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ABSTRACT

We present a framework for forecasting cosmological constraints from future neutral hydrogen intensity mapping
experiments at low to intermediate redshifts. In the process, we establish a simple way of comparing such surveys
with optical galaxy redshift surveys. We explore a wide range of experimental configurations and assess how well
a number of cosmological observables (the expansion rate, growth rate, and angular diameter distance) and
parameters (the densities of dark energy and dark matter, spatial curvature, the dark energy equation of state, etc.)
will be measured by an extensive roster of upcoming experiments. A number of potential contaminants and
systematic effects are also studied in detail. The overall picture is encouraging—if autocorrelation calibration can
be controlled to a sufficient level, Phase I of the Square Kilometre Array should be able to constrain the dark
energy equation of state about as well as a DETF Stage IV galaxy redshift survey like Euclid, in roughly the same
time frame.

Key words: cosmological parameters – cosmology: observations – large-scale structure of universe – radio lines:
galaxies

1. INTRODUCTION

As the drive toward ever-greater cosmological precision
continues, it becomes necessary to survey progressively larger
volumes of the universe in order to stay ahead of the
fundamental limits on measurement accuracy set by cosmic
variance. In principle, the best we can ever do is to map out the
structure of the whole of the observable universe, and on large
scales at least, this possibility may soon be within reach. The
tracer of choice is likely to be neutral hydrogen (H I), which
pervades space from the time of recombination up to the
present day. H I is thought to be a (biased) tracer of the
underlying dark matter distribution and has a characteristic line
emission at around 21 cm—well into the radio—that is mostly
immune to obscuration by intervening matter. The redshifting
of this line additionally gives a measure of cosmic distance,
making it possible to reconstruct the three-dimensional matter
density field over a wide range of redshifts and scales.

At late times the universe has reionized, and so the bulk of
the neutral hydrogen is thought to reside in comparatively
dense gas clouds (damped Lyα systems) embedded in galaxies,
where it is shielded from ionizing UV photons. H I is therefore
essentially a tracer of the galaxy distribution. Detecting
sufficient numbers of H I-emitting galaxies to do precision
cosmology would be a mammoth task, but fortunately this is
not necessary; one can instead simply measure the total H I

intensity over comparatively large angular scales, without
needing to resolve individual galaxies. The result is a map of
large-scale fluctuations in 21 cm intensity, similar to a cosmic
microwave background (CMB) map, except now the signal is
also a function of redshift. Combined with the high frequency
(and thus redshift) resolution of modern radio telescopes, this
intensity mapping (IM) methodology makes it possible to
efficiently survey extremely large volumes (Battye et al. 2004,
2013; McQuinn et al. 2006; Loeb & Wyithe 2008; Pritchard &

Loeb 2008; Wyithe & Loeb 2008; Chang et al. 2008; Mao et al.
2008; Wyithe et al. 2008; Peterson et al. 2009; Bagla
et al. 2010; Seo et al. 2010; Lidz et al. 2011; Ansari
et al. 2012).
As with the CMB, the 21 cm signal is contaminated by a host

of foreground emission sources, such as our own Galaxy and
extragalactic point sources, that are orders of magnitude
stronger. The hope is that the spectra of the foreground sources
are sufficiently smooth that, with a clever cleaning algorithm, it
should be possible to suppress them to such a level that the
cosmological signal can be extracted in an unbiased way (Oh &
Mack 2003; Barkana & Loeb 2005; Santos et al. 2005; Morales
et al. 2006, 2012; Wang et al. 2006; Gleser et al. 2008; Jelić
et al. 2008; Liu et al. 2009, 2014; Liu & Tegmark 2011;
Petrovic & Oh 2011; Parsons et al. 2012). First attempts at
using IM have been promising, but have highlighted the
challenge of calibration and foreground subtraction. The
Effelsberg-Bonn survey (Kerp et al. 2011) has produced a
data cube covering redshifts out to z = 0.07, while the Green
Bank Telescope (GBT) has produced the first (tentative)
detection of the cosmological signal through IM by cross-
correlating with the WiggleZ redshift survey (Chang
et al. 2010; Masui et al. 2013; Switzer et al. 2013). As probes
to constrain cosmological parameters these measurements are,
as yet, ineffective, but they do point the way to a promising
future.
The purpose of this paper is twofold. First of all, we develop

a self-consistent forecasting formalism, rooted in the mapping
of two-dimensional diffuse emission, but which can easily be
compared to (and even interpreted as) 3D redshift surveys of
discrete sources. It is approximate—using the “flat-sky”
approximation, and slicing up the full data set into approxi-
mately uncorrelated redshift bins—but the formalism is
remarkably effective in forecasting constraints for a diverse
portfolio of cosmological parameters. We can also use it to
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discuss the impact of different experimental configurations, as
well as the effectiveness of foreground subtraction on our
results.

With this formalism in hand, we then use it to explore the
observational campaigns that are planned up to, and including,
Phase I of the Square Kilometre Array (SKA), which is due to
see first light around 2020. One of the key results of this work
is the prediction that cosmological constraints from forth-
coming 21 cm IM surveys will be able to compete with, and
perhaps even surpass, those from traditional probes of large-
scale structure within the decade, even when future high-
precision experiments such as Euclid and LSST are taken into
account. This finding relies on being able to use large dish
arrays like the SKA in an autocorrelation mode, rather than as a
(more standard) interferometer—a requirement that brings with
it a number of calibration and data analysis challenges that have
yet to be solved.

The paper is structured as follows. We first present a
mathematical model for the IM signal and use it to construct the
Fisher Matrix for a general set of cosmological parameters. In
doing so, we discuss the approximations that we are making in
modeling the cosmological signal, experimental setup, and
foreground subtraction. We then discuss the structure of our
formalism, comparing it to what one obtains when forecasting
for redshift surveys. The concept of “effective volume”
becomes a useful way of discussing the strengths and
weaknesses of IM. We then make a first pass at forecasting
for cosmological parameters, focusing on the detectability of
the baryon acoustic oscillation (BAO) feature and the
information that can be gleaned from it, including the Hubble
rate and angular diameter distance, and the growth rate from
redshift space distortions (RSDs). Next, we turn our attention
to forecasting for the canonical set of cosmological parameters,
including various fractional energy densities and the equation
of state of dark energy. The potential to constrain theories of
modified gravity is also examined, and the importance of bias
and the neutral hydrogen fraction is assessed. We then discuss
the importance of survey design and foreground subtraction
and establish a set of goals that subtraction methods will need
to satisfy if IM experiments are to be successful. We finally
conclude with a series of desiderata for the future of cosmology
with H I IM.

Throughout this paper we use the Planck best-fit ΛCDM
model (Planck Collaboration 2014b) for our fiducial cosmol-
ogy,

s
= = = =
=- = = =

Lh

w n N

0.67, Ω 0.684, Ω 0, Ω 0.049,
1, 0.962, 0.834, 3.046,

K b

s 8 eff

and all distances and scales are expressed in physical, rather
than -h ,1 units.

2. FISHER FORECAST FORMALISM

We base our forecasting formalism on the Fisher matrix
technique, which assumes that all parameters of interest can be
approximated as being Gaussian-distributed, and that observa-
tions are unbiased. While it has its drawbacks (Hawken
et al. 2012; Wolz et al. 2012), Fisher forecasting is an effective
way of getting an idea of how constraining a given
experimental setup is likely to be without requiring detailed
experiment-specific simulations.

We begin by defining our data model. The observed
brightness temperature is d= +T T T(1 ),obs where the total

fluctuation in an individual “voxel” (volume element) is given
by

q q q qd n d n d n d n= + +( ) ( ) ( ) ( )T T T T, , , , ,p p
S

p p
N

p p
F

p p

with p labeling the voxel given by a 2D angular direction, q ,p
and frequency, n .p The total fluctuation consists of the
cosmological signal (S), instrumental and atmospheric noise
(N), and residual astrophysical foregrounds (F). Detailed
models for each component will be set out in subsequent
sections, but for now we need only note that they are all
stochastic, and will be modeled as Gaussian-distributed, with
mean zero, in each voxel.
It is usual to expand the different components of the data

vector in terms of spherical harmonics. This is the preferred
strategy for accurate forecasting on the largest scales—for
example, when testing for scale-dependent bias due to non-
Gaussianity (Camera et al. 2013) or effects due to GR/modified
gravity (Hall et al. 2013). In this paper, however, we will work
in the flat-sky limit and describe the signal in terms of the
comoving 3D power spectrum, kP ( ). This mimics what is used
when forecasting for galaxy redshift surveys and will be useful
when we define an equivalence between redshift surveys and
IM experiments.
In this limit, the mapping between the observed voxel and its

comoving-space location is7
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where we have centered the survey on q n( , ),i i corresponding to
a redshift bin centered at zi, and have defined the dimensionless
frequency n n nº = + -z˜ (1 ) .21

1 We will predominantly
work in observational coordinates, with the Fourier transform
convention

ò qd d n q n= q n+qT y T e d d( , ) ( , ) ˜.( )qi y· · ˜ 2

The (dimensionless) observation-space Fourier variables are
related to the comoving variables by = ^q k r and = ny k r .
To construct the Fisher matrix, we now need to define the

covariance for each of the components. For a component X, this
is defined as

d d

d d d

¢ ¢

= - ¢ - ¢

¢

¢

q q

q q q

T y T y

π C y y y

*( , ) ( , )

(2 ) ( , ) ( ) ( ) . (1)

X X

X
XX

3 2

We will make a number of approximations here. First of all, we
assume that the signal, noise, and foregrounds are uncorrelated
with one other, and that the resulting covariance matrices are
diagonal (i.e., they are statistically homogeneous and iso-
tropic). The former is not true in practice, as the process by
which foregrounds are removed from the data will introduce
correlations, as discussed in Section 6.3. The latter is also not
strictly true, as the cosmological signal is only diagonal in the
flat-sky limit, and the main foreground that we need to correct
for—the Galaxy—is anisotropic and will also introduce off-
diagonal terms. Nevertheless, given the conservative modeling

7 We use the definition of transverse comoving distance from Hogg (1999),
which reduces to ò=r z( )

z cdz

H z0 ( )
for =Ω 0,K and take »r dz.dr

dz

2
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choices we make in coming sections, we believe that our results
will be close enough to the real situation.

A further approximation is that evolution can be neglected
within each redshift bin, so that evolving cosmological
functions are fixed to their values at the central redshift of
the bin. This is a good approximation for sufficiently narrow
bins, as most of the relevant functions (e.g., H(z), r(z)) vary
slowly with z. We have verified that our results are robust to the
choice of bin width (which is chosen as nD = 60 MHz for all
experiments).

2.1. Signal Model

Radio telescopes measure flux density—the integral of the
source intensity, nI , over the solid angle of the telescope beam.
We derive an expression for the H I line intensity in
Appendix A. In the Rayleigh–Jeans limit, this can be converted
into an effective H I brightness temperature, n= nT c I k2 ,b B

2 2

that can be split into a homogeneous part and a fluctuating part,
d= +T T (1 ),b b HI where (from Appendix A)

n
r=

+
T

π

hc A

k m

z

H z
z

3

32

(1 )

( )
Ω ( ) . (2)b

B p
c

3
10

21
2

2

HI ,0

The fluctuations are the quantity of interest here, and so we
identify the cosmological signal as

qd n d=( ) rT T z z, ( ) ( , ).S
p p b pHI

At late times, most of the neutral hydrogen content of the
universe is expected to be localized to dense gas clouds within
galaxies, where it is shielded from ionizing photons. We
therefore expect HI to be a biased tracer of the dark matter
distribution, just as galaxies are. This allows us to write the H I

density contrast as d d= b MHI HI (where dM is the total matter
density perturbation, and å denotes convolution, accounting for
the possibility of scale- and time-dependent biasing).

Because the H I intensity is measured as a function of
frequency (and thus redshift) rather than comoving distance,
we must also account for RSDs caused by the peculiar
velocities of the clouds and the galaxies in which they reside.
Following Kaiser (1987), we write the (Fourier-transformed)
redshift-space H I contrast as

d s d= + -( ) ( )k kb fμ k μ( ) exp 2 ( ), (3)MHI HI
2 2 2

NL
2

where º μ k k and the flat-sky approximation has been used
again. We have assumed that the H I velocities are unbiased.
The linear growth factor, f, is a key observable, telling us much
about the growth of structure on linear scales; we will study it
in detail in Section 4.3. The exponential term accounts for the
“Fingers of God” effect due to uncorrelated velocities on small
scales,8 which washes out structure in the radial direction past a
cutoff scale parameterized by the non-linear dispersion, s .NL

Substituting (3) into (1) and making use of the definition of
the isotropic matter power spectrum,

d d d¢ º - ¢k k k kπ P k( ) ( ) (2 ) ( ) ( ),M M* 2 3

we can write the signal covariance as

=
n

n( )
qC y T z

P z

r r
( , ) ( )
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S
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y
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2

where the factor of nr r2 is from the conversion into
observational Fourier coordinates, q y( , ), and we have defined
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= =
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2

The redshift dependence of the matter power spectrum has been
factored out into the linear growth factor, D, which is
normalized to = =D z( 0) 1. This is related to the growth
rate by =f d D d alog log . Strictly, the growth factor should
be scale-dependent on small scales, but for simplicity we
neglect this possibility here as we will mostly be concerned
with larger scales.
It is straightforward to calculate fiducial values for the

cosmological functions in (4). We use CAMB (Lewis
et al. 2000) to calculate P(k) at z = 0 for our chosen fiducial
cosmological parameters, and use the simple parameterization

= gf z z( ) Ω ( )M for the linear growth rate (Peebles 1980;
Linder 2005), where = +z z H H zΩ ( ) Ω (1 ) ( ),M M

3
0
2 2 and

g » 0.55 for ΛCDM. For the other functions in (4), however,
there is considerably more uncertainty in the choice of fiducial
model.
One key uncertainty is the behavior of the H I bias, b .HI The

bias depends on the size of host dark matter halos; if a halo is
too small, gas clouds would be unable to gain sufficient density
to shield themselves and keep the hydrogen neutral. The halo
dependence can be modeled using the halo mass function with
an appropriate lower mass cutoff (or lower rotation velocity;
see, e.g., Bagla et al. 2010). There are a few candidate models
for the evolution of the bias as a function of redshift that fit the
current constraints from observations (Switzer et al. 2013) or
are calibrated against simulations (Wilman et al. 2008), but
there is considerable disagreement between them. In Section 6.1
and Appendix B, we discuss the impact of the uncertain bias
evolution. Unless stated otherwise, we will use a linear bias
model for the rest of the paper and—rather conservatively—
marginalize over the value of bHI separately in each red-
shift bin.
Another major uncertainty is in the H I density fraction,

r r=Ω .cHI HI ,0 This enters the signal covariance through

T z( ),b since µT Ω .b HI The current best constraints on the H I

fraction come from Switzer et al. (2013), who find

=  ´ -bΩ 4.3 1.1 10HI HI
4

at the 68% confidence level at z = 0.8. This constitutes a
relatively large uncertainty in the overall amplitude of the H I

signal and, correspondingly, the signal-to-noise ratio that can
be achieved by a given experiment. We investigate the impact
of this uncertainty in Section 6.1, but for the rest of the paper
we will adopt a fiducial value of = ´ -Ω 4.86 10 .HI,0

4

The non-linear dispersion scale, s ,NL is yet another source of
uncertainty. Recent values from the literature vary between

8 Alternatively, we could have used a Lorentzian instead of an exponential, or
a slightly more complex exponential term that models non-linear smoothing of
the BAO as well (Samushia et al. 2012).

3
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s » 4 and 10NL Mpc (e.g., Li et al. 2007; Reid & White 2011;
Reid et al. 2012; Contreras et al. 2013); for our fiducial model,
we choose a middling value of s = 7NL Mpc (Li et al. 2007),
which corresponds to a non-linear scale of ~k 0.14NL Mpc−1

(or a velocity dispersion of ∼500 km s−1). We check the
sensitivity of our results to this choice in Section 6.2. IM
experiments can independently constrain s ,NL so we leave it
free, marginalizing over it as a nuisance parameter in all
forecasts.

2.2. Noise Model and Effective Beams

The noise covariance models the instrumental and sky noise
for a given experiment, but we will also use it to include the
effects of instrumental beams. For radio telescopes, assuming
uncorrelated Gaussian noise, the noise covariance has the
standard form

n
=

D ^
- -

qC y
T

t
U B B( , ) , (5)N sys

2

tot
bin

2 1

where Tsys is the system temperature, ttot is the total integration
time, n= DU S ˜bin area is the volume of an individual redshift
bin, and Sarea and nD ˜ are the survey area and (dimensionless)
bandwidth within the redshift bin, respectively. The factors of
 and B describe the number (or number density) of receivers
and their corresponding frequency and angular responses.

The system temperature has two main components: the
instrument temperature, Tinst, which depends on the hardware
design, and n» ´ -T 60 K ( 300 MHz) ,sky

2.5 which accounts
for atmospheric and background radio emission, to give a total

= +T T T .sys inst sky Values for Tinst are quoted in the design
specifications for a given experiment and are typically a few
tens of kelvin.

