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ABSTRACT

Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be
crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred
from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional
analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized
general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that
the feature of phase curves most sensitive to atmospheric parameters is the peak-to-trough amplitude. Moreover,
except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional
parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As
an application of this technique, we show how phase curve measurements can be combined with transit or emission
spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We
estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope,
could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important
for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on
potentially habitable planets.

Key words: hydrodynamics – planets and satellites: atmospheres – planets and satellites: terrestrial planets –
techniques: photometric

1. INTRODUCTION

Data from the Kepler telescope indicate that ∼50%–100% of
nearby cool stars host a rocky planet (Dressing & Charbonneau
2013; Morton & Swift 2014). If we were able to characterize
even a fraction of these planets we could vastly expand our
understanding of processes fundamental for terrestrial planets,
including planet formation, atmospheric escape, photochem-
istry, and atmospheric dynamics. The observational best-case
scenario is a transiting planet, whose orbit we happen to view
edge-on, so that the planet periodically passes in front of and
behind its star. Broadly speaking, to characterize such a planet
we would want to determine its atmospheric composition, tem-
perature structure, and atmospheric mass.1 The composition re-
flects how the planet formed, how its atmosphere subsequently
evolved (e.g., via degassing from the interior or atmospheric
escape), and the chemical state of its atmosphere. The tem-
perature structure indicates the dynamical regime of the atmo-
sphere and, if retrievable down to the surface, whether the planet
could be habitable. The atmospheric mass reflects the planet’s
atmospheric evolution and also determines its habitability (by
controlling whether water can exist as a liquid).

The most mature techniques for characterizing transiting
planets are transit spectroscopy, in which starlight is measured
as it filters through a planet’s atmosphere, and emission spec-
troscopy, in which a planet’s thermal emission is measured just
before the planet is occulted by its star. In theory, high-resolution
transit and emission spectra both contain enough information to
uniquely constrain atmospheric composition, temperature struc-
ture, atmospheric mass, and planetary mass (Madhusudhan &
Seager 2009; Benneke & Seager 2012; Line et al. 2012; Lee
et al. 2012; Wit & Seager 2013). In practice, it is difficult to
comprehensively characterize even hot Jupiters with any single

1 The mass of an atmospheric column with unit surface area is ps/g, where
ps is the surface pressure and g is the surface gravity.

spectroscopic technique due to measurement error and obser-
vational degeneracies (e.g., Burrows 2013; Hansen et al. 2014;
Griffith 2014).

It is therefore desirable to seek additional methods for char-
acterizing terrestrial planets that complement high-resolution
spectroscopy. One simple approach is to observe a planet’s
broadband thermal phase curve, which is the net infrared flux the
planet emits as it orbits its star. Before the planet passes in front
of its star we observe flux emitted from the planet’s nightside,
and just before the planet passes behind its star we observe flux
from the planet’s dayside. The resulting phase curve can then
be used to infer five pieces of information: the planet’s average
thermal emission, the location of hot and cold spots and the flux
emitted at the hot and cold spots (Cowan & Agol 2008). This
technique has already been applied to hot Jupiters. For example,
Knutson et al. (2007) were able to infer equatorial superrotation
on HD 189733b from the fact that its hot spot is shifted eastward
of the substellar point, consistent with the theoretical prediction
of Showman & Guillot (2002). It will be more challenging to
measure thermal phase curves of smaller and cooler planets, but
it should be possible to perform such measurements using next-
generation instruments like the James Webb Space Telescope
(JWST; Deming et al. 2009).

Although thermal phase curve measurements of terrestrial
planets will soon be technically feasible, more work is needed
to determine how they can be fully exploited. A natural start-
ing point is to assume that planets accessible to near-future
observations will be tidally locked (even though planets could
also be trapped in higher-order spin resonances; see Section 5).
For a tidally locked planet the phase curve depends largely
on the atmospheric redistribution of energy between dayside
and nightside. Many researchers have therefore proposed using
phase curves to characterize tidally locked planets (Seager &
Deming 2009; Cowan & Agol 2011; Selsis et al. 2011; Menou
2012a; Yang et al. 2013; Mills & Abbot 2013; Perez-Becker &
Showman 2013; Yang & Abbot 2014; Kataria et al. 2014). At the
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same time, these results have also shown that phase curves are
sensitive to multiple atmospheric parameters, which makes them
difficult to interpret. For example, a small phase curve amplitude
is compatible with: (1) a massive atmosphere because thicker
atmospheres transport heat more effectively (Selsis et al. 2011);
(2) an atmosphere containing large amounts of H2, which has
a higher heat capacity than high mean-molecular-weight gases
and therefore loses heat more slowly as air is advected to the
nightside (Menou 2012a); (3) relatively weaker absorption of
shortwave radiation, so that stellar energy is deposited at higher
pressures before being reemitted to space (Burrows et al. 2010;
Heng et al. 2011); and (4) a low magnetic drag in ionized at-
mospheres, which allows higher wind speeds and thus more
efficient heat transport (Rauscher & Menou 2012).

In this paper we disentangle how different atmospheric
parameters affect phase curves and show how the phase curve
amplitude can be used to constrain atmospheric mass. We
focus on the phase curve amplitude because we find that, for
many terrestrial planets, hot/cold spot offsets will be small (see
Section 3). We focus on atmospheric mass because it will be
difficult to infer from either transit or emission spectroscopy, as
can be seen from the following argument. Following Lecavelier
des Etangs et al. (2008), the maximum pressure that can be
probed in transit is pmax = 0.56 × g/κmin × √

H/(2πa), where
g is the acceleration of gravity, κmin is the opacity per unit
mass in the most transparent part of the spectrum, H is the scale
height, and a is the planetary radius.2 If we assume that Rayleigh
scattering dominates the transit spectrum up to 0.75 μm and
that this is the most transparent part of the spectrum, then, for
an N2 atmosphere, κmin ∼ 2.59 × 10−6 m2 kg−1 (Table 5.2,
Pierrehumbert 2011). For an Earth analog with a = a⊕,
g = 10 m s−2 and H = 8 km, we find that pmax = 0.3 bar.
In reality it would be even harder to probe an atmosphere this
deeply in transit due to clouds and hazes (Fortney 2005) or
atmospheric refraction (Betremieux & Kaltenegger 2013; Misra
et al. 2014b). Emission spectroscopy generally probes deeper
into an atmosphere than transit spectroscopy. Atmospheric
mass can then be constrained using the fact that pressure-
broadening widens molecular absorption features at higher
pressures. Nevertheless, pressure and molecular abundances are
largely degenerate in their effect on emission spectra, which
complicates the interpretation of emission spectra. For example,
von Paris et al. (2013) estimate that emission spectroscopy
of a cool Earth analog with a 1 bar atmosphere could place
an upper bound on the surface pressure of about 5.6 bar.
Obtaining the upper bound would require a low-resolution
spectrum (λ/Δλ = 20) with a signal-to-noise ratio (S/N) of
10 (their Table 3). To estimate how much observation time
this would require on JWST, we use the S/N maps in Belu
et al. (2011) as a guideline. We estimate that, for a cool M
dwarf at 5 pc, S/N = 10 at this spectral resolution would
require ∼14 days of continuous monitoring.3 This amounts
to observing roughly every eclipse the planet makes during
JWST’s five-year mission lifetime. The pressure-dependent
formation of O2 dimers offers another method for measuring
atmospheric mass (Misra et al. 2014a). However, being able

2 Compared to Section 4.1 in Lecavelier des Etangs et al. (2008), we
additionally define κ ≡ σ0/μ, R ≡ k/μ and H ≡ RT/g.
3 We assume S/N = 10 for the detection of CO2 at 15 μm (Figure 16(b) in
Belu et al. 2011) is representative for the entire thermal range, which is
optimistic (compare to their Figure 15(b)). To allow comparison with
Section 3, we additionally assume a 0.2 solar mass host star and rescale the
required observation time for a target at 10 pc, which is ∼3% of the JWST
main mission or ∼1.8 months, to a target at 5 pc.

to detect the dimer spectral signature requires an atmosphere
with O2 concentrations similar to Earth’s. The observation time
necessary would again amount to ∼12 days of continuous
observation, or almost all available transits over JWST’s mission
lifetime. Such long-term and detailed observations could be
feasible for high-priority observation targets, but even in those
cases it would be desirable to have an independent and less
time-consuming way of estimating the atmospheric mass.

