB E

C B
ik

C

C

B E

C

ikB E

C

ikB E

C B

B E

C

C

C

0 0 0 0 0 0 0

4
4

0 0 0 0

0
( 1)

0 0 0

0
( 1)

0 0 0

0 0 0 0 0 0

4
4 4

3
0 0 0

0
4 ( 1)

3
0 0

4

3( )

1

3 3

4

3

0
4 ( 1)

3
0 0

4

3( )
0

4

3 3

0

0
0 0

0
0 0

2

1

0

2 0
2

0 2

1

0
2

0

1

0
2

1

0

2 0
2

0
2

0

1

0 2

1

0 0

0
0 0

0
0 0

2 0

1

0 0

2 0
2

3 0

1

0
2

0 0

1

0
2

0

1

0 0

2 0
2

0 0
2

0

1

3 0

1

where

g g r gr r

g r

= + + + +

= + +
= +

( )C u u B u

C B u

C C E C

2 2 ,

,

3 4 .

1
2

0
2

0 0 0
2

0 0 0
2

2 0
2

0 0

3 1 0 2

19

The Astrophysical Journal, 807:31 (20pp), 2015 July 1 Ryan, Dolence, & Gammie



REFERENCES

Abbott, D. C., & Lucy, L. B. 1985, ApJ, 288, 679
Abdikamalov, E., Burrows, A., Ott, C. D., et al. 2012, ApJ, 755, 111
Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, ApJ,

332, 646
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Begelman, M. C. 2014, arXiv:1410.8132
Canfield, E., Howard, W. M., & Liang, E. P. 1987, ApJ, 323, 565
Castor, J. I. 2004, in Radiation Hydrodynamics, ed. J. I. Castor (Cambridge,

UK: Cambridge University Press), 368
Dexter, J., McKinney, J. C., & Agol, E. 2012, MNRAS, 421, 1517
Doeleman, S., Agol, E., Backer, D., et al. 2009, in Astro2010: The Astronomy

and Astrophysics Decadal Survey, 68
Dolence, J. C., Gammie, C. F., Mościbrodzka, M., & Leung, P. K. 2009, ApJS,

184, 387
Farris, B. D., Li, T. K., Liu, Y. T., & Shapiro, S. L. 2008, PhRvD, 78, 024023
Fishbone, L. G., & Moncrief, V. 1976, ApJ, 207, 962
Fragile, P. C., Gillespie, A., Monahan, T., Rodriguez, M., & Anninos, P. 2012,

ApJS, 201, 9
Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, ApJ, 589, 444
Garain, S. K., Ghosh, H., & Chakrabarti, S. K. 2012, ApJ, 758, 114
Gebhardt, K., Adams, J., Richstone, D., et al. 2011, ApJ, 729, 119
Ghosh, H., Garain, S. K., Giri, K., & Chakrabarti, S. K. 2011, MNRAS,

416, 959
Harries, T. J. 2015, arXiv:1501.05754
Hawley, J. F., Smarr, L. L., & Wilson, J. R. 1984, ApJ, 277, 296
Haworth, T. J., & Harries, T. J. 2012, MNRAS, 420, 562
Hirose, S., Krolik, J. H., & Blaes, O. 2009, ApJ, 691, 16
Hirose, S., Blaes, O., Krolik, J. H., Coleman, M. S. B., & Sano, T. 2014, ApJ,

787, 1
Jiang, Y.-F., Stone, J. M., & Davis, S. W. 2012, ApJS, 199, 14
Jiang, Y.-F., Stone, J. M., & Davis, S. W. 2014a, ApJS, 213, 7
Jiang, Y.-F., Stone, J. M., & Davis, S. W. 2014b, ApJ, 796, 106
Kunz, M. W., Schekochihin, A. A., & Stone, J. M. 2014, PhRvL, 112, 205003

Kuo, C. Y., Asada, K., Rao, R., et al. 2014, ApJL, 783, L33
Leung, P. K., Gammie, C. F., & Noble, S. C. 2011, ApJ, 737, 21
Lindquist, R.-W. 1966, AnPhy, 37, 487
McKinney, J. C., & Gammie, C. F. 2004, ApJ, 611, 977
McKinney, J. C., Tchekhovskoy, A., Sadowski, A., & Narayan, R. 2014,

MNRAS, 441, 3177
Mignone, A., & McKinney, J. C. 2007, MNRAS, 378, 1118
Mihalas, D., & Mihalas, B. W. 1984, Foundations of Radiation Hydrodynamics

(New York: Oxford University Press), 731
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., & Shiokawa, H. 2011, ApJ,

735, 9
Narayan, R., & Yi, I. 1995, ApJ, 452, 710
Nobili, L., Turolla, R., & Zampieri, L. 1991, ApJ, 383, 250
Noble, S. C., Gammie, C. F., McKinney, J. C., & del Zanna, L. 2006, ApJ,

641, 626
Noebauer, U. M., Sim, S. A., Kromer, M., Röpke, F. K., & Hillebrandt, W.

2012, MNRAS, 425, 1430
Park, M.-G. 1990, ApJ, 354, 64
Riquelme, M., Quataert, E., & Verscharen, D. 2014, arXiv:1402.0014
Roedig, C., Zanotti, O., & Alic, D. 2012, MNRAS, 426, 1613
Roth, N., & Kasen, D. 2014, arXiv:1404.4652
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