The survey area and total integration time are not intrinsic to
the design of the instrument, but are instead chosen as part of
the survey strategy. We will systematically examine the effects
of varying these parameters in Section 7. One of the advantages
of IM with radio telescopes is that substantial fractions of the
sky can be surveyed to a useful depth over the course of only a
year or so. This is thanks in part to the relative cheapness of
low-noise multiple-receiver systems and the ∼degree-scale
primary beams of dishes in most arrays, both of which act to
substantially improve survey speed. For much of what follows,
we will assume that all experiments can perform between 10
and 25,000 deg2 surveys over 10,000 hr total observing time,
which is reasonable for a dedicated survey telescope.

We now turn to the effective beam terms. The instrumental
resolution in the radial direction is limited by the bandwidth of
an individual frequency channel, dn. We approximate the
channel bandpass by a Gaussian, which gives an effective beam
in the parallel direction,

dn n
=

æ

è

ççççç
-

ö

ø

÷÷÷÷÷÷


( )
B y

y
( ) exp

16 ln 2
;

21
2

the numerical factor comes from the definition of the FWHM,
s q= 8 ln 2 .FWHM Modern radio receivers can typically be
built with narrow channel bandwidths of around 100 kHz or
less. Narrow channels allow for more precise removal of
artificial radio interference (RFI), for example, but also
increase the data rate, which may require expensive increases
in correlator performance for interferometers. In practice, the

channel bandwidth is not the limiting factor in the radial
resolution, as for realistic dn this is instead determined by the
non-linear dispersion scale, s .NL
The expressions for the dish multiplicity factor, , and

transverse effective beam, ^B , depend on whether the array is
used as an interferometer or a collection of independent single
dishes, i.e., whether the signals from individual dishes are
correlated with one another or not. For single-dish experiments
that only use the autocorrelation of the signal from each dish,
we have

n

q

=

=
æ

è

ççççç
-

ö

ø
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^



( )
q

f

N N

B
q

( )

( ) exp
16 ln 2

,

b d

B
2

where q l» Db dish is the FWHM of the beam of an individual
dish of diameter Ddish at some wavelength λ, and Nd is the
number of dishes in the array. Nb is the number of beams,
which differs from unity if the experiment has multiple pixels
or phased array feeds (PAFs) per dish. Each dish/beam will
typically survey a different patch of the sky, thus increasing the
survey speed. Any additional frequency dependence of the
sensitivity (e.g., due to beam overlap for PAF receivers) can be
accounted for by the nf ( ) factor; specific forms of the noise
expression appropriate for different types of receiver are given
in Appendix D.
For interferometers, in the case where we assume multiple

pointings, i.e., >S FOV,area we have

=
=^

-B
n u q π

FOV

( 2 )
,2

where n(u) is the number density of samples in the uv plane as
a function of ∣ ∣u , and l» DFOV ( )dish

2 is the field of view.
Each configuration of baselines will lead to a different n(u),
although if one assumes constant sampling in uv, it can be
approximated by

=
-

-( )
( )

n u
N N

π u u
( )

1

2
, (6)

d d

max
2

min
2

where l=u D ,max max l=u D ,min min and Dmax, Dmin are the
lengths of the longest/shortest baselines. The effective beam in
the transverse direction is determined by n(u) and so does not
need to be defined separately.
For interferometric experiments where the baseline distribu-

tion is available, we calculate n(u) specifically for that
distribution; otherwise, we use the approximation in Equa-
tion (6). For the former, one has to assume a declination of
observation as well as a baseline distribution. As the sky drifts,
a set of tracks will be mapped out onto the uv plane. These are
typically split into bins of size D ~u( ) 1 FOV,2 which can be
taken to be independent. It is then possible to construct a
simple model for n(u) that is good enough for our forecasts
(see Appendix C).

2.3. Foreground Model

Foreground contamination from the galaxy and extragalactic
point sources dwarfs the cosmological H I signal. A number of
different methods have been proposed for modeling and
subtracting the foregrounds (Oh & Mack 2003; Barkana &

4
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Loeb 2005; Santos et al. 2005; Morales et al. 2006; Wang
et al. 2006; Gleser et al. 2008; Jelić et al. 2008; Liu et al. 2009;
Petrovic & Oh 2011), but in this paper we will simply assume
that some sort of method has been applied that removes them,
leaving behind some residual contamination whose variance
can be modeled as a sum of smooth power spectra. (One could
also model instrumental calibration residuals in this way.) Our
model for the residual foreground is

å
n

n
=

æ

è
ççç

ö

ø
÷÷÷÷

æ

è
çççç

ö

ø
÷÷÷÷

qC y A
l

πq
( , )

2
. (7)F

X
X

n
p

m

FG
2 p

i

X X

The amplitude and index parameters for four representative
foregrounds are given in Table 1, following Santos
et al. (2005).

Subtraction algorithms also introduce a minimum wave
number below which cosmological information cannot be
extracted. This is because the smooth variation of the
foregrounds in frequency is difficult to separate from
cosmological modes on scales comparable to the total survey
bandwidth, n~ Dnk r1 ( ˜ ).FG tot A subtraction method that relies
on fitting and subtracting smoothly varying functions will
necessarily remove some power from radial cosmological
modes larger than this scale as well.

We have introduced an overall scaling,  ,FG to parameterize
the efficiency of the foreground removal process: = 1FG
corresponds to no foreground removal, while we will probably
need - 10FG

5 to be able to extract the cosmological signal.
One can also interpret FG as a measure of how smooth (or
correlated) foregrounds are in frequency, and thus how well
they can be modeled by smooth deterministic functions. For
example, if we assume a Gaussian correlation function along
the frequency direction, we have that n x~ - D exp [ ( ) ],FG

2

where nD is the bandwidth of the redshift bin we are probing
and ξ is the correlation length in frequency. We have neglected
cross-correlations between different frequencies here, although
including them would not be difficult.

This treatment of foreground subtraction is necessarily
simplified. For example, we are assuming that the various
contributions to the total signal remain uncorrelated, yet all of the
subtraction methods proposed so far remove modes that receive
contributions from all components. Although the foregrounds
will be the dominant part of the subtracted signal by far, this
process will nevertheless induce cross-correlations between
whatever is left in the residual. Practical experience of foreground
subtraction from real data is quite limited so far (see Chang
et al. 2010; Masui et al. 2013; Switzer et al. 2013 for some initial
attempts), and so we do not have a good picture of how
important various aspects of the foreground problem are yet. For
the time being, we believe that our model captures the essential
elements of the foregrounds sufficiently well to be of use. We
will return to the issue of foreground modeling in Section 6.3.

2.4. The Fisher Matrix

We are now in a position to construct the full Fisher matrix.
To do this, we need to sum over the number of independent
modes in q and y. If Sarea is the survey area, FOV is the field of
view of a single array element, and nD ˜ is the (dimensionless)
bandwidth in the redshift bin, we have nD = Dy π2 ˜, and
D =q π S2 area (single-dish) or D =q π2 FOV (interfe-
rometer). The sum over modes is then given by

ò òD D


d qdy

q y
U

d qdy

π( ) (2 )
,

2

2 bin

2

3

where n= ´ DU S ˜.bin area If we define = + +C C C C ,T S N F

the Fisher matrix for a set of cosmological parameters p{ }i is
given by

ò= é
ëê¶ ¶ ù

ûúq qF U
d qdy

π
C y C y

1

2 (2 )
ln ( , ) ln ( , ) , (8)ij i

T
j

TIM
bin

2

3

where the derivatives will only act on CS, since that is the only
term containing parameters of interest.
We can rewrite (8) in terms of physical wave numbers by

using the following dictionary: = nV U r r ,bin bin
2 = ^q k r, and

= ny k r , where = -^k k μ1 2 and =k kμ. We then apply
the substitutions

1. U Vbin bin

2. ò ò ò
-

+ ¥
dq dy π dμ k dk2

k
2

1

1 2
min

3. = -q kr μ1 2 and = ny kr μ.

We can now express the Fisher matrix in a familiar form to
those working on galaxy redshift surveys—a comparison we
will pursue in Section 3.

2.5. Experimental Configurations

Our focus in this paper is on the lead-up to Phase I of the
SKA. We consider a portfolio of planned experimental
configurations, with the aim of exploring how they will impact
constraints on cosmological parameters. Our approach is
ecumenical—we try to include as many proposed configura-
tions as possible, although we are limited by what information
has been made publicly available.
We will first of all consider three illustrative experimental

setups, roughly corresponding to successive “generations” of
planned IM experiments. These are:

1. Stage I—Small, specialized H I experiment focused on a
relatively narrow redshift range, intended to provide
initial detections of the BAO and other first cosmological
results. Stage I experiments are envisaged as either
surveys on existing general-purpose arrays or relatively
cheap purpose-built telescopes using multi-feed receivers
to improve sensitivity.

2. Stage II—Larger interferometric experiment with
enhanced sensitivity, covering a wider range of red-
shifts. Stage II experiments are intended to cover a
substantial survey volume, with the aim of producing
constraints on cosmological parameters that are compe-
titive with contemporary (DETF9 Stage II/III) LSS
surveys. They are likely to be either purpose-built H I

Table 1
Foreground Model Parameters at =ℓ 1000p and n = 130p MHz, Taken from

Santos et al. (2005)

Foreground AX [mK2] nX mX

Extragalactic point sources 57.0 1.1 2.07
Extragalactic free–free 0.014 1.0 2.10
Galactic synchrotron 700 2.4 2.80
Galactic free–free 0.088 3.0 2.15

9 See Albrecht et al. (2006).
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arrays with a large number of receivers or surveys on
forthcoming “SKA-precursor” arrays such as MeerKAT
and ASKAP.

3. Facility—Survey on a future large array, covering a wide
redshift range over most of the sky. Facility-type surveys
will compete with other large (DETF Stage IV)
experiments to produce the most precise cosmological
parameter estimates and will be able to probe novel H I-
only effects for the first time. The only planned
experiments of this type so far are the Phase I SKA
arrays, although the full CHIME and Tianlai configura-
tions could also fall into this class.

We have chosen representative configurations for each of
these classes (see Table 2) that will be used to illustrate the
expected progress of H I IM experiments over the next decade.

We have also forecasted for the following real (existing,
proposed, or plausible) experiments:

ASKAP: An SKA pathfinder consisting of thirty-six 12 m
dishes, each with 36-element PAFs, located at the
eventual site of SKA1-SUR in Australia (Johnston
et al. 2008).

BAOBAB: Proposed compact array of 128 1.6 m tiles with
four dipoles per tile, co-located with GBT or
SKA1-MID (Pober et al. 2013).

BINGO: A proposed 40 m (25 m illuminated) multi-recei-
ver single-dish telescope in South America (Battye
et al. 2013).

CHIME: A proposed array made up of 20 × 100 m cylinders
(20 × 80 m illuminated), based in British Colum-
bia, Canada. There is a pathfinder with two half-

Table 2
Telescope Configurations Used in This Paper

Experiments Tinst Nd × Nb Ddish Dmin Dmax ncrit nmax
IM nmin

IM nD IM zmin zmax Sarea

[K] [m] [m] [m] [MHz] [MHz] [MHz] [MHz] [deg2]

Ref. Stage I 50 1 × 50 30.0 L L L 1100 800 300 0.29 0.77 5,000
• Stage II 35 160 × 1 4.0 4.0 53.0 1000 1000 600 400 0.42 1.37 2,000

Facility 20 250 × 1 15.0 L L L 1100 400 700 0.29 2.55 25,000

Existing
Facility

GBT 29 1 × 1 100.0 L L L 920 680 240 0.54 1.09 100

GBT-HIM 33 1 × 7 100.0 L L L 900 700 200 0.58 1.03 1,000
GMRT 70 30 × 1 45.0 L L L 1420 1000 420 0.00 0.42 1,000
JVLA 70 27 × 1 25.0 L L L 1420 1000 420 0.00 0.42 1,000
Parkes 23 1 × 13 64.0 L L L 1420 1155 265 0.00 0.23 5,000
VLBA 27 10 × 1 25.0 L L L 1420 1200 220 0.00 0.18 5,000

▴ WSRT + APERTIF 52 14 × 37 25.0 L L L 1300 1000 300 0.09 0.42 25,000

Targeted IM • BAOBAB-128 40 128 × 1 1.6 1.6 26.0 L 900 600 300 0.58 1.37 1,000
BINGO 50 1 × 50 25.0 L L L 1260 960 300 0.13 0.48 5,000

à CHIME 50 1280 × 1 20.0 L L L 800 400 400 0.77 2.55 25,000
FAST 20 1 × 20 500.0 L L L 1000 400 600 0.42 2.55 2,000

• MFAA 50 3100 × 1 2.4 0.1 250.0 950 950 450 500 0.49 2.16 5,000
à Tianlai 50 2048 × 1 15.0 L L L 950 550 400 0.49 1.58 25,000

Pre-SKA ▴ ASKAP 50 36 × 36 12.0 L L L 1000 700 300 0.42 1.03 25,000
KAT7 30 7 × 1 13.5 L L L 1420 1200 220 0.00 0.18 2,000
MeerKAT (B1) 29 64 × 1 13.5 L L L 1015 580 435 0.40 1.45 25,000
MeerKAT (B2) 20 64 × 1 13.5 L L L 1420 900 520 0.00 0.58 25,000

SKA Phase I SKA1-MID (B1)
Autocorr.

28 190 × 1 15.0 L L L 1050 350 700 0.35 3.06 25,000

◦ SKA1-MID (B1)
Interferom.

28 190 × 1 15.0 L L L 1050 350 700 0.35 3.06 100

SKA1-MID (B2)
Autocorr.

20 190 × 1 15.0 L L L 1420 900 520 0.00 0.58 25,000

◦ SKA1-MID (B2)
Interferom.

20 190 × 1 15.0 L L L 1420 900 520 0.00 0.58 50

▴ SKA1-SUR (B1) 50 60 × 36 15.0 L L 710 900 400 500 0.58 2.55 25,000
▴ SKA1-SUR (B2) 30 96 × 36 15.0 L L 1300 1150 650 500 0.23 1.18 25,000

SKA1-MID + Meer-
KAT(B1)a

L L L L L L 1050 350 700 0.35 3.06 25,000

SKA1-MID + Meer-
KAT (B2)a

L L L L L L 1420 900 520 0.00 0.58 25,000

Notes. The assumed observing mode of each telescope is denoted by: ( ) Single-dish; (▴) Single-dish with Phased Array Feed; (◦) Dish Interferometer; (•) Dense
Aperture Array; (à) Cylinder Interferometer. Some Instruments can operate over a wider frequency range than shown here; where this is the case, our values
correspond to the most appropriate nmax for IM, or we include multiple bands.
a For Combined Arrays, in redshift bins where the bands overlap, we find T ,inst Ddish by averaging the values for each sub-array, weighted by the number of dishes.
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length cylinders, and a planned full experiment
with five (CHIME Collaboration 2012).

FAST: A proposed multi-beam system on the 500 m single-
dish telescope currently under construction in
southwest China (Smoot & Debono 2014).

GBT: A 100 m single-dish telescope in West Virginia
(USA). GBT has already been used for preliminary
detections of the H I signal (Chang et al. 2010; Masui
et al. 2013; Switzer et al. 2013).

GBT-HIM: A planned seven-beam receiver system on GBT
(Chang & GBT-HIM Team 2014).

GMRT: Array of 30 45 m dishes in Pune, India (Swarup
et al. 1991).

JVLA: An array of 27 25 m dishes, based in New Mexico,
USA (NRAO 2014).

KAT7: An SKA pathfinder made up of seven 12 m dishes,
on the planned site of SKA1-MID (SKA South
Africa 2014).

MeerKAT: An SKA pathfinder with 64 13.5 m dishes, on
the site of SKA1-MID (Jonas 2009). Has a
choice of two frequency bands.

MFAA: A proposal for a mid-frequency aperture array
component of Phase II of the SKA (MFAA 2014).

Parkes: A single 64 m dish (with 13 beams) in NSW,
Australia (ATNF 2014).

SKA1-MID: A planned SKA Phase I configuration with 190
15 m dishes, based in the Northern Cape, South
Africa (Dewdney et al. 2013). Can be extended
to incorporate the 64 MeerKAT dishes.

SKA1-SUR: A planned SKA Phase I configuration with 60
15 m dishes, each with 36-element PAFs, based
in Western Australia (Dewdney et al. 2013).
Can be extended to incorporate the ASKAP
dishes.

Tianlai: A proposed array of eight 15 × 120 m cylinders to
be built in northwest China (Chen 2012).

VLBA: An array of 10 25 m dishes distributed across North
America (Napier et al. 1994).

WSRT + APERTIF: A proposed upgrade to WSRT that
uses a PAF in the focal plane to
produce multiple beams on the sky
(Oosterloo et al. 2010).

This is intended to be a relatively exhaustive list of current
and planned H I IM experiments at z 3, but inevitably some
have been omitted due to a lack of publicly available
specifications. We have made our code publicly available,10

so forecasts can be performed when specifications become
available.

The instrumental parameters used for each experiment are
listed in Table 2. The survey area is chosen (between 10 and
25,000 deg2) to maximize the DE figure of merit (FOM) (see
Section 5), and the survey time is assumed to be =t 10tot

4 hr
for all experiments. For interferometers, we use either the
baseline density calculated from the actual array layout (see
appendix C) or the ~n u( ) const. approximation of Equa-
tion (6). For simplicity, we consider only single-dish mode for
some telescope arrays, even though they are capable of
interferometric measurements.