In the following sections, we first analyze the dynamical and
radiative equations relevant for terrestrial planet atmospheres.
We specifically consider atmospheres that are “dry” (i.e., con-
densation is negligible) and tidally locked. For such atmospheres
we identify six nondimensional parameters that could influence
phase curves (Section 2). Next, we use an idealized general
circulation model (GCM) to numerically test which of the six
parameters’ phase curves actually are sensitive to (Section 3).
Except for hot and rapidly rotating planets with optically thick
atmospheres, we do not find significant hot/cold spot offsets. We
therefore focus on how the phase curve amplitude can be used
to constrain an atmosphere’s properties. We find that, except
for hot and rapidly rotating planets, the phase curve amplitude
is mainly sensitive to two nondimensional parameters. We then
show how the phase amplitude can be combined with infor-
mation from transit or emission spectroscopy to constrain the
atmospheric mass of a terrestrial planet (Section 4). We estimate
that one measurement of a nearby super-Earth’s phase amplitude
with JWST, taken over half the planet’s orbit, could constrain
the atmospheric mass to within a factor of two.

2. METHODS

We adopt a basic, yet comprehensive, model for the phase
curve of a terrestrial planet. We assume the planet is tidally
locked and in a circular orbit. This regime is particularly relevant
for planets orbiting smaller main-sequence stars, that is, K and
M dwarfs. At minimum, the phase curve of such a planet
is set by atmospheric fluid dynamics, radiative transfer, and
surface–atmosphere exchange of energy and momentum. As is
standard for planetary atmospheres, we model the atmospheric
fluid dynamics using the primitive equations (Vallis 2006). The
primitive equations assume hydrostatic equilibrium and that
horizontal length scales are much larger than vertical ones, both
of which tend to be excellent approximations for large-scale
motions. We focus on atmospheres cooler than 1000 K, for
which magnetic effects should be negligible (Menou 2012b).
We use bulk aerodynamic formulae for the surface exchanges
of energy and momentum. We model the radiative transfer
as two-band (shortwave and longwave) gray radiation. We
neglect scattering and assume that longwave and shortwave
opacities increase linearly with pressure. The linear dependency
approximates the effects of pressure broadening and continuum
absorption in a well-mixed atmosphere (Robinson & Catling
2014).

We assume that the thermodynamics are dry. This is a natural
starting point for a theoretical investigation, but our results
should apply to a wide range of actual atmospheres. First, we
expect that many terrestrial planets will be dry because post-
formation delivery of volatiles via planetesimals and comets is
a stochastic process (Morbidelli et al. 2000). In addition, for
planets hotter than Earth, volatiles can be lost via atmospheric
escape (the so-called moist greenhouse; Kasting 1988). On
tidally locked planets, volatiles can also become cold-trapped
on the nightside (Leconte et al. 2013; Menou 2013). Moreover,
the dry regime is a useful approximation even for atmospheres
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like Earth’s with moderate amounts of a condensing substance
(Schneider 2006). We therefore expect that insight gained in the
dry regime will carry over to the moist case. For example, if
the atmospheric dynamics were insensitive to one parameter in
the dry regime (e.g., surface friction), this suggests that moist
atmospheres could be similarly insensitive. Finally, observations
will be able to control for cases in which our analysis no longer
applies. For example, condensation and cloud formation would
lead to anomalously high bond albedos and could also reverse
the expected day–night phase curve pattern (Yang et al. 2013).

The equations of our assumed model, shown in Appendix A,
contain twelve dimensional parameters. The parameters are:
stellar constant L∗, planetary albedo α, rotation rate Ω, planetary
radius a, surface gravity g, specific heat capacity cp, specific gas
constant R, shortwave and longwave opacities at some reference
pressure κSW and κLW , the Stefan–Boltzmann constant σSB ,
surface pressure ps, and surface drag coefficient CD. For a
single gas species the specific gas constant is R ≡ kB/(mpM),
where kB is the Boltzmann constant, mp is the mass of a
proton, and M is the molecular weight of a gas molecule.
For multiple species in a well-mixed dry atmosphere one can
similarly assign bulk values of R and cp (Caballero 2014). The
opacities κSW and κLW are defined at a reference pressure, p0.
The choice of p0 is arbitrary and one could set it equal to ps,
so it does not provide an additional dimensional parameter.
To better compare our choices of κSW and κLW with previous
work, we keep p0 and ps distinct. We also note that L∗, α,
and σSB are not independent. The product L∗(1 − α) only
appears in the stellar forcing term of the radiative equations, and
σSB only appears in the radiative equations (Appendix A). We
account for the degeneracy among L∗, α, and σSB by defining
a characteristic temperature, Teq = [L∗(1 − α)/(4σSB )]1/4,
which is the equilibrium emission temperature of a spatially
homogeneous planet. This reduces the number of dimensional
parameters to ten.

Following Frierson (2005), we use the Buckingham–Pi the-
orem to express ten dimensional parameters measured in four
different units (mass, length, time, and temperature) as only six
nondimensional parameters (Buckingham 1914). There is no
unique choice for these nondimensional parameters; we form
them using characteristic scales that we consider most appro-
priate for relatively slowly rotating tidally locked atmospheres.
Our choice of scales nevertheless leads to nondimensional pa-
rameters that are well known in the literature. As a characteristic
velocity scale we choose the speed of gravity waves, c ∼ NH ,
where N is the Brunt–Väisälä frequency and H ≡ RTeq/g is
the scale height. Adjustment via gravity waves is key in setting
the day–night temperature gradients, and hence phase curves,
of relatively slowly rotating planets (Perez-Becker & Showman
2013; Showman et al. 2013). The Brunt–Väisälä frequency is
given by N2 = g/T (g/cp + dT/dz). The lapse rate, dT/dz,
is a priori unknown for any atmosphere. To place an upper
bound on the velocity scale we assume an isothermal atmo-
sphere, dT/dz ∼ 0, so cwave = √

R/cp × √
gH . This amounts

to assuming that gravity waves are very fast (on the order of
the speed of sound, csound = √

γaRTeq = √
γagH , where γa

is the adiabatic index; cf. Heng & Kopparla 2012). As a char-
acteristic length scale we choose the planetary radius a. We
note that another potential length scale is given by the equato-
rial Rossby deformation radius, LRo = √

acwave/(2Ω), which
is the maximum distance that equatorial waves can travel pole-
ward under the influence of rotation. For slowly rotating planets
the Rossby radius exceeds the planetary radius, LRo > a, and

equatorial waves can propagate planetwide. We estimate that our
choice of a as the length scale is valid for planets with orbital
period � O(6) days.4 From conservation of mass, we choose a
vertical velocity scale cwave × ps/a. The remaining scales and
nondimensionalized equations are shown in Appendix A.

