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ABSTRACT

We report on a method, PUSH, for artificially triggering core-collapse supernova explosions of massive stars in
spherical symmetry. We explore basic explosion properties and calibrate PUSH to reproduce SN 1987A
observables. Our simulations are based on the GR hydrodynamics code AGILE combined with the neutrino
transport scheme isotropic diffusion source approximation for electron neutrinos and advanced spectral leakage for
the heavy flavor neutrinos. To trigger explosions in the otherwise non-exploding simulations, the PUSH method
increases the energy deposition in the gain region proportionally to the heavy flavor neutrino fluxes. We explore
the progenitor range 18–21 ⊙M . Our studies reveal a distinction between high compactness (HC; compactness
parameter ξ > 0.451.75 ) and low compactness (LC; ξ < 0.451.75 ) progenitor models, where LC models tend to
explode earlier, with a lower explosion energy, and with a lower remnant mass. HC models are needed to obtain
explosion energies around 1 Bethe, as observed for SN 1987A. However, all the models with sufficiently high
explosion energy overproduce 56Ni and fallback is needed to reproduce the observed nucleosynthesis yields.
57–58Ni yields depend sensitively on the electron fraction and on the location of the mass cut with respect to the
shell structure of the progenitor. We identify a progenitor and a suitable set of parameters that fit the explosion
properties of SN 1987A assuming 0.1 ⊙M of fallback. We predict a neutron star with a gravitational mass of 1.50

⊙M . We find correlations between explosion properties and the compactness of the progenitor model in the
explored mass range. However, a more complete analysis will require exploring of a larger set of progenitors.

Key words: hydrodynamics – stars: neutron – supernovae: general – supernovae: individual (SN 1987)

1. INTRODUCTION

Core-collapse supernovae (CCSN) occur at the end of the
life of massive stars ( ≳ − ⊙M 8 10 M ). In these violent events,
the core of the star gravitationally collapses and triggers a
shock wave, leading to the supernova explosion. Despite many
decades of theoretical and numerical modeling, the detailed
explosion mechanism is not yet fully understood. Simulations
in spherical symmetry, including detailed neutrino transport
and general relativity, fail to explode self-consistently, except
for the lowest-mass core-collapse progenitors (Fischer
et al. 2010; Hüdepohl et al. 2010). There are many ongoing
efforts using multi-dimensional fluid dynamics, magnetic
fields, and rotation to address various remaining open questions
in core-collapse supernova theory (see, e.g., Janka 2012; Janka
et al. 2012; Burrows 2013). Among those are also technical
issues, for example the consequences of neutrino transport
approximations, the convergence of simulation results, or the
dependence of the simulation outcome on the dimensionality of
the model. Awareness of this dependence is especially
important because not all investigations can be performed in
a computationally very expensive three-dimensional (3D)
model. While sophisticated multi-dimensional models are
needed for an accurate investigation of the explosion mechan-
ism, they are currently too expensive for systematic studies that
have to be based on a large number of progenitor models. But
such a large number of simulations is required to address the
following fundamental questions: What are the conditions for
explosive nucleosynthesis as a function of progenitor proper-
ties? What is the connection between the progenitor model and
the compact remnant? How do these aspects relate to the

explosion dynamics and energetics? The lack of readily
calculable supernova simulations with self-consistent explo-
sions is a problem for many related fields, in particular for
predicting nucleosynthetic yields of supernovae. As we will
continue to argue below, spherically symmetric models of the
explosion of massive stars are still a pragmatic method to study
large numbers of stellar progenitors, from the onset of the
explosion up to several seconds after core bounce.
In the past, supernova nucleosynthesis predictions relied on

artificially triggered explosions, either using a piston (e.g.,
Woosley & Weaver 1995; Limongi & Chieffi 2006; Chieffi &
Limongi 2013) or a thermal energy bomb (e.g., Thielemann
et al. 1996; Umeda & Nomoto 2008). For the piston model, the
motion of a mass point is specified along a ballistic trajectory.
For the thermal energy bomb, explosions are triggered by
adding thermal energy to a mass zone. In both cases, additional
energy is added to the system to trigger an explosion. In
addition, the mass cut (bifurcation between the proto-neutron
star (PNS) and the ejecta) and the explosion energy are free
parameters which have to be constrained from the mass of the
56Ni ejecta. While these approaches are appropriate for the
outer layers, where the nucleosynthesis mainly depends on the
strength of the shock wave, they are clearly incorrect for the
innermost layers. There, the conditions and the nucleosynthesis
are directly related to the physics of collapse and bounce, and
to the details of the explosion mechanism. Besides the piston
and thermal bomb methods, another widely used way to
artificially trigger explosions is the so-called “neutrino light-
bulb.” In this method, the PNS is excised and replaced with an
inner boundary condition which contains an analytical
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prescription for the neutrino luminosities. The neutrino
transport is replaced by neutrino absorption and emission
terms in optically thin conditions. Suitable choices of the
neutrino luminosities and energies can trigger neutrino-driven
explosions (e.g., Burrows & Goshy 1993; Yamasaki &
Yamada 2005; Iwakami et al. 2008, 2009; Yamamoto
et al. 2013).The light-bulb method has also been used to
investigate models with respect to their dimensionality. The
transition from spherical symmetry (1D) to axisymmetry (2D)
delivers the new degree of freedom to bring cold accreting
matter down to the neutrinospheres while matter in other
directions can dwell longer in the gain region and efficiently be
heated by neutrinos (Herant et al. 1994). The standing
accretion shock instability (SASI; e.g., Blondin et al. 2003;
Blondin & Mezzacappa 2006; Scheck et al. 2008; Iwakami
et al. 2009; Fernández 2010; Guilet & Foglizzo 2012) strongly
contributes to this effect in 2D light-bulb models and leads to
strong polar oscillations of expansion during the unfolding of
the explosion (Murphy & Burrows 2008). It was first expected
that the trend toward a smaller critical luminosity for successful
explosions will continue as one goes from 2D to 3D models
(Nordhaus et al. 2010; Handy et al. 2014), but other studies
pointed toward the contrary (Hanke et al. 2012; Couch 2013).
One has to keep in mind that a light bulb approach might not
include the full coupling between the accretion rate and the
neutrino luminosity. However, recent models that derive the
neutrino luminosity from a consistent evolution of the neutron
star support the result that 2D models show faster explosions
than 3D models (Müller et al. 2012a; Bruenn et al. 2013;
Dolence et al. 2013; Takiwaki et al. 2014). Most important for
this work is a finding that is consistent with all above
investigations: in 3D there is no preferred axis. The 3D degrees
of freedom lead to a more efficient cascade of fluid instabilities
to smaller scales. in spite of vivid fluid instabilities, the 3D
models show in their overall evolution a more pronounced
sphericity than the 2D models. Hence their average conditions
resemble more closely the shock expansion that would be
obtained by an exploding 1D model.

In a 1D model with detailed Boltzmann neutrino transport
two other methods to trigger explosions using neutrinos have
been used (Fröhlich et al. 2006; Fischer et al. 2010). These
“absorption methods” aim at increasing the neutrino energy
deposition in the heating region by mimicking the expected net
effects of multi-dimensional simulations. In one case, the
neutral-current scattering opacities on free nucleons are
artificially decreased to values between 0.1 and 0.7 times the
original values. This leads to increased diffusive neutrino fluxes
in regions of very high density. The net results are a faster
deleptonization of the PNS and higher neutrino luminosities in
the heating region. In the other case, explosions are enforced by
multiplying the reaction rates for neutrino absorption on free
nucleons by a constant factor. To preserve detailed balance, the
emission rates also have to be multiplied by the same factor.
This reduces the timescale for neutrino heating and again
results in a more efficient energy deposition in the heating
region. However, the energy associated with these explosions
were always weak.

Recently, Ugliano et al. (2012) have presented a more
sophisticated light-bulb method to explode spherically sym-
metric models using neutrino energy deposition in post-shock
layers. They use an approximate, gray neutrino transport and
replace the innermost 1.1 ⊙M of the PNS by an inner boundary.

The evolution of the neutrino boundary luminosity is based on
an analytic cooling model of the PNS, which depends on a set
of free parameters. These parameters are set by fitting
observational properties of SN 1987A for progenitor masses
around 20 ⊙M (see also Ertl et al. 2015).
Artificial supernova explosions have been obtained by other

authors using a gray leakage scheme that includes neutrino
heating via a parametrized charged-current absorption scheme
(O’Connor & Ott 2010) in spherically symmetric simulations
(O’Connor & Ott 2011).
In this paper, we report on a new approach, PUSH, for

artificially triggering explosions of massive stars in spherical
symmetry. In PUSH, we deposit a fraction of the luminosity of
the heavy flavor neutrinos emitted by the PNS in the gain
region to increase the neutrino heating efficiency. We ensure an
accurate treatment of the electron fraction of the ejecta through
a spectral neutrino transport scheme for νe and ν̄e and a detailed
evolution of the PNS. We calibrate our new method by
comparing the explosion energies and nucleosynthesis yields of
different progenitor stars with observations of SN 1987A. This
method provides a framework to study many important aspects
of CCSN for large sets of progenitors: explosive supernova
nucleosynthesis, neutron-star remnant masses, explosion ener-
gies, and other aspects where full multi-dimensional simula-
tions are still too expensive and traditional piston or thermal
bomb models do not capture all the relevant physics. With
PUSH we can investigate general tendencies and perform
systematic parameter variations, providing complementary
information to “ab-initio” multi-dimensional simulations.
The article is organized as follows. Section 2 describes our

simulation framework, the stellar progenitor models, the new
method PUSH, and our post-processing analysis. In Section 3,
we present a detailed exploration of the PUSH method and the
results of fitting it to observables of SN 1987A. We also
analyze aspects of the supernova dynamics and progenitor
dependency. In Section 4, we discuss further implications of
our results and also compare with other works from the
literature. A summary is given and conclusions are drawn in
Section 5.

2. METHOD AND INPUT

2.1. Hydrodynamics and Neutrino Transport

We make use of the general relativistic hydrodynamics code
AGILE in spherical symmetry (Liebendörfer et al. 2001). For
the stellar collapse, we apply the deleptonization scheme of
Liebendörfer (2005). For the neutrino transport, we employ the
isotropic diffusion source approximation (IDSA) for the
electron neutrinos νe and electron anti-neutrinos νe (Liebendör-
fer et al. 2009), and an advanced spectral leakage scheme
(ASL) for the heavy-lepton flavor neutrinos ν ν ν ν ν= τ τ, , ,x μ μ

(Perego et al. 2014). We discretize the neutrino energy using
20 geometrically increasing energy bins, in the range

⩽ ⩽νE3 MeV 300 MeV. The neutrino reactions included in
the IDSA and ASL scheme are summarized in Table 1. They
represent the minimal set of the most relevant weak processes
in the post-bounce phase, particularly up to the onset of an
explosion. Note that electron captures on heavy nuclei and
neutrino scattering on electrons, which are relevant in the
collapse phase (see, for example, Mezzacappa &
Bruenn 1993c, 1993b), are not included explicitly in the form
of reaction rates, but as part of the parameterized
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deleptonization scheme. In the ASL scheme, we omit nucleon–
nucleon bremsstrahlung, ν ν+ ↔ + + +N N N N ¯x x, where N
denotes any nucleon (see, for example, Hannestad &
Raffelt 1998; Bartl et al. 2014). We have observed that its
inclusion would overestimate μ and τ neutrino luminosities
during the PNS cooling phase due to the missing neutrino
thermalization provided by inelastic scattering on electrons and
positrons at the PNS surface. However, we have also tested that
the omission of this process does not significantly change the μ
and τ neutrino luminosities predicted by the ASL scheme
before the explosion sets in. Thus, neglecting N–N brems-
strahlung is only relevant for the cooling phase, where it
improves the overall behavior when compared to simulations
obtained with detailed Boltzmann neutrino transport (e.g.,
Fischer et al. 2010).

The equation of state (EOS) of Hempel & Schaffner-Bielich
(2010; HS) that we are using includes various light nuclei, such
as alphas, deuterons, or tritons (details below). However, the
inclusion of all neutrino reactions for this detailed nuclear
composition would be beyond the standard approach imple-
mented in current supernova simulations, where only scattering
on alpha particles is typically included. To not completely
neglect the contributions of the other light nuclei, we have
added their mass fractions to the unbound nucleons. This is
motivated by their very weak binding energies and, therefore,
by the idea that they behave similarly as the unbound nucleon
component.

In all our models we use 180 radial zones which include the
progenitor star up to the helium shell. This corresponds to a
radius of R ≈ (1.3–1.5) × 1010 cm. With this setup, we model
the collapse, bounce, and onset of the explosion. The grid of
AGILE is adaptive, with more resolution where the gradients of
the thermodynamic variables are steeper. Thus, in the post-
bounce and explosion phases, the surface of the PNS and the
shock are the better resolved regions. The simulations are run
for a total time of 5 s, corresponding to ≳4.6 s after core
bounce. At this time, the shock has not yet reached the external
edge of our computational domain.