It is useful to be able to compare the performance of IM
experiments with competing probes, such as galaxy redshift

surveys. To this end, we also produce forecasts for a fiducial
DETF Stage IV spectroscopic galaxy redshift survey, similar to
DESI, Euclid, or WFIRST, with an expected yield of
~ ´6 107 spectroscopic redshifts. We take the survey to cover
roughly a third of the sky ( =f 0.35sky ) over a redshift range of

⩽ ⩽z0.65 2.05, with redshift distribution taken from Amen-
dola et al. (2013) (Euclid reference case, Table 1.3). The bias
is taken to evolve as = +b z z( ) 1 . We forecast for the same
set of cosmological parameters as IM experiments, with the
same fiducial values, including relevant nuisance parameters
like s .NL We use the redshift scaling from Smith et al. (2003) to
set = + +k k z(1 ) n

max NL
2 (2 )s and choose =k π V2 ( ) .min bin

1
3

Constraints are quite sensitive to the choice of kmax (White
et al. 2008), but mostly insensitive to kmin (if chosen
sufficiently small).

2.6. Prior Information

Intensity mapping experiments cannot constrain all cosmo-
logical quantities of interest on their own; information from
other probes must be added in order to break degeneracies and
improve precision. High-quality data are already available from
a range of other sources, including CMB temperature and
polarization anisotropies at high and low-ℓ, galaxy redshift
surveys at high and low redshift, weak gravitational lensing,
and supernova distance measurements. By the time of the first
IM surveys with the SKA, however, the number of experiments
for each of these probes, and their precision, will have risen
sharply.
While the best constraints will ultimately be obtained by

combining information from all relevant experiments, our
intention here is not to provide an exhaustive account of the
expected state of observational cosmology in 10 years’ time.
Instead, we will (conservatively) focus only on the CMB as an
external probe in this paper.
CMB data provide a high-redshift distance measurement that

is vital for anchoring the low-z distance measures that most
effectively probe dark energy. It also yields information about
the shape and normalization of the matter power spectrum, the
matter content at z 1090, and the physical scale of the BAO.
We use the DETF Planck prior from Albrecht et al. (2009),

which assumes temperature and E-mode polarization data over
70% of the sky for the 70, 100, and 143 GHz channels out to
=ℓ 2000. We rescale the Fisher matrix to reflect our different

fiducial cosmology and then project it out to the following
variables (fixing all others):

s{ }h h w w n, Ω , Ω , Ω , , , , .b K a s
2

DE 0 8

Note that the optical depth to last scattering, τ, which depends
on the cosmic reionization history, has been marginalized over
in the original DETF Fisher matrix. We ignore constraints from
CMB lensing, high-ℓ CMB experiments, and B-mode
polarization, although in principle these would provide
additional information on h, s ,8 ns, and the effective number
of neutrino species.

3. COMPARISON WITH GALAXY REDSHIFT SURVEYS

It is instructive to compare IM surveys of large-scale
structure with “conventional” redshift surveys, by which we
mean surveys that catalog individual galaxies in angle and
redshift. These offer some of the most stringent constraints on
cosmological parameters to date and are likely to do so for10 https://gitorious.org/radio-fisher
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some time as experiments like the Dark Energy Survey (DES)
(Frieman & Dark Energy Survey Collaboration 2013) and
Euclid (Amendola et al. 2013) come online.

In this section, we will compare IM and galaxy redshift
surveys by looking directly at constraints on the power
spectrum, P(k). To do this, we divide up a range of
wavenumbers into bins,D = +k k[ , ],a a a 1 and assign a constant
value, Pa, to the power spectrum in each bin. The exercise is
then to forecast errors for each Pa.

The main quantities that describe a redshift survey are the
survey area, S ,area and the number density of sources as a
function of redshift, n z¯ ( ), which in turn allows us to define a
survey depth. As with the IM survey, we can define the survey
volume, DV r z dr dz z S( ¯)( )bin

2
area (where z̄ is the mean

redshift of the survey). The Fisher matrix is then (Feldman
et al. 1994; Tegmark et al. 1998)

ò= é
ë¶ ¶ ù
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ê
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Shot noise plays a crucial role, dominating if n̄ is too small, as
does cosmic variance, via the Vbin term. The effective volume
tells us how well different parts of Fourier space are sampled.
Applying (9) to the binned power spectrum, we recover the
well-known result
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which hasVeff at the heart of the expression. It is only in regions
where nP¯ 1 that the power spectrum can be measured well.
In this regime the fundamental limitation becomes cosmic
variance, which is set by the number of modes sampled in each
bin, ~ DN V k k π2 ,a a abin

2 2 where Dka is the width of the
corresponding bin.

The equivalent expression for an IM survey is
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By analogy with (9) and (10), we can define an effective
volume, V ,eff

IM and a pseudo number density,
ºkn P C C¯ ( ) ,S NIM such that

n
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The foreground term has been left out for the time being. With
(12) in hand, we are now in a position to exploit the analogy
with conventional redshift surveys to better understand the
properties of IM experiments. An illustration of the various
scales relevant to single-dish and interferometric experiments is
shown in Figure 1, and an example of Veff

IM is shown in
Figure 2.

The first thing to notice is that Veff
IM is highly anisotropic. In

the case of a single dish, information on angular scales smaller
than the instrumental beam is washed out; for dishes of
diameter Ddish, scales l^ k D rdish are suppressed. For an

interferometer, it is possible to probe much smaller angular
scales (up to ~^k πu r2 max ), although the transverse Fourier
plane will be sampled much less homogeneously than for a
single dish, depending on the instrument’s uv coverage.
Along the radial direction, we expect foreground subtraction

to throw away information on scales of order the total
bandwidth,  k k ,FG and on smaller scales non-linear
velocities smear out information for k 0.15 Mpc−1. As
discussed in Section 2.2, the channel bandwidth also imposes
an effective radial beam, although this is generally at higher k
than the non-linear cutoff.
Using Equation (11), we can now piece together how well

the power spectrum can be measured by various experiments.
On large scales, cosmic variance and the survey size are the

Figure 1. Schematic illustration of the ranges of radial and transverse
wavenumbers that the two types of experiment are sensitive to. The dotted lines
show the ranges in absolute wavenumber ∣ ∣k ; single-dish experiments are
sensitive to smaller ∣ ∣k due to their lower ^k ,min while interferometers can see
larger ∣ ∣k on account of their high angular resolution. The two types of
experiment are complementary in terms of their angular sensitivity, but are
subject to the same constraints in frequency space.

Figure 2. The normalized effective volume ^ V k k V( , )eff bin at »z 1, for
SKA1-MID Band 1 in single-dish mode (black contours) and interferometer
mode (shaded blue contours). Foregrounds have not been included, but the
effective minimum k , given by k k ,FG BW is shown as a dashed gray line.
The contours are for values [0.9, 0.5, 0.1, 0.01, 0.001], where 1.0 is the
maximum (implying a cosmic variance-limited measurement). Only the last
three contours (i.e.,<0.5) appear for the interferometer mode due to its lower
sensitivity.
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limiting factor. For a single-dish experiment with a relatively
isotropic survey volume, we can sample the longest wavelength
modes in the radial and transverse directions equally well, so
that D µ -P P k( ) .2 3 On smaller scales, the beam size will
severely limit how small a transverse scale we can probe, so
only radial modes will be properly sampled, implying
D µ -P P k( ) .2 1 In the radial direction, we will eventually
come up against the non-linear velocity scale, preventing us
from extracting information on scales smaller than s .NL

For an interferometric experiment, the situation is reversed,
and is in some sense complementary, as shown in Figure 1.
With sufficiently long baselines, it is possible to probe very
small angular scales. We then expect to have D µ -P P k( )2 3

up until the non-linear scale is reached in the radial direction,
beyond which only transverse scales contribute, such that
D µ -P P k( )2 2 until the maximum transverse resolution is hit.
Conversely, interferometers are fundamentally unable to probe
any scale larger than that corresponding to their minimum
baseline (which for a dense array is roughly the dish diameter,
which gives the beam size in single-dish mode).

In summary, the important scales for IM are

n
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l
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~ =

~ =
~ =

~ =
~ =

n

^

^





( )k k π r
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The redshift dependence of the transverse scales for an example
setup is shown in Figure 3. Note that these are only the
minimum/maximum scales that can be probed in principle by a
given instrument—the sensitivity to scales within these ranges
will vary, so it may not be possible to constrain the more
extreme scales in practice.

4. EXPANSION, GROWTH, AND THE ACOUSTIC PEAK

We begin our exploration of the capabilities of IM
experiments by focusing on a few key observables. These
variously constrain the growth of large-scale structure and the
expansion and geometry of the universe: the positions of the
acoustic peaks and the overall shape of the power spectrum in
both the radial and transverse directions can be used as distance
indicators to place constraints on DA(z) and H(z), and RSDs
make it possible to measure the growth rate, f(z).

In addition to being of intrinsic cosmological interest, these
also serve as useful models for other observables. For example,
the detection of the acoustic peaks is a comparable problem to
measuring other “shape” features of the power spectrum, such
as scale-dependent bias. We will therefore devote this section
to understanding the detailed characteristics of the measure-
ments on these observables that can be made with IM
experiments. Throughout, we will forecast for the following
parameter set (without any external priors):

s s s{ }[ ] [ ]A z b z f z D z H z( ), ( ), ( ), ( ), ( ), .AHI 8 8 NL

4.1. Detectability of Baryon Acoustic Oscillations

The BAOs are a “statistical standard ruler” that forms the
primary distance measure in surveys of large-scale structure.
We can get an idea of the detectability of the BAOs by looking
at the fractional errors on P(k), using Equation (11). These are
shown for the reference surveys in Figure 4 and are overplotted
on the BAO wiggle function (to be defined shortly) in Figure 5.
All three IM surveys are capable of strongly detecting the BAO
feature when the constraints are combined over their full
redshift ranges. Facility approaches the cosmic variance limit
(represented by the DETF Stage IV survey out to
~ -k 0.1 Mpc 1) over a substantial fraction of the scales

relevant to the BAO, mostly due to the sensitivity of its
single-dish component. This also helps to put sub-10% level
constraints on the power spectrum on scales slightly larger than
the matter-radiation equality peak, » -k 10eq

2 Mpc−1. Its
interferometric component provides constraints on smaller
scales, achieving ~10% errors on P(k) out to » -k 1 Mpc .1

The interferometric Stage II survey is sensitive to generally
smaller scales, but still achieves good constraints on the BAO
thanks to its coverage out to intermediate redshifts ( ~z 1.4).
The Stage I survey can comfortably detect the BAO despite its
significantly lower sensitivity than Facility, but leaves smaller
scales unconstrained.
Alternatively, one can look at the detectability of the BAO

feature as a whole. We follow a similar approach to Blake &
Glazebrook (2003) and split the matter power spectrum, P(k),
into a “smooth” part, P k( ),smooth and an oscillatory part,

=
-

f k
P k P k

P k
( )

( ) ( )

( )
. (13)bao

smooth

smooth

We then introduce an amplitude parameter, A, such that

= é
ë + ù

ûP k Af k P k( ) 1 ( ) ( ). (14)bao smooth

Constraints on A therefore give a measure of the detectability of
the BAO feature.
The splitting of P(k) between smooth and oscillatory parts

is somewhat arbitrary. We attempt to construct a “purely
oscillatory” f k( )bao —i.e., one that lacks a smooth overall
trend in k—as follows. First, we use CAMB to calculate P(k)
for the fiducial cosmological model over a range of sample
points in k. We then choose two reference values of k that
bound the region in which the oscillations are significant
( »k 0.02 and 0.45 Mpc-1 for our fiducial cosmology) and
construct a cubic spline for P klog ( ) as a function of klog
using all points outside that region. Next, we construct a
preliminary oscillatory function by dividing the sampled P(k)
by the splined function (not its logarithm), then fit another
cubic spline to the result and find the zeros of its second
derivative with respect to k. These are the points at which the
first derivatives of the oscillatory function are maximal/
minimal, and in some sense define “mid-points” of the
function—its overall trend. We construct a cubic spline
through these too, and then divide the preliminary oscillatory
function by it to “de-trend.” This leaves f k( )bao as the final
result (Figure 5). Unlike other methods, which look at ratios
of the form ¹ =P k P k( , Ω 0) ( , Ω 0)b b to pick out oscillations
(Rassat et al. 2008), this method is essentially model
independent for a given fiducial P(k).
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The constraint on the overall amplitude of the BAO feature,
A, is plotted as a function of redshift for the reference surveys
in Figure 6. Facility is capable of s>3 detections of the BAO
feature out to »z 1.5, but makes progressively weaker
detections at higher redshift, predominantly due to its limited
angular resolution in single-dish mode. In comparison, the
Stage II survey’s constraints degrade much less rapidly with
redshift, owing to its greater sensitivity to smaller angular
scales (which translate to intermediate physical scales at
higher z).

Figure 7 plots the errors on P(k) for Facility as a function of
both scale and redshift. For -k 0.1 Mpc ,1 most of the
information comes from low redshifts, where the amplitude of
the power spectrum is largest. At smaller k, however, the

volume of the redshift bin begins to matter, as the increase in
bin volume with z allows progressively larger scales to be
probed. For Facility, the constraints on intermediate BAO
scales ( ~ -k 0.07 Mpc 1) come from a mixture of low- and
intermediate-redshift bins, with the high-redshift bins taking
over on larger scales.

4.2. Constraints on DA(z) and H(z)

The angular diameter distance, DA(z), and the expansion
rate, H(z), are measures of distance in the transverse and radial
directions, respectively. To include them in our forecasts, we
introduce (Blake & Glazebrook 2003)

a º =^
r

r

D z

D z

( )

( )
(15)A

A

fid fid

a º =n

n


r

r

H z

H z

( )

( )
, (16)

fid

fid

where rfid and nr
fid are the fiducial ΛCDM values of r and nr at a

given redshift. We then replace a ^q q and a y y in
Equation (4) to get

Figure 3. Redshift evolution of the minimum/maximum transverse scales
(filled regions) for illustrative interferometer (blue) and single-dish (red)
experiments. The BAO are plotted for comparison. The dishes have diameter

=D 15dish m, the min./max. interferometer baselines are =D 15min m and
=D 1000max m, and the survey has bandwidth nD = 600 MHz and area
=S 25, 000area deg2. The shaded gray region denotes superhorizon scales,

< =k k π r2 .H H

Figure 4. Fractional constraints on P(k) for the set of reference experiments,
combined over the whole redshift range of each experiment, with 20 bins per
decade in k.

Figure 5. Forecast constraints on the BAO wiggles, combined over the whole
redshift range for each of the reference surveys.
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The distance measures enter this expression in four places:
(a) an overall factor of a a^ ,

2 related to the physical volume of
the survey; (b) a distortion of the angular (μ) dependence of
the RSDs; (c) a shift in the non-linear cutoff scale of the RSDs;
and (d) a shift of the whole isotropic power spectrum, P(k),
that can be further subdivided into corresponding shifts in the
BAO feature and smooth power spectrum. The latter two, (c)
and (d), are both due to the remapping of k, shown explicitly in
the argument of P(k) in Equation (17) (Samushia et al. 2011).

Due to modeling uncertainties and degeneracies with other
parameters, it is not necessarily desirable to use all of these
terms to measure distances from real data. The BAO feature is

the standard choice of distance measure, owing to its
robustness to systematic error; the acoustic scale shifts only
slightly when non-linearities are introduced (Crocce &
Scoccimarro 2008; Smith et al. 2008), and smooth variations
such as scale-dependent bias also have a relatively minor
impact (Zhang 2008) (although corrections must still be made
for precision measurements). Anisotropies of the correlation
function can also be used to measure distances (Alcock &
Paczynski 1979; Kaiser 1987), through RSDs (b) and the
Alcock–Paczynski effect (a, c, and d), although these are more
sensitive to the detailed modeling of the power spectrum (Reid
et al. 2012). Thus, a particularly conservative analysis might
only derive distances from the BAO and discard information
from the other terms.
Figure 8 shows the effect of neglecting some of the distance

terms for the Facility experiment. By using only the BAO, one
is discarding a substantial amount of useful information, as
shown by the comparatively poor constraints on DA and H.
This is partially compensated by the reduced risk of systematic
error and the improved growth rate constraints that are due to
weaker degeneracies with other parameters when compared to
the other distance terms. Including broadband information—
i.e., the shift in (smooth) P(k)—reduces the error on DA by a
factor of 2–5 over the entire redshift range and is especially
beneficial at higher z, where the BAO-only constraints degrade
rapidly due to the limited angular sensitivity of the telescope.
Adding the RSD terms helps to distinguish between the radial
and transverse directions, which also reduces the error on H(z).
Disregarding any of the distance terms can also substantially

alter the correlation structure of the Fisher matrix, which has a
knock-on effect on constraints for other parameters. This can be
seen clearly for f(z) in Figure 8, which has a substantial scatter
in fractional error depending on which distance measures are
used. To most accurately reflect the interdependencies of the
various cosmological parameters, we will use all of the distance
measure terms in what follows. The increased uncertainty that
comes from marginalizing over nuisance parameters such as
sNL helps compensate for the increased risk of systematic error

Figure 6. Fractional errors on A(z), sf z( ),8 DA(z), and H(z), as a function of redshift.