We arrive at the following six nondimensional parameters:(
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The six parameters are related to physical processes as follows:
the adiabatic coefficient R/cp controls the lapse rate and is
also identical to the ratio 2/(2 + n), where n is the degrees of
freedom of a gas (Pierrehumbert 2011). The nondimensional
Rossby radius a2/L2

Ro governs the latitudinal extent over which
equatorial waves can transport energy and momentum (Matsuno
1966; Showman & Polvani 2011; Leconte et al. 2013). We
emphasize that instead of a2/L2

Ro one could choose differ-
ent scales and arrive at, for example, a Rossby number or a
nondimensionalized Rhines scale (Showman et al. 2010, 2013).
Which scale to choose depends on the processes under con-
sideration, and our anticipation of wave adjustment processes
naturally leads to a2/L2

Ro. Our results support our analysis, and
we find that phase curves are largely insensitive to planetary
rotation when a2/L2

Ro � 1, that is, as long as waves propa-
gate planetwide (Section 3). The ratio twave/trad compares the
time it takes for waves to redistribute energy across the planet,
twave ≡ a/cwave, to the atmosphere’s radiative cooling time,
trad ≡ cpps/(gσSBT 3

eq) (Showman et al. 2013; Perez-Becker &
Showman 2013). The atmospheric shortwave and longwave op-
tical thicknesses at the surface are τSW ≡ κSWp0/g × (ps/p0)2

and τLW ≡ κLWp0/g × (ps/p0)2, and their ratio is γ . We note
that the precise forms of τSW and τLW depend on details such as
pressure broadening and scattering (e.g., Pierrehumbert 2011;
Heng et al. 2014). Our definition of γ is equal to the more
commonly used ratio of shortwave to longwave opacities (e.g.,
Guillot 2010) when shortwave and longwave opacities have the
same pressure dependency. The influence of surface friction and
surface heating on the atmosphere is governed by CDa/H .

Two atmospheres governed by the equations that we assume
are guaranteed to be dynamically similar (identical dynamics in
statistical equilibrium) if their six nondimensional parameters
are identical (also see Section 5). We note that only the nondi-
mensionalized dynamics will be similar; the physical values of,
for example, temperature gradients or wind speeds could be
quite different. We also note that dynamical similarity does not
depend on how we nondimensionalize the equations, that is, our
particular choice of characteristic scales and nondimensional
parameters. Nondimensionalization therefore allows us to iden-
tify atmospheres that one might consider distinct based on their
dimensional parameters, but that turn out to be dynamically
similar.

We test this idea in an idealized GCM. The model is based on
the GFDL Flexible Model System (Held & Suarez 1994) and
was subsequently modified by Frierson et al. (2006) and Merlis
& Schneider (2010). This model has already been used to sim-
ulate the atmospheres of Earth (Frierson et al. 2006), Jupiter

4 Assuming R = RN2 , cp = cp,N2 , Teq = 300 K, and a = a⊕, LRo > a for a
planet beyond a 5.8 day orbital period.
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Figure 1. Slowly rotating tidally locked planets are approximately symmetric about the substellar point. Surface temperature from the reference simulation in Table 1
is shown in two different coordinate systems. The black dashed line is the terminator. Panel (a): in standard coordinates, longitude λ > 90◦ corresponds to the nightside
and the substellar point is located at latitude/longitude (θ, λ) = (0◦, 0◦). Panel (b): in tidally locked coordinates, tidally locked latitude θT L < 0◦ corresponds to the
nightside and the substellar point is located at tidally locked latitude θT L = 90◦ (see Appendix B). For illustration, black dots mark every 64th GCM grid point.

(Liu & Schneider 2011), hot Jupiters (Heng et al. 2011), tidally
locked terrestrial planets (Merlis & Schneider 2010; Mills &
Abbot 2013), and non-synchronously rotating terrestrial plan-
ets (Kaspi & Showman 2014). For our simulations, we remove
moisture and replace the model’s convective parameterization
with an instantaneous dry convection scheme (Manabe et al.
1965). We run all simulations for at least 1000 days with a spa-
tial resolution of either 64 × 128 × 30 or 48 × 96 × 20 grid
points (latitude×longitude×vertical, corresponding to T42 or
T31 spectral resolution). We use model time steps between 30
and 1200 s. We vary the time step because hot atmospheres re-
quire smaller time steps for numerical stability, whereas colder
atmospheres can be integrated using longer time steps but also
take longer to reach equilibrium. We expect this behavior, given
that cwave ∝ √

T , so that hotter atmospheres are more likely to
violate the Courant–Friedrichs–Lewy criterion. We consider a
simulation equilibrated once the global-averaged radiative im-
balance between incoming stellar and outgoing longwave ra-
diation has fallen below at least 1% of the incoming stellar
radiation. We note that the GCM simulates additional higher-
order physics, and therefore contains additional parameters,
which we did not include in the derivation of the six nondi-
mensional parameters. In particular, the model contains a full
Monin–Obukhov surface boundary layer scheme which self-
consistently computes the depth of the boundary layer, diffu-
sion of surface fluxes, and surface drag. This means the drag

coefficient, CD, is computed by the model instead of being a
fixed parameter.5 For example, for a neutrally stratified bound-
ary layer CD = [kvk/ log(z/z0)]2, where kvk is the von Karman
constant, z is the height of the lowest model layer and z0 is
the roughness length. Because z and z0 only enter into this
equation logarithmically we modify CD by adjusting kvk. Simi-
larly, the GCM requires additional parameters for its numerical
algorithms. For example, the momentum equations are imple-
mented using numerical dissipation via horizontal ∇8 hyper-
diffusion. The hyperdiffusivity is chosen to damp the smallest
resolved scale on a timescale of 12 hr, which sets a dissipative
timescale. The dynamical core also uses a Robert–Asselin time
filter, which is controlled by another nondimensional param-
eter. Our assumption, which we test in Section 3, is that the
equations described in Appendix A capture the most important
physics simulated by the GCM.

Although the GCM uses standard latitude–longitude coordi-
nates, we adopt a tidally locked coordinate system to present
our numerical results. Tidally locked planets in relatively long-
period orbits tend to exhibit a strong symmetry about the
axis connecting the substellar and antistellar points. Figure 1
shows the surface temperature in our first reference simulation,

5 For the same reason the values for CDa/H shown in our results are only
approximate. We estimate CDa/H assuming neutral stratification and
z = 10 m.
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Table 1
(a) Parameters for the Simulations in Figure 2, (b) Parameters for the Simulations in Figures 3 and 4(a)

Dimensional Parameters and Nondimensional Parameters

Reference:
a = a⊕, Ω = 2π/(50 days), Teq = 283K, R = RN2 , cp = cp,N2 , ( R

cp
, a2/L2

Ro,
twave
trad

, γ, τLW , CD
a
H

)

ps = 1 bar, g = 10 m s−2, κLW = 10−4 m2 kg−1, κSW = 0 = (0.29, 0.12, 5.1 × 10−3, 0, 1, 1.4)

(a) In 16 simulations, we vary the dimensional parameters while keeping all nondimensional parameters fixed.
For comparison, in the bottom three simulations, we allow the nondimensional parameters to change.

(below: relative to reference)
(R, cp, CD) × 2, Ω × 21/2, ps × 2−3/2, κLW × 23 Same as reference
(R, cp, CD) × 2−1, Ω × 2−1/2, ps × 23/2, κLW × 2−3 · · ·
(R, cp, g) × 2, Ω × 21/2, ps × 2−1/2, κLW × 22 · · ·
(R, cp, g) × 2−1, Ω × 2−1/2, ps × 21/2, κLW × 2−2 · · ·
(R, cp, g) × 5, Ω × 51/2, ps × 5−1/2, κLW × 52 · · ·
(R, cp, g) × 5−1, Ω × 5−1/2, ps × 51/2, κLW × 5−2 · · ·
(Ω, g, κLW ) × 2, a × 2−1 · · ·
(Ω, g, κLW ) × 2−1, a × 21 · · ·
Ω × ( 5

4 )1/2, (Teq , g) × 5
4 , ps × ( 5

4 )7/2, κLW × ( 5
4 )6 · · ·

Ω × ( 4
5 )1/2, (Teq , g) × 4

5 , ps × ( 4
5 )7/2, κLW × ( 4

5 )6 · · ·
(a,R, cp) × 3

2 , (Ω, ps ) × ( 3
2 )−1/2, κLW × 3

2 · · ·
(a,R, cp) × 2, (Ω, ps ) × 2−1/2, κLW × 2 · · ·
(a,R, cp) × 2

3 , (Ω, ps ) × ( 2
3 )−1/2, κLW × 2

3 · · ·
(a,R, cp) × 1

2 , (Ω, ps ) × ( 1
2 )−1/2, κLW × 1

2 · · ·
(R, cp, CD) × 5, Ω × 51/2, ps × 5−3/2, κLW × 53 · · ·
(R, cp, CD) × 1

5 , Ω × ( 1
5 )1/2, ps × ( 1

5 )−3/2, κLW × ( 1
5 )3 · · ·

κLW × 2 τLW × 2
Ω = 2π/(2 days) a2/L2

Ro × 25
ps/10, κLW × 102 twave/trad × 10

(b) This illustrates how we vary one nondimensional parameter at a time while keeping other nondimensional
parameters fixed (also see Appendix D). The dimensional parameters remain within the constraints shown in Table 2.