2.2. EOS and Nuclear Reactions

For the high-density plasma in nuclear statistical equilibrium
(NSE) the tabulated microphysical EOS HS(DD2) is used.
This supernova EOS is based on the model of Hempel &
Schaffner-Bielich (2010). It uses the DD2 parametrization for
the nucleon interactions (Typel et al. 2010), the nuclear masses
from Audi et al. (2003), and the Finite Range Droplet Model

(Möller et al. 1995a). 8140 nuclei are included in total, up to
Z = 136 and to the neutron drip line. The HS(DD2) was first
introduced in Fischer et al. (2014), where its characteristic
properties were discussed and general EOS effects in core-
collapse supernova simulations were investigated. Fischer et al.
(2014) showed that the HS(DD2) EOS gives a better
agreement with constraints from nuclear experiments and
astrophysical observations than the commonly used EOSs of
Lattimer & Swesty (1991) and Shen et al. (1998). Furthermore,
additional degrees of freedom, such as various light nuclei and
a statistical ensemble of heavy nuclei, are taken into account.
The nucleon mean-field potentials, which are used in the
charged-current rates, have been calculated consistently
(Hempel 2015). The maximum mass of a cold neutron star
for the HS(DD2) EOS is 2.42 ⊙M (Fischer et al. 2014), which
is well above the limits from Demorest et al. (2010) and
Antoniadis et al. (2013).
The EOS employed in our simulations includes an extension

to non-NSE conditions. In the non-NSE regime the nuclear
composition is described by 25 representative nuclei from
neutrons and protons to iron-group nuclei. The chosen nuclei
are the alpha-nuclei 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar,
40Ca, 44Ti, 48Cr, 52Fe, 56Ni, complemented by 14N and the
following asymmetric isotopes: 3He, 36S, 50Ti, 54Fe, 56Fe, 58Fe,
60Fe, 62Fe, and 62Ni. With these nuclei it is possible to achieve
a mapping of the abundances from the progenitor calculations
onto our simulations which is consistent with the provided
electron fraction, i.e., mantaining charge neutrality. All the
nuclear masses Mi are taken from Audi et al. (2003). To advect
the nuclear composition inside the adaptive grid, we implement
the Consistent Multi-fluid Advection method by Plewa and
Müller (1999). For given abundances, the non-NSE EOS is
calculated based on the same underlying description used in the
NSE regime (Hempel & Schaffner-Bielich 2010), but with the
following modifications: excited states of nuclei are neglected,
excluded volume effects are not taken into account, and the
nucleons are treated as non-interacting Maxwell–Boltzmann
gases. Such a consistent description of the non-NSE and NSE
phases prevents spurious effects at the transitions between the
two regimes.
Outside of NSE, an approximate α-network is used to follow

the changes in composition. Explosive Helium, Carbon, Neon,
and Oxygen burning are currently implemented in the
simulation. Note that the thermal energy generation by the
nuclear reactions is fully incorporated via the detailed non-NSE
treatment. We do not have to calculate explicitly any energy
liberation, but just the changes in the abundances. Within our
relativistic treatment of the EOS (applied both in the non-NSE
and NSE regime) energy conservation means that the specific
internal energy eint is not changed by nuclear reactions. This is
due to fact that eint includes the specific rest mass energy emass,
where emass is given by the sum over the masses of all nuclei
weighted with their yield =Y X Ai i i,

∑=e Y M . (1)
i

i imass

However, if we define the specific thermal energy eth as

= −e e e , (2)th int mass

the nuclear reactions will decrease the rest mass energy (i.e.,
increase the binding) and consequently increase the thermal

Table 1
Relevant Neutrino Reactions

Reactions Treatment Reference

ν+ ↔ +−e p n e IDSA a

ν+ ↔ ++e n p e IDSA a

ν ν+ ↔ +N N IDSA & ASL a
ν ν+ ↔ +A Z A Z( , ) ( , ) IDSA & ASL a

ν ν+ ↔ +τ τ
− +e e μ μ, , ASL a, b

Note. Nucleons are denoted by N. The nucleon charged current rates are based
on Bruenn (1985), but effects of mean-field interactions (Reddy et al. 1998;
Martínez-Pinedo et al. 2012; Roberts et al. 2012; Hempel 2015) are taken into
account.
References. (a) Bruenn (1985); (b) Mezzacappa & Bruenn (1993a).
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energy. This treatment of the non-NSE EOS is consistent with
the convention used in all high-density NSE EOSs.

Due to limitations of our approximate α-network, and
because we do not include any quasi-statistical equilibrium
description, we apply some parameterized burning for
temperatures between 0.3 and 0.4MeV. A temperature
dependent burning timescale is introduced, which gradually
transforms the initial non-NSE composition toward NSE. For
temperatures of 0.4 MeV and above, the non-NSE phase
always reaches a composition close to NSE and its thermo-
dynamic properties become very similar to the NSE phase of
the HS(DD2) EOS. Even though the two phases are based on
the same input physics, small, but unavoidable differences can
remain, due to the limited set of nuclei considered in non-NSE.
To assure a smooth transition for all conditions, we have
introduced a transition region as an additional means of
thermodynamic stability. We have chosen a parameterization in
terms of temperature and implement a linear transition in the
temperature interval from 0.40 to 0.44MeV. We check that the
basic thermodynamic stability condition >ds dT 0 is always
fulfilled.

2.3. Initial Models

For this study, we use solar-metallicity, non-rotating stellar
models from the stellar evolution code KEPLER (Woosley
et al. 2002). Our set includes 16 pre-explosion models with
zero-age main sequence (ZAMS) mass between 18.0 ⊙M and
21.0 ⊙M in increments of 0.2 ⊙M . These models have been
selected to have ZAMS mass around 20 ⊙M , similar to the
progenitor of SN 1987A (e.g., Podsiadlowski et al. 2007). We
label the models by their ZAMS mass. In Figure 1, the density
profiles of the progenitor models are shown. For each of them
the compactness parameter ξM is defined following O’Connor
& Ott (2011) by the ratio of a given mass M and the radius R
(M) which encloses this mass:

ξ ≡ ⊙M

R M

M

( ) 1000 km
. (3)M

Typically, either ξ1.75 or ξ2.5 are used. The compactness can be
computed at the onset of collapse or at bounce, as suggested by

O’Connor & Ott (2011). For our progenitors, the difference in
the compactness parameter between these two moments is not
significant for our discussions. Thus, for simplicity, in the
following we will use ξ1.75 computed at the onset of the collapse.
The progenitor models considered here fall into two distinct
families of compactness: low compactness (ξ < 0.45;1.75 LC
models) and high compactness (ξ > 0.451.75 ; HC models), see
Table 2. Figure 2 shows the compactness as function of ZAMS
mass for the progenitors of this study. The non-monotonous
behavior is a result of the evolution before collapse. The mass
range between 19 and 21 ⊙M is particularly prone to variations
of the compactness. For a detailed discussion of the behavior of
the compactness as function of ZAMS mass see Sukhbold &
Woosley (2014).

2.4. The PUSH Method

2.4.1. Rationale

The goal of PUSH is to provide a computationally efficient
framework to explode massive stars in spherical symmetry to
study multiple aspects of CCSN. The usage of a spectral
transport scheme to compute the νe and ν̄e luminosities provides
a more accurate evolution of Ye of the innermost ejecta, which
is a crucial aspect for nucleosynthesis. The neutrino luminos-
ities include the accretion contribution, as well as the
luminosity coming from PNS mantle and core. The accretion
luminosity depends not only on the accretion rate but also on
the evolution of the mass and radius of the PNS, which is
treated accurately and self-consistently in our models.
In order to trigger explosions in the otherwise non-exploding

spherically symmetric simulations, we rely on the delayed
neutrino-driven mechanism, which was first proposed by Bethe
& Wilson (1985). Despite the lack of consensus and
convergence of numerical results between different groups,
recent multi-dimensional simulations of CCSNe have shown
that convection, turbulence and SASI in the shocked layers
increase the efficiency at which νe and ν̄e are absorbed inside the
gain region, compared with spherically symmetric models (see,
for example, Janka & Mueller 1996; Nordhaus et al. 2010;
Hanke et al. 2012, 2013; Couch 2013; Dolence et al. 2013;
Melson et al. 2015). This effect, together with the simultaneous
increase in time that a fluid particle spends inside the gain
region (e.g., Murphy & Burrows 2008; Handy et al. 2014),
provides more favorable conditions for the development of an
explosion. Moreover, according to multi-dimensional explo-
sion models, the shock revival is followed by a phase where
continued accretion and shock expansion coexist over a time
scale of ≳1 s (e.g., Scheck et al. 2006; Marek & Janka 2009;
Bruenn et al. 2014; Melson et al. 2015). During this phase,
matter accreted through low-entropy downflows onto the PNS
continues to power an accretion luminosity. The re-ejection of
a fraction of this matter by neutrino heating accelerates the
shock and increases the explosion energy. The length of this
phase, the exact amount of injected energy, and its deposition
rate are still uncertain.
Inspired by the increase of the net neutrino heating that a

fluid element experiences due to the above mentioned multi-
dimensional effects, PUSH provides a more efficient neutrino
energy deposition inside the gain region in spherically
symmetric models. However, unlike other methods that use
electron flavor neutrinos to trigger artificial 1D explosions (see

Figure 1. Density profiles as function of ZAMS mass for the progenitor models
included in this study (18.0 ⊙M to 21.0 ⊙M ). HC models are shown in red, LC
models are shown in blue. The vertical line in the inset is located at 1.75 ⊙M
and indicates that mass at which the compactness parameter ξ1.75 is determined
(see Equation (3)).
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Section 1), in PUSH we deposit a fraction of the luminosity of
the heavy flavor neutrinos (νxʼs) behind the shock to ultimately
provide successful explosion conditions. This additional energy
deposition is calibrated by comparing the explosion energies
and nucleosynthesis yields obtained from our progenitor
sample with observations of SN 1987A. This ensures that our
artificially increased heating efficiency has an empirical
foundation. Thus, we can make predictions in the sense of an
effective model.

Despite the fact that νxʼs contribute only marginally to the
energy deposition inside the gain region in self-consistent
models (see, for example, Bethe & Wilson 1985) and that they
only show a weak dependence on the temporal variation of the

accretion rate (see, for example, Liebendörfer et al. 2004), their
usage presents a number of advantages for our purposes. They
represent one of the largest energy reservoirs available, but they
do not directly change the electron fraction Ye (unlike electron
flavor neutrinos). This allows us to trigger an explosion in 1D
simulations without modifying νe and ν̄e luminosities nor
changing charged current reactions. The νx luminosities are
calculated consistently within our model. They include
dynamical feedback from the accretion history, progenitor
properties of each individual model, and the cooling of the
forming compact object. As shown by O’Connor & Ott (2013)
in broad progenitor studies, during the accretion phase that
precedes the shock revival, the properties of the νx spectral
fluxes correlate significantly with the properties of νeʼs and ν̄eʼs.
Unlike the electron (anti-) neutrino luminosities, that in
spherically symmetric models decrease suddenly once the
shock has been revived, νx luminosities are only marginally
affected by the development of an explosion. This allows
PUSH to continue injecting energy inside the expanding shock
for a few hundreds of milliseconds after the explosion has set
in. Moreover, since this energy injection is provided by the νx

fluxes, it changes significantly between different progenitors
and correlates with the νe and ν̄e accretion luminosities (at least,
during the accretion phase).

2.4.2. Implementation

The additional energy deposition, that represents the main
feature of PUSH, is achieved by introducing a local heating
term, +Q t R( , )push (energy per unit mass and time), given by

 ∫=+
∞

+Q t r t q r E dE( , ) 4 ( ) ( , ) , (4)push
0

push

Table 2
Progenitor Properties

MZAMS ξ1.75 ξ2.5 Mprog MFe MCO MHe Menv

( ⊙M ) At collapse At bounce At collapse At bounce ( ⊙M ) ( ⊙M ) ( ⊙M ) ( ⊙M ) ( ⊙M )

18.2 0.37 0.380 0.173 0.173 14.58 1.399 4.174 5.395 9.186
18.6 0.365 0.375 0.170 0.170 14.85 1.407 4.317 5.540 9.313
18.8 0.357 0.366 0.166 0.166 15.05 1.399 4.390 5.613 9.435
19.6 0.282 0.288 0.118 0.117 13.37 1.461 4.959 6.243 7.125
19.8 0.334 0.341 0.135 0.135 14.54 1.438 4.867 6.112 8.428
20.0 0.283 0.287 0.125 0.125 14.73 1.456 4.960 6.215 8.517
20.2 0.238 0.241 0.104 0.104 14.47 1.458 5.069 6.342 8.125

18.0 0.463 0.485 0.199 0.199 14.50 1.384 4.104 5.314 9.187
18.4 0.634 0.741 0.185 0.185 14.82 1.490 4.238 5.459 9.366
19.0 0.607 0.715 0.191 0.191 15.03 1.580 4.461 5.693 9.341
19.2 0.633 0.737 0.191 0.192 15.08 1.481 4.545 5.760 9.325
19.4 0.501 0.535 0.185 0.185 15.22 1.367 4.626 5.860 9.365
20.4 0.532 0.594 0.192 0.192 14.81 1.500 5.106 6.376 8.433
20.6 0.742 0.95 0.278 0.279 14.03 1.540 5.260 6.579 7.450
20.8 0.726 0.904 0.271 0.272 14.34 1.528 5.296 6.609 7.735
21.0 0.654 0.764 0.211 0.212 13.00 1.454 5.571 6.969 6.026

Note. ZAMS mass, compactness ξ1.75 and ξ2.5 at the onset of collapse and at bounce, total progenitor mass at collapse (Mprog), mass of the iron core (MFe), carbon–
oxygen core (MCO), helium core (MHe), and mass of the hydrogen-rich envelope (Menv) at collapse for all the progenitor models included in this study. The top part of
the table includes the low-compactness progenitors (LC; ξ < 0.41.75 at collapse), the bottom part includes the high-compactness progenitors (HC; ξ > 0.451.75 at
collapse).

Figure 2. Compactness ξ1.75 as function of ZAMS mass for our pre-explosion
models at the onset of collapse (green crosses) and at bounce (magenta pluses).
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where

σ≡
ν+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q r E

m

E

m c πr

dL

dE
r E( , )

1

4

1

4
( , ), (5)

b e
push 0 2

2

2

x

with


σ = ≈ × −( )G m c

π c

4

( )
1.759 10 cm (6)

F e

0

2 2 2

4
44 2

being the typical neutrino cross-section, ≈ × −m 1.674 10 gb
24

an average baryon mass, and νdL dE πr( ) (4 )2
x the spectral

energy flux for any single νx neutrino species with energy E.
Note that all four heavy neutrino flavors are treated identically
by the ASL scheme, and contribute equally to +Qpush (see the
factor 4 appearing in Equation (4)).

The term  r E( , ) in Equation (5) defines the spatial location
where +Q t r( , )push is active:


τ

=
> <

−

ν ν

ν

⎧
⎨⎪
⎩⎪ ( )

(7)

r E
ds dr e

r E
( , )

0 if 0 or ˙ 0

exp ( , ) otherwise
,

,e e

e

where τνe denotes the (radial) optical depth of the electron
neutrinos, s is the matter entropy, and ν νė , ¯e e the net specific
energy rate due to electron neutrinos and anti-neutrinos. The
two criteria above are a crucial ingredient in our description of
triggering CCSN explosions: PUSH is only active where
electron neutrinos are heating ( >ν νė 0,e e ) and where neutrino-
driven convection can occur ( <ds dr 0).