Figure 7. Fractional constraints on P(k) in each redshift bin, for the Facility
experiment. The thick black line is the total constraint, summed over all
redshift bins.
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that attends some of the measures, which means that this is not
too optimistic of us.

Figure 6 shows the fractional constraints that can be
achieved on DA(z) and H(z) for the full set of reference
surveys. Facility measures the expansion rate to better than 1%
out to »z 1.7 and stays within 2% as far out as z = 2.5. This is
roughly a factor of 2 worse than the DETF Stage IV reference
survey, although the redshift range covered by Facility is
significantly larger. Stage II also obtains ∼2% constraints
across its full redshift range, and Stage I hovers around 3%.

The picture is somewhat different for DA(z). The fractional
errors for Facility increase from ~1.5% at »z 0.4 up to 4% at
z = 2, compared with the relatively flat errors for the galaxy
survey that remain below 1% for most of the redshift range.
Stage II’s errors are also relatively flat as a function of z,
staying at around the 2.5% mark.

The limited angular resolution of the single-dish experiments
is the cause of this behavior. H(z) is most sensitive to the
resolution in the radial (frequency) direction, which is
essentially the same for all experiments and does not evolve
appreciably with redshift (being set by the non-linear scale
rather than the channel bandwidth, as discussed in Section 3).
The DA(z) constraints depend more on the sensitivity to
transverse physical scales, however, which differs between
interferometers and single-dish experiments. For single-dish,
^k max tends to be relatively small even at z = 0 for moderately
sized dishes, and it continues to decrease (shift to larger scales)
as z increases, as shown in Figure 3. As this happens, useful

distance information from smaller scales is lost. The same
happens for interferometers, but ^k max is typically much larger,
so the most useful transverse scales remain resolved. In fact,
since ^k min is also decreasing, additional distance information
becomes available from larger scales.
It is worth noting that the effect would be different if only

the BAO were being used as distance measures—both the
DA(z) and H(z) constraints would be affected by the loss of
resolution in the transverse direction (Sánchez et al. 2013). To
see this, consider a simplified model of the correlation function
consisting of the sum of a smooth component and a feature,
x s= - -r A r r( ) exp [ ( ) 2 ].BAO BAO

2 2 The response to the
loss of resolution along the transverse direction corresponds to
convolving the correlation function with a window function
such that

òx x= ¢ - ¢ +^ ^ ^ ^ ^
¢

 ( )( ) ( )r r rr d r W r r˜ , ,BAO
2

BAO
2 2

which can be rearranged to have the form

òx x D= D D + + D^ ^ ( )( )r rr d W r˜ , ( ) 2 · .BAO
2

BAO
2 2

The smoothed correlation function remains a function of r and
r̂ , which means that the degradation of signal due to the
smoothing is almost democratically taken up by both the
transverse and parallel directions. This can be seen explicitly in
Figure 8 for the BAO-only curves for DA(z) and H(z), which
both show a much stronger evolution with redshift than any
other combination of distance measures. The inclusion of
additional distance measures is therefore necessary to help limit
the effect of the poor angular resolution of single-dish
experiments.
The various distance measures for LSS surveys depend on

combinations of DA and H rather than constraining them
individually. For example, moments of the correlation function
(Reid et al. 2012) give the volume distance and Alcock–
Paczynski terms,

=
é

ë
ê
ê

+
ù

û
ú
ú

D z z D
cz

H z
( ) (1 )

( )
(18)V A

2 2

1
3

= +F z z D z H z c( ) (1 ) ( ) ( ) . (19)A

In some sense, these quantities define redshift-dependent
figures of merit—many other studies forecast directly in terms
of DV, for example, and surveys are compared in terms of the
errors that they can achieve on this parameter at a given
redshift. We have therefore presented results for both DA and H
(Figure 6) and DV and F (Figure 9) to facilitate comparison
with previous studies.

4.3. Constraints on the Growth Rate, f(z)

The other key observable provided by LSS surveys is the
growth rate, which can be measured from the anisotropy of the
correlation function in redshift space.
The growth rate has two major roles: first, as another

measure of distance, since it can be related to the expansion
rate (albeit in a model-dependent way); and second, as a non-
geometric probe of gravity over cosmic time. The former is
useful for helping to break parameter degeneracies that can
crop up when only geometric distance measures are used. The
latter is of importance in distinguishing theories of dark energy
and modified gravity (Masui et al. 2010; Hall et al. 2013); it is

Figure 8. Fractional errors on H(z), DA(z), and sf z( )8 for the Facility
experiment, for various combinations of distance terms being switched on and
off in the Fisher matrix calculation. The RSDs are taken to include both the
angle dependence and non-linear cutoff terms (see text).
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often the case that theories can be made to have the same
expansion history, for example, but differ in growth rate. (We
will return to this in Section 5.4.)

In what follows, we will concentrate on the linear growth
rate, f(z). H I IM experiments are also capable of probing non-
linear growth, but modeling uncertainties on small scales
reduces their usefulness for constraining cosmological para-
meters. Non-linear effects are discussed in more detail in
Sections 5.4 and 6.2.

The linear growth rate appears in two places in Equa-
tion (17); explicitly, in the angle-dependent RSD factor, and
implicitly, through the linear growth factor, D(z), that gives the
redshift evolution of the power spectrum. The two are related
by =f z d D d a( ) log log . Because D(z) appears as an
overall factor of the signal covariance, it is degenerate with
other parameters, making it hard to measure in an unbiased
way. We will assume that D(z) provides no new information on
the growth rate here (i.e., we neglect its derivative w.r.t. f in the
Fisher matrix).

Various other degeneracies crop up when measuring the
growth rate from RSDs. The signal covariance is proportional

to sµ é
ëê + ù

ûúC b z f z μ D z T z( ) ( ) ( ) ( ) .S
bHI

2 2 2 2
8
2 If no functional

form is assumed for any of these terms (i.e., they are left free
in each redshift bin), there are only two quantities that can be
uniquely distinguished from this expression: an overall
amplitude, and a factor of the angle dependence, e.g.,

k bµ é
ëê + ù

ûúC z z μ( ) 1 ( ) ,S 2 2 2
where b = f z b z( ) ( )HI and

k s= D z T z b z( ) ( ) ( ).b8 HI Alternatively, one can merge the
linear growth factor with the overall normalization to give a
redshift-dependent normalization, s s=z D z( ) ( ),8 8 and write
the two RSD functions as sT fb 8 and sT b .b HI 8

Either way, there are at least three unknowns to be
determined from two functions, so it is clear that more
information is needed to unpick the degeneracy. The CMB
gives a prior on s z( 1090),8 D(z) can in principle be
determined from f(z), and several models for the bias and
brightness temperature exist, although there is significant

disagreement between them (see Section 6.1). The brightness
temperature will be measurable from the non-fluctuating part of
the H I signal when future IM experiments come online,
though, so this can reasonably be taken as a given quantity—
Tb(z) is fixed to its fiducial form throughout this paper. We
resolve the remaining degeneracy by treating the combinations

sf z z( ) ( )8 and sb z z( ) ( )HI 8 as independent parameters, with
both being free functions of redshift. Figure 10 shows the joint
constraints on them as a function of z for the Facility survey.
Figure 6 shows the constraints on sf z( )8 that can be

achieved by our set of reference surveys. Sub-2% errors are
possible for the Facility and Stage II experiments out to a
redshift of ~z 1.2, despite (pessimistically) taking the bias to
be a completely free function of redshift. As shown in Figure 8,
constraints on the growth rate are sensitive to the choice of
other distance measures; for Facility at least, using only BAO
to measure distances would result in a ~50% reduction in the
error on sf z( )8 across the whole redshift range, albeit at the
cost of significantly degraded H(z) and DA(z) measurements.
As shown in Figure 6, the errors on sf z( )8 for the Stage I and

Facility surveys increase significantly with redshift, while the
evolution is less severe for Stage II. As with the angular
diameter distance (see previous section), this is mostly due to
the limited angular resolution of the dish-based surveys.

5. COSMOLOGICAL PARAMETERS

In the previous section, we assessed how well H I IM
experiments will be able to measure the geometry, expansion,
and growth rate of the universe. We will now discuss how these
map to constraints on the cosmological parameters that
characterize the standard ΛCDM model, including extensions
such as a time-varying equation of state of dark energy, non-
zero spatial curvature, and a modified growth index.
One can map the functions of redshift into the set of

cosmological parameters using a simple linear transformation
of the Fisher matrix,

åb a=F M F M( ) ( ) , (20)
i

i
T

i i

where a = f z D z H z{ ( ), ( ), ( )}A are the old parameters,
b g= h w w{ , Ω , Ω , , , }K aDE 0 are the new parameters, Fi is
the Fisher matrix in a bin with redshift zi, and the

Figure 9. Fractional errors on the volume distance, DV(z), and Alcock–
Paczynski distortion, F(z), for our reference surveys.

Figure 10. Constraints on sbHI 8 and sf 8 as a function of redshift, for the
Facility survey.
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transformation matrix is given by a b= ¶ ¶M z z( ) ( )jk i j i k

(Albrecht et al. 2009). The derivatives required for the
transformation matrix are all analytical; for completeness, we
present them in Appendix E.

To complete the set of cosmological parameters, we must
also include information on the shape and normalization of the
initial power spectrum, sn{ , }.s 8 These parameters are derived
directly from the signal model of Equation (4) and do not
depend on the functions of redshift from the previous section
(i.e., we have separated f(z) and s8). Note that we do not use
the shape of the power spectrum to constrain any other
parameters, such as ΩM or Ω ,b even though in principle it does
depend on them.

Carrying over the remaining parameters from the previous
section, the full set is now

s g s w{ }h w w n A z b z, Ω , Ω , , , , , , ( ), ( ), , .K a s bDE 0 8 HI NL

The baryon density, w = hΩ ,b b
2 is not constrained directly by

H I experiments, but is included in the Planck prior. The total
matter density (CDM + baryons) is fixed by

= - -Ω 1 Ω Ω ,M K DE so we do not include it separately.
The H I bias is free in each redshift bin, and we have taken s8 to
be constant in redshift.

In what follows, we focus on the higher-end reference
experiments, Stage II and Facility, although marginal (1D)
constraints are provided for all of the experiments listed in
Section 2.5. We will also consider the effect of adding prior
information from the CMB.

5.1. “Vanilla” ΛCDM

The current consensus is that cosmological data are well
described by a flat ΛCDM model of structure formation that
can be characterized in terms of six parameters: the Hubble
parameter, =H 1000 h km s−1 Mpc−1, the density of dark
energy (or cosmological constant), Ω ,DE the physical density
of baryons, w ,b the linear amplitude of density fluctuations,
parameterized by s ,8 the spectral index of primordial density
perturbations, ns, and the optical depth to last scattering, τ. In
this section, we examine the constraints that IM experiments
will be able to put on this model when combined with CMB
data from Planck. Parameters that extend the “vanilla” ΛCDM
model ( gw w, , Ω ,a K0 ) are fixed to their fiducial values in this
section, and = LΩ Ω .DE
Figure 11 presents forecasts for five of the six parameters for

the Facility experiment, compared with Planck-only and the
DETF Stage IV galaxy redshift survey. Although the reioniza-
tion history will have a significant role in the evolution of the H
I density and bias, we are focusing on sufficiently late times that
our constraints will essentially be insensitive to variations of τ,
within current constraints, and so we leave it out of the plot. (In
fact, it has already been marginalized over in the Planck prior
Fisher matrix.) We do not directly constrain wb with IM
experiments either, but as it is strongly correlated with other
parameters in the Planck prior, we leave it in.
As expected, there is a modest improvement over Planck

alone by a factor of a few. The Planck-only constraints are
mostly limited by strong correlations between parameters, so
the role of the IM survey is primarily to break degeneracies.
Future high-resolution experiments such as ACTPol (Niemack

Figure 11. Forecasts for a six-parameter ΛCDM model (the sixth parameter, τ, was marginalized over in advance in the Planck Fisher matrix). This model has fixed
=Ω 0,K = -w 1,0 and wa = 0.
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et al. 2010) and SPTpol (Austermann et al. 2012) will be able
to measure weak lensing of the CMB to sufficient accuracy that
constraints from the CMB alone should be competitive with IM
(and redshift surveys). This is contingent on the assumption of
a fixed w = −1, however.

The biggest effect of adding IM data (or indeed any LSS
data) is to substantially improve the constraints on h and Ω .DE
As shown in Figure 11, the two are strongly correlated for
Planck alone, as the CMB only measures the combination

= -h hΩ (1 Ω )M
3

DE
3 (Planck Collaboration 2014b). The

distance measures at late times depend on different combina-
tions of these parameters and so help to break this degeneracy.
This has a knock-on effect on other parameters that are
correlated with them, especially ns.

Table 3 summarizes the vanilla ΛCDM constraints for the
full set of reference experiments. The majority of future H I

surveys are capable of improving on constraints from Planck
plus existing LSS data sets; notably, H0 and ΩDE are
determined at the sub-1% level by all but the smallest IM
experiments.

High-end Facility-class experiments should even be compe-
titive with a DETF Stage IV galaxy survey (cf. Euclid or
LSST), although this is only likely to be the case for parameters
constrained by the distance measures, such as Ω .DE Those that
depend more on the power spectrum at smaller scales will not
be quite as close, because the galaxy surveys measure P(k)
significantly better at relatively high wavenumbers of ~k 0.1
Mpc−1 (Figure 4); our IM experiments fall behind on these
scales due to limited (single-dish) angular resolution.

5.2. Dark Energy Equation of State

The driver for the majority of the cosmological surveys
currently under development is to find precision constraints on
the dark energy equation of state, w(z), and in doing so to infer
the physical nature of the substance that appears to be driving
the accelerated expansion of the universe. H I IM provides a
way of constraining w(z) with considerable precision, using the
full combination of DA(z), H(z), and f(z) reconstructed over a
broad range of redshifts.

While the evolution of the equation-of-state parameter
depends on the underlying dark energy theory, and as such
could take any number of functional forms, it is nevertheless
useful to work with a simple expansion about z = 0,

» +
+

w a w
z

z
w( )

1
. (21)a0

This commonly used parameterization should be reasonably
accurate at late times, but will not capture more exotic behavior

at z 1. The corresponding dark energy density evolves with
redshift as

= + + + +[ ]z w z z zΩ ( ) Ω exp 3 (1 ) (1 ) . (22)( )
a

w w
DE DE,0

3 1 a0

The overall sensitivity of an experiment to a varying equation
of state can be summarized (to some extent) by the dark energy
FOM, defined by the Dark Energy Task Force as (Albrecht
et al. 2009)

= -( )FFOM 1 det , (23)w w
1

, a0

which is proportional to the reciprocal of the area enclosed by
the 68% contour of the w w( , )a0 error ellipse for Fisher
matrix F.
The foremost task in understanding the nature of dark energy

is to determine whether the equation of state differs from that of
a cosmological constant, = -w 1. Current constraints on w0

and wa are relatively weak; the combination of Planck with
SNLS supernova data does give values that are slightly in
tension with a pure cosmological constant (Planck
Collaboration 2014b), but the significance fades when other
data sets are used instead. Figure 13 shows the improved
constraints that can be expected on w0, wa, and ΩDE for the
combination of our reference experiments with Planck,
assuming flatness. Despite the addition of IM data, the
parameters remain strongly correlated, so even substantial
deviations from = -w 1 will not necessarily be picked up.
Nevertheless, a substantial fraction of the -w wa0 plane can be
excluded by IM + Planck, so a successful detection is still
possible if the real values lie orthogonal to the degeneracy
direction. 1D marginal constraints for the full set of extensions
to ΛCDM that we are considering here (including w0 and wa)
are given in Table 4 for all of the experiments from Section 2.5.
If one takes the possibility of a varying equation of state

seriously, w0 and wa should be left free when deriving
constraints on other cosmological parameters. Table 4 shows
the effect of marginalizing over the equation of state on the
vanilla ΛCDM model parameters. The parameters derived from
the various distance measures are strongly affected—their 1D
marginal uncertainty is typically increased by around an order
of magnitude compared to the unmarginalized case shown in

Table 3
Forecast 1σ Marginal Errors on Vanilla ΛCDM Model Parameters for the Set

of Reference Surveys, Compared with Current Constraints from Planck
(Temperature-only) and WMAP (Planck Collaboration 2014b)

Experiments h wb ΩDE ns σ8

/ 10−3 / 10−4 / 10−3 / 10−4 / 10−3

Planck + Stage I 5.8 1.5 6.1 36.9 7.0
Planck + Stage II 5.1 1.4 5.3 32.8 6.0
Planck + Facility 2.7 1.2 2.7 21.9 3.3
Planck + DETF IV 2.2 1.0 2.2 16.0 2.3
Planck + WMAP 12 2.8 17 73.0 12
Planck+WP+BAO 7.8 2.5 10 57.0 11

Figure 12. Effect of various priors on -w wa0 constraints, for Facility +
Planck. ΩK is already well constrained by the combination of CMB and HI
data, so the flatness prior has only a small effect. Additional H0 information has
a larger effect in breaking the degeneracy.
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Table 3. This can be understood in terms of the degeneracies
shown in Figure 13; adding new parameters always increases
the overall uncertainty, but because ΩDE (and h) are highly
correlated with w0 and wa, they are particularly strongly
affected. Parameters that do not depend on distance measures,
i.e., ns and s ,8 are less affected by the equation-of-state
parameters, and so their marginal uncertainties increase by only
a modest amount.