(below: relative to reference)
cp × 1.5, (R, g) × 1.51/2, ps × 1.5−1/2, κLW × 1.53/2 R/cp × 0.82
(R, cp, CD) × 0.75, ps × 0.75−3/2, κLW × 0.753 a2/L2

Ro × 1.15
(R, cp, CD) × 4.64, ps × 4.64−3/2, κLW × 100 a2/L2

Ro × 0.46
ps × 6.32−1, g × 2.5, CD × 2.5−1, κLW × 100 twave/trad × 15.8
ps × 0.1, κLW × 100 twave/trad × 10
ps × 0.141, κLW × 50 twave/trad × 7.1
ps × 0.5, κLW × 4 twave/trad × 2
ps × 21/2, κLW × 0.5 twave/trad × 0.71
ps × 3.162, κLW × 0.1 twave/trad × 0.32
ps × 2, g × 2.5−1, CD × 2.5, κLW × 0.1 twave/trad × 0.2
κSW = 5 × 10−5 γ = 0.5
κSW = 10−4 γ = 1
κLW × 100 τLW × 100
κLW × 50 τLW × 50
κLW × 10 τLW × 10
κLW × 0.5 τLW × 0.5
κLW × 0.2 τLW × 0.2
κLW × 0.1 τLW × 0.1
CD × 10, (g, ps ) × 2.5, κLW × 0.4 CDa/H × 25
CD × 10 CDa/H × 10
CD × 0.1 CDa/H × 0.1
CD × 0.1, (g, ps ) × 2.5−1, κLW × 2.5 CDa/H × 0.04

Notes. The drag coefficient CD is not a fixed parameter in the model, so the values shown for CD(a/H ) is only approximate.
Symbols for dimensional parameters are defined in Table 2, nondimensional parameters are defined in Section 2.

which is a cool, slowly rotating, Earth-sized planet with
(a, Ω, Teq ) = (a⊕, 2π/[50 days], 283 K) (see Table 1). The
surface temperature is symmetric because the reference simu-
lation is in a slowly rotating dynamical regime, a2/L2

Ro � 1.
The symmetry is not perfect, but it captures the dominant spa-
tial variability. We therefore define a tidally locked coordinate
system with a tidally locked latitude θT L and longitude λT L,

where θT L is the angle away from the terminator and λT L is the
angle about the substellar point (see Figure 1(b), Appendix B).

To compute phase curves we follow Cowan & Agol (2008)
and assume an edge-on viewing geometry (see Appendix C).
We normalize the disk-integrated fluxes by Frock ≡ 2/3 ×
L∗(1 − α), which is the dayside-averaged observer-projected
flux emitted by a planet without an atmosphere. A bare rock
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(a) (b)

Figure 2. Atmospheres have identical dynamics if their nondimensional parameters are identical. Top row: colored curves show simulations in which we vary the
nondimensional parameters. In contrast, gray dashed curves are simulations in which dimensional parameters are varied, but nondimensional parameters stay fixed
(see Table 1a). Bottom row: the deviation from the reference when nondimensional parameters stay fixed is � 1% for surface temperature (left) and generally
�3% for wind velocities (right). Notice the difference in y range between the top and bottom row. In addition, plots are shown in tidally locked coordinates and all
quantities are averaged over tidally locked longitude (see Figure 1). The meridional wind is given by the mass-weighted vertical average of meridional wind between
0.15 � p/ps � 0.5. Wind velocities are negative because the flow is away from the substellar point.

will therefore have a nondimensional phase curve, F/Frock, that
varies between zero and one. On the other hand, a planet with
efficient heat transport will have a constant phase curve equal to6

F/Frock = σSBT 4
eq/Frock = 3/8. We also define the phase curve

peak-to-trough amplitude as the normalized difference between
the phase curve maximum and minimum, (Fmax − Fmin)/Frock.

3. SENSITIVITY OF PHASE CURVES TO
NONDIMENSIONAL PARAMETERS

First, we test whether our model (with six nondimensional
parameters) captures the main physics of dry, tidally locked at-
mospheres. We consider our model adequate if different GCM
simulations produce identical climates when their nondimen-
sional parameters are identical. Our reference case is a cool,
slowly rotating, Earth-sized planet (Table 1). Figure 2 com-
pares the reference case to simulations in which we change
dimensional parameters, but keep the six nondimensional pa-
rameters fixed (parameter choices are shown in Table 1 a). We
find that the nondimensional surface temperature, Ts/Teq , dif-
fers less than 1% between the reference simulation and the
simulations with fixed nondimensional parameters. The nondi-
mensional meridional wind velocity, v/cwave, in the upper tro-
posphere is more variable, and differs by �3% over most of
the model domain. The largest deviation in meridional wind
is ∼30% near the antistellar point. The deviation partly arises

6 We note that the ratio is not 1/2. It would be 1/2 if we were comparing only
dayside-averaged fluxes. The ratio is less here because we have to additionally
account for the observer-projected viewing geometry, i.e., hotter regions closer
to the substellar point appear more prominent to the observer.

because we project simulated wind speeds into a tidally locked
coordinate system, which mixes the wind vector components.
If we instead consider the total wind speed,

√
u2 + v2/cwave, the

deviation is <10%. Moreover, v → 0 at the antistellar point,
requiring longer averaging periods, and wave breaking occurs
on the nightside, creating small-scale structure and numerical
dissipation. Both effects can lead to deviations from dynam-
ical similarity. For comparison we show some simulations in
which we vary the nondimensional parameters (colored curves
in Figure 2). In these simulations surface temperature and wind
velocities change up to 300% compared with the reference,
which demonstrates that the dynamical similarity predicted by
the nondimensionalization is not trivial. We conclude that the
above six nondimensional parameters are sufficient to capture
the most important dynamics of the idealized GCM simulations.

Next, we explore how sensitive phase curves are to each of
the nondimensional parameters. We consider different reference
simulations and vary their nondimensional parameters one at
a time to see how this affects the resulting phase curves.
For the reference simulations we consider different scenarios
where a, Ω, and Teq are fixed. We do so because a, Ω, and Teq
are relatively easily constrained for a transiting planet. To vary
one nondimensional parameter at a time we first find all possible
transformations of the dimensional parameters that only modify
a given nondimensional parameter (see Appendix D). For
example, to decrease twave/trad we could increase ps but adjust
κSW and κLW such that γ and τLW remain constant. We then use
these transformations to vary each nondimensional parameter
over its largest range compatible with fixed (a, Ω, Teq ) and the
constraints in Table 2.
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Table 2
Maximal Range of Dimensional Values we Consider

Dimensional Parameter Symbol Unit Minimum Value Maximum Value

Planetary radius a a⊕ 1 2
Rotation rate Ω days−1 2π/50 2π/2
Equilibrium temperature Teq K 100 600
Surface gravity g 10 m s−2 2

5 × (a/a⊕) 5
2 × (a/a⊕)

Specific heat capacity cp J kg−1 K−1 820 14230
Specific gas constant R J kg−1 K−1 190 4157
Surface pressure ps bar 10−2 10
Longwave opacitya κLW m2 kg−1 10−5 10−2

Shortwave opacitya κSW m2 kg−1 0 10−2

Surface drag coefficient CD, via kvk – ×0.1 ×10

Notes. For a given reference simulation, we fix (a, Ω, Teq ) and change the remaining dimensional parameters such
that only one nondimensional parameter varies at a time. CD is not a fixed parameter, so we vary the von-Karman
constant kvk to increase and decrease CD by an order of magnitude. We vary R and cp, but require that R/cp stays
within the range of diatomic and triatomic gases (0.22 � R/cp � 0.29; Section 2.3.3., Pierrehumbert 2011). The
maximum value of R and cp corresponds to H2, the minimum value to CO2. In addition, we require that shortwave
optical depth does not exceed longwave optical depth (γ � 1).
a Opacities are defined at a reference pressure of p0 = 1 bar.