The term  t( ) in Equation (4) determines the temporal
behavior of +Q t r( , )push . Its expression reads

 = ×

⩽
− < ⩽ +

+ < ⩽
+ − < ⩽ +

> +

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪
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t t t t t t t

t t t t
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( )

0
( )

1
( )

0

,

(8)

push
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on rise on on rise

on rise off

off rise rise off off rise

off rise

and it is sketched in Figure 3. Note that throughout the article
we always measure the time relative to bounce, if not noted
otherwise.
The cumulative energy deposited by PUSH, Epush, can be

calculated from the energy deposition rate dE dtpush as

∫ ∫ ∫ ρ= ′ = ′+
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟E t

dE

dt
dt Q dV dt( ) .

(9)

t

t

t

t

V
push

push
push

on on gain

where Vgain is the volume of the gain region. Both these
quantities have to be distinguished from the corresponding
energy and energy rate obtained by IDSA:

∫ ∫ ∫ ρ= ′ = ν ν
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟E t

dE

dt
dt e dV dt( ) ˙ . (10)

t t

V
idsa

0

idsa

0
, ¯e e

gain

The definition of  t( ) introduces a set of (potentially) free
parameters:

1. kpush is a global multiplication factor that controls directly
the amount of extra heating provided by PUSH. The
choices of σ0 as reference cross-section and of the μ and τ
neutrino luminosity as energy reservoir suggest ≳k 1push .

2. ton sets the time at which PUSH starts to act. We relate ton
to the time when deviations from spherically symmetric
behavior appear in multi-dimensional models. Matter
convection in the gain region sets in once the advection
time scale τadv and the convective growth time scale τconv
satisfy τ τ ≳ 3adv conv (Foglizzo et al. 2006). For all the
models we have explored, this happens around
t = 0.06–0.08 s. In the above estimates,
τ = M M˙adv shock gain, where Ṁshock is the accretion rate at
the shock and Mgain the mass in the gain region, and

τ = −
−fconv B V

1 , where −fB V is the Brunt–Väisäla frequency.
Considering that τ ∼ −4 5 msconv , we expect

∼ −t 0.08 0.10 son , in agreement with recent multi-
dimensional simulations (see, for example, the 1D-2D
comparison of the shock position in Bruenn et al. 2013).

3. trise defines the time scale over which  t( ) increases from
zero to kpush. We connect trise with the time scale that
characterizes the growth of the largest multi-dimensional
perturbations between the shock radius (Rshock) and the
gain radius (Rgain) (e.g., Janka & Mueller 1996).
Foglizzo et al. 2006 showed that convection in the gain
region can be significantly stabilized by advection,
especially if τ τadv conv only marginally exceeds 3, and
that the growth rate of the fastest growing mode is
diminished. Thus, τ≫trise conv. On the other hand, a
lower limit to trise is represented by the overturn time
scale, τoverturn, defined as

τ ∼
−( )π R R

v
, (11)overturn

shock gain

gain

where 〈 〉v gain is the average fluid velocity inside the gain
region. In our simulations, we have found
τ ≈ 0.05 soverturn around and after ton. In case of a
contracting shock, SASIs are also expected to develop
around −0.2 0.3 s after bounce (Hanke et al. 2013).
Hence, we assume ≲ ≲ −( )t t0.05 s 0.30 srise on .

Figure 3. Function  t( ) determines the temporal behavior of the heating due to
PUSH. The quantity ton is robustly set by multi-dimensional models. We
consider a value of 80 ms in our calculations and a value of 120 ms for testing.
trise and kpush are set by our calibration procedure, spanning a range from 50 to
250 ms, and from 0 (PUSH off) to ∼4, respectively. Since we assume that the
explosion takes place within the first second after core bounce, we use

=t 1 soff .
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4. toff sets the time after which PUSH starts to be switched
off. We expect neutrino driven explosions to develop for

≲t 1 s due to the fast decrease of the luminosities during
the first seconds after core bounce. Hence, we fix

=t 1 s.off PUSH is not switched off suddenly at the
onset of the explosion, but rather starts decreasing
naturally even before 1 s after core bounce due to the
decreasing neutrino luminosities and due to the rarefac-
tion of the gain region above the PNS. The subsequent
injection of energy by neutrinos in the accelerating shock
is qualitatively consistent with multi-dimensional simula-
tions, where accretion and explosion can coexist during
the early stages of the shock expansion. The decrease of
dE dtpush on a time scale of a few hundreds of
milliseconds after the explosion has been launched makes
our results largely independent of the choice of toff for
explosions happening not too close to it.

While ton is relatively well constrained and toff is robustly set,
trise and especially kpush are still undefined. We will discuss
their impact on the model and on the explosion properties in
detail in Sections 3.1.1–3.1.3. Ultimately, we will fix them
using a calibration procure detailed in Section 3.4.

2.5. Post-processing Analysis

For the analysis of our results we determine several key
quantities for each simulation. These quantities are obtained
from a post-processing approach. We distinguish between the
explosion properties, such as the explosion time, the mass cut,
or the explosion energy, and the nucleosynthesis yields. The
former are calculated from the hydrodynamics profiles. The
latter are obtained from detailed nuclear network calculations
for extrapolated trajectories.

2.5.1. Accretion Rates and Explosion Properties

For the accretion process, we distinguish between the
accretion rate at the shock front, =M dM R dt˙ ( )shock shock , and
the accretion rate on the PNS, =M dM R dt˙ ( )PNS PNS . In these
expressions, M(R) is the baryonic mass enclosed in a radius R,
Rshock is the shock radius, and RPNS is the PNS radius that
satisfies the condition ρ = −R( ) 10 g cmPNS

11 3.
We consider the explosion time texpl as the time when the

shock reaches 500 km, measured with respect to core bounce
(see Ugliano et al. 2012). In all our models, the velocity of
matter at the shock front has turned positive at that radius and
the explosion has been irreversibly launched. There is no
unique definition of texpl in the literature and some other studies
(see Janka & Mueller 1996; Handy et al. 2014) use different
definitions, e.g., the time when the explosion energy increases
above 1048 erg. However, we do not expect that the different
definitions give qualitatively different explosion times.

For the following discussion, we will use the total energy of
the matter between a given mass shell m0 up to the stellar
surface:

∫= −E m t e m t dm( , ) ( , ) . (12)
M

m

total 0 total
0

M is the enclosed baryonic mass at the surface of the star and
m0 is a baryonic mass coordinate ( ⩽ ⩽m M0 0 ). etotal is the

specific total energy, given by

= + +e e e e , (13)total int kin grav

i.e., the sum of the (relativistic) internal, kinetic, and
gravitational specific energies. For all these quantities we
make use of the general-relativistic expressions in the
laboratory frame (Fischer et al. 2010). The integral in
Equation (12) includes both the portion of the star evolved in
the hydrodynamical simulation and the outer layers, which are
considered as stationary profiles from the progenitor structure.
The explosion energy emerges from different physical

contributions (see, for example, the appendix of Scheck
et al. 2006 and the discussion in Ugliano et al. 2012). In our
model, we are taking into account: (i) the total energy of the
neutrino-heated matter that causes the shock revival; (ii) the
nuclear energy released by the recombination of nucleons and
alpha particles into heavy nuclei at the transition to non-NSE
conditions; (iii) the total energy associated with the neutrino-
driven wind developing after the explosion up to the end of the
simulation; (iv) the energy released by the explosive nuclear
burning in the shock-heated ejecta; and (v) the total (negative)
energy of the outer stellar layers (also called the “overburden”).
We are presently not taking into account the variation of the
ejecta energy due to the appearance of late-time fallback. This
is justified as long as the fallback represents only a small
fraction of the total ejected mass.
To compute the explosion energy, we assume that the total

energy of the ejecta with rest-masses subtracted eventually
converts into kinetic energy of the expanding supernova
remnant at ≫t texpl. The quantity etotal includes the rest mass
contribution via eint, see Equation (2). Instead, if we want to
calculate the explosion energy, we have to consider the thermal
energy eth. Therefore, we define the specific explosion energy
as

= + +e e e e , (14)expl th kin grav

and the time- and mass-dependent explosion energy for the
fixed mass domain between m0 and M as

∫= −H m t e m t dm( , ) ( , ) . (15)
M

m

expl 0 expl
0

This can be interpreted as the total energy of this region in a
non-relativistic EOS approach, where rest masses are not
included.
The actual explosion energy (still time-dependent) is given

by

= ( )E t H m t t( ) ( ), , (16)expl expl cut

i.e., for the matter above the mass cut m t( )cut .
To identify the mass cut, we consider the expression

suggested by Bruenn in Fischer et al. (2010):

= ( )( )m t m H m t( ) max ( , ) , (17)cut expl

where the maximum is evaluated outside the homologous core
( ≳m 0.6 ⊙M ), which has large positive values of the specific
explosion energy eexpl once the PNS has formed due to the high
compression. In the outer stellar envelope, before the passage
of the shock wave, eexpl is dominated by the negative
gravitational contribution. However, it is positive in the
neutrino-heated region and in the shocked region above it.

7

The Astrophysical Journal, 806:275 (26pp), 2015 June 20 Perego et al.



Hence, the above definition of mcut locates essentially the
transition from gravitationally unbound to bound layers. The
final mass cut is obtained for =t tfinal.

Our final simulation time ≳t 4.6final s is always much larger
than the explosion time and, as we will show later, it allows
E t( )expl to saturate. Thus, we consider =E t t( )expl final as the
ultimate explosion energy of our models. In the following, if
we use Eexpl without the time as argument, we mean this final
explosion energy.

2.5.2. Nucleosynthesis Yields

To predict the composition of the ejecta, we perform
nucleosynthesis calculations using the full nuclear network
WINNET (Winteler et al. 2012). We include isotopes up to 211Eu
covering the neutron-deficient as well as the neutron-rich side
of the valley of β-stability. The reaction rates are the same as in
Winteler et al. (2012). They are based on experimentally
known rates where available and predictions otherwise. The n,
p, and alpha-captures are taken from Rauscher & Thielemann
(2000), who used known nuclear masses where available and
the Finite Range Droplet Model (Möller et al. 1995b) for
unstable nuclei far from stability. The β-decay rates are from
the nuclear database NuDat2.4

We divide the ejecta into different mass elements of 10−3 ⊙M
each and follow the trajectory of each individual mass element.
As we are mainly interested in the amounts of 56Ni, 57Ni, 58Ni,
and 44Ti, we only consider the 340 innermost mass elements
above the mass cut, corresponding to a total mass of 0.34 ⊙M .
The contribution of the outer mass elements to the production
of those nuclei is negligible.

For <t tfinal, we use the temperature and density evolution
from the hydrodynamical simulations as inputs for our
network. For each mass element we start the nucleosynthesis
post-processing when the temperature drops below 10 GK,
using the NSE abundances (determined by the current electron
fraction Ye) as the initial composition. For mass elements that
never reach 10 GK we start at the moment of bounce and use
the abundances from the approximate α-network at this point
as the initial composition. Note that for all tracers the further
evolution of Ye in the nucleosynthesis post-processing is
determined inside the WINNET network.

At the end of the simulations, i.e., =t tfinal, the temperature
and density of the inner zones are still sufficiently high
for nuclear reactions to occur ( ≈T 1 GK and ρ ≈ ×2.5 103

g cm−3). Therefore, we extrapolate the radius, density, and
temperature up to =t 100end s using:

= +r t r tv( ) , (18)final final

ρ ρ=
−⎛

⎝⎜
⎞
⎠⎟t

t

t
( ) , (19)final

final

3

ρ= [ ]T t T s t Y t( ) , ( ), ( ) , (20)efinal

where r is the radial position, v the radial velocity, ρ the
density, T the temperature, s the entropy per baryon, and Ye the
electron fraction of the mass zone. The temperature is
calculated at each timestep using the EOS of Timmes &
Swesty (2000). The prescription in Equations (18)–(20)
corresponds to a free expansion for the density and an adiabatic

expansion for the temperature (see, for example, Korobkin
et al. 2012).

3. FITTING AND RESULTS

To test the PUSH method, we perform a large number of
runs where we vary the free parameters and explore their
impact on the explosion properties. We also analyze in detail
the basic features of the simulations and of the explosions in
connection with the properties of the progenitor star. Finally,
we fit the free parameters in the PUSH method to reproduce
observed properties of SN 1987A for a progenitor star in the
range 18–21 ⊙M .

3.1. General Effects of Free Parameter Variations

3.1.1. kpush

The parameter with the most intuitive and strongest impact
on the explosion is kpush. Its value directly affects the amount of
extra heating which is provided by PUSH. As expected, larger
values of kpush (assuming all other parameters to be fixed)
result in the explosion being more energetic and occurring
earlier. In addition, a faster explosion implies a lower remnant
mass, as there is less time for the accretion to add mass to the
forming PNS.
Beyond these general trends with kpush, the detailed behavior

depends also on the compactness of the progenitor. For all 16
progenitor models in the 18–21 ⊙M ZAMS mass range, we
have explored several PUSH models, varying kpush between 0.0
and 4.0 in increments of 0.5 but fixing =t 80on ms and

=t 150rise ms. For ⩽k 1push , none of the models explode and
for =k 1.5push only the lowest compactness models explode.
Figure 4 shows the explosion energy, the explosion time, and
the (baryonic) remnant mass as function of the progenitor
compactness for =k 1.5, 2.0, 3.0, 4.0push . A distinct behavior
between LC and HC models is seen. The LC models
(ξ < 0.41.75 ) result in slightly weaker and faster explosions,
with less variability in the explosion energy and in the
explosion time for different values of kpush. Even for relatively
large values of kpush, the explosion energies remain below
1 Bethe (1 Bethe, abbreviated as 1 B, is equivalent to 1051 erg).
On the other hand, the HC models (ξ > 0.451.75 ) explode
stronger and later, with a larger variation in the explosion
properties. In this case, for high enough values of kpush (≳3.0),
explosion energies of ≳1 Bethe can be obtained.
The HC models also lead to a larger variability of the

remnant masses, even though this effect is less pronounced
than for the explosion time or energy. For the values of kpush
used here, we obtain (baryonic) remnant masses of approxi-
mately 1.4–1.9 ⊙M . The differences of LC and HC models will
be investigated further in Section 3.3.
There are three models with ξ≲ ≲0.37 0.501.75 (corre-

sponding to ZAMS masses of 18.0 (HC), 18.2 (LC), and 19.4
⊙M (HC)) which do not follow the general trend. In particular,

we find the threshold value of kpush for successful explosions to
be higher for these models. A common feature of these three
models is that they have the lowest Fe-core mass of all the
models in our sample and the highest central densities at the
onset of collapse.
The choice of trise does not affect the observed trends

with kpush: similar behaviors are also seen for
≲ ≲t50 ms 250 msrise .4 http://www.nndc.bnl.gov/nudat2/
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3.1.2. ton

To test the sensitivity of our method to the parameter ton, we
compute models with =k 2.0push and =t 0.15 srise for a very
large onset parameter, =t 120 mson . We compare the corre-
sponding results with the ones obtained for =t 80 mson . As
expected, the shock revival happens slightly later (with a
temporal shift of ∼30 ms), the explosion energies are smaller
(by ∼0.05 B) and the remnant masses are marginally larger (by
0.08 ⊙M ). However, all the qualitative behaviors described

above, as well as the distinction between HC and LC models,
do not show any dependence on ton. In the following, we will
always assume =t 80 mson .