As we have seen, even the addition of IM or other
intermediate-redshift LSS data to the CMB constraints is
insufficient to break all of the parameter degeneracies once w0

and wa are allowed to vary. In order to precisely determine
these parameters, it is therefore necessary to add more data.
Distance measurements from Type Ia supernovae are the
obvious candidate, since they offer orthogonal constraints on

-Ω ΩMDE (Efstathiou & Bond 1999). A local measurement of
H0 is also useful; as shown in Figure 11, h is strongly
correlated with the dark energy density, so additional
information about either parameter can substantially improve
the constraints on both. Figure 12 shows the effect of adding
H0 data to Planck + Facility. We also consider the effect of
allowing departures from spatial flatness; as we will see in the
next section, the combination of CMB and IM data measures
ΩK well, mostly independent of dark energy, so marginalizing
over curvature has a relatively minor effect on the -w wa0
ellipse.

Figure 14 shows the contribution to the dark energy FOM
from each redshift bin. For our reference IM experiments, it is
clear that the redshift range z 1.2 is most critical; little
improvement in FOM is seen above this redshift. The same

cannot be said for the galaxy survey, however, which sees a
roughly equal increase in FOM with each additional redshift
bin across its whole z range. One way of understanding this
behavior is to compare Figure 14 with the plots for DA(z), H(z),
and sf z( )8 in Figure 6. Above ~z 1.2, the angular diameter
distance and growth rate constraints begin to worsen for
Facility, but remain relatively flat for the galaxy survey. Since
w0 and wa are obtained from projections of these functions, it is
no surprise that little is gained on the FOM at redshifts where
they are poorly constrained.

5.3. Curvature

The potential for H I IM experiments to span extremely
wide redshift ranges—from »z 0.1 out to z 2.5 without too
much difficulty—makes them an interesting prospect for
unraveling the geometric degeneracy, i.e., the interplay
between dark energy and curvature. Without strong assump-
tions on one or the other, it is difficult to separate the effects
of ΩK and w(z) using only a single type of distance measure
(Mortonson 2009; Shafieloo & Linder 2011), and for the
CMB power spectrum alone they are completely degenerate.
As discussed in Section 4.2, IM provides a suite of distance
measures. The combination of IM and, for example, CMB
data should therefore be very useful in separating curvature
from the evolution of dark energy in a precise and
unambiguous manner.
A precision determination of spatial curvature on horizon

scales would also provide a rare opportunity to test inflation.
Current observations seem to point in the direction of
flatness, with the most recent bounds from Planck finding

-∣ ∣ Ω 10K
2 (95% CL), consistent with the vast majority of

inflation models, but if a detection of -∣ ∣ Ω 10K
4 were

made, the whole class of eternally inflating models would be
put under pressure (Guth & Nomura 2012; Kleban &
Schillo 2012).
The minimum curvature that can be detected unambiguously

also happens to be at around the 10−4 level (Vardanyan
et al. 2009; Bull & Kamionkowski 2013). Future CMB
experiments should be able to approach this order of magnitude
if w is fixed to −1, and so too should a Facility-type IM
experiment combined with Planck, as shown in Figure 16.
There is little justification for putting such a strong prior on the
equation of state, though—any rigorous constraint on ΩK must
confront the geometric degeneracy head-on and allow the full
freedom of w(z). Figure 16 also shows the limits on curvature
that can be achieved when the equation of state is left free.
Though clearly worse than for fixed w = −1, the difference is
relatively modest—the combination of a Facility survey with
Planck should still be able to measure ∣ ∣ΩK to around 10−3

without any particularly strong assumptions about the form of
w(z).
The effect of the geometric degeneracy runs both ways—a

lack of knowledge about ΩK also degrades the reconstruction of
the time evolution of the equation of state. Indeed, a percent
level uncertainty in ΩK can lead to a ~100% error on the
recovery of more exotic forms for w(z) (Clarkson et al. 2007),
although it has been argued that current constraints can already
mitigate this (Okouma et al. 2013). As shown in Figure 12, the
errors on the equation-of-state parameters do increase when we
allow ΩK to be free, albeit not substantially in the case of both
Stage II and Facility; the combination of H(z), DA(z), and f(z)
measurements from IM, plus the Planck prior, is enough to

Figure 13. Top panel: forecast constraints on w0 and wa, including the Planck
prior. We have assumed flatness ( =Ω 0K ) and fixed γ to its fiducial value. The
DETF figures of merit for the Stage II, Facility, and DETF Stage IV surveys are
95, 358, and 712, respectively. Bottom panel: forecast constraints on w0 and
ΩDE for the same setup.
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prevent any strong degeneracies from completely killing the
-w wa0 constraints. In fact, Figure 12 shows that they are

more sensitive to assumptions about H0 than to curvature.

It is improved knowledge of the late-time expansion that
most helps separate the effects of curvature and dark energy.
We see this clearly in Figure 15, where s -[ (Ω )]K

1 is plotted as

Table 4
1D Marginal Constraints (68% CL) on the Extended ΛCDM Model, Including the Planck Prior

Experiments A h ΩK ΩDE ns σ8 γ w0 wa FOM
/ 10−2 / 10−3 / 10−4 / 10−3 / 10−4 / 10−3 / 10−2 / 10−2 / 10−2

Stage I 18.9 32.3 47.9 22.3 38.5 8.1 3.6 31.3 85.2 13.8
Stage II 13.2 23.7 33.1 17.2 38.0 7.8 4.4 15.2 33.1 39.9
Facility 5.2 8.7 13.6 6.9 35.0 6.0 1.8 5.4 14.9 265.4

GBT 73.9 131.9 178.4 93.4 38.6 8.2 20.1 95.0 221.8 1.1
GBT-HIM 31.2 64.3 78.9 45.4 38.6 8.2 9.8 50.7 126.9 4.2
GMRT 54.3 37.1 153.0 19.3 38.5 8.2 4.1 35.8 184.2 7.0
JVLA 57.7 43.0 175.3 22.6 38.6 8.2 4.5 40.1 209.2 5.5
Parkes 51.2 28.4 322.6 32.6 38.4 8.2 2.7 44.7 335.5 3.6
VLBA 74.8 47.8 826.9 86.2 38.6 8.2 3.8 91.7 799.8 0.8
WSRT + APERTIF 11.2 11.1 41.2 6.5 37.7 8.0 1.5 15.1 66.4 57.6

BAOBAB-128 24.3 50.2 71.3 36.6 38.5 8.1 9.0 33.3 71.4 8.0
BINGO 25.8 30.8 90.0 16.1 38.5 8.2 2.8 44.1 172.5 7.8
CHIME 3.0 8.7 9.7 7.1 30.2 5.2 3.4 5.0 15.1 288.1
FAST 7.5 13.5 16.0 10.1 33.5 6.4 3.2 7.1 18.5 144.7
MFAA 5.7 11.9 14.1 9.1 32.2 6.0 3.1 6.3 17.2 165.7
Tianlai 3.6 8.0 11.9 6.3 28.7 4.9 2.4 4.0 12.0 383.3

ASKAP 7.7 16.2 21.1 11.9 37.8 7.7 2.9 11.8 26.8 80.3
KAT7 114.0 76.4 1182.5 124.1 38.6 8.2 5.8 130.1 1138.6 0.4
MeerKAT (B1) 12.2 24.4 29.4 17.9 38.1 7.9 3.6 17.4 38.4 35.9
MeerKAT (B2) 10.2 9.4 26.8 6.1 37.5 7.7 1.5 6.4 29.5 171.4

SKA1-MID (B1) Autocorr. 6.2 11.2 16.1 8.7 35.9 6.6 2.3 7.1 17.6 162.5
SKA1-MID (B1) Interferom. 22.3 29.1 34.3 19.9 37.2 7.8 8.7 13.6 33.8 45.1
SKA1-MID (B2) Autocorr. 7.6 7.1 18.6 5.1 35.9 7.2 1.3 3.6 16.4 410.9
SKA1-MID (B2) Interferom. 368.2 37.3 94.3 19.0 38.0 8.2 10.6 22.8 86.5 18.5
SKA1-SUR (B1) 5.3 11.9 15.2 9.3 35.4 6.7 3.3 6.5 16.0 159.5
SKA1-SUR (B2) 4.5 6.5 12.2 5.3 35.3 5.7 1.4 3.8 12.2 444.2
SKA1-MID + MeerKAT (B1) 6.4 11.6 16.7 9.0 36.1 6.8 2.4 7.5 18.2 148.9
SKA1-MID + MeerKAT (B2) 7.7 7.1 18.6 5.1 35.9 7.2 1.3 3.5 16.3 414.7

DETF Stage IV (gal. survey) 2.4 7.5 8.6 6.2 27.1 5.3 3.2 4.1 12.8 405.5

Fiducial values 1.0 0.67 0.0 0.684 0.962 0.834 0.55 −1.0 0.0 L

Note. The constraint on A (which has been summed over all redshift bins) gives a measure of the detectability of the BAO.

Figure 14. Improvement in dark energy FOM as a function of the maximum
redshift of the survey (ΩK and γ marginalized).

Figure 15. Improvement in ΩK constraints as a function of maximum redshift
of the survey. We have marginalized over w0, wa and γ here.
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a function of the depth of each survey. There is an optimal
point beyond which little new information is gained by the IM
surveys, coinciding with the redshift at which the constraints on
f(z) and DA(z) start to degrade due to the limited angular
resolution of the experiments (Figure 6). This happens at
higher zmax for the galaxy survey, which makes up for its lack
of low-redshift bins by having relatively flat fractional errors in

DA(z), H(z), and f(z) out to »z 2. At even higher redshift, the
dynamical effect of curvature is completely negligible, so little
extra information could be gained anyway.

5.4. Parameterized Growth History

The growth history of the universe is a particularly powerful
test of gravity. Modified theories of gravity generically alter the
growth of structure from its GR behavior, typically enhancing
clustering on non-linear scales, and increasing peculiar
velocities. Signatures of modified gravity in the non-linear
regime are difficult to disentangle from less exotic astrophy-
sical effects, leaving the linear velocity field as, in some sense,
the “cleanest” modified gravity observable from large-scale
structure.
There is great variety in the effects that different modifica-

tions to gravity have on the linear growth history; the space of
theories is complex and has proved difficult to parameterize in
a simple way (Hu & Sawicki 2007; Battye & Pearson 2012;
Baker et al. 2013). For the purposes of illustration, we will fall
back on one of the simplest parameterizations of growth, using
the growth index formulation of Peebles (1980):

= gf z z( ) Ω ( ).M Deviations from GR are captured, in part at
least, by the difference in γ from its ΛCDM+GR value,
g » 0.55.GR

Two notes of caution are necessary: first, many modified
gravity theories do not have growth histories that are well
described by a constant γ. Allowing γ to be a function of
redshift can help (Linder & Cahn 2007; Ishak & Dossett 2009),
but even then there are many cases where the growth rate

Figure 16. Forecast marginal constraints on ΩK (68% CL) for the reference
experiments plus Planck, with w w( , )a0 fixed to their fiducial values (upper
error bars) and marginalized over (lower error bars). The shaded area shows
the current best constraint on ΩK (w0, wa fixed) from Planck + WMAP + high-
ℓ CMB + BAO (Planck Collaboration 2014b).

Figure 17. Forecasts for dark energy and modified growth parameters for two of the reference experiments. Note the significantly different behavior with respect to the
growth index, γ.
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becomes scale dependent or is otherwise poorly described by
this parameterization. Second, dark energy models that require
no modifications to GR can also modify the growth history,
often in a way that is well described by making the growth
index a function of the equation-of-state parameter, g w( )
(Linder 2005; Gong et al. 2011b). We neglect this possibility
here and instead treat γ as being independent of w.

Figure 17 shows forecasts for the various dark energy
parameters for the DETF Stage IV galaxy redshift survey and
the Facility reference experiment. The 1D marginal constraints
from the galaxy survey outperform the IM experiment for all
parameters, except one—the growth index. Furthermore, the
2D constraints involving γ are roughly orthogonal between the
two surveys, despite this not being the case for other
combinations of parameters.

At first, this may seem surprising. In Figure 6, the galaxy
redshift survey constrains sf z( )8 to around 1% across most of
its redshift range, while Facility’s precision can only match this
in the lowest-redshift bins, increasing to ~4% at higher z. For
γ, though, it is the very lowest redshifts that make the most
difference. At low z, the growth factor evolves most rapidly and
is most sensitive to the value of γ (i.e., g∣ ∣df d increases as
z 0), whereas at higher redshifts, matter begins to dominate,

growth is slower, and the dependence on γ is relatively weak.
By virtue of its substantially lower zmin, then, the Facility
experiment captures more of the redshift range most sensitive
to γ and wins out over the galaxy survey.

Figure 18 shows the effect of the lowest-redshift bins on γ
more clearly. Even Stage II outperforms the Stage IV survey
for z 1max —again thanks to its lower zmin—despite produ-
cing significantly worse constraints on almost every other
parameter. This behavior is also related to the choice of
distance measures and how the degeneracies between them get
broken. As shown in Figure 8, the choice of measure can have
a big effect on the f(z) errors, so one might expect the strength
of the constraint on γ, and its orthogonality to the galaxy
redshift survey, to change if a different subset of measures
was used.

Assuming the full set of distance measures, the comple-
mentarity between IM and galaxy redshift surveys can be used
to significantly increase the precision of the constraint on γ, to
the point where it becomes possible to clearly distinguish

between many modified gravity models. Figure 19 shows the
result of combining the two surveys on the errors for w0 and γ,
along with some example predictions from modified gravity
theories. The marginal error on γ goes from s =g 0.024 for
Facility + Planck to s =g 0.015 for Facility + DETF IV +
Planck.

6. SYSTEMATIC EFFECTS

Throughout this paper, we have compared the results from
IM mapping experiments with those of a DETF Stage IV
spectroscopic survey. In fact, we have gone further and argued,
in Section 3, that we can think of an IM survey as a
spectroscopic survey with an anisotropic V k( ),eff with very
distinctive characteristics tied to the chosen mode of operation
(single-dish or interferometric). While a useful comparison, IM
experiments have their own, particular types of systematics that
must be dealt with. In what follows we touch on these effects
and attempt to quantify their impact on the target science.

6.1. Evolution of the Cosmological H I Signal

We have assumed a fiducial value of = ´ -Ω 6.5 10HI,0
4

throughout our analysis. Clearly our results will strongly
depend on this value, as it is important in setting the “signal-to-
noise” of the experiment—the more neutral hydrogen there is,
the more easily the cosmological signal can be detected. There
are, however, large uncertainties in zΩ ( )HI from current
observations (Figure 20). In particular, different tracers of the
H I density give inconsistent results, so neither the normal-
ization nor the redshift evolution of zΩ ( )HI is well understood.
The constraint of most relevance to us is from Masui et al.

(2013), where IM measurements were cross-correlated with the
WiggleZ galaxy redshift survey. It was found that

=   ´ -b rΩ ¯ 4.3 0.7(stat. ) 0.4(sys.) 10HI HI
4

at =z 0.8, where the best theoretical estimates for the cross-
correlation coefficient are r̄ = 0.9–0.95. This was obtained by
restricting the analysis to < <- -h k h0.075 Mpc 0.3 Mpc1 1;
extending it to < <- -h k h0.04 Mpc 0.8 Mpc1 1 lowers the
constraint slightly to

=   ´ -b rΩ ¯ 4.0 0.5(stat. ) 0.4(sys.) 10 .HI HI
4

The value of ΩHI is entangled with the bias, which, from semi-
analytic models combined with N-body simulations (Khandai
et al. 2011), is found to be consistently low, bHI≈ 0.55–0.66,
although it can go up to unity for certain model choices. As a
result, Masui et al. (2013) proposes that one should assume

= - ´ -Ω (4.5 7.5) 10HI
4 at z = 0.8.

The lack of agreement between observations makes it
difficult to reconstruct the redshift evolution of Ω .HI At the
upper end of the redshift range we are considering ( z 3),
constraints from damped Lyα (DLA) systems are scattered in
the range » - ´ -Ω (4 9) 10 .HI

4 At ~z 1 there are discrepant
results between theoretical models that find ´ -Ω 3 10HI

4

(Duffy et al. 2012) and observations of DLAs with Hubble
Space Telescope that give ´ -Ω 9 10 .HI

4 At z = 0, the
ALFAFA and HIPASS surveys find ´ -Ω 4 10 ,HI

4 which is
slightly lower than our fiducial Ω .HI,0
For the forecasts in this paper, we tread the middle ground

(solid line, Figure 20). The zΩ ( )HI redshift evolution is derived
from a simulated H I halo mass function, as described in

Figure 18. Improvement in γ constraints as a function of maximum redshift of
the survey. We have marginalized over w0, wa, and ΩK here. The low value in
the first redshift bin for the IM experiments is due to a degeneracy.
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Appendix B, and we choose its fiducial normalization to be
consistent with the GBT/WiggleZ cross-correlation measure-
ment at z = 0.8. The magnitude and redshift evolution of the H
I bias, b z( ),HI are derived from the same mass function.