Figure 3. For many terrestrial planets, the phase curve’s peak-to-trough
amplitude is sensitive to changes in the atmospheric parameters, whereas hot/
cold spot offsets are small. The dashed black line shows the phase curve for the
reference simulation in Table 1, and the vertical line indicates secondary eclipse.
We explore different atmospheric scenarios by varying each nondimensional
parameter that influences the atmospheric dynamics while keeping the other
nondimensional parameters fixed (Table 1b). The approximately constant curves
correspond to optically thick atmospheres (τLW � 10). The simulations shown
here all assume (a, Ω, Teq ) = (a⊕, 2π/[50 days], 283 K); for symbol definitions
see Table 2.

We find that, for most planets, only the phase curve peak-
to-trough amplitude is robustly sensitive to changes in the
nondimensional parameters. We start with the above reference
scenario of a cool, slowly rotating planet. The dashed curve
in Figure 3 shows the phase curve of the reference simulation.
The planet’s thermal flux is phase-locked with the incoming
stellar radiation, that is, there is no hot spot phase offset. The
phase-locking arises because all stellar radiation is absorbed at
the ground (γ = 0), while a significant part of this energy can
also escape directly from the ground to space without being
advected (τLW = 1). We note that the cold spot offset is larger
than the hot spot offset; however, it would be difficult to detect

the cold spot offset because the phase curve is approximately
constant near the antistellar point (dashed curve in Figure 3).
Next, we vary each nondimensional parameter while keeping
the other nondimensional parameters fixed (Table 1b). The gray
lines in Figure 3 show how the phase curve varies in response
to changes in the nondimensional parameters. We find that
the phase curve generally stays phase-locked with the stellar
radiation. This only changes once the atmosphere becomes
optically thick (τLW  1), but in those cases the offset would
again be hard to detect because the planet’s thermal emission
essentially does not vary (approximately constant curves in
Figure 3). In contrast to the negligible hot/cold spot offsets,
the phase curve amplitude is much more sensitive to changes in
the nondimensional parameters (Figure 3).

We explore other reference simulations to see when hot/cold
spot offsets become significant. We find that significant hot/cold
spot offsets only occur when the atmosphere is optically thick,
τLW  1, the planet has a high rotation rate, a2/L2

Ro � 1, and is
relatively hot, twave/trad � 0.01. Table 3 summarizes our results.
While a cool and slowly rotating planet with τLW = 10 shows
a hot spot offset of up to 82◦, the phase curve in that case is
almost constant and the offset therefore not detectable (second-
to-bottom row in Table 3). Only in the hottest and most rapidly
rotating scenario with τLW  1 that we consider do we find
a large hot spot offset of 26◦ which would also be detectable
(bottom row in Table 3). If future observations found a large hot
spot offset, this would therefore not only imply that the planet
has an atmosphere, but also that the atmosphere would have
to be optically thick. Many terrestrial planets, however, should
have small hot spot offsets (Table 3). For the rest of this paper
we therefore focus on the phase amplitude, and how it could be
used to characterize the atmosphere of a planet.

We find that, except for hot and rapidly rotating planets, the
phase amplitude is primarily sensitive to the ratio of dynamical
to radiative timescales, twave/trad, and the optical depth, τLW .
We again start with the reference scenario of a cool, slowly
rotating planet. The dashed line in Figure 4(a) shows the
reference phase amplitude, (Fmax −Fmin)/Frock, and the vertical
lines show how sensitive the phase amplitude is to changes
in each nondimensional parameter. The phase amplitude is
far more sensitive to twave/trad and τLW than to any of the

7



The Astrophysical Journal, 802:21 (15pp), 2015 March 20 Koll & Abbot

Figure 4. Except for hot and rapidly rotating planets, the phase curve peak-to-trough amplitude is primarily sensitive to twave/trad and τLW . As in Figure 3, we vary
each nondimensional parameter while keeping the other nondimensional parameters fixed. The nondimensional parameters are defined in Section 2. Dashed black lines
show the phase amplitude of the reference simulations, blue dots show the phase amplitude as nondimensional parameters are varied, and vertical bars indicate the
maximal variation of amplitude, i.e., sensitivity, for each nondimensional parameter. Panel (a): reference simulation assumes (a, Ω, Teq ) = (a⊕, 2π/[50 days], 283 K).
Panel (b): reference simulation assumes (a, Ω, Teq ) = (2a⊕, 2π/[2 days], 600 K).

Table 3
We Explore a Broad Range of Atmospheric Scenarios

Reference Parameters Reference Ref. Hot Amplitude Sensitivity to

R
cp

a2

L2
Ro

twave
trad

γ τLW CD
a
H

Amplitude Spot Offset R
cp

a2

L2
Ro

twave
trad

γ τLW CD
a
H

0.29 0.12 5.1 × 10−3 0 1 1.4 0.24∗ 0◦ +0 +0 +0.31 +0 +0.49 +0.1
−0.02 −0 −0.08 −0.11 −0.24 −0

0.29 0.3 5.1 × 10−3 0 1 1.4 0.26 3◦ +0 +0 +0.32 +0 +0.48 +0.09
−0.02 −0.01 −0.07 −0.11 −0.25 −0

0.29 0.6 1 × 10−2 0 1 2.8 0.36 3◦ +0 +0.02 +0.34 +0 +0.42 +0.06
−0.03 −0.05 −0.11 −0.16 −0.32 −0.02

0.29 4.1 6.6 × 10−2 0 1 1.3 0.8∗∗ 7◦ +0 +0.01 +0.16 +0 +0.1 +0.09
−0.03 −0.16 −0.34 −0.13 −0.51 −0.1

0.29 10 7.6 × 10−4 0 1 8.1 0.19 0◦ +0 +0 +0.32 +0 +0.48 +0.04
−0.03 −0.03 −0 −0.07 −0.14 −0.03

0.29 0.12 5.1 × 10−3 0.5 10 1.4 0.01 82◦ +0 +0 +0 +0 +0.71 +0
−0 −0 −0.01 −0.01 −0.01 −0

0.29 4.1 6.6 × 10−2 0.5 10 1.4 0.5 26◦ +0 +0.04 +0.13 +0.03 +0.37 +0.06
−0.05 −0.17 −0.31 −0 −0.01 −0.08

Notes. The six columns on the left show the nondimensional parameters for the reference simulations, the center two columns show the phase curve amplitude and
the hot spot offset in the reference simulation, and the six columns on the right show the maximum/minimum change in phase curve amplitude in response to each
nondimensional parameter. The red font in the column “Ref. Hot Spot Offset” emphasizes entries with values larger than 10◦. The red font in the six rightmost columns
emphasizes entries whose absolute value is �0.1. The top row, ∗, corresponds to the cool slowly rotating scenario in Figures 3 and 4(a), and the fourth row from the
top, ∗∗, corresponds to the hot and rapidly rotating scenario in Figure 4(b).

other nondimensional parameters. For example, when we vary
twave/trad (primarily by changing g and ps, while adjusting other
parameters; see Table 1b), the phase amplitude varies between
0.2 and 0.6. In contrast, when we vary the nondimensional
Rossby radius, a2/L2

Ro (by changing R, and thus cwave, while
adjusting other parameters), the phase amplitude varies by less
than 0.01. We emphasize this does not mean that the atmospheric
dynamics or phase curve are insensitive to a2/L2

Ro in general.
As we show in the next paragraph, a2/L2

Ro can affect phase
curves when a2/L2

Ro � 1. However, for this particular scenario,
once (a, Ω, Teq ) are known then a2/L2

Ro is already constrained
to be much smaller than one. The remaining observational
uncertainty in a2/L2

Ro barely affects our interpretation of the
planet’s phase curve amplitude. Figure 4(a) therefore shows that,

for cool, slowly rotating planets with known (a, Ω, Teq ), a phase
curve measurement contains essentially no information about
the parameters R/cp, a2/L2

Ro, γ , and CDa/H . On the other
hand, a measurement of the phase amplitude would constrain
the combination of twave/trad and τLW .