3.1.3. kpush and trise

In Sections 3.1.1 and 3.1.2, we have investigated the
dependency of the model on the single parameters kpush and ton.
Now, we explore the role of trise in combination with kpush. For
this, we approximately fix the explosion energy to the
canonical value of ∼1 B for the HC models (corresponding,
for example, to the previously examined models with

=k 3.0push and =t 150 msrise ), and investigate which other
combinations of kpush and trise result in the desired explosion
energy. We restrict our explorations to a sub-set of progenitor
models (18.0 ⊙M , 18.6 ⊙M , 19.2 ⊙M , 19.4 ⊙M , 19.8 ⊙M , 20.0

⊙M , 20.2 ⊙M , and 20.6 ⊙M ) that spans the ξ1.75-range of all 16
progenitors. Figure 5 summarizes the explosion energies,
explosion times, and remnant masses for various combinations
of kpush and trise for progenitors of different compactness. The
required constraint can be obtained by several combinations of
parameters, which lie on a curve in the kpush–trise plane. As a
general result, a longer trise requires a larger kpush to obtain the
same explosion energy. This can be understood from the
different roles of the two parameters: while kpush sets the
maximum efficiency at which PUSH deposits energy from the
reservoir represented by the ν τμ, luminosity, trise sets the time
scale over which the mechanism reaches this maximum.
Together, they control the slope of  t( ) in the rising phase
(see Figure 3). A model with a longer rise time reaches its
maximum efficiency later, at which time the luminosities have
already decreased and a part of the absorbed energy has been
advected on the PNS or re-emitted in the form of neutrinos. To
compensate for these effects, a larger kpush is required for a
longer trise. This is seen in Figure 6, where we plot the
cumulative neutrino contribution +E E( )push idsa and its time
derivative for four runs of the 18.0 ⊙M progenitor model, but
with different combinations of trise and kpush. Runs with larger
parameter values require PUSH to deposit more energy (see

+E E( )push idsa at ≈t texpl), and the corresponding deposition
rates are shifted toward later times. Moreover, for increasing
values of trise, the explosion time texpl becomes larger, but the
interval between +t t( )on rise and texpl decreases. Despite the
significant variation of kpush between different runs, the peak
values of +d E E dt( )push idsa at the onset of the shock revival
that preceeds the explosion are very similar in all cases.

3.1.4. toff

Even though PUSH is active up to + ≳t t 1 soff rise , its
energy deposition reduces progressively on a timescale of a few
100 ms after the explosion has set in (see Figure 6). This shows
explicitly that the value of toff does not have important
consequences in our simulations, at least as long as we have
typical explosion times well below one second. The observed
decrease of the PUSH energy deposition rate after the launch of
the explosion will be explained in Section 3.3.

3.2. Contributions to the Explosion Energy

In the following, we discuss the contributions to and the
sources of the explosion energy, i.e., we investigate how the
explosion energy is generated. This is done in several steps:
first, we have a closer look at the neutrino energy deposition.

Figure 4. Explosion energies (top), explosion times (middle), and (baryonic)
remnant mass (bottom) as function of compactness for kpush 1.5, 2.0, 3.0, and
4.0, and fixed =t 0.15rise s for all progenitor models included in this study
(ZAMS mass between 18.0 and 21.0 ⊙M ). Non-exploding models are
indicated with = −E 0.5expl B in the top panel and are omitted in the other
panels.
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Then we show how it relates to the increase of the total energy
of the ejected layers, and finally how this increase of the total
energy transforms into the explosion energy. For this analysis,
we have chosen the 19.2 and 20.0 ⊙M ZAMS mass progenitor
models as representatives of the HC and LC samples,
respectively. We consider their exploding models obtained
with =t 80on ms, =t 150rise ms, and =k 3.0push . A summary
of the explosion properties can be found in Table 3.

The table shows that for both models neutrinos are required
to deposit a net cumulative energy +E E( )push idsa much larger
than Eexpl to revive the shock and to lead to an explosion that

matches the expected energetics. For the two reference runs,
when the PUSH contribution is switched off ( = +t t toff rise),
the cumulative deposited energy is ∼4 times larger than Eexpl.
This can also be inferred from Figure 6 for other runs. That
ratio increases further up to ∼5.5 at =t tfinal, due to the
neutrino energy deposition happening at the surface of the PNS
which generates the ν-driven wind. According to Equations (9)
and (10), Epush and Eidsa are the total energies which are
deposited in the (time-dependent) gain region. This neutrino
energy deposition increases the internal energy of the matter
flowing in that region. However, since the advection timescale
is much shorter than the explosion timescale, a large fraction of
this energy is advected onto the PNS surface by the accreting
mass before the explosion sets in, and hence does not
contribute to the explosion energy. Only the energy deposited
by neutrinos in the region above the final mass cut will
eventually contribute to the explosion energy.

Figure 5. Explosion energies (top), explosion times (middle), and (baryonic)
remnant mass (bottom) as function of compactness for pairs of kpush and trise,
and for the progenitor models with ZAMS mass 18.0, 18.6, 19.2, 19.4, 19.8,
20.0, 20.2, and 20.6 ⊙M .

Figure 6. Temporal evolution of the total neutrino energy contribution inside
the gain region +E E( )push idsa (solid lines) and of its time derivative (dashed
lines), for four runs with the same ZAMS progenitor mass (18.0 ⊙M ), but
different combinations of PUSH parameters trise and kpush. For each run, the
vertical lines correspond to = +t t ton rise (long, dashed) and to texpl (short,
dotted–dashed).

Table 3
Explosion Properties for Two Reference Runs

Quantity HC LC

ZAMS ( ⊙M ) 19.2 20.0

ξ1.75 (−) 0.637 0.283

ton (ms) 80

trise (ms) 150

kpush (−) 3.0

texpl (ms) 307 206

Mremn ( ⊙M ) 1.713 1.469

Eexpl (tfinal) (B) 1.36 0.57

Epush ( +t toff rise) (B) 3.51 1.08

Eidsa ( +t toff rise) (B) 2.76 1.01

Eidsa (tfinal) (B) 4.10 2.11

Note. These two runs are used to compare the HC and LC samples.
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To identify this relevant neutrino contribution, in Figure 7
we show the time evolution of the integrated net neutrino
energy deposition νE m t( , )cut

fin within the domain above the
fixed mass =m m t( )cut

fin
cut final . We choose mcut

fin to include all
the relevant energy contributions to the explosion energy, up to
the end of our simulations. Despite the significant differences
in magnitudes, the two models show overall similar evolutions.
If we compare νE m t( , )cut

fin at late times with
+ +E t t E t( ( ) ( ))push off rise idsa final from Table 3, we see that it

is significantly smaller. About two thirds of the energy
originally deposited in the gain region are advected onto the
PNS and hence do not contribute to the explosion energy.

In addition to the neutrino energy deposition, in Figure 7 we
also show the variation of the total energy for the domain above
mcut

fin, i.e., ΔE m t( , )total cut
fin = E m t( , )total cut

fin − E m t( , )total cut
fin

initial ,
where tinitial is the time when we start our simulation from the
stage of the progenitor star. The variation of the total energy
can be separated into the net neutrino contribution and the
mechanical work at the inner boundary, Δ = +νE E Etotal mech.
We note that in our general relativistic approach the variation
of the gravitational mass due to the intense neutrino emission
from the PNS is consistently taken into accout. It is visible in
Figure 7, that the net deposition by neutrinos makes up the
largest part of the change of the total energy. The transfer of
mechanical energy Emech is negative because of the expansion
work performed by the inner boundary during the collapse and
the PNS shrinking. However, it is significantly smaller in
magnitude than νE .

Next, we investigate the connection between the variation of
the total energy and the explosion energy. In Figure 7, we show
the variation of the explosion energy above the fixed mass mcut

fin,
i.e., Δ = −H m t H m t H m t( , ) ( , ) ( , )expl cut

fin
expl cut

fin
expl cut

fin
initial ,

together with the relative variation of the time-dependent
explosion energy, Δ = −E t E t H m t( ) ( ) ( , )expl expl expl cut

fin
initial .

It is obvious from Equations (2), (12), and (15) that the
difference between ΔH m t( , )expl cut

fin and ΔE m t( , )total cut
fin is

given by the variation of the integrated rest mass
energy, Δ = Δ − ΔH m t E m t E m t( , ) ( , ) ( , )expl cut

fin
total cut

fin
mass cut

fin .

In Figure 7, −ΔE m t( , )mass cut
fin can thus be identified as the

difference between the long-thin and the short-thick dashed
lines. We find that the overall rest mass contribution to the final
explosion energy is positive, but much smaller than the
neutrino contribution. Figure 7 also makes evident the
conceptual difference between Hexpl and Eexpl, and, at the

same time, shows that →H m t E t( , ) ( )expl cut
fin

expl for →t tfinal,

since we have chosen =m m t( )cut
fin

cut final . It also reveals that the
explosion energy Eexpl has practically saturated for ≳t 1 s,
while νE (and, consequently, ΔEtot and ΔHexpl) increases up to

tfinal, when mcut
fin is finally ejected. However, this energy

provided by neutrinos is mostly spent to unbind matter from the
PNS surface. Thus, the late ν-driven wind, which occurs for
several seconds after 1 s, still increases Eexpl, but at a relative
small, decreasing rate.
To summarize, the variation of the explosion energy above

mcut
fin can be expressed as

Δ = Δ − Δ

= +

− Δ

ν

( ) ( ) ( )
( ) ( )

( )

H m t E m t E m t

E m t E m t

E m t

, , ,

, ,

, . (21)

expl cut
fin

total cut
fin

mass cut
fin

cut
fin

mech cut
fin

mass cut
fin

The quantity −ΔEmass is positive, but significantly smaller than

νE m t( , )cut
fin . Emech is negative and also smaller than νE m t( , )cut

fin .
Therefore, we conclude that in our models the explosion energy
is mostly generated by the energy deposition of neutrinos in the
eventually ejected layers, especially within the first second after
bounce.
To give further insight, in Figure 8 we show the time

evolution of all energies which contribute to the explosion
energy together with the explosion energy itself, for both the
HC (left panel) and the LC model (right panel). We present
E m t( , )int cut

fin , −E m t( , )mass cut
fin , E m t( , )grav cut

fin , and E m t( , )kin cut
fin ,

which together give a complete decomposition of the explosion

Figure 7. Time evolution of the time- and mass-integrated variation of the total energy ΔEtotal (thin dashed line), of the neutrino net deposition energy νE (dot–dashed
line) and of the explosion energy for a fixed domain ΔHexpl (thick dashed line), above =m m t( )cut

fin
cut final , for the HC (left) and for the LC (right) reference runs

reported in Table 3. The evolution of the time-dependent explosion energy, ΔEexpl, is also shown (solid line). Both ΔHexpl and ΔEexpl are computed with respect to

H m t( , )expl cut
fin

initial . The difference between ΔE m t( , )total cut
fin and νE represents the mechanical work, Emech; the difference between ΔE m t( , )total cut

fin and ΔH m t( , )expl cut
fin

represents the released rest-mass energy, −ΔEmass.
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energy, i.e.,

= +

+ −

( ) ( ) ( )
( ) ( )

H m t E m t E m t

E m t E m t

, , ,

, , . (22)

expl cut
fin

kin cut
fin

grav cut
fin

int cut
fin

mass cut
fin

Compared to Figure 7 we are now not dealing with variations
anymore, but with absolute values. Gravitational energy
initially dominates ( <H m t( , ) 0expl cut

fin ), meaning that the

portion of the star above mcut
fin is still gravitationally bound.

The HC model is initially more bound than the LC model (for
example, = ≈ −H m t( , 0.1 s) 0.54 Bexpl cut

fin , versus

= ≈ −H m t( , 0.1 s) 0.40 Bexpl cut
fin , respectively). Before provid-

ing positive explosion energy, neutrinos have to compensate
for this initial negative binding energy as well as for the
negative Emech. This can be seen explicitly by expressing
Equation (21) as:

∼ +

+

ν( ) ( ) ( )H m t H m t E m t

E t

, , ,

( ),

(23)

expl cut
fin

final expl cut
fin

initial cut
fin

final

mech final

where we have neglected ΔEmass.
In the following, we discuss the evolution of the relevant

energies and, in particular, of the rest mass energy (see
Section 2.2 for the description of the (non-) NSE EOS and of
the related definitions of the internal, thermal and rest mass
energies). The innermost part of the ejecta (corresponding to
∼0.15 ⊙M and ∼0.07 ⊙M above mcut

fin for the 19.2 ⊙M and 20.0
⊙M model, respectively) is initially composed of intermediate

mass nuclei (mainly silicon and magnesium). In the first part of
the evolution, during the gravitational collapse, no significant
changes of Eint and Emass are observed in Figure 8. However,
when this matter enters the shock, it is quickly photodissociated
into neutrons, protons, and alpha particles. This process
increases the rest mass energy, as is visible in Figure 8
between roughly 200 and 300 ms for the HC model and
between 100 and 200 ms for the LC model. At the same time,
the release of gravitational energy of the still infalling matter

and the dissipation of kinetic energy happening at the shock,
together with the large and intense neutrino absorption on free
nucleons, increase Eint. Later, once neutrino heating has halted
the collapse and started the explosion, the expanding shock
decreases its temperature and free neutrons and protons inside
it recombine first into alpha particles and then into iron group
nuclei. At the same time, fresh infalling layers are heated by the
shock to temperatures above 0.44MeV, and silicon and
magnesium are converted into heavier nuclei and alpha
particles under NSE conditions, leading to an alpha-rich
freeze-out from NSE. The production of alpha particles, which
are less bound than the heavy nuclei initially present in the
same layers, limits the amount of rest mass energy finally
released. Thus, these recombination and burning processes
liberate in a few hundred milliseconds after texpl an amount of
rest mass energy larger but comparable to the energy spent by
the shock to photodissociate the infalling matter during shock
revival and early expansion. We have checked in post-
processing that the full nucleosynthesis network WINNET

confirms these results.