Figure 21 shows the effect of rescaling ΩHI by a constant
factor on the constraints for several observables. If zΩ ( )HI was
halved, for example, the FOM for Facility would drop by a
factor of 5. This highlights the sensitivity of cosmological
constraints from IM to the H I density and gives some idea of
the degradation/improvement in performance that would be
expected if zΩ ( )HI substantially differs from what we have
assumed.

6.2. Non-linear Scale

We have marginalized over the non-linear scale, s ,NL in all
of our forecasts. As described in Section 3, this parameter is
responsible for setting the resolution in the radial direction;
beyond this scale, non-linear peculiar velocities wash out all
redshift information.
Figure 22 shows the effect of changing the fiducial non-

linear scale. As one might expect, increasing sNL degrades the
various constraints, as information is lost at progressively
larger scales. For the Facility experiment, which uses a
combined single-dish and interferometer mode, the change in
non-linear scale has a similar, relatively mild effect on all of the
figures of merit, which change by less than a factor of 2 for a
doubling of s .NL This is not the case for the purely
interferometric Stage II survey, which is more sensitive to
smaller scales (especially at low z), so it is hit harder by the
loss of information there.

6.3. Foreground Contamination

The viability of IM as a cosmological probe vitally depends
on the availability of accurate foreground removal techniques,
as the contaminating signals have an amplitude of between 4
and 6 orders of magnitude greater than the cosmological H I

signal (e.g., Alonso et al. 2014). In the previous sections we
adopted a fiducial value for the residual foreground contam-
ination amplitude of = - 10 ,FG

6 which is a reasonable target
value for current foreground subtraction methods. In this
section we quantify the sensitivity of our forecasts to the
assumed removal efficiency and discuss a number of potential
problems surrounding foreground contamination.
Most of the proposals for how to subtract foregrounds from

IM data rely on a simple qualitative assumption: that
foregrounds have a smooth (coherent) frequency dependence
over the observed frequency ranges.11 This is generally true,
apart from in the presence of polarization leakage, which we
will discuss shortly. A simple commonsense approach is to
assume that the foreground signal along the frequency direction
is accurately modeled as a sum of low-order polynomials or
similar, which capture what should essentially be a (very
mildly) modulated power-law behavior. This is at the heart of
the methods presented in Wang et al. (2006), Gleser et al.
(2008), Jelić et al. (2008), and Liu et al. (2009).
Another possibility is to be agnostic about the frequency

dependence of the foregrounds, but decompose the total signal
in some form of signal-to-noise eigenbasis. Since the fore-
grounds have such large magnitudes, the hope is that they will
be contained only in the very high signal-to-noise part, and thus
will be suitably segregated from the cosmic signal. This is the
logic behind the methods used in Chang et al. (2010), and
Wolz et al. (2014). When applied to real data in Chang et al.
(2010), it was found that the foregrounds were not as strongly
segregated from the cosmic signal as expected, so it was
necessary to subtract a larger number of modes than originally
planned (inevitably throwing out some of the cosmological
signal too). Even in the optimal case, this type of foreground
removal method has been shown to leave a residual bias in, for
example, the cosmological parameters that best-fit the recov-
ered BAO (Wolz et al. 2014).

Figure 19. Constraints on g w( , )0 for Facility, the DETF Stage IV survey, and
the combination of the two, including Planck CMB priors. wa and ΩK have
been marginalized over, and the biases for both surveys, b z( )HI and b z( ),gal are
free in each bin. Also plotted are example f(R) and DGP modified gravity
models from Amendola et al. (2013).

Figure 20. Current constraints on the HI density fraction as a function of
redshift, zΩ ( )HI (Zwaan et al. 2005; Rao et al. 2006; Lah et al. 2007; Prochaska
& Wolfe 2009; Noterdaeme et al. 2009; Martin et al. 2010; Khandai et al. 2011;
Meiring et al. 2011), partially based on the compilation in Duffy et al. (2012)
(see also Padmanabhan et al. 2015). DLA observations are shown in blue,
cross-correlations in yellow, other observations in red, and simulations in
green. The thick black line shows the fiducial zΩ ( )HI that we have adopted in
this paper, which has = = ´ -zΩ ( 0) 4.86 10 .HI

4

11 See Morales et al. (2006) for foregrounds affecting the epoch of
reionization.
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As described in Section 2.3, we model the effects of
foregrounds in terms of a residual noise term with an overall
relative amplitude,  ,FG and a minimum cutoff wavenumber,
kFG, along the radial (frequency) direction. For any given
foreground removal method, these two parameters are inter-
twined—the more large-scale modes one uses to estimate the
shape of the foregrounds (i.e., the larger kFG is made), the
better the removal efficiency, and so the lower FG should be.
We have chosen kFG to be a fixed fraction of the total
bandwidth across all the redshift slices of a survey and have
implicitly absorbed the removal efficiency into  .FG (Note that
this model is purely stochastic and does not allow us to model
the biases that were discussed in Wolz et al. 2014.)

In Figure 23, one can clearly see that the optimal level of
foreground subtraction is around - 10FG

6 for the Facility
configuration, but can be larger for other configurations (which
have higher noise levels). The impact of changing kFG is shown
in Figure 24; while larger kFG should yield better foreground
subtraction, there is a trade-off involved in losing more data at
small k.

While our analysis has so far focused on unpolarized
foregrounds, problems may arise if one considers instrumental

leakage from polarized foregrounds into the total intensity
mode. For a typical receiver, one expects a cross-leakage of
order a few percent, so given the large amplitude of the
foregrounds, this can have a significant effect on the total
signal. Synchrotron emission is the main polarized foreground
and has a non-trivial angular and frequency dependence due to
Faraday rotation. To see this, consider the polarization angle,
ϕ, which is rotated by the galactic magnetic field, B, through

òf f n= + ¢ ¢ ¢- ( ) ( )Br r c n r r dr( ) ( ) · , (24)
r

e0
2 2

0

wheref r( )0 is the initial angle, ne is the electron density, and r is
the distance along the line of sight. The galactic magnetic field is
a non-linear superposition of an overall coherent mode, tied to
the spiral structure of the Galaxy, with a turbulent stochastic
mode on small scales (Beck 2001). From (24), one can see that
the rotation of the polarization vector depends on both frequency
and the line of sight through the galaxy with some decoherence
length (corresponding to the coherence of B along the line of
sight). This leads to a more complex foreground signal that is
considerably less smooth in frequency than unpolarized fore-
grounds—an effect that increases in severity at low frequencies
(Alonso et al. 2014). While we have not explicitly included it in
our foreground model, the effects of polarization leakage can be
partially accounted for by a larger fiducial  .FG

6.4. Autocorrelation Calibration (Single-dish)

In this paper, we have advocated using some instruments as
collections of single-dish experiments, i.e., in autocorrelation
mode. This is common practice in CMB mapping experiments
and has been the leading method of producing large-scale,
high-resolution maps. Its use with radio telescope arrays at
lower frequencies is less common, however, and must be
treated with some care because of a number of potentially
serious systematics.
Nevertheless, there is some precedent for using autocorrela-

tion mode to detect both individual H I sources and unresolved
emission. In Braun et al. (2003), the WSRT array was used in
this mode to perform a wide-field survey, yielding a sample of
~150 H I galaxies. A key difficulty of the analysis was in
obtaining an accurate calibration of the autocorrelation mode—
while the average gain over all receivers was relatively stable,
there were variations of up to 10% for individual receivers.
This was calibrated out by using cross-correlation data for
known radio sources. For the first attempt at mapping the
unresolved H I signal with the GBT telescope (Chang
et al. 2010), the flux calibration was controlled by fixing an
intermittent noise source at the feed point, and by periodically
monitoring a known source.
Drifts in the gain (e.g., due to instrumental temperature

variations) are just one type of autocorrelation systematic.
Another is due to spillover and sidelobe pickup, which can arise
from a poorly characterized beam and ground contamination.
This is not an insurmountable problem, and ground-based and
balloon-borne CMB experiments commonly incorporate design
features to mitigate these effects. One approach for H I

instruments is that proposed by BINGO (Battye et al. 2013).
There, the idea is to use a partially illuminated aperture to reduce
the effect of sidelobes, spillover, and RFI contamination. Another
aspect of the BINGO design is the use of a fixed dish, which
scans the sky simply by allowing it to drift through the beam as
the Earth rotates. This bypasses various problems that arise with

Figure 21. Normalized FOM and ΩK and γ marginal errors, as a function of
ΩHI rescaled by a constant factor, for the Facility (blue, solid) and Stage II
(green, dashed) surveys.

Figure 22. Normalized FOM/marginal errors as a function of sNL (see
Figure 21 for key).
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moving parts, and allows a more precise pointing calibration than
is possible with dynamic “raster” scan strategies.12

Another key obstacle in the analysis of autocorrelation data
is the presence of f1 noise, which is a coherent (correlated)
noise drift on long timescales. Ideally, one would be able to
construct a receiver system such that the f1 knee (i.e., the
timescale beyond which correlations become important) is at
very low frequencies—a few ´ -10 3 Hz, for example. If this is
possible, then the noise will drift over periods of several
minutes, which, for a drift scan, corresponds to angular scales
of a few degrees (i.e., larger than the BAO scale). This is the
method used by BINGO.

More traditionally, the way to deal with noise drifts or biases
in CMB experiments has been to devise a scan strategy such
that the modes one is looking at are scanned at frequencies
higher than the knee frequency. The signal in a given pixel will
then be localized in particular (frequency) modes of the time
series that are subject only to white (i.e., uncorrelated) noise.
This requires that the instrument should have the ability to scan
quickly across the sky, which can be challenging for large

dishes. One can further mitigate the effect of f1 noise by
devising a scan strategy with multiple cross-linking, i.e., in
which each pixel is revisited a number of times on different
timescales, from different directions. The inversion process for
extracting the map from the time series (and estimating the
noise) is then well defined and numerically robust (Ferreira &
Jaffe 2000). If the noise is smooth in frequency, it may also be
possible to clean out any noise bias component, as one would a
foreground component in the signal.
In summary, there are clearly a number of issues that must be

considered carefully when working in autocorrelation mode,
but as we have shown in our analysis throughout this paper, the
scientific potential of single-dish IM experiments is tremen-
dous. Ideally, one would design the dishes, receivers, and other
hardware of a given array specifically to mitigate the problems
discussed above, but in some cases (e.g., with the SKA) this is
not possible due to competing design constraints enforced by
the need to operate primarily in an interferometric mode—
optimizing the hardware for autocorrelation mode as well is
simply too expensive. Any chance of controlling these
(potentially critical) systematic effects to a sufficient degree
is then left down to the choice survey strategy and data analysis
methodology.
Experience with autocorrelation CMB experiments suggests

that reliance on non-hardware techniques to reduce important
systematics is a risky strategy, but there are a number of
features of forthcoming radio telescope arrays that may be
helpful in making this feasible. For example, an experiment
with hundreds of individual dishes can make use of the fact that
some systematics will be uncorrelated between the dishes; by
cross-correlating (detected) maps of the same volume produced
by different dishes, many effects can therefore be expected to
correlate out. Nevertheless, it remains to be demonstrated that
an experiment as complex as Phase 1 of the SKA can
successfully control its autocorrelation calibration down to the
required level and how the survey/analysis strategy affects its
overall sensitivity. This must therefore be seen as an important
caveat of our analysis.

6.5. Sensitivity to Large Scales (Interferometers)

A particular limitation to H I mapping with interferometers is
the difficulty of sampling modes on large angular scales. In the
simplest model of an interferometer—as a collection of dishes
—the minimum measurable wavenumber is set by the
minimum baseline, which cannot be smaller than the diameter
of the dishes. From Figure 3 we can see that arrays with large
dishes will not adequately sample BAO scales at low redshift in
interferometer mode, so most of the constraints must come
from single-dish mode.
There are a few ways to mitigate this shortcoming. The

simplest is the approach effectively taken by BAOBAB and
dense aperture arrays—to just use smaller dishes and pack them
closer together. This results in smaller baselines and a larger
FOV for the interferometer, but reduces its total effective
collecting area (and thus its sensitivity). One can add more
dishes to compensate, although this can substantially increase
the cost of correlation hardware, which scales roughly like
~N .dish

2 GPU-based correlators, or correlating only a subset of
receiver pairs, can reduce costs for large numbers of receivers.
Alternatively, one can use a more novel reflector design. For

example, CHIME uses long cylindrical reflectors with many
closely spaced receivers installed along the cylinder (Shaw

Figure 23. Normalized FOM/marginal errors as a function of FG (see
Figure 21 for key).

Figure 24. The effect of rescaling the foreground cutoff scale, kFG, on the
normalized FOM/marginal errors (see Figure 21 for key). The base value of the
cutoff scale is n= Dnk π r2 ( ˜ ).FG,0 tot

12 See also the “on-the-fly” technique (Mangum et al. 2007).
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et al. 2014). This provides a large number of short baselines
and a primary beam that is ~ 180 in one direction but much
narrower along the orthogonal direction. This leads to a very
anisotropic sampling of transverse Fourier modes, and only the
large angular modes that are exactly aligned with the cylinders
will be properly sampled. Because the visibilities measured by
the interferometer are convolved with a window function
defined by the primary beam, however, modes larger than the
shortest side of the FOV will be aliased, making them difficult
to disentangle. This is only the case if the interferometer tracks
a single patch of the sky, though; if one progressively scans
over the patch with different pointing offsets and has precise
knowledge of the primary beam pattern, it is possible to remove
the aliasing effect of the primary beam and thus independently
measure modes larger than the instantaneous FOV by
mosaicing (Holdaway et al. 1999). In the case of CHIME,
drift scanning provides a continuous range of pointing offsets,
and in principle the array can see the whole sky over a 24 hr
observation period.

One can also make interferometric measurements over a
number of separate pointings without mosaicing, simply to
survey a larger area of sky (White et al. 1999). Drift scanning
can be seen as a continuous limit of this. The advantage of such
a method is that one can greatly reduce the sample variance of
the smallest-baseline modes, simply by observing them on
several independent patches of the sky. A crucial point is that
simply patching together multiple fields does not allow modes
larger than those defined by the minimum baseline to be
measured, and therefore does not change the range of modes
sampled, but does increase the sensitivity within that range. We
have implicitly assumed that interferometers can handle
multiple pointings by allowing >S FOVarea in our forecasts.

6.6. Combined Mode

Another possibility is to operate some experiments in a
“combined mode,” where both autocorrelation and cross-
correlation data are collected. The simplest way of doing this in
practice is to split the total survey time into two chunks, using
only one of the observing modes for each. From the previous
two sections, we can see that each mode will have different
systematics and hardware requirements, and it is likely that
substantially different survey strategies would be needed for
each mode.

The situation is considerably more difficult if one tries to
collect data in both modes simultaneously. As discussed above,
in single-dish mode one has to mitigate f1 noise, typically by
rapidly scanning across the sky. Conversely, interferometers
require precisely measured baselines and pointings to allow
accurate phase calibration and reconstruction of the beam
pattern; as dishes accelerate while scanning, even small
distortions of the mounts can make this difficult. The
combination of all these issues can potentially be overcome
by drift scanning or through the use of novel mounts, but
neither option appears to have been tested yet.

7. AN IDEAL H I SURVEY?

In this section, we suggest what an “ideal” future H I IM
experiment for late-time cosmology would look like. So far, we
have assumed that Phase I of the SKA will represent the
pinnacle of H I IM science for the coming decade. While its
performance in terms of cosmological parameter constraints

will indeed be impressive, it is worth remembering that the
SKA is a general-purpose facility and is not specifically
designed for IM. We propose that a cheaper purpose-built
instrument, optimized for H I science, would be able to match,
and perhaps even surpass, the SKA’s performance.
For the sake of simplicity, we target the dark energy FOM as

the only parameter to be optimized for. Sensitivity to
intermediate scales, where the BAO and other distance
measures are most important, is therefore a priority, although
distance information from RSDs and the overall shape of the
matter power spectrum are also useful (see Section 4.2). Dark
energy is typically most important at low redshift, and so one
might reasonably expect to focus the survey on the interval

⩽ ⩽z0 2. The lowest redshifts are likely to be subject to RFI,
however, and pushing to higher redshifts brings in issues of
limited angular resolution and increasing galactic foreground
emission.
In terms of the available technology, we assume that
»T 25inst K wideband receivers can be built cheaply and in

bulk, and that correlators for several thousand receivers will
also be relatively affordable. Time allocation is not an issue for
a purpose-built instrument, and, as we can see from Figure 25,
one only gains from increasing the amount of integration time.
We assume that at least 10,000 hr of effective observing time
can be used. This leaves only a handful of basic design
parameters that can be varied:

1. Survey area, Sarea
2. Dish size, Ddish

3. Array configuration (maximum and minimum baselines,
Dmax and Dmin, and filling factor)

4. Frequency range (corresponding to redshift range,
z z[ , ]min max ).

The optimal survey area for a fixed amount of integration
time depends on how quickly one can integrate down to the
signal-dominated regime at each pointing. In Figure 26 we
show that, in the case of the Stage II experiment, increasing
Sarea above its optimal value will lead to a reduction in overall
signal-to-noise ratio and hence in the overall FOM. This is not
the case for the Facility experiment, which already has
sufficient time to reach signal domination at each pointing;
increasing Sarea simply reduces the cosmic variance and
therefore improves the FOM. In designing an optimal survey,

Figure 25. Normalized FOM/marginal errors as a function of survey duration,
ttot (see Figure 21 for key).
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one should pick Sarea such that it is signal dominated at each
pointing, but only just, so as not to spend too much time
integrating in a regime that is dominated by cosmic variance.
This is the approach used when designing survey strategies for
CMB experiments.