We explore other reference simulations to determine whether
there are regimes in which the phase amplitude is sensitive
to other parameters. Similar to our result for hot spot off-
sets, we find that phase amplitude only becomes sensitive to
a2/L2

Ro, γ , and CDa/H for large, hot, and rapidly rotating
planets. Specifically, a planet has to have both a2/L2

Ro � 1 and
twave/trad � 0.01 for additional nondimensional parameters to
affect the phase amplitude. Our results are summarized on the
right-hand side of Table 3. We find that, in all scenarios, the
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phase amplitude is most sensitive to twave/trad and τLW . We also
find that a2/L2

Ro and twave/trad both have to be large for the phase
amplitude to become sensitive to additional parameters; a large
value of a2/L2

Ro by itself is not sufficient (third-to-bottom row
in Table 3). Together with our above result that hot spot off-
sets also require a2/L2

Ro � 1 and twave/trad � 0.01, this sug-
gests that a regime shift occurs in the atmospheric dynamics
near this threshold. Figure 4(b) shows the scenario in which
phase amplitude is most sensitive to additional parameters (**
in Table 3). This scenario corresponds to a super-Earth with
(a, Ω, Teq ) = (2a⊕, 2π/[2 days], 600 K). In this scenario the
phase amplitude is additionally sensitive to variations in a2/L2

Ro,
γ , and CDa/H (Figure 4(b)). For such a planet, a measure-
ment of the phase amplitude would be degenerate with multi-
ple atmospheric parameters, although the hot/cold spot offsets
could provide additional information (Table 3). Many terres-
trial planets, however, will have phase amplitudes that are,
to good approximation, only sensitive to twave/trad and τLW

(Table 3).

4. APPLICATION TO JWST OBSERVATIONS

For planets whose phase curves primarily depend on the
ratio of dynamical to radiative timescales, twave/trad, and the
optical depth, τLW , we consider how a phase curve could
constrain an atmosphere’s properties. Expanded in terms of
dimensional quantities, the two nondimensional parameters are
agσSBT

5/2
eq /(psRc

1/2
p ) and κLWp2

s /(gp0). The most important
unknowns are the longwave opacity at a reference pressure,
κLW , and the surface pressure, ps, because the other dimensional
parameters are relatively easy to constrain. For a transiting
planet, the planetary radius, a, would be known. One can
constrain the equilibrium temperature, Teq, because a planet’s
broadband thermal emission averaged over one orbit is equal
to σSBT 4

eq . The specific gas constant and heat capacity, R and
cp, vary most significantly between H2-dominated atmospheres
and high mean-molecular-weight atmospheres. Because R also
sets the atmospheric scale height, a transit spectrum could
be sufficient to distinguish between an H2 and a high mean-
molecular-weight atmosphere. If one can determine whether
an atmosphere is H2-dominated or not, the detailed value of
R and cp is secondary; for example, twave/trad only varies by
a factor of two between a pure N2 atmosphere and a pure
CO2 atmosphere. The surface gravity, g, can be constrained
via radial-velocity or transit-timing measurements. Moreover,
interior models indicate that bulk compositions ranging from
water ice to iron would only change the bulk density, and thus
g, by a factor of ∼2 (Seager et al. 2007). In contrast, κLW and
ps can change the values of twave/trad and τLW by several orders
of magnitude.

This means a planet’s phase amplitude can be used to
characterize longwave opacity, κLW , and surface pressure,
ps. To evaluate the feasibility of doing so, we estimate the
observable phase amplitude signal and the precision possible
with JWST. For the signal we assume an optimistic scenario
similar to that assumed by Yang et al. (2013). Specifically,
we assume a cool super-Earth with (a, Teq, Ω, g, R, cp) =
(2a⊕, 300 K, 2π/[10 days], 20 m s−2, RN2 , cp,N2 ), orbiting a
GJ1214-like star with (a∗, T∗) = (0.2a�, 3000 K). We assume
the star is 5 pc away, and the phase curve is observed between
transit and secondary eclipse, for 5 days total. This planet
would have a2/L2

Ro ∼ 1. That is roughly the regime for which
our findings start to apply, i.e., the planet’s phase amplitude

largely depends on only two nondimensional parameters. Cooler
and/or smaller planets would be even more solidly in the slowly
rotating and cool regime, but more difficult to observe. We
performed simulations that explore the phase amplitude as a
function of κLW and ps. For a given simulation we compute the
normalized phase amplitude (Fmax − Fmin)/Frock. We multiply
this amplitude by the planet–star contrast of a bare rock,
Frock/F∗, to get the phase amplitude relative to the stellar flux,
(Fmax − Fmin)/F∗. To compute Frock/F∗ we approximate the
planetary and stellar emission as blackbody radiation. Following
Yang et al. (2013), the planet–star contrast in some band [λ1, λ2]
is then

Frock

F∗
=

(
a

a∗

)2
∫ λ2

λ1
B(Trock, λ)dλ∫ λ2

λ1
B(T∗, λ)dλ

.

Here B is the Planck function, and Trock is the dayside-averaged
observer-projected temperature of a bare rock (Appendix C).
We assume 16.5 � λ � 19.5 μm, which corresponds to
the F1800W filter on JWST’s Mid-Infrared Instrument. We
choose this band because it avoids the 15 μm CO2 absorption
feature, but other spectral window regions would be similarly
suitable. For a bare rock the phase amplitude would be (Fmax −
Fmin)/F∗ = (Frock − 0)/F∗ = 358 ppm, while an atmosphere
with perfect day–night heat transport would have a phase
amplitude of 0 ppm.

To estimate the precision possible with JWST, we assume
that the observational error is dominated by stellar photon noise.
In the photon noise limit the precision is σ/F∗ = 1/

√
N , where

the number of stellar photons N is

N = π

(
D

2

)2

Δt
(a∗

d

)2
∫ λ2

λ1

B(T∗, λ)

E(λ)
dλ.

Here D is the diameter of JWST’s mirror (=6.5m), Δt is the
length of observation, d is the distance between observer and
star, and E(λ) = hc/λ is the energy per photon. We first make
an optimistic estimate for the precision. Recent measurements
with the Hubble Space Telescope almost reached the photon
noise limit (Kreidberg et al. 2014; Knutson et al. 2014), and we
assume JWST will do similarly well. To account for imperfect
instrument throughput and detector efficiency we degrade the
photon-limited precision by a factor of 1/3 (Figure 3, Glasse
et al. 2010). We find that, over a 12 hr integration, JWST should
be able to measure the planet–star flux ratio with a precision of
12 ppm.7 Because the phase amplitude is the difference between
two fluxes, the 3σ uncertainty interval for the phase amplitude
is8

√
2 × 3 × 12 ppm = 51 ppm. For a pessimistic estimate we

repeat the previous calculation, but additionally impose a noise
floor of 40 ppm. This floor represents unexpected instrumental
systematics, zodiacal light or other noise sources. With this
noise floor, a 12 hr integration would only reach 10% of the
photon noise limit. Given that Spitzer measurements were able

7 We note that Yang et al. (2013) similarly estimate JWST precisions
assuming the photon noise limit. However, those calculations contained an
error and the resulting estimates are too small by a factor of a few (N. Cowan
2014, private communication).
8 The factor of

√
2 assumes that uncertainties between different observation

periods are uncorrelated. The uncertainty on the phase amplitude is then
related to the uncertainty of a single observation period as

σamplitude =
√

σ 2
single + σ 2

single = √
2σsingle.
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Figure 5. This figure illustrates how the observed phase curve amplitude,
[Fmax − Fmin]/F∗, (y axis) can be used to infer the surface pressure of
a planet (colors). Black dots indicate simulations, and the color scale is
interpolated between simulations. A given amplitude is compatible with both
a thin atmosphere that is opaque to longwave radiation (large κLW ) and a
thick atmosphere that is transparent to longwave radiation (small κLW ). If
κLW is known, for example from transit spectroscopy, then the phase curve
constrains surface pressure and atmospheric mass. We assume a super-Earth
around a GJ1214b-like star, such that a bare rock would exhibit a phase curve
amplitude near 18 μm of 358 ppm. The black square shows a representative 1
bar atmosphere, and the error bars show our optimistic estimate for JWST’s ±1σ

precision on the phase amplitude (see Section 4). For reference, opacities
in solar system atmospheres tend to fall within an order of magnitude of
κLW ∼ 10−3 m2 kg−1 (Robinson & Catling 2014).

to reach ∼30% of the photon noise limit (Figure 3, Cowan et al.
2012), we consider this estimate very pessimistic. In this case
a 2σ (3σ ) measurement of the phase amplitude would have a
precision of

√
2 × 2 × 40 = 113 (170) ppm.