3.3. Explosion Dynamics and the Role of Compactness

The distributions of the explosion energy and explosion time
obtained with PUSH, as well as their variations in response to
changes of the model parameters, suggest a possible distinction
between HC and LC progenitors. In the following, we
investigate how basic properties of the models (e.g., the
accretion history or the neutrino luminosities), ultimately
connected with the compactness, relate to differences in the
explosion process and properties. For a similar discussion in
self-consistent 1D and 2D supernova simulations, see Suwa
et al. (2014). Again, we choose the 19.2 and 20.0 ZAMS mass
progenitor runs with =t 150 msrise and =k 3.0push , as
representatives of the HC and LC samples, respectively.
In Figure 9, we show the temporal evolution of several

quantities of interest for both the 19.2 ⊙M and 20.0 ⊙M models,
with and without PUSH. The evolution before ton follows the
well known early shock dynamics in CCSNe (see, for example,
Burrows & Goshy 1993). In both models, a few tens of
milliseconds after core bounce, the expanding shock turns into

Figure 8. Temporal evolution of the gravitational (thin solid), kinetic (long dashed), negative rest mass (short dashed), internal (dot–dashed), and explosion (solid
thick) energies above =m m t( )cut

fin
cut final , for the HC (left) and for the LC (right) reference runs, see Table 3. The internal and the rest mass energy are given with

respect to the initial rest mass, =E E m t( , )mass,0 mass cut
fin

initial . The difference between the internal energy and the rest mass energy represents the thermal energy.
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an accretion front, and the mantle between the PNS surface and
the shock reaches a quasi-stationary state. In this accretion
phase, Ṁshock and ṀPNS are firmly related. However, the two
different density profiles already affect the evolution of the
shock. Since ρ ρ ≳ 1.219.2 20.0 outside the shock and up to a

radius of ×2 108 cm (while the infalling velocities of the
unshocked matter are initially almost identical), Ṁshock (and in
turn also ṀPNS) starts to differ between the two models around

≈t 30pb ms.
The difference in the accretion rates has a series of

immediate consequences. For the HC case, (i) neutrino
luminosities are larger (Figure 9(c)); (ii) the shock is subject
to a larger ram pressure (i.e., a larger momentum transfer
provided by the collectively infalling mass flowing through the
shock), and, as visible in the case without PUSH, shock stalling
happens earlier and at a smaller radius (Figure 9(b)); (iii) the
PNS mass grows faster. Since the mass of the PNS at bounce is
almost identical for the two models ( ≈M 0.63PNS ⊙M ), the
stronger gravitational potential implied by (iii) increases the
differences in the accretion rates even further by augmenting
the ratio of the radial velocities inside the gain region (larger by
12–15% at ≈t ton for the 19.2 ⊙M case).

For >t ton, the differences between the two runs amplify as a
result of the PUSH action. In the LC case, due to the lower

accretion rate, a relatively small energy deposition by PUSH in
the gain region (smaller than or comparable to the energy
deposition by νe and ν̄e from IDSA, as visible in Figure 10) is
able to revive the shock expansion a few milliseconds after ton.
Later, the increasing dE dtpush triggers an explosion in a few
tens of milliseconds, even before  t( ) reaches its maximum
(Figure 9(b)). In the HC case, the energy deposition by
neutrinos is more intense from the beginning due to the larger
neutrino luminosities and harder neutrino spectra (Figures 9(c)
and (d)) and due to the higher density inside the gain region.
However, because of the larger accretion rate, the extra
contribution provided by PUSH is initially only able to prevent
the fast shock contraction observed in the model without
PUSH. During this shock stalling phase, the accretion rate and
the luminosity decrease, but only marginally and very similarly
to the non-exploding case. When PUSH reaches its maximum
energy deposition rate ( ≈ +t t ton rise), the shock revives and
the explosion sets in (Figure 9(b)).
In Figure 11, we plot the ratio of the ram pressure just above

the shock front ( ρ=+P R v( )ram shock
2 calculated at

= ++R R 1 kmshock shock ) to the thermal pressure just inside it
( −P R( )th shock where = −−R R 1 kmshock shock ). In the non-explod-
ing runs (i.e., without PUSH), both these pressures decrease
with time, but their ratio stays always well above unity. On the
other hand, in runs with PUSH, the more efficient energy

Figure 9. Temporal evolution of (a) the accretion rate at the PNS and at the shock, (b) the shock, the gain, and the PNS radii, (c) the neutrino luminosities, and (d) the
neutrino mean energies, for all modeled neutrino flavors. In all panels, we present exploding runs for the 19.2 ⊙M (red lines) and then 20.0 ⊙M (blue lines) ZAMS
mass models obtained with the PUSH parameters reported in Table 3. We also plot the corresponding non-exploding runs obtained by setting =k 0push for the 19.2

⊙M (light red) and 20.0 ⊙M (light blue) ZAMS mass progenitor models.
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deposition by neutrinos reduces the decrease of the thermal
pressure inside the shock. The corresponding drop in the
pressure ratio below unity determines the onset of the
explosion.

In both runs, once the explosion has been launched, the
density in the gain region decreases and the PUSH energy
deposition rate reduces accordingly. The conversion from an
accreting to an expanding shock front decouples Ṁshock from
ṀPNS. The latter drops steeply, together with the accretion
neutrino luminosities (Figures 9(a) and (c)), while Ṁshock

decreases first but then stabilizes around an almost constant
(slightly decreasing) value. In the case where the shock
expansion velocity is much larger than the infalling matter
velocity at Rshock, Ṁshock can be re-expressed as

ρ≈ ( )M πR R v˙ 4 , (24)shock shock
2

shock shock

where = ∝ δv dR dt Rshock shock shock. For >R Rshock we have in

good approximation ρ ∝ −R R( ) 2, and thus

∝ δM R˙ . (25)shock shock

The stationary value of Ṁshock implies that δ ≈ 0. Thus, after an
initial exponential expansion, the shock velocity is almost
constant during the first second after the explosion.
Despite the larger difficulties to trigger an explosion, the HC

model explodes more energetically than the LC model.
According to the analysis performed in Section 3.2, the
difference in the explosion energy between the HC and the LC
model depends ultimately on the different amount of energy
deposited by neutrinos. Since the HC model requires a larger
energy deposition to overcome the ram pressure and the
gravitational potential, the total energy of the corresponding
ejecta (and in turn the explosion energy) will be more
substantially increased. In addition, after the explosion has
been triggered, the larger neutrino luminosities and densities
that characterize the HC model inject more energy in the
expanding shock compared with the LC model.

3.4. Fitting of SN 1987A

The ultimate goal of core-collapse supernova simulations is
to reproduce the properties observed in real supernovae. So far
we have only focused on the dependence of dynamical features
of the explosion (e.g., the explosion energy) on the parameter
choices in the PUSH method. However, the ejected mass of
radioactive nuclides (such as 56Ni) is an equally important
property of the supernova explosion. Here, we describe how we
calibrate the PUSH method by reproducing the explosion
energy and mass of Ni ejecta of SN 1987A for a progenitor
within the expected mass range for this supernova.

3.4.1. Observational Constraints from SN 1987A

The analysis and the modeling of the observational proper-
ties of SN 1987A just after the luminosity peak have been the
topics of a long series of works (e.g., Woosley 1988; Arnett
et al. 1989; Shigeyama & Nomoto 1990; Kozma &
Fransson 1998a, 1998b; Blinnikov et al. 2000; Fransson &
Kozma 2002; Utrobin & Chugai 2005; Seitenzahl et al. 2014,
and references therein). They provide observational estimates
for the explosion energy, the progenitor mass, and the ejected
masses of 56Ni, 57Ni, 58Ni, and 44Ti, all of which carry rather

Figure 11. Temporal evolution of the ratio between the ram pressure above the
shock and the thermal pressure below the shock. The 19.2 ⊙M (HC) ZAMS
mass model is represented in red, while the 20.0 ⊙M (LC) ZAMS mass model
is in blue. The PUSH parameters are reported in Table 3. Light red and light
blue lines represent the corresponding runs without PUSH ( =k 0push ).

Table 4
Observational Properties of SN 1987A

Eexpl ± ×(1.1 0.3) 1051 erg
mprog 18–21 ⊙M

m ( Ni)56 ±(0.071 0.003) ⊙M

m ( Ni)57 ±(0.0041 0.0018) ⊙M

m ( Ni)58 0.006 ⊙M

m ( Ti)44 ± × −(0.55 0.17) 10 4
⊙M

Note. The nucleosynthesis yields are taken from Seitenzahl et al. (2014) except
for 58Ni which is taken from Fransson & Kozma (2002). No error estimates
were given for 58Ni. The explosion energy is adapted from Blinnikov et al.
(2000). For the progenitor range we chose typical values found in the literature,
see e.g., Shigeyama & Nomoto (1990) and Woosley (1988).

Figure 10. Temporal evolution of the neutrino energy deposition inside the
gain region from νe and ν̄e (dE dtidsa , long-thin dashed lines), from PUSH
(dE dtpush , short-thick dashed lines), and their sum (solid lines). The 19.2 ⊙M
(HC) ZAMS mass model is represented in red, while the 20.0 ⊙M (LC) ZAMS
mass is in blue, with PUSH parameters reported in Table 3. The short colored
vertical lines show the time of explosion.
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large uncertainties. In Table 4, the values used for the
calibration of the PUSH method are summarized.

The ZAMS progenitor mass is assumed to be between 18
⊙M and 21 ⊙M , corresponding to typical values reported in the

literature for the SN 1987A progenitor, see, e.g., Woosley
(1988) and Shigeyama & Nomoto (1990). For the explosion
energy we consider the estimate reported by Blinnikov et al.
(2000), = ± ×E (1.1 0.3) 10expl

51 erg (for a detailed list of
explosion energy estimates for SN 1987 A, see for example
Table 1 in Handy et al. 2014). This value was obtained
assuming ∼14.7 ⊙M of ejecta and an hydrogen-rich envelope of
∼10.3 ⊙M . The uncertainties in the progenitor properties and in
the SN distance were taken into account in the error bar. The
employed values of the total ejecta and of the hydrogen-rich
envelope are compatible (within a 15% tolerance) with a
significant fraction of our progenitor candidates, especially for

<M 19.6ZAMS ⊙M (see Table 2, where the total ejecta can be
estimated subtracting 1.6 ⊙M from the mass of the star at the
onset of the collapse). Explosion models with larger ejected
mass (i.e., less compatible with our candidate sample) tend to
have larger explosion energies (see, for example, Utrobin &
Chugai 2005). Finally, we consider the element abundances for

Ni56,57 and 44Ti provided by Seitenzahl et al. (2014), which
were obtained from a least squares fit of the decay chains to the

bolometric lightcurve. For 58Ni we use the value provided by
Fransson & Kozma (2002).

3.4.2. Fitting Procedure

We calibrate the PUSH method by finding a combination of
progenitor mass, kpush, and trise which provides the best fit to
the all observational quantities of SN 1987A mentioned above.
The weight given to each quantity is related to the uncertainty.
For example, due to the large uncertainty in the 44Ti mass, this
does not provide a strong constraint on selecting the best fit.
Figure 12 shows the explosion energy and ejected mass of

56Ni, 57Ni, 58Ni, and 44Ti for different cases of kpush and trise and
for four select HC progenitors used to calibrate the PUSH
method. We do not consider the LC progenitors because of their
generally lower explosion energies, see Figure 4. The different
cases of kpush and trise span a wide range of explosion energies
around 1 Bethe. For all parameter combinations shown, at least
one progenitor in the 18–21 ⊙M range fulfills the requirement of
an explosion energy between 0.8 Bethe and 1.4 Bethe.
There is a roughly linear correlation between the explosion

energy and the synthesized 56Ni mass. However, this correla-
tion is not directly compatible with the observations, as the
ejected 56Ni is systematically larger than expected (up to a
factor of ∼2 for models with an explosion energy around

Figure 12. Ejected mass of 56Ni (top left), 57Ni (top right), 58Ni (bottom left), and 44Ti (bottom right) and explosion energy for four representative HC progenitor
models. Five combinations of kpush and trise are shown, each with a different symbol. The error bar box represents the observational values from Seitenzahl et al.
(2014) (for Ni56,57 and 44Ti) and from Fransson & Kozma (2002) (for 58Ni). No error bars are reported for 58Ni.
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1 Bethe). There is a weak trend that models with higher trise
tend to give lower nickel masses for given explosion energy.
Among the parameter combinations that produce robustly high
explosion energies (i.e., ⩾k 3push ), =k 3.5push with the high
value of trise of 200 ms gives the lowest 56Ni mass for similar
explosion energies, but still much too high.

Our simulations can be reconciled with the observations by
taking into account fallback from the initially unbound matter.
Since we do not model the explosion long enough to see the
development of the reverse shock and the appearance of the
related fallback when the shock reaches the hydrogen-rich
envelope, we have to impose it, removing some matter from the
innermost ejecta.5 With a value of ∼0.1 ⊙M we can match both
the expected explosion energy and 56Ni ejecta mass, see
Figure 13. In this way we have fixed the final mass cut by
observations. However, we point out that we are able to
identify the amount of late-time fallback only because we also
have the dynamical mass cut from our hydrodynamical
simulations. This is not possible in other methods such as
pistons or thermal bombs. Our value of ∼0.1 ⊙M of fallback in
SN 1987A will be further discussed and compared with other
works in Section 4.3.