For interferometers, a high filling factor is desirable, as it
equates to higher sensitivity. For a fixed number of dishes,
increasing the filling factor amounts to increasing the dish
diameter, or decreasing the maximum baseline length. Smaller
dishes are useful for increasing the FOV, and thus the survey
speed, however, and allow for smaller minimum baselines,
which is important for resolving larger angular scales,
especially at low redshift.

For single-dish experiments, smaller dishes also improve
survey speed due to their increased FOV, but this now comes at
the cost of angular resolution. A balance must therefore be
found between resolving intermediate scales over as much of
the redshift range as possible and survey speed. There is also
the issue that larger dishes cost more, but for a pure single-dish
experiment this is offset by there being no need for expensive
correlator hardware.

Under the design constraints that we imposed, it turns out
that the SKA Phase I arrays are close to ideal for single-dish
experiments, given the assumed foreground removal efficiency.
This was to be expected; Facility (broadly representative of a
single-dish SKA configuration) is already nearing the cosmic
variance-limited constraints on P(k) from the DETF Stage IV
galaxy redshift survey, as we showed in Figure 4. The only
significant improvement to be had is around ~k 0.1Mpc−1,
which could be obtained by increasing the survey time or, even
more effectively, by decreasing zmin. Shifting the maximum
frequency of Facility from 1100 to 1200MHz while keeping
the total bandwidth fixed to 700MHz effectively matches its
FOM to that of the galaxy redshift survey.

As interferometers, the SKA configurations have too small
an FOV and too low a filling factor to achieve competitive
dark energy constraints. A purpose-built interferometer
operating over the desired redshift range would be better
off having much smaller dishes, closely packed together. This
is the approach that CHIME and BAOBAB are effectively
taking. A 250-element array with 2.5 m dishes distributed
over a 44 m core (giving a filling factor of 0.8) would surpass
Facility’s FOM for n = 1100max MHz and match the galaxy

survey’s for n = 1200max MHz (where nD = 700 MHz in
both cases).
Is it possible for IM experiments to do better than the

reference galaxy redshift survey? Yes, but not without relying
on either a higher maximum frequency or small angular scales.
On large scales, the single-dish SKA configurations are limited
by residual foregrounds, as shown in Figure 27. Extending to
higher redshifts increases the total volume being probed, but
the sensitivity to dark energy decreases significantly above
z 2, so in practice little is gained by doing this. As we have

already seen, going to lower redshift (i.e., increasing nmax) can
have a big effect, as dark energy is most important here. The
problem of RFI (radio interference) increases toward 1.4 GHz
though, so this is also difficult. Besides, other sources of
information on the matter density field are available at low z
(e.g., existing galaxy redshift surveys), so it is not clear
whether extending IM surveys into this region would be
particularly useful.
Another option is to improve sensitivity on small angular

scales, ^ k 0.1Mpc−1. This can be achieved by increasing
the number of detectors, improving the single-dish angular
resolution, reducing the instrumental noise, or performing
longer surveys (Figure 27 shows the ideal case). In theory
this would provide extra distance information from the shape
of the power spectrum, but this relies on being able to
accurately model the non-linear power spectrum, which is
also tricky. To significantly improve DE constraints past what
a Facility-class experiment is capable of, one is probably
better off focusing on combining IM with other probes, such
as weak lensing.

8. DISCUSSION

Neutral hydrogen (H I) IM looks set to become a leading
cosmology probe during this decade. In this paper we have
assessed its potential for constraining cosmological parameters,
focusing on “late times,” z 3. We used a few reference
experimental designs—Stage I, Stage II, and Facility—that are
inspired by up-and-coming experiments to assess how well we
will improve our knowledge of the standard cosmological
model, the nature of dark energy, the spatial curvature of the

Figure 26. Normalized FOM/marginal errors as a function of survey area, Sarea
(see Figure 21 for key).

Figure 27. Fractional constraints on P(k) for an “ideal” (noise-free) 15 m
single-dish survey, covering the same redshift range and survey area as the
DETF Stage IV reference experiment. The deviation from the cosmic variance
limit on large scales is (partially) due to the kFG cutoff.
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universe, and the growth rate of structure. We have done so
being mindful of the potential systematic problems that need to
be faced.

Intensity mapping at radio frequencies has a number of
advantages over other large-scale-structure survey methodolo-
gies. Since we only care about the large-scale characteristics of
the H I emission, there is no need to resolve and catalog
individual objects, which makes it much faster to survey large
volumes. This also changes the characteristics of the data
analysis problem; rather than looking at discrete objects, one is
dealing with a continuous field, which opens up the possibility
of using alternative analysis methods similar to those used
(extremely successfully) for the CMB. Thanks to the narrow
channel bandwidths of modern radio receivers, one automati-
cally measures redshifts with high precision too, bypassing one
of the most difficult aspects of performing a galaxy redshift
survey.

These advantages, combined with the rapid development of
suitable instruments over the coming decade, look set to turn
H I IM into a highly competitive cosmological probe in only a
short space of time. In Section 5, we showed that Facility-
class experiments would be broadly competitive with DETF
Stage IV galaxy redshift surveys such as Euclid, LSST, and
WFIRST in terms of cosmological parameter constraints, in
about the same time frame. Indeed, the largest planned
surveys, such as SKA1-SUR, may even be able to surpass the
cutting-edge galaxy surveys, although this is contingent on
the (currently poorly known) H I density and the performance
of foreground removal algorithms. Since the currently
planned Facility class surveys are not specifically designed
for IM, we also considered what a large, purpose-built H I

experiment would be able to achieve in Section 7. We found
that little extra could be gained without pushing to higher
frequencies or smaller (non-linear) angular scales; neither are
free of problems.
More important than their individual performance is what IM

and galaxy redshift surveys can do in combination. In
Figure 19, we showed that Facility and a DETF Stage IV
survey give roughly orthogonal constraints on w0 and γ when
combined with CMB data, mostly as a result of their
complementary redshift coverage. Figure 28 shows the joint
constraints on w0 and wa for the combination of DETF Stage
IV and a combined-mode SKA configuration with a lower-
redshift band; the resulting dark energy FOM is almost five
times that of either survey individually. This large improve-
ment is due to the increase in the total surveyed volume, as well
as the complementary redshift coverage. One can also benefit
from the “multi-tracer” effect, whereby the limits imposed by
cosmic variance on some variables can be overcome by
measuring several distinct populations of tracers of the cosmic
density field (McDonald & Seljak 2009; Abramo & Leo-
nard 2013). Combining H I IM and galaxy redshift surveys
should therefore offer particularly stringent constraints on the
dark energy equation of state and growth index parameters—an
absolute necessity for distinguishing between different dark
energy and modified gravity models.
H I IM experiments also offer some novel features—for

example, in their ability to probe ultra-large scales in the late
universe. Facility-class arrays like Phase I of the SKA will be
able to simultaneously survey an extremely wide range of
redshifts over greater than half of the sky, covering volumes of
several tens of cubic Gpc in one fell swoop. This is sufficient to
detect physical effects beyond the matter-radiation equality
scale (Figure 29), including non-Gaussianity, spatial curvature,
and potential deviations from large-scale homogeneity and
isotropy. As was shown in Figure 3, a sufficiently large H I

survey could even probe beyond the horizon size at z 1,
allowing us to access causally disconnected regions long after
recombination.
Before H I IM can contribute seriously to late-time

cosmology, a number of potential pitfalls must be navigated.
Chief among these is the overall magnitude of the H I density,
Ω ,HI,0 and its evolution with redshift, both of which are
currently poorly constrained. The lower the density, the harder
the H I signal will be to detect (and the more aggressive the
foreground cleaning will need to be). Figure 21 showed the
effect of changing ΩHI,0 on various figures of merit; a factor of
2 reduction in H I density from our fiducial value results in
roughly a factor of 5 degradation in parameter constraints,

Figure 28. Constraints on w0 and wa from the combination of the DETF Stage
IV galaxy survey and a combined-mode SKA1-MID configuration, compared
with results for the experiments individually. The figures of merit are 427
(SKA1-MID), 438 (galaxy survey), and 2124 (combined). We have assumed
that the survey volumes are independent; otherwise, cosmic variance would
degrade the combined constraint.

Figure 29. Forecast constraints on P(k) from SKA1-MID (B1), assuming
perfect foreground removal (i.e., = = k 0FG FG ). The turnover in the power
spectrum should be clearly detectable.
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which would be troublesome, although not catastrophic.
Similarly, a higher density would make the signal much easier
to detect. This situation is loosely analogous to the dependence
of galaxy cluster surveys on the normalization of the power
spectrum—when it was found that s8 was closer to 0.8 than 0.9,
this vastly reduced expected cluster number counts, leading to a
corresponding drop in forecast constraints from cluster surveys.
For H I IM, all we can do is wait for better measurements of
ΩHI,0 to see what the effect will be.

A confounding factor that is more directly under our
control is the foreground cleaning efficiency, which we
investigated in Section 6.3. The galactic foreground signal is
around 6 orders of magnitude larger than the cosmological H I

signal, but has a distinctive (and thus easy to separate)
behavior for the most part. Since they vary on similar angular/
frequency scales to the galactic foregrounds, large-scale
cosmological modes are likely to be hit harder by imperfect
foreground cleaning. There is no reason why this cannot be
overcome, however—similarly large modes are routinely
dealt with successfully in CMB analysis (Planck
Collaboration 2014a). Of potentially more concern is the
issue of polarization leakage, which imprints a more variable
signal on top of the cosmological one. Sufficiently sophisti-
cated modeling, combined with a sustained effort to control or
characterize leakage at the hardware level, should be able to
deal with this.

Unsurprisingly, choosing the right survey strategy is vital;
we investigated the effect of changing various survey
parameters in Section 7. Throughout the paper, we have also
considered the difference in performance between interferom-
eter and single-dish observation modes. For purpose-built IM
experiments (e.g., the “ideal” experiment described in
Section 7), one will tend to prefer interferometry because of
the comparative ease of controlling instrumental/atmospheric
systematics, although this must be offset against the significant
computational expense of correlating many baselines. For
general-purpose instruments, whose design is likely to be set by
other considerations, interferometry may be a poor choice—if
the array has large dishes, its interferometric FOV will be
small, making it relatively insensitive to the intermediate scales
that are most useful for detecting the BAO (see Figure 3). In
this case, there is much to be gained by using a single-dish (or
combined single-dish + interferometer) mode instead. This is
the path that we advocate for Phase I of the SKA, at least for
low redshifts—at higher redshifts, the angular resolution in
single-dish mode is actually too low, so the errors on quantities
such as DA(z) get larger (see Section 4.2). This choice brings
with it a number of significant data analysis challenges,
however, as discussed in Section 6.4; how to precisely and
consistently calibrate many hundreds of dishes operating in
autocorrelation mode is currently an open problem, and the
various advantages of single-dish operation will only be
available if it can be solved.

As we discussed at the start, our forecasting framework
makes a number of approximations such as neglecting wide-
angle effects and correlations between redshift bins. These
simplifications (which were instrumental in allowing a direct
comparison with galaxy redshift surveys) are only likely to
have any material impact on our forecasts at the very largest
scales, well away from where the strongest distance
constraints come from. As such, the constraints on cosmolo-
gical parameters that we have presented should not be

expected to change appreciably under a more sophisticated
treatment.
More important are the effects that we have accounted for

that are sometimes neglected in other forecasts. By explicitly
including non-linearities, unknown bias evolution, and fore-
ground subtraction residuals and systematically exploring
parameter degeneracies, we have tried to be as comprehensive
(and pessimistic) as possible in acknowledging possible
adversities for IM surveys. This should be kept in mind when
comparing results from this paper with those from elsewhere.
Even so, there is always scope to disagree with the particular
decisions that go into any set of forecasts, so we have made our
full forecasting code publicly available, with documentation.13

The interested reader is encouraged to use it to make their own
forecasts.
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APPENDIX A
H I LINE INTENSITY AND BRIGHTNESS

TEMPERATURE

Consider a clump of neutral hydrogen with number density
= +n n n ,HI 0 1 where 0 and 1 denote the lower and upper level

of the hyperfine splitting, respectively. The spin temperature,
TS, can be defined using

= =- n n
g

g
e n n3

3

4
,1 0

1

0
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T
TS
*

where n= =T h k K* 0.0682 ,B21 =g 3,1 =g 1,0 and we have
assumed T T*.S The emissivity (energy per unit time, solid
angle/volume, and frequency) of the clump is

n
f n=j

A h

π
n

4
( ),21

10 21
1

where ´ - -A 2.869 10 s10
15 1 (Wilson et al. 2009) is the

Einstein coefficient for spontaneous emission and f n( ) is the
line profile, which is assumed to be very narrow, with width nd
(a simple approximation is f n d1 ). The clump’s luminosity
is then

n f n n=dL A h n d dA dr
3

4
( ) ,10 21 HI

where ν is evaluated in the rest frame of the clump and dA dr is
the volume of the clump (dr being the distance along the line of
sight) in comoving units, if nHI is the comoving number

13 https://gitorious.org/radio-fisher
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density. Absorption can be neglected if the spin temperature of
the gas is much larger than the background temperature
(usually the CMB), so that the total intensity against
background just follows from the above luminosity.

The total flux (against the background radiation) from an
object at redshift z is then

n
f n n=

+
dF

h A

π z r z
n d dA dr

3

16 (1 ) ( )
( ) ,21 10

2 2 HI

where n n= + z(1 ).21 Defining the brightness, I, of the clump
through nºdF Id dΩ obs and multiplying by the Rayleigh–Jeans
approximation factor, we obtain
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where we assume that the line width n +d z(1 ) is much
smaller than the observed frequency interval nd obs and the
corresponding =dA r dΩ,2 l n= +dr z H z d(1 ) ( ) .21

2
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comoving number density is
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where ΩHI is the comoving H I fraction, mp is the proton mass,
dHI is the H I density contrast, and r = H πG3 8c,0 0

2 is the
critical density today.

APPENDIX B
REDSHIFT EVOLUTION OF THE H I SIGNAL

In this appendix, we derive the redshift evolution of the H I

density, brightness temperature, and bias. We begin by
assuming that the H I luminosity from a given spatial volume
element (with solid angle DΩ and frequency interval nD ) is
proportional to the H I mass within the volume, M .HI If all the H
I contributes to the signal, and the spin temperature is well
above the background temperature, the observed brightness
temperature of the volume element is

n
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and its proper volume is
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where we are taking into account the effect of the peculiar
velocity through dv ds, the proper gradient of the peculiar
velocity along the line of sight.

After reionization, neutral hydrogen can only be found inside
galaxies that are able to shield it from ionizing UV radiation.
The gas temperature and corresponding spin temperature
should be much hotter than the CMB, so the approximation
above can be used (there are a few cases where a strong
background radiation source is capable of generating an
absorption signal, but those are negligible given the low
resolution we are considering here). We have also neglected H I

self-absorption, or any other type of shielding of the H I

emission. (Note that even if some re-absorption of the H I

signal did happen, we would still expect a linear relation
between the H I luminosity and mass, albeit with a smaller
constant of proportionality.)

The next step is to connect the H I mass to the underlying
halo mass, in order to relate the signal to the cosmological
matter density field. We assume that a dark matter halo of mass
M contains one or more galaxies with a total mass MHI that is
only a function of the halo mass and redshift, i.e., M M z( , ).HI
There may be some environmental dependence, which would
make this a function of position as well. Some level of
stochasticity can also exist in the relation between halo and H I

mass, but given the low-resolution pixels used in H I IM
experiments, we expect a large number of H I galaxies per
pixel, which should average-down any fluctuations and allow
us to take the above deterministic relation for the mass
function.
To detect the BAO scales at z = 1, for example, one needs

angular/frequency resolutions of around 1° and 5MHz,
respectively, which translate into a comoving volume of

´1.22 105 Mpc .3 In each volume element, we expect a total of
around 106 dark matter halos with mass between

M10 and 10 ,8 15 and ∼31,000 with masses between ´5 109

and ´ M1 1012 (where the latter range corresponds to halos
expected to contain most of the H I mass). This supports our
assumption of a position-independent H I mass function due to
the averaging over many halos. Some level of stochasticity
could still increase the shot noise of the signal, but this is
expected to be quite small, as discussed below.
Given M M z( , ),HI we can then relate the signal to the

underlying dark matter field. The number of halos of mass M in
the observed volume element is given by

d+[ ]b M z z dM V1 ( , ) ( ) ,M
dn

dM pix where dM is the underlying
dark matter fluctuation at that point in space (and time),
b M z( , ) is the halo bias, and dn dM is the proper halo mass
function. Integrating over all possible masses, the total
observed temperature is then
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Rewriting in terms of the fractional density,14

r rº + -z z zΩ ( ) (1 ) ( ) ,cHI
3

HI ,0

and assuming that the peculiar velocity gradient and v c terms
are small for these large pixels, we finally get
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Note that once M M z( , )HI has been specified, we can
calculate Ω ,HI the H I bias, and H I brightness temperature
in a consistent manner. For the mass function, the most

14 The + -z(1 ) 3 term shows up here because dn dm is the halo mass function
in proper volume units.
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straightforward ansatz is to assume that it is proportional to
the halo mass—the constant of proportionality can then be
fitted to the available data. Even in this case, however, we
need to take into account the fact that not all halos contain
galaxies with H I mass. Following Bagla et al. (2010), one
can assume that only halos with circular velocities between
30 and 200 km s−1 are able to host H I, which translates into a
halo mass through

= +
æ

è
çççç

ö

ø

÷÷÷÷÷
-


v z

M

M
30 1

10
km s . (B1)circ 10

1 3

1

While reasonable, this model is unable to fit constraints on
the H I density at high redshift. Possible refinements include
allowing the minimum and maximum circular velocities to
evolve with redshift, which could make a difference
particularly at very low redshifts, or connecting the star
formation rate to the halo mass, and then relating that to the H
I mass. Alternatively, in Gong et al. (2011a) the relation
between H I and halo mass was found using a non-linear
function fitted to simulations from Obreschkow et al. (2009;
see their Table 1).