Figure 5 shows our simulation results and optimistic 1σ pre-
cision estimate. We find that thin atmospheres (ps � 0.2 bar)
have phase amplitudes close to 358 ppm for small and moderate
values of κLW (�10−3 m2 kg−1). Taking into account measure-
ment uncertainties of ∼50 ppm, these atmospheres would be
difficult to distinguish from bare rocks. Similarly, thick atmo-
spheres (ps > 5 bar) tend to have phase amplitudes close to
zero. A phase curve would constrain atmospheric mass most
effectively between those two limits. Figure 5 also shows that,
between those limits, the phase amplitude is sensitive to both
κLW and ps. We find that any observed phase amplitude would
be compatible with both a thin atmosphere that is opaque to
longwave radiation (large κLW ) and a thick atmosphere that is
transparent to longwave radiation (small κLW ). Nevertheless,
if transit or emission spectroscopy could determine the con-
centration of greenhouse gases in an atmosphere, and therefore
κLW , the phase amplitude would yield the value of ps. As an
example we highlight a simulation with a 1 bar atmosphere and
κLW = 4 × 10−4 m2 kg−1 (black square in Figure 5). The exact
value of this atmosphere’s phase amplitude is 152 ppm. The
observed phase amplitude would therefore be 152 ± 51 ppm
with 3σ confidence, which constrains the surface pressure to
0.7 � ps � 1.3 bar. Even using our pessimistic precision es-
timate, we find that JWST would be able to constrain surface
pressure to 0.5 � ps � 2.3 bar, albeit only with 2σ confidence
(152 ± 113 ppm). We further note that our pessimistic preci-
sion estimate would only place a lower bound on the surface
pressure, ps � 0.2 bar, with 3σ confidence (152 ± 170 ppm).

These values are the most precise constraints that the phase
curve amplitude can place on surface pressure, because we as-
sumed the other dimensional parameters (κLW , R, cp, etc.) are
already well characterized via transit or emission spectroscopy.
Observational uncertainties in the other dimensional parameters
would increase the uncertainty in the inferred surface pressure.
Nevertheless, our results show that a phase amplitude measure-
ment can place meaningful bounds on a planet’s atmospheric
mass, while the necessary observation time is competitive with
the time required to constrain atmospheric mass via transit or
emission spectroscopy (see Section 1).

5. DISCUSSION

Dimensional analysis is a crucial tool in comparative plan-
etology and the study of exoplanets (Golitsyn 1970; Mitchell
& Vallis 2010; Showman et al. 2010; Read 2011; Potter et al.
2013; Del Genio 2013; Mitchell et al. 2014). Our approach high-
lights the utility of the Buckingham–Pi theorem for the study
of planetary atmospheres (cf. Frierson 2005). We show that the
primitive equations coupled to the two-stream equations are gov-
erned by a fairly small set of nondimensional parameters. These
nondimensional parameters also encapsulate the atmospheric
dynamics of an idealized GCM. Our analysis reveals basic di-
mensional degeneracies, which could allow modelers to sample
large parameter spaces more efficiently (Figure 2, Appendix D).
It is straightforward to expand our analysis to include additional
physics, for example, moist thermodynamics, multi-band ra-
diation, non-hydrostatic atmospheres, chemical disequilibrium
or magnetohydrodynamics. It follows from the Buckingham–Pi
theorem that each additional independent physical parameter
will introduce another nondimensional parameter.

Our analysis suggests that the dynamics of gaseous planets
could be even easier to understand than the dynamics of
terrestrial planets. Gaseous planets do not have a distinct surface,
so we suppose that their atmospheric dynamics are to first order
independent of the bottom boundary. A range of modeling
studies tend to support this assumption (Heng et al. 2011;
Menou 2012a; Kataria et al. 2013). This means the dynamics are
insensitive to the surface friction/heating parameter, CDa/H .
We furthermore need to replace the surface pressure, ps, with a
new characteristic pressure. We note that for terrestrial planets
ps denotes the depth of the dynamically active part of the
atmosphere, where winds are driven by gradients in the stellar
forcing. For a gaseous planet we analogously use the photon
deposition depth, that is, the pressure where stellar radiation is
absorbed, pD ∼ √

gp0/κSW (see Equation (117), Heng et al.
2014). The longwave optical depth τLW , which was previously
defined at the surface, now becomes the optical depth at the
level of photon deposition, τLW = κLWp0/g × (pD/p0)2 =
κLW/κSW = γ −1. The last step shows that τLW and γ cease
to be independent degrees of freedom. This is also consistent
with the Buckingham–Pi theorem because we should lose one
nondimensional parameter in the limit ps → ∞. The dynamics
of gaseous planets then depend on only four nondimensional
parameters (where ps is now replaced by pD):(

R

cp

,
a2

L2
Ro

,
twave

trad
, γ

)
.

This set is sufficiently small for easy numerical exploration.
Moreover, observations that cannot be explained by a model
with the above four parameters would strongly point to the
importance of additional physics, for example, breakdown of
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well-mixed gaseous opacities (via chemical disequilibrium),
non-gray radiative effects, condensation or clouds.

Next, we discuss the observational effort necessary for phase
curve observations. While there were initial attempts to monitor
phase curves discontinuously with Spitzer (Harrington et al.
2006), more recent Spitzer observations tend to cover the whole
course of an orbit to account for long-term instrumental drift
(Knutson et al. 2012). Similar continuous observations with
JWST would become very time-consuming for planets with
period �10 days. Although we assumed in Section 4 that the
planet is observed for half an orbit, our results indicate that full
phase curve coverage is not necessary as long as hot spot offsets
are small or negligible (Figure 3). In theory this means that one
only needs to observe a planet’s thermal emission near primary
and secondary eclipse, which would greatly reduce the required
observation time. In practice, it will be challenging to relate the
observed thermal fluxes from distinct observation periods, but
precise characterization of JWST’s instrumental drift might still
permit discontinuous observation strategies.

Finally, we discuss further physics that might influence
our conclusions. Any model necessarily only approximates
the dynamics of real atmospheres. The dynamical similarities
predicted by our analysis will break down if processes neglected
in our model become significant or if the neglected processes
are singular perturbations. We do not expect condensation to
be a singular perturbation, given that dry models are able
to reproduce many aspects of Earth’s atmospheric dynamics
(Schneider 2006). For a planet with a condensing substance,
our method should provide an upper bound on the atmospheric
mass. That is because latent heat transport, and for true Earth
analogs ocean heat transport, would increase the day–night
energy transport. Clouds would similarly reduce the phase
curve amplitude, by reducing the dayside brightness temperature
while not strongly affecting the nightside brightness temperature
(Yang et al. 2013). If this effect is strong enough it can even
reverse the expected day–night phase curve pattern. Detection
of a inverted phase curve pattern would therefore be a telltale
sign of a condensing atmosphere. In all other cases, a planet
with a condensing substance should have a reduced phase
curve amplitude and thus resemble a dry planet with larger
atmospheric mass.