The observed yield of 56Ni provides a strong constraint on
which parameter combination would fit the data. From the
observed yields of 57Ni and 58Ni, only the 18.0 and 19.4
progenitors remain viable candidates. Without fallback our
predicted 44Ti yields are compatible with the observed yields
(see Figure 12). However, if we include fallback (which is
needed to explain the observed Ni yields), 44Ti becomes
underproduced compared to the oberved value. Since this
behavior is true for all out models, we exclude the constraint
given by 44Ti from our calibration procedure. From the
considered parameter combinations, we obtained the best fit
to SN 1987A for the 18.0 ⊙M progenitor model with

=k 3.5push , =t 200rise ms, and a fallback of 0.1 ⊙M . These
parameters are summarized in Table 5. In Figure 14, we show
the temporal evolution of the accretion rates, of the relevant

Figure 13. Same as Figure 12, but assuming 0.1 ⊙M fallback. Note the different scale for 56Ni and 58Ni compared to Figure 12.

Table 5
Parameter Values for Best Fit to SN 1987A

kpush trise ton toff

(−) (ms) (ms) (s)

3.5 200 80 1

Note. We identified the 18.0 ⊙M model as the progenitor which fits best,
whereas we had to impose a late-time fallback of 0.1 ⊙M .

5 Note that we did not modify the explosion energy due to the fallback. This
is based on the expectation that at the late time when fallback forms, the
explosion energy is approximately equally distributed among the total ejected
mass, which is about two orders of magnitude higher than our fallback mass.
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radii, and of the neutrino luminosities and mean energies for
our best fit model. For comparison purposes, we present also
the results obtained for the same model without PUSH. Note
that in this non-exploding case the νe and ν̄e luminosities stay
almost constant over several ∼100 ms after core bounce,
despite the decreasing accretion rate. This is due to the
relatively slow variation of ṀPNS (for example, compared with
the variation obtained in the 19.2 ⊙M model, Figure 9) and due
to the simultaneous increase of the PNS gravitational potential,
proportional to M RPNS PNS (see, for example, Fischer
et al. 2009). A summary of the most important results of the
simulations using this parameter set for the different progeni-
tors in the 18–21 ⊙M window is given in Table 6. For the
remnant mass and for the 56Ni yields of our best-fit model, we
provide both the values obtained with and without assuming a
fallback of 0.1 ⊙M .

3.5. Ni and Ti yields, Progenitor Dependence

Figures 12 and 13 show that the composition of the ejecta is
highly dependent on the progenitor model, especially for the
amount of 57Ni and 58Ni ejected. From the four HC progenitors
shown, two (18.0 ⊙M and 19.4 ⊙M ) produce a fairly high
amount of those isotopes, while the other two (19.2 ⊙M and
20.6 ⊙M ) do not reach the amount observed in SN 1987A. A

Figure 14. Same as in Figure 9, but for the SN 1987A best fit model: 18.0 ⊙M progenitor, with =t 80on ms, =t 200rise ms, and =k 3.5push .

Table 6
Summary of Simulations for =k 3.5push and =t 200rise ms

ZAMS Eexpl texpl M B
remnant M G

remnant M(56Ni )
( ⊙M ) (Bethe) (s) ( ⊙M ) ( ⊙M ) ( ⊙M )

18.0 1.092 0.304 1.563 1.416 0.158
18.2 0.808 0.249 1.509 1.371 0.110
18.4 1.358 0.318 1.728 1.549 0.144
18.6 0.702 0.239 1.529 1.388 0.090
18.8 0.721 0.236 1.522 1.382 0.093
19.0 1.366 0.317 1.716 1.54 0.161
19.2 1.356 0.318 1.724 1.546 0.152
19.4 1.15 0.326 1.608 1.452 0.158
19.6 0.371 0.230 1.584 1.433 0.04
19.8 0.661 0.225 1.523 1.383 0.088
20.0 0.613 0.222 1.474 1.342 0.085
20.2 0.379 0.224 1.554 1.408 0.039
20.4 0.743 0.263 1.674 1.506 0.094
20.6 1.005 0.277 1.781 1.592 0.141
20.8 0.959 0.277 1.764 1.578 0.135
21.0 1.457 0.316 1.733 1.554 0.198

18.0 (fb) 1.092 0.304 1.663 1.497 0.073

Note. For the model 18.0 (fb), which is our best fit to SN 1987A, we have
included 0.1 ⊙M of fallback, determined from obervational constraints. See the
text for more details.
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thorough investigation of the composition profile of the ejecta
reveals that 57Ni and 58Ni are mainly produced in the slightly
neutron-rich layers ( <Y 0.5e ), where the alpha-rich freeze-out
leads to nuclei only one or two neutron units away from the
N = Z line. A comparison of the Ye and composition profiles
for the 18.0 ⊙M and the 20.6 ⊙M progenitors is shown in
Figure 15. For the 18.0 ⊙M model, the cut-off mass is 1.56 ⊙M
and a large part of the silicon shell is ejected. In this shell, the
initial matter composition is slightly neutron-rich (due to a
small contribution from 56Fe) with ≃Y 0.498e (dotted line in
top left graph) and the conditions for the production of 57Ni
and 58Ni are favorable. The increase in Ye around 1.9 ⊙M marks
the transition to the oxygen shell. The same transition for the
20.6 ⊙M model happens around 1.74 ⊙M , i.e., inside the mass
cut. Therefore, this model ejects less 57Ni and 58Ni (see also
Thielemann et al. 1990). In all our models, 44Ti is produced
within the innermost 0.15 ⊙M of the ejecta (see Figure 15).
Since we assume 0.1 ⊙M fallback onto the PNS, most of the
synthesized 44Ti is not ejected in our simulations.

4. IMPLICATIONS AND DISCUSSION

4.1. Sensitivities of Nucleosynthesis Yields

While post-processing the ejecta trajectories for nucleosynth-
esis, Ye is evolved by the nuclear network independently of the

hydrodynamical evolution. This leads to a discrepancy at later
times between the electron fraction in the initial trajectory
(Ye

hydro) and in the network (Ye
nuc). In order to estimate the

possible error in our nucleosynthesis calculations arising from
this discrepancy, we have performed reference calculations
using =Y t t( )e

hydro
final instead of =Y T( 10 GK)e

hydro as a
starting value for the network (see Section 2.5.2). The results
are shown in Figure 15 for two progenitors: 18.0 ⊙M and 20.6

⊙M . The label “standard” refers to the regular case which uses

=Y T( 10 GK)e
hydro as input. The calculation using

=Y t t( )e
hydro

final as input is labeled “alternative” and is
represented by the dashed lines. The point in time at which
the Ye profile is shown is indicated by the supplements “input”
(before the first timestep) and “final” (at t= 100 s). The
corresponding nuclear compositions of the ejecta, each at the
final calculation time of 100 s, are shown in the bottom panels.
For the alternative Ye profile of the 18.0 ⊙M progenitor (top
left) the minimum around 1.59 ⊙M disappears, leading to an
increase in 56Ni in this region at the expense of 57Ni and 58Ni
(bottom left). For the 20.6 ⊙M progenitor the situation is
similar, with only a very small region just above 1.8 ⊙M
showing significant differences. In general, we observe that the
uncertainties in Ye in our calculations are only present up to
0.05 ⊙M above the mass cut. The resulting uncertainties in the

Figure 15. Electron fraction profiles (top) and nuclear compositions at 100 s (bottom) above the mass cut for the 18.0 ⊙M (left) and the 20.6 ⊙M (right) progenitors
with the parameters =k 3.5push and =t 200rise ms. The electron fraction is plotted for two different times in the network: the input values for the first timestep

(“input”) and the value after post-processing (“final”). The dashed lines in all panels correspond to the alternative case, where =Y t( 4.6 s)e
hydro is taken as the initial

electron fraction in the network, whereas the solid lines represent the standard case (using =Y T( 10 GK)e
hydro ).
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composition of the ejecta are very small or even inexistent in
the scenarios where we consider fallback.

The radioactive isotope 44Ti can be detected in supernovae
and supernova remnants. Several groups have used different
techniques to estimate the 44Ti yield (Chugai et al. 1997;
Fransson & Kozma 2002; Jerkstrand et al. 2011; Larsson
et al. 2011; Grebenev et al. 2012; Grefenstette et al. 2014;
Seitenzahl et al. 2014). The inferred values span a broad range,

− × −(0.5 4) 10 4
⊙M . Traditional supernova nucleosynthesis

calculations (e.g., Woosley & Weaver 1995; Thielemann
et al. 1996) typically predict too low 44Ti yields. Only very
few models predict high 44Ti yields: Thielemann et al. (1990)
report 44Ti yields around 10−4 and above in the best fits of their
artificial SN explosions to SN 1987A. Rauscher et al. (2002)
argue that the yields of 56Ni and 44Ti are very sensitive to the
“final mass cut” (as we have shown, too), which is often
determined by fallback. Ejecta in a supernova may be subject to
convective overturn. To account for this, we can assume
homogeneous mixing in the inner layers up to the outer
boundary of the silicon shell before cutting off the fallback
material (see, for example, Umeda & Nomoto 2002 and
references therein). For our best-fit model, the ejected 44Ti
mass increases to × −2.70 10 5

⊙M , if this prescription is
applied. Comparing to the previous yield of × −1.04 10 5

⊙M ,
we observe that the effect of homogeneous mixing is
considerable, but not sufficient to match the observational
values. The ejected − Ni56 58 masses also show a slight increase.
However, there are also uncertainties in the nuclear physics
connected to the production and destruction of 44Ti. The final
amount of produced 44Ti depends mainly on two reactions:
40Ca(α γ, )44Ti and 44Ti(α p, )47V. Recent measurements of the
44Ti(α p, )47V reaction rate within the Gamow window
concluded that it may be considerably smaller than previous
theoretical predictions (Margerin et al. 2014). In this study, an
upper limit cross-section is reported that is a factor of 2.2
smaller than the cross-section we have used in our calculations
(at a confidence level of 68%). Using this smaller cross-section
for the 44Ti(α p, )47V reaction, our yield of ejected 44Ti for our
best-fit model (18.0 ⊙M progenitor, =k 3.5push , =t 200rise ms)
rises to × −1.49 10 5

⊙M with fallback and × −5.65 10 5
⊙M

without fallback. This corresponds to a relative increase of 43%
with fallback and 48% without fallback. If we include both the
new cross-section and homogeneous mixing, the amount of
44Ti in the ejecta is × −3.99 10 5

⊙M including fallback. This
value, however, is still below the expected value derived from
observations, but within the error box.

4.2. Wind Ejecta

In the analysis of the nucleosynthesis yields above, we have
used a mass resolution of 0.001 ⊙M for the tracers. This is too
coarse to resolve the ejecta of the late neutrino-driven wind.
Note that in our best-fit approach, where no mixing is assumed,
none of the neutrino-driven wind is ejected because it is part of
the fallback. Nevertheless, in the following we report briefly on
the properties of the wind obtained by our detailed neutrino-
transport scheme. For our best-fit model, the 18.0 ⊙M
progenitor, at tfinal we find an electron fraction around 0.32,
entropies up to 80 kB per baryon, and fast expansion velocities
(∼109 cm s−1). Similar conditions are also found for the other
progenitors. They are not sufficient for a full r-process (see, for
example, Farouqi et al. 2010). On the other hand, we have

found that the entropy is still increasing and the electron
fraction still decreasing in the further evolution. The high
asymmetries are only obtained if we include the nucleon mean-
field interaction potentials in the neutrino charged-current rates
(Martínez-Pinedo et al. 2012). However, they are much higher
than found in other long-term simulations which also include
these potentials (Martínez-Pinedo et al. 2012, 2014; Roberts
et al. 2012). This could be related to the missing neutrino-
electron scattering in our neutrino transport, which is an
important source of thermalization and down-scattering,
especially for the high energy electron anti-neutrinos at late
times, see Fischer et al. (2012). More detailed comparisons are
required to identify the origin of the found differences which
will be addressed in a future study.

4.3. Amount of Fallback

To reconcile our models with the nucleosynthesis observa-
bles of SN 1987A we need to invoke 0.1 ⊙M of fallback (see
Section 3.4.2). The variation in the amount of synthesized Ni
isotopes between runs obtained with different PUSH para-
meters (Figure 12) suggests that a smaller trise (and
consequently smaller kpush) could also be compatible with
SN 1987A observables, if a larger fallback is assumed. On the
one hand, assuming that trise ranges between 50 and 250 ms,
fallback for the 18.0 ⊙M model compatible with observations is
between 0.14 ⊙M (for =t 50rise ms) and 0.09 ⊙M (for

=t 250rise ms). On the other hand, if the amount of fallback
has been fixed, the observed yields (especially of 56Ni) reduce
the uncertainty in trise to ≲50 ms.
Our choice of 0.1 ⊙M is compatible with the fallback

obtained by Ugliano et al. (2012) in exploding spherically
symmetric models for progenitor stars in the same ZAMS mass
window. Moreover, Chevalier (1989) estimated a total fallback
around 0.1 ⊙M for SN 1987A, which is supposed to be an
unusually high value compared to “normal” SNe II. Recent
multi-dimensional numerical simulations by Bernal et al.
(2013) and Fraija et al. (2014) confirmed this scenario and
furthermore showed that such a hypercritical accretion can lead
to a submergence of the magnetic field, giving a natural
explanation why the neutron star (possibly) born in SN 1987A
has not been found yet.

4.4. Compact Remnant of SN 1987A

From the observational side, the compact remnant in
SN 1987A is still obscure. From the neutrino signal (see,
e.g., Arnett et al. 1989; Koshiba 1992; Vissani 2015 for a
recent detailed analysis) one can conclude that a PNS star was
formed and that it lasted at least for about 12 s. The mass cut in
our calibration run is located at an enclosed baryon mass of
1.56 ⊙M without fallback. If we include the 0.1 ⊙M of late-time
fallback required to fit the observed nickel yields and the
explosion energy, we have a final baryonic mass of 1.66 ⊙M .
For the employed HS(DD2) EOS this corresponds to a
gravitational mass of a cold neutron star of 1.42 ⊙M (without
fallback) or 1.50 ⊙M (with fallback). The CCSN simulations
with artificial explosions of Thielemann et al. (1990), where a
final kinetic energy of 1 Bethe was obtained by hand and
where the mass cut was deduced from a 56Ni yield of

±(0.07 0.01) ⊙M , lead to a similar baryonic mass of
±(1.6 0.045) ⊙M . These authors also wrote that uncertainties
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in the stellar models could increase this value to 1.7 ⊙M which
would also be fully compatible with our result.