In this paper, we have taken a different approach, using a
redshift-independent power-law form for the mass relation,

µ aM M M( ) . (B2)HI

An exponent of a  0.6 provides a good fit to current low- and
high-redshift constraints when we normalize the relation to the
z = 0.8 constraints from Switzer et al. (2013). The resulting

zΩ ( )HI is shown in Figure 20.
Lastly, the shot-noise power spectrum due to Poisson

fluctuations in halo number is given by
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For the scales we are interested in, this quantity is rather small,
although it would be increased somewhat if we allowed some
level of stochasticity between each halo and the corresponding
H I mass, as described before.

APPENDIX C
INTERFEROMETER BASELINE DENSITY

In this appendix, we describe how to calculate the baseline
density, n(u), for a given array configuration. First of all, one
must map out the uv coverage of the array. For a baseline with
position components L L L( , , ),X Y Z the ellipse traced in the uv
plane is given by

l d
d l
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where d0 is the declination of the phase tracking center. For an
array with Nd dishes, the total number of unique baselines is

= -N N N( 1) 2.d d Each baseline contributes one elliptical
locus, given by the above expression. A full ellipse is traced for
each baseline over the course of 24 hr of observation.

The baseline density n(u) is just a histogram of uv coverage
in rings centered at the origin, i.e., the number of baselines per
ring of radius = +∣ ∣u u v2 2 and width Du. The bin size is
defined by the FOV, which depends on the effective area of a
single array element, Ae, and the wavelength, λ, of the

observation,

lD ~ =u A
1

FOV
.e

2

We neglect points with ∣ ∣ ⩽u 1 FOV , as these baselines are
not independent (see next appendix).
We have computed n(u) for ASKAP, CHIME, JVLA,

KAT7, MeerKAT, SKA1-MID, and Tianlai (only some of
which have been used in interferometric mode in this paper).
For the dish arrays, we generated uv coverages for 24 hr
observations, with 60 s integration time per visibility. The uv
coverage was scaled depending on the observation frequency,
and n(u) computed as described above. As the different arrays
operate in different bands, we simulated 10 frequency channels
for each, uniformly spaced in each band. Details of the
simulated configurations are given in Table C1, and we have
made the resulting n(u) available online.15 The sensitivity for
two of these experiments is shown as a function of transverse
wavenumber (at z = 1) in Figure C1. Note that, for the cylinder
interferometers CHIME and Tianlai, the effective cylinder
length is taken to be smaller than the geometric length, as the

Table C1
Details of the Array Configurations for which n(u) Was Calculated

Experiment νmin νmax δ ν [kHz] Nd Ddish [m]

ASKAP 700 1800 20 36 12.0
CHIME 400 800 1000 5 × 256 80 × 20
JVLA (D) 1000 2000 2000 27 25.0
KAT7 1200 1950 50 7 12.0
MeerKAT 1200 1950 50 64 13.5
SKA1-MID Base 580 1015 50 190 15.0
SKA1-MID Full 580 1015 50 254 14.62
Tianlai 550 950 1000 8 × 256 100 × 15

Note. nmin,max are in MHz, and dn is the channel bandwidth. The efficiency
factor for all dish arrays was taken to be h = 0.7.

Figure C1. Noise sensitivity as a function of transverse wavenumber at z = 1,
for MeerKAT and SKA1-MID Band 1 (lower is better). The BAO scales
(upper plot and gray band) are shown for reference.

15 https://gitorious.org/radio-fisher/pages/Home
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cylinders will likely be underilluminated to mitigate edge
effects.

APPENDIX D
DERIVATION OF NOISE EXPRESSIONS

D.1 Single-dish (Autocorrelation)

For a single dish with effective collecting area Ae, the noise
associated with the measured flux is assumed Gaussian with an
rms (flux sensitivity) given by

s
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integrated over a frequency interval dn and observation time
per pointing tp. Telescope sensitivities are often quoted in terms
of the System Equivalent Flux Density16, º k T ASEFD 2 ,eB sys

or alternatively just A T .e sys The effective area Ae is usually
~ -70% 80% of the actual dish area, depending on the
efficiency, η, of the system. The total system temperature is

= +T T T ,sys sky inst where n»T 60(300 MHz )sky
2.55 K is the

sky temperature and Tinst is the instrument temperature (which
is typically higher than the sky temperature above 300MHz).
For typical instrumental specifications, the single-dish noise
rms can be written as
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Because we are interested in brightness temperature sensitivity
(i.e., where the signal fills the primary beam), we need to look
instead at the intensity of the signal. This is found by dividing
the flux by the primary beam solid angle at FWHM, q .B

2 In the
Rayleigh–Jeans limit, the conversion from intensity to
temperature then gives s l q dn» T A t( ).T e p
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given survey area, q~Sarea B
2 pointings are needed, so the

single-dish rms noise temperature is
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where ttot is the total observation time for the survey. For an
array with Nd identical dishes, the signals from each dish can be
added incoherently, reducing sT by a factor of N1 .d
Telescopes can also use focal plane arrays on each dish to
increase the instantaneous FOV, effectively increasing the
number of beams, N ,b using multiple feeds or PAFs. Receivers
can also support more than one polarization channel, ⩾n 1,pol
and the channels can be added incoherently. Taking all of this
into account, we can write

s
dn

l
q

q»
T

n t A
S

N N

1
,T

e

sys

pol tot

2

B
2 area B

2

d b

with the constraint that q⩾S N ,area b B
2 since nothing is gained by

pointing all the feeds in the same direction.
We are interested in a statistical detection of the H I signal.

The 3D noise power spectrum associated with an autocorrela-
tion measurement is just s=P V ,N T

2
pix where

q dn n= ´ nV r r( ) ( )pix B
2

21 is the 3D volume of each volume

element. We can then obtain the expression for the noise
covariance from Equation (5) (ignoring the beams),

n
l
q
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D
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T U
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e
2

sys
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bin

pol tot

4

2
B
4

where n= DU S ˜bin area and = N N1 .b d For a dish reflector,
hºA π D( 2)e dish

2 and q l» D ,B dish and so the factor in
brackets in the expression above is h (1) .2 For a dish
equipped with a PAF, the beams begin to overlap below a
critical frequency, n ,crit and so there is a resulting loss of
sensitivity, such that

n n

n n n n
 ´

ì
í
ïï

î
ïï

>

⩽( )
q qC y C y( , ) ( , )

1,

, .
(D.1)N N

crit

crit
2

crit

D.2 Interferometer (Cross-correlation)

For an interferometer, a pair of elements separated a baseline
of length d measures a visibility nuV ( , ), where u is the vector
in uv space corresponding to that baseline,17 and

l= =∣ ∣uu d . The uv-space resolution is set by the
interferometer FOV, which for an array of dishes is given by
the beam solid angle of a single dish, d d l~ ~u v A1 FOV .e

2

Visibilities separated by more than this distance in uv-space can
be taken as independent.
The detector noise for a single complex visibility measure-

ment, nuN ( , ), is assumed Gaussian with variance

s n n
l

dn
dº =

æ

è

ççççç

ö

ø

÷÷÷÷÷
u uN N

T

A t
( , ) *( , ) ,

u
T

e

2
1 2

2
sys

2

1,2

where dn is the channel bandwidth and tu is the observing time
for a given baseline. While each visibility measurement is
independent in terms of instrumental noise, for the same sky
signal the measurements will be strongly correlated for

distances smaller than lA ,e
2 as explained above. One way

of dealing with this is to average all visibilities falling into each
uv-space resolution element of area d du v. The noise will then be
reduced by the number of points in that element, while the sky
visibility stays essentially the same (assuming sufficiently high
uv resolution).
Let ts be the integration time for one visibility, and uN ( )s the

corresponding total number of visibilities falling into a given
element after one “snapshot.” Ns will then be directly related to
the baseline distribution (once we have factored in the
observation angle), as explained in the previous appendix.
The noise in each uv resolution element is then

s n
l

dn
=

æ

è

ççççç

ö

ø
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u

u

T

A t N
( , )

( )
.T

e s s

2
2

sys
2

Note that ts is usually just a few seconds, as longer
integration times generate a “smearing” of the visibility in
the uv plane due to Earth’s rotation. Smaller integration times
allow more visibility points to be sampled, but each with
larger noise.
The total observation time in a given patch of the sky, tp, is

usually more than the snapshot time ts, and the telescope

16 For a system with many dishes, both SEFD and A Te sys are defined in terms
of the total collecting area.

17 The projection of that baseline on the plane perpendicular to the line of sight
(the telescope pointing) is what actually matters.
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tracks the patch. This implies that the same baseline might
produce different vectors in the uv plane as the observation
angle changes. To allow for different choices of the pixel area
and integration time per visibility, one usually refers to the
average number density of baselines averaged over a 24 hr
period,

d d= ( )u un N u v t( ) ( ) ( ) 24 hr .s

uN ( ) now corresponds to the total number of baselines falling
into a given resolution element d du v in a 24 hr period, so that
sky rotation is taken into account. For a given (square)
resolution element, Du( ) ,2 we can write

s n
l

dn
=

æ

è

çççççç D
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ø

÷÷÷÷÷÷÷
u

u

T

A n u t
( , )

( )( )
,T

e p

2
2

sys

2

2

where un ( ) is usually only a function of º ∣ ∣uu due to the
symmetrizing effect of the rotation on the uv coverage.

If we assume that n(u) is constant on the uv plane between
some l=u Dmin min and l=u Dmax max (which is not the
same as assuming a uniform distribution of antennas), we can
write (see Equation (6))

- = -( ) ( )πu πu n u N N( ) 1 2.max
2

min
2

d d

This follows from noting that the integration of n(u) over the
uv plane should give the total number of baselines.

The variance of the noise in 3D Fourier space is related to
the variance of the visibilities through

dn n n s n» D é
ëê

ù
ûún( )k k uN N r r( ) ( ) ˜ ( , ) ,S S T* 21

2 2

which is obtained by noting that the 3D Fourier component
corresponds to a Fourier transform of the visibility along the
frequency direction. The noise power spectrum for a single-
pointing observation is then given by

n
=

Dn( )( )

k k
P

N N

r r

( ) ( )

FOV ˜
,N

S S
*

2

which, using D ~u( ) 1 FOV,2 reduces to an expression similar
to Equation (5),

n
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2
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2
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4

2

In the above, tp is the observation time for a single pointing of
the interferometer. Once a signal-to-noise ratio of unity is
achieved on the scales of interest, one can gain by moving to
another pointing (i.e., increasing the survey area). The time
spent at each pointing is then =t t S(FOV ),p tot area and the
number of observed modes is increased by a factor of
S FOV.area Taking this into account, as well as the possibility
of having multiple beams, ⩾N 1,b and polarization channels,

⩾n 1,pol we arrive at the expression

n
l

=q
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· FOV
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( )
. (D.2)N

e
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2

21 pol tot

4
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2
b

For a standard dish reflector, q»FOV .B
2 For an interferometer

equipped with PAFs, the primary beam scales as

q n q n
n n n n

n n
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,

1, .
B B crit

crit crit
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For an aperture array, the primary beam scales as usual with
frequency (q q n n n= ´( ) ( )B B crit crit ), but now the effective
area picks up a correction as the array becomes dense below the
critical frequency,

n n n n n n
n n

= ´
ì
í
ïï

î
ïï

>
⩽

( )A A( ) ( )
,

1, .
eff eff crit

crit
2

crit
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The noise expression for cylinder interferometers (like
CHIME) is more complicated. First of all, the primary beam
is anisotropic; in the direction along the cylinder, the beam is
~ 90 , while it is limited by the cylinder width, w ,cyl in the
perpendicular direction, giving l»  ´ wFOV 90 cyl (New-
burgh et al. 2014). second, many closely packed feeds
illuminate each cylinder, complicating the relationship between
number of receivers and collecting area assumed in
Equation (D.2). To fit the cylinder noise expression into this
form, we write h=A l w N ,e cyl cyl feed the effective area per
feed, where Nfeed is the number of feeds per cylinder and lcyl is
the cylinder length. There is also a restriction on the survey
area; the beam cannot be steered and the telescope drift scans,
fixing ~S 30, 000area deg2 (we choose 25,000 deg2 as an
effective area).
Finally, note that most of the quantities above depend on

frequency. In particular, the FOV (and thus the minimum
angular resolution) changes with frequency, so usually the
maximum possible size for the uv-space resolution element is
taken. Moreover, the final equation above is an approxima-
tion, and the middle of the frequency interval is taken in some
of the expressions; otherwise, we would need to consider an
integral over the frequency when calculating the noise power
spectrum.

APPENDIX E
DERIVATIVES USED IN THE FISHER MATRIX

Most of the derivatives used in the Fisher matrix can be
calculated analytically. It is advantageous to use analytic
derivatives because their numerical behavior can be regulated
more easily. They can also offer insight into the behavior of
certain constraints.
The kernel of the Fisher integral consists of products of

terms of the form

¶ = ¶( )C C Clog ,p
T

p
S T

i i

where we recall that = + +C C C C ,T S N F and the equality
follows from the fact that only the signal covariance, CS, is a
function of the parameters p{ }.i
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E.1 Basic Parameters

The derivatives for most of the terms in the signal model,
Equation (4), are relatively straightforward:
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We have used the splitting of P(k) into a smooth power
spectrum plus a BAO feature from Equation (14) to calculate
the derivative for the BAO amplitude, A. The derivative for s8
can be found by renormalizing the power spectrum,

s sP k P k( ) ( ) ( ),8 8
fid 2 and the derivative for ns by rewriting

P(k) in terms of the primordial power spectrum,
µ -P k T k k k( ) ( ) ( ) ,n2

piv
1s where = -k 0.05 Mpc .piv

1

E.2 Distance Measures

The derivatives for the distance scales, a a^ { , }, are more
complicated, but remain mostly analytic. For each α, the
derivative is

a
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where =^n 2, =n 1. Only ¶ P klog ( )k must be evaluated
numerically; the other terms are given by
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E.3 Parameters from Distance Measures

Where we are interested in constraining cosmological
parameters rather than functions of redshift, we project from

D z H z f z{ ( ), ( ), ( )}A into the parameters
gh w w{ , Ω , Ω , , , }K aDE 0 using Equation (20). To do this, we

first assume the following forms for the functions of redshift,
based on simple extensions to ΛCDM:

ò

= + +

=
æ

è

çççççç

¢

¢ ¢

ö

ø

÷÷÷÷÷÷

= g

- -

( )

H a H a a a

r a
c

H
S

da

a E a

f a a

( ) Ω Ω ( ) Ω

( )

( ) Ω ( ),

M DE K

M

0
3 2

0
2

where for = - +Ω { ve, 0, ve}K we have defined

= ∣ ∣ ∣ ∣{ }S x x x x( ) sin ( Ω ) Ω , , sinh ( Ω ) Ω ,K K K K and

» + -

=

=
-

-

+ +

[ ]

w a w a w

a H a H a

a
w a

a

( ) (1 )

Ω ( ) Ω ( )

Ω ( ) Ω
exp 3 ( 1)

,
( )

a

M M

a

w w

0

0
2 3 2

DE DE
3 1 a0

ºH a H E a( ) ( ),0 = - -H 100 hr km s Mpc ,0
1 1 and

= - -Ω 1 Ω Ω .M K DE
Next, we need the derivatives of the original functions of

redshift with respect to the new parameters. Most of them enter
through the dimensionless Hubble rate, E(a), for which the
relevant derivatives are
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For a, we then have (with β being any of the parameters
except h, and evaluating on ΛCDM)
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The expression for a^ is more complicated. For all but Ω ,k the
derivatives are given by
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Additional terms appear in the derivative w.r.t. Ω ,K
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whereQ = 0 for =Ω 0K and unity elsewhere. For both a and
a^, the h derivative is a a¶ = h.h
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For the growth function, the derivatives for all but
g{ , Ω , Ω }K DE are given by
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The derivatives with respect to the other parameters are
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