The prediction of the neutron star mass has important
consequences. From the observations of Demorest et al. (2010)
and Antoniadis et al. (2013) it follows that the maximum
gravitational mass of neutron stars has to be above two solar
masses. The maximum mass of the HS(DD2) EOS is 2.42 ⊙M ,
corresponding to a baryonic mass of 2.92 ⊙M . If the compact
remnant in SN 1987A was a black hole, and not a neutron star,
it means that at least ∼0.5 ⊙M of additional accreted mass were
required, if we just take the two solar mass limit. If we use the
maximum baryonic mass of HS(DD2) we even have to accrete
∼1.3 ⊙M of additional material. Obviously, if such a huge
amount of material would be accreted onto the neutron star, our
predictions for the explosion energy and the nucleosynthesis
would not apply any more.

Nevertheless, we have the impression that it would be
difficult to fit the SN 1987A observables and obtain a black
hole as the compact remnant at the same time. For spherical
fallback, it is certainly excluded. The only possibility could be
a highly anisotropic explosion and aspherical accretion, which
we cannot address with our study. To show if such a scenario
can be realized remains a task for future multi-dimensional
studies. In the 2D simulations of Yamamoto et al. (2013) the
remnant mass is decreasing with the explosion energy and an
explosion energy above 1 Bethe would result in neutron stars
below ∼2 ⊙M baryonic mass. Note that Kifonidis et al. (2006)
already came to the same conclusion that the formation of a
black hole in SN 1987A “is quite unlikely,” based on 2D
simulations with a 15 ⊙M progenitor.

Another possibility was proposed by Chan et al. (2009).
These authors argued that the time delay of∼5 s observed for the
neutrino signal by the IMB detector could be related to a collapse
to a quark star. Due to the proposed faster neutrino cooling of
quark stars, this would give a natural explanation why it has not
been observed until today. The end of our simulations is also
around 5 s, thus we can make statements about the conditions at
which the phase transition to quark matter took place in SN
1987A, if the scenario of Chan et al. (2009) was true. We have a
central mass density of ×4.56 1014 g cm−3 corresponding to

=n 0.272B
c fm−3 or =n n1.83B

c
B
0, a temperature of 23.2 MeV,

and an electron fraction of 0.24. Some simplified models for
quark matter predict that the phase transition in symmetric
matter is shifted to higher densities compared with supernova
conditions (Fischer et al. 2011). Under that hypothesis, a phase
transition around 2 ρ0 and 20MeV cannot be excluded.

A simpler explanation is given by the possibility that a pulsar
in the SN 1987A remnant is simply not (yet) observable.
Ögelman and Alpar (2004) and Graves et al. (2005) showed
that the non-detection of any compact remnant puts important
limits on the magnetic field the NS can have (either unusually
low or very high, in the realm of magnetars). Furthermore, for
both cases (NS and BH) Graves et al. (2005) put severe
constraints on currently ongoing accretion scenarios, e.g.,
spherical accretion is almost ruled out. Graves et al. (2005)
conclude that “it seems unlikely that the remnant of SN 1987A
currently harbors a pulsar.” Our simulations would be in line
with the option of a neutron star with a very low magnetic field
or with a “normal” magnetic field which is still (partly) buried
in the crust due to the late time fallback, similar to what is
observed for neutron stars in binary systems. In this respect,
recent high-resolution radio observations of the remnant

indicate the presence of a compact source or a pulsar wind
nebula (Zanardo et al. 2013, 2014). Future observations will be
able to clarify the nature of this emission.

4.5. Correlations

As a byproduct of exploring the 18–21 ⊙M window and the
fitting procedure to SN 1987A we have found interesting
correlations between different quantities, which we will discuss
here. In Figure 16, we plot the explosion energy, the explosion

Figure 16. Explosion energies (top), explosion times (middle), and (baryonic)
remnant mass (bottom) as function of compactness for the PUSH parameters of
our best-fit model (kpush = 3.3 and =t 0.15rise s) for all progenitors in the
18–21 ⊙M window. HC models are denoted by a red cross, LC models by a
blue plus. Our best-fit model for SN 1987A is highlighted by a filled triangle.
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time, and the (baryonic) remnant mass as function of the
progenitor compactness. The results obtained with the
calibrated runs indicate a general trend with progenitor
compactness for Eexpl. The explosion time, texpl, is almost
constant within each the LC and the HC group, while the
difference between the two groups is related to the difference
between how LC and HC models explode (discussed in
Section 3.3). The remnant mass increases with compactness, as
expected. Nevertheless, we notice significant deviations from
the described trends: for Eexpl and texpl in the HC sample, for
Mrem mainly in the LC sample.
Figure 17 shows explosion times and explosion energies for

all the exploding runs in our sample. We can identify a
correlation between texpl and Eexpl for a given progenitor: the
larger texpl the lower is Eexpl. This correlation is more
pronounced for the HC models than for the LC models. It
means that the explosion in PUSH cannot set in too late, if the
observed explosion energy should be achieved.

4.6. Heating Efficiency and Residence Time

In the context of CCSNe, the heating efficiency η is often
defined as the ratio between the volume-integrated, net energy
deposition inside the gain region and the sum of the νe and ν̄e
luminosities at infinity:

∫
η

ρ
=

+

ν ν

ν ν

e dV

L L

˙

, (26)
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, ¯

¯

e e

e e

gain

see, e.g., Murphy & Burrows (2008), Marek & Janka (2009),
Müller et al. (2012a), Suwa et al. (2013), and Couch &
O’Connor (2014). In non-exploding, spherically symmetric
simulations, η usually rises within a few tens of milliseconds
after core bounce and reaches its maximum around η ∼ 0.1 at

≈t 100 ms, when the shock approaches its maximum radial
extension. As soon as the shock starts to recede and the volume
of the gain region decreases, η diminishes quickly to a few
percents (see, for example, the long-dashed lines in Figure 18).

In multi-dimensional simulations, where the shock contrac-
tion is delayed or even not happening, energy deposition is

expected to be slightly more efficient (η ∼ 0.10–0.15 at
maximum) and to decrease more slowly, within a few hundreds
of milliseconds after bounce or at the onset of an explosion
(see, for example, Murphy & Burrows 2008; Müller
et al. 2012a; Couch 2013; Couch & O’Connor 2014). These
differences arise not only because the gain region does not
contract, but also because neutrino-driven convection effi-
ciently mixes low and high entropy matter between the
neutrino cooling and the heating regions below the shock
front. Furthermore, convective motion and SASIs are expected
to increase significantly the residence time of fluid particles
inside the gain region during which they are subject to intense
neutrino heating (see, e.g., Murphy & Burrows 2008; Handy
et al. 2014). Since the increase of the particle internal energy is
given by the time integral of the energy absorption rate over the
residence time, this translates to a larger energy variation
(Handy et al. 2014).
In spherically symmetric models, the imposed radial motion

does not allow the increase of the residence time. This
constraint limits the energy gain of a mass element traveling
through the gain region. In models exploded using the light-
bulb approximation, a large enough internal energy variation is
provided by increasing the neutrino luminosity above a critical
value, which depends on the mass accretion rate and on the
dimensionality of the model (e.g., Burrows & Goshy 1993;
Yamasaki & Yamada 2005; Iwakami et al. 2008; Murphy &
Burrows 2008; Iwakami et al. 2009; Nordhaus et al. 2010;
Hanke et al. 2012; Couch 2013; Dolence et al. 2013; Handy
et al. 2014; Suwa et al. 2014). Since in our model the neutrino
luminosities are univocally defined by the cooling of the PNS
and by the accretion rate history, we increase the energy gain
by acting on the neutrino heating efficiency. This effect can be
made visible by defining a heating efficiency that takes the
PUSH contribution into account, ηtot:

∫
η η η

ρ
= + =

+

+

ν ν

ν ν

+( )e Q dV

L L

˙ ˙

. (27)
V

tot push

, ¯ push

¯

e e

e e

gain

In Figure 18, we plot ηtot as a function of time for our
SN 1987A calibration model, with PUSH ( =k 3.5push ) and

Figure 17. Explosion energy Eexpl vs. explosion time texpl for all the
progenitors in the 18–21 ⊙M range and for different combinations of kpush and
trise, however only the exploding models are included. HC models are indicated
by a triangle, LC models by a circle. The best-fit model is indicated by a cross.
The different colors distinguish different progenitors.

Figure 18. Neutrino heating efficiency for the SN 1987A best-fit model: 18.0
⊙M model with =t 80on ms, =t 200rise ms, and =k 3.5push . The solid lines

represent the total efficiency (i.e., due to νe and ν̄e absorption and due to
PUSH), the short-thick dashed lines the efficiency only due to νe and ν̄e

absorption. For comparison, the heating efficiency of the corresponding non-
exploding model ( =k 0push ) is also presented (long-thin dashed lines).
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without it ( =k 0push ). We first notice that the heating efficiency
provided by νe and ν̄e can differ between exploding (short-thick
dashed lines) and non-exploding models (long-thin dashed
lines). In the case of the exploding model, PUSH provides an
increasing contribution to ηtot. It continues to increase steeply
up to ≈ +t t ton rise, but also later, up to ≈t texpl, due to the
shock expansion preceding the explosion. Thus, the increasing
heating efficiency in our spherically symmetric models can be
interpreted as an effective way to include average residence
times longer than the advection timescale.

In Figure 19, we collect the average and the maximum
heating efficiencies for all the models obtained with the set of
parameters resulting from the fit procedure (Table 5). Both the
average and the maximum values are computed within the
interval ⩽ ⩽t t ton expl. We plot them as a function of the
compactness and we distinguish between η and ηtot. The
maximum of η is usually realized at ≈t ton, while the
maximum of ηtot is reached around ≈t texpl (see also
Figure 18). Since the explosion sets in later for HC models,
when ≳ +t t texpl on rise, the PUSH factor  has time to rise to
kpush for these models. This increases not only the maximum
but also the average ηtot compared with the LC cases. We notice
that all four quantities show a correlation with ξ1.75, but much
weaker in the case of η than in the case of ηtot. Moreover, in the
HC region, we recognise deviations from monotonic behaviors
which reproduce the irregularities already observed in the
explosion properties.

4.7. Alternative Measures of the Explosion Energy

In the following, we discuss alternative measures of the
explosion energy used in the literature for reasons of
comparison. We investigate their behaviors at early simulation
times and their general rate of convergence. The diagnostic
energy +E t( ), see e.g., Bruenn et al. (2013), is given by the
integral of the specific explosion energy eexpl over regions
where it is positive (again, excluding the PNS core, see
Section 2.5.1). The quantity +E t( ) is often used in multi-
dimensional simulations as an estimate of the explosion energy

at early simulation times, see e.g., Buras et al. (2006), Suwa
et al. (2010), Müller et al. (2012b), Couch & O’Connor
(2014), and Takiwaki et al. (2014).
The overburden E t( )ov , see Bruenn et al. (2013), is given by

the integral of the specific explosion energy of the still
gravitationally bound regions between the expanding shock
front and the surface of the progenitor star. If we define +E t( )ov
as the sum of the overburden and of the diagnostic energy, we
recover a measure of the explosion energy equivalent to the one
defined in Equation (16):

≡ = ++ +E t E t E t E t( ) ( ) ( ) ( ). (28)expl ov ov

For long enough simulation times, all matter above the mass-
cut should get positive specific explosion energies, and thus the
overburden should approach zero and the diagnostic energy
should become equal to the explosion energy E t( )expl .
Finally, an upper limit for the explosion energy is obtained

by also taking into account the “residual recombination energy”
E t( )rec (Bruenn et al. 2013):

= ++ +E t E t E t( ) ( ) ( ), (29)rov, ov rec

where E t( )rec is the energy that would be released if all
neutron–proton pairs and all 4He recombined to 56Ni in the
regions of positive specific explosion energy. We call it
residual recombination energy to make clear that this is energy
which is not liberated in our simulations, in contrast to the
energy of the recombination processes which we identified in
Section 3.2.
In Figure 20, we investigate the behavior of the diagnostic

energy +E t( ), and we compare it with our estimate of the
explosion energy ≡ +E t E t( ) ( )expl ov and with its upper limit
represented by +E t( )rov, . We want to emphasize that these
quantites are obtained from mass integrals above the time-
dependent mass cut, in contrast to most of the energies
investigated in Section 3.2, where a fixed mass domain was
considered.
While +E t( )ov and +E t( )rov, have already saturated to a

constant value at ≈t 1.5 s, even at ≈t 4.6 s the diagnostic
energy has not yet converged. +E t( )ov and +E t( )rov, approach
their asymptotic values from below, and any late time increase

Figure 19. Average and maximum heating efficiencies, calculated between
=t ton and =t texpl for the runs obtained with the fitted parameters, Table 5,

and plotted as a function of the progenitor compactness ξ1.75. The black crosses
and the red triangles refer to the average and the maximum efficiency due to νe

and ν̄e (η), while the blue stars and the magenta squares to the average and the
maximum total efficiency (ηtot), including also the PUSH contribution.

Figure 20. Temporal evolution of the diagnostic energy +E , the explosion
energy +Eov, and the upper limit of the explosion energy also including the
recombination energy Erec for a HC (19.2 ⊙M progenitor) and a LC case (20.0

⊙M progenitor), for PUSH parameters reported in Table 3.
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( ≳t 1.5 s) is due to the energy carried by the neutrino-driven
wind ejected from the PNS surface. On the other hand, +E t( )
reaches its maximum around ≲1 s after texpl, when the neutrino
absorption and the nuclear recombination have released most of
their energy in the expanding shock wave, and then it decreases
toward +E t( )ov , since matter with negative total specific energy
is accreted at the shock. The difference between +E t( )ov and

+E t( ) is mainly represented by the gravitational binding energy
of the stellar layers above the shock front. Thus, the rate of
convergence of the diagnostic energy depends on the amount of
gravitational binding energy contained in the outer envelope of
the star and on the relative speed at which the shock propagates
inside it. Since the gravitational binding energy of the outer
layers is similar between the two explored models, the different
rate of convergence depends mostly on the different expansion
velocity of the shock wave, which is larger for more energetic
HC models.

Yamamoto et al. (2013) found for a 15 ⊙M progenitor that
the diagnostic energy saturates and thus reaches the asymptotic
explosion energy already between 1 and 2 s post-bounce. This
difference to what we find is related to the different progenitors
used and, in particular, to the different binding energy of the
outer envelopes, which is expected to be much smaller for a 15

⊙M progenitor than for a ∼20 ⊙M progenitor (see, for example,
Figure 5 of Burrows 2013). Nevertheless, we conclude that the
diagnostic energy is in general (i.e., without further considera-
tions) not suited to give an accurate estimate of the explosion
energy at early times.

4.8. Comparison with Other Works

A similar fitting to SN 1987A energetics has been done for
multi-dimensional simulations (2D and 3D) using a light-bulb
scheme for the neutrinos by Handy et al. (2014). As initial
conditions they used a post-collapse model based on the 15 ⊙M
blue supergiant progenitor model of Woosley (1988). Even if
they did not provide the corresponding compactness, the values
of the accretion rate (∼ −0.2 0.3 ⊙M s−1) and of the electron
neutrino luminosity (∼ − ×1.8 3.5 1051 erg s−1) at the onset of
the explosion are more compatible with our LC models. In their
fitting, only the diagnostic explosion energy +E was used at a
time of =t 1.5pb s when it is expected to have saturated to Eexpl

(see Yamamoto et al. 2013). But no estimates for the
nucleosynthesis yields were given. The time when the shock
reaches 500 km (which corresponds for us to texpl) is
significantly lower in their models (90–140 ms after bounce),
mainly due to the different extension and evolution of the
shock during the first 100 ms after core bounce. A more
detailed quantitative comparison (albeit limited by the different
dimensionality of the two models) requires to use a more
similar progenitor. However, the advection timescale and the
mass in the gain region are larger than the corresponding values
we have obtained in all our models, as expected from the larger
average residence time resulting from multi-dimensional
hydrodynamical effects.

Ugliano et al. (2012) also calibrated their spherically
symmetric exploding models with the observational constraints
from SN 1987A, and used progenitor models identical to the
ones we have adopted (Woosley et al. 2002). They also found
that the remnant mass and the properties of the explosion
exhibit a large variability inside the narrow 18–21 ⊙M ZAMS
mass window (they even found some non-exploding models).

However, they did not find any clear trend with progenitor
compactness (for example, their calibration model is repre-
sented by the 19.8 ⊙M ZAMS mass progenitor which belongs
to the LC sample). The explosion timescales for models in the
18–21 ⊙M ZAMS mass interval are much longer in their case
( ∼ −t 0.3 1expl s), while their range for the explosion energy
(0.6–1.6 Bethe) is relatively compatible with ours
(0.4–1.6 Bethe). Clearly, all these differences are related to
the numerous diversities between the two models.
A possible relation between explosion properites and

progenitor compactness has been first pointed out by O’Connor
& Ott (2010), who searched for a minimum enhanced neutrino
energy deposition in spherically symmetric models. Similarly
to us, they found that more compact progenitors require larger
heating efficiency to explode. However, they do not investigate
the explosion energy of their models. Moreover, they consider
it to be unlikely that a model which requires η ≳ 0.23
(ξ ≳ 0.452.5 ) will explode in nature. In our analysis, we have
interpreted a large neutrino heating efficiency in spherically
symmetric models as an effective way to take into account
longer residence time inside the gain region. We have pointed
out that HC models, characterized by larger ηtot, are required to
obtain the observed properties of SN 1987A. However, these
models still have ξ < 0.452.5 and our average heating efficiency
are below the critical value of O’Connor & Ott (2010).
A clear correlation between explosion properties and

progenitor compactness has been recently discussed by
Nakamura et al. (2014). They performed systematic 2D
calculations of exploding CCSNe for a large variety of
progenitors, using the IDSA to model νe and ν̄e transport. Due
to computational limitations and due to the usage of only a
NSE EOS, their simulations were limited to ∼1 s after core
bounce. Thus, they could not ensure the convergence of the
diagnostic energy and could not directly compare their results
with CCSN observables. However, they found trends with
compactness similar to the ones we have found in our reduce
sample.
Other authors have also compared the predicted explosion

energy and Ni yield from their models to the observational
constraints. For example, Yamamoto et al. (2013), using the
neutrino light-bulb method to trigger explosions in spherical
symmetry, found a similar trend between explosion energies
and nickel masses as we found (see Table 6). They also
compared to a thermal bomb model with similar explosion
energies and mass cut, and found that the neutrino heating
mechanism leads to systematically larger 56Ni yields. They
related it to higher peak temperatures, which appear because a
greater thermal energy is required to unbind the accreting
envelope. They also concluded that the neutrino-driven
mechanism is more similar to piston-driven models by
comparing with Young & Fryer (2007). The problem of
overproducing 56Ni is lessened in the 2D simulations of
Yamamoto et al. (2013) because of slightly lower peak
temperatures and the occurrence of fallback.
The conclusions drawn in Section 3.2 about the contribu-

tions of nuclear reactions to the explosion energy are somewhat
opposite to what can be found in other works in the literature.
For example, Yamamoto et al. (2013) state that the contribu-
tion of the nuclear reactions to the explosion energy is
comparable to or greater than that of neutrino heating.
Furthermore, they identify the recombinations of nucleons into
nuclei in NSE as the most important nuclear reactions.
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However, they also point out that this “recombination energy
eventually originates from neutrino heating.” We think that this
aspect is crucial for understanding the global energetics.
Indeed, if we had started the analysis presented in Figure 8
not at bounce but at texpl we would also have identified a strong
contribution from the nuclear reactions, given roughly by the
difference between − −E E( )mass mass,0 at texpl (which is close to
the minimum) and the final value. However, as is clear from
the figure, roughly the same amount of energy was actually
taken from the thermal energy before texpl. The dominant net
contribution to the explosion energy originates from neutrino
heating, as is evident from Figure 7 and as we haved discussed
in detail in Section 3.2.

5. SUMMARY AND CONCLUSIONS

The investigation of the explosion mechanism of CCSNe as
well as accurate explorations of all the aspects related with it, is
a long lasting, but still fascinating problem. Sophisticated
multi-dimensional hydrodynamical simulations, possibly
including detailed neutrino transport, microphysical EOS,
magnetic fields, and aspherical properites of the progenitor
structure, are ultimately required to address this problem. The
high computational costs of such models and the uncertanties
in several necessary ingredients still motivate the usage of
effective spherically symmetric models to perform extended
progenitor studies.

In this work we have presented a new method, PUSH, for
artificially triggering parametrized core-collapse supernova
explosions of massive stars in spherical symmetry. The method
provides a robust and computationally affordable framework to
study important aspects of CCSN that require modeling of the
explosion for several seconds after its onset for extended sets of
progenitors. For example, the effects of the shock passage
through the star, the neutron star mass distribution, the
determination of the explosion energy, or explosive supernova
nucleosynthesis. Here, we have focused on the exploration of
basic explosion properties and on the calibration of PUSH by
reproducing observables of SN 1987A. We considered
progenitors in the ZAMS mass range of 18–21 ⊙M which
corresponds to typical values for the progenitor mass of SN
1987A (Shigeyama & Nomoto 1990).

Unlike traditional methods (such as thermal bombs, pistons,
or neutrino light-bulbs), our method does not require any
external source of energy to trigger the explosion nor a
modification of the charged-current neutrino reactions. Instead,
the PUSH method taps a fraction of the energy from muon and
tau neutrinos which are emitted by the PNS. This additional
energy is deposited inside the gain region for a limited time
after core bounce. The introduction of a local heating term that
is only active where electron neutrinos are heating and where
neutrino-driven convection can occur is inspired by qualitative
properties of multi-dimensional CCSN simulations. We have
two major free parameters, trise, describing the temporal
evolution of PUSH, and kpush, controlling the strength. They
are determined by comparing the outcome of our simulations
with observations.

Our setup allows us to model the entire relevant domain,
including the PNS and the ejecta. In particular, (i) the
thermodynamic properties of matter both in NSE and non-
NSE conditions are treated accurately; (ii) the neutrino
luminosities are directly related to the PNS evolution and to
the mass accretion history; and (iii) the evolution of the

electron fraction is followed by a radiative transport scheme for
electron flavor neutrinos, which is important for the nucleo-
synthesis calculations.
We have studied the evolution of the explosion energy and

how it is generated. The energy deposition by neutrinos is the
main cause of the increase of the total energy of the ejecta and,
thus, the main source of the explosion energy. The net nuclear
binding energy released by the ejecta during the whole
supernova (including both the initial endothermic photodisso-
ciation and the final exothermic explosive burning) is positive,
but much smaller than the energy provided by neutrinos.
Furthermore, we obtain an approximate convergence of the
explosion energy typically only after 1–2 s and only if the full
progenitor structure is taken into account. Vice-versa, we find
that the so-called “diagnostic energy” is, in general, not suited
to give an accurate estimate of the explosion energy at early
times.
Our broad parameter exploration has revealed a distinction

between HC (ξ > 0.451.75 ) and LC (ξ < 0.451.75 ) progenitor
models for the ZAMS mass range of 18–21 ⊙M . The LC
models tend to explode earlier, with lower explosion energy,
and with a lower remnant mass. When the HC models explode,
they tend to explode later, more energetically, and producing
more massive remnants. This is due to different accretion
histories of the LC and HC models. The HC models have larger
accretion rates, which produce larger neutrino luminosities,
(marginally) harder neutrino spectra, and a stronger ram
pressure at the shock. In order to overcome this pressure a more
intense neutrino energy deposition is required behind the
shock. And, once the explosion has been launched, a more
intense energy deposition inside the expanding shock is
observed. Thus, HC models require more time to explode but
the resulting explosions are more energetic.
The fitting of the PUSH parameters to observations of

SN 1987A has lead to several interesting conclusions. The
requirement of an explosion energy around 1 Bethe has
restricted our progenitor search to HC models. At the same
time, our parameter space exploration has shown that a
constraint on the explosion energy is equivalent to a tight
correlation between the two most relevant PUSH parameters,
trise and kpush: if a certain explosion energy has to be achived, a
longer timescale for PUSH to reach its maximum efficiency
(trise) has to be compensated by a larger PUSH strength (kpush).
This degeneracy can be broken by including nucleosynthesis
yields in the calibration of the free parameters.
We find an overproduction of Ni56 for runs with an

explosion energy around and above 1 Bethe. This problem is
observed for all the tested parameter choices and progenitors
that provide a sufficiently high explosion energy. Thus,
fallback is necessary in our models to reproduce the observed
nucleosynthesis yields. This fallback could be associated with
the formation of a reverse shock when the forward shock
reaches the hydrogen shell. The relatively large amount of
fallback that we use (0.1 ⊙M ) is consistent with observational
constraints from SN 1987A and with explicit calculations of the
fallback for exploding models of ∼20 ⊙M ZAMS mass
progenitors (Chevalier 1989; Ugliano et al. 2012).
The production of − Ni57 58 is sensitive to the electron fraction

of the innermost ejecta. A final mass cut initially located inside
the silicon shell can provide slightly neutron rich ejecta,
corresponding to the conditions required to fit the − Ni57 58

yields of SN 1987A. We found that this is only possible for the
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18.0 ⊙M and 19.4 ⊙M ZAMS mass progenitors, whereas for the
other HC models, characterized by larger ξ1.75, the mass cut is
located inside the oxygen shell. The 18.0 ⊙M and 19.4 ⊙M
ZAMS mass progenitors can explain the energetics and all
nickel yields if fallback is included. For 44Ti, in contrast, we
find that it is underproduced. However, we have shown that
uncertainties in the relevant nuclear reaction rates, together
with mixing of the ejecta, can help reduce this discrepancy.

Our work has demonstrated that the progenitor structure and
composition are of great importance for the nucleosynthesis
yields. Recently, it has been pointed out that asphericities in the
progenitor structure could aid the multi-dimensional neutrino-
driven supernova mechanism (Couch & Ott 2013; Couch et al.
2015; Müller and Janka 2015). For our work, the composi-
tional changes induced by multi-dimensional effects in the
progenitor evolution (Arnett et al. 2015) would be of particular
interest and could be the subject of future work. However, at
present, databases with large sets of progenitors are only
available for calculations that were done in spherical symmetry.

Finally, we have identified a progenitor (18.0 ⊙M ZAMS
mass, compactness ξ = 0.4631.75 at collapse) that fits the
observables of SN 1987A for a suitable choice of the PUSH
parameters ( =t 80on ms, =t 200rise ms, and =k 3.5push ) and
assuming 0.1 ⊙M of fallback. The associated explosion energy
is =E 1.092expl Bethe, while =M ( Ni) 0.07356

⊙M . The
formation of a BH in SN 1987A seems to be unlikely, since
it would require a much larger fallback compared with our
analysis and/or an extremely asymmetric explosion. Instead,
we predict that in SN 1987A a neutron star with a baryonic
mass of 1.66 ⊙M was born, corresponding to a gravitational
mass of 1.50 ⊙M for a cold neutron star with our choice of the
EOS. This will hopefully be probed by observations soon
(Zanardo et al. 2014).

For our best model of SN 1987A the explosion happens on a
timescale of a few hundereds of milliseconds after core bounce.
This timescale is consistent with the overall picture of a
neutrino-driven supernova, and broadly compatible with the
first results obtained in exploding, self-consistent, multi-
dimensional simulations.

From exploring the progenitor range of 18–21 ⊙M ZAMS
mass we found indications of a correlation between explosion
properties and the compactness of the progenitor model.
However, a more complete analysis will require the exploration
of a larger set of progenitors with the PUSH method. This will
be the topic of a forthcoming work. An extended study
considering all possible progenitors for CCSN in the mass
range of 8–100 ⊙M will be relevant for several open questions
in nuclear astrophysics, for example for the comparison of
predicted to observed explosion energies, neutron-star remnant
masses, and ejected 56Ni (see, e.g., Bruenn et al. 2014) or for
the prediction of complete nucleosynthesis yields of all
elements which is a crucial input to galactic chemical
evolution. A full progenitor study could also give more insight
into the extent to which the compactness parameter affects the
supernova energetics and nucleosynthesis.
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