For the radiative transfer, we assume that shortwave and
longwave opacities both increase linearly with pressure due
to pressure broadening and collision-induced absorption. This
assumption breaks down if atmospheric opacities are set by
different mechanisms, for example, if shortwave radiation was
absorbed by dust (which is insensitive to pressure broaden-
ing). We therefore explored simulations in which the shortwave
opacity is independent of pressure. We find that reducing the
pressure dependency has an effect qualitatively similar to in-
creasing the ratio of shortwave to longwave optical depths, γ , in
our standard simulations. Specifically, the resulting increase in
shortwave absorption at higher altitudes creates stratospheric in-
versions, but only has a limited impact on thermal phase curves
(∼10% − 15% decrease in phase amplitude compared to our
standard simulations with γ = 1; see Figure 4).

We also assume that planets are tidally locked, but the effect
of atmospheric thermal tides (Cunha et al. 2014) and trapping
in higher-order resonances (Makarov et al. 2012) could result
in non-synchronous orbital states. Non-synchronous rotation
would introduce an additional nondimensional parameter into
our model that compares the length of the day–night cycle
with the planet’s cooling timescale. We do not expect that a

small deviation from synchronous rotation would be a singular
perturbation of this parameter. Yang et al. (2014) show that non-
synchronously rotating planets with sufficiently slow rotation
and/or short cooling timescale smoothly approach the tidally
locked regime (their Figure 1(a)). Such planets rotate non-
synchronously but in an instantaneous sense still appear tidally
locked. Cunha et al. (2014) show that thermal tides are generally
not compatible with synchronous rotation. Nevertheless, the
deviation from synchronous rotation is small for planets in
close orbits with zero eccentricity around small stars, such as
M dwarfs (Table 2 in Cunha et al. 2014). Unless synchronous
rotation represented a singular limit (see above), the potential
effect of thermal tides should then not greatly affect the types
of planets we consider here. Many terrestrial planets might
never reach synchronous rotation and instead get trapped in
a higher-order orbital resonance, like Mercury did in our solar
system (Makarov et al. 2012). The probability of being trapped
decreases for planets with lower eccentricity (Figure 6 in
Makarov et al. 2012), which means that our assumption of
synchronous rotation is at least consistent with the fact that
also we do not consider non-zero eccentricities. It is beyond the
scope of this article to investigate higher-order spin states, but
phase curves at visible wavelengths could provide a consistency
check for applying our method to planets with optically thin
atmospheres (Fujii et al. 2014).

6. CONCLUSIONS

We use dimensional analysis to find a set of six nondimen-
sional parameters that captures the main atmospheric dynamics
of dry, tidally locked terrestrial planets in an idealized GCM.
We use the GCM to investigate the sensitivity of thermal phase
curves to each of the nondimensional parameters. Except for
hot and rapidly rotating atmospheres that are optically thick in
the longwave, we do not find significant hot spot offsets. On
the other hand, the phase curve amplitude remains sensitive to
changes in the atmospheric parameters across a large range of at-
mospheric scenarios. Focusing on the phase amplitude, we find
that the phase amplitude of many terrestrial planets is sensitive
to only two nondimensional parameters. The main unknowns
in the two nondimensional parameters are the surface pressure
and the longwave opacity. The longwave opacity can be con-
strained by transit or emission spectroscopy, in which case the
phase amplitude would constrain the surface pressure and at-
mospheric mass. As an example, we estimate that a broadband
phase curve near 18 μm with JWST, taken over a single half-
orbit, could be sufficient to constrain the surface pressure of
a cool super-Earth to within a factor of two. Constraints like
the one we propose will be crucial for understanding atmo-
spheric evolution, in particular atmospheric escape. Moreover,
constraining atmospheric mass is important for characterizing
the surface conditions of potentially habitable planets.
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APPENDIX A

BASIC EQUATIONS

The primitive equations expressed in standard latitude–
longitude pressure coordinates (θ, λ, p) are

Du
Dt

= −2Ω sin θk × u − ∇φ − g
∂Fm

∂p
,

∂φ

∂p
= −RT

p
,

∇ · u +
∂ω

∂p
= 0,

DT

Dt
= RT ω

cpp
+

g

cp

∂Frad

∂p
+

g

cp

∂Fsens

∂p
+

g

cp

Fconv

∂p
.

Here u = (u, v) is the horizontal wind velocity, (D/Dt) =
(∂/∂t) + u · ∇ + ω(∂/∂p) is the material derivative, k is a unit
vector pointing along the axis of planetary rotation, φ is the
geopotential, T is temperature, ω ≡ (Dp/Dt) is the vertical
velocity (expressed as a change in pressure), and dimensional
parameters are defined in Section 2. From the top, these equa-
tions express conservation of momentum, the hydrostatic ap-
proximation, conservation of mass, and conservation of energy.
Although the mass conservation equation looks like it assumes
incompressibility, it does not. The primitive equations are com-
pressible, but mass conservation can be written in the above
simple form using p coordinates and the hydrostatic equation
(Vallis 2006, p.79). The forcing terms are

Frad = F
↑
LW − F

↓
LW − F

↓
SW ,

∂F
↑
LW

∂p
= 2κlw

g

(
F

↑
LW − σSBT 4

)
,

∂F
↓
LW

∂p
= −2κlw

g

(
F

↓
LW − σSBT 4

)
,

∂F
↓
SW

∂p
= −2κsw

g
F

↓
SW ,

F
↓
SW |p=0 =

{
(1 − α)L∗ cos θ cos λ if 270◦ � λ � 90◦

0 elsewhere,

Fm|ps
= ρsCD|us |us ,

Fsens|ps
= ρscpCD|us |(Ts − T |ps

).

Here us is the surface wind velocity, Ts is the surface temper-
ature, T |ps

is the near-surface air temperature, and ρs is the
atmospheric density at the surface (ρs = psR

−1T |ps
, using the

ideal gas law). The convective heat flux Fconv instantaneously
adjusts an unstable lapse rate toward the dry adiabat while con-
serving dry enthalpy

d

dt

∫ ps

0
cpT

dp

g
= 0.

We neglect scattering in the radiative equations. We assume
the hemi-isotropic closure, which is why the radiative equations
contain a factor of two (Section 6.4 in Heng et al. 2014). We also
assume that opacities increase with p due to pressure broaden-
ing and/or collision-induced absorption, so κsw = κSW (p/p0)
and κlw = κLW (p/p0). We define nondimensional short-
wave and longwave optical depths as dτ̂sw/dp = 2κsw(p)/g
and dτ̂lw/dp = 2κlw(p)/g. We integrate to find the total

optical depths, τSW ≡ τ̂sw(ps) = κSWp0/g × (ps/p0)2 and
τLW ≡ τ̂lw(ps) = κLWp0/g × (ps/p0)2. The surface tempera-
ture, Ts, is determined by energy balance

C
dTs

dt
= F

↓
SW |ps

− (
σSBT 4

s − F
↓
LW |ps

) − Fsens|ps
.

Here C is the surface thermal inertia. For a tidally locked
planet the stellar forcing does not depend on time. As a first
approximation we ignore internal atmospheric variability and
assume that Ts is time-independent. This means that C does
not enter the list of dimensional quantities (see below for a
discussion of when this assumption is valid).

We form the following nondimensional quantities, marked
with the hat symbol: (D/Dt) = (1/twave)(D/Dt̂), ∇ = ∇̂/a,
p = psp̂, u = cwaveû, ω = cwaveps/a × ω̂, φ = gHφ̂,
T = Teq T̂ , Frad = σSBT 4

eq F̂rad, Fconv = σSBT 4
eq F̂conv, Fm =

psCDc2
wave/(RTeq) × F̂m, Fsens = pscpCDcwave/R × F̂sens.

The primitive and radiative equations in nondimensional form
are(

Dû

Dt̂

)
= − a2

L2
Ro

(sin θk × û) − cp

R
(∇̂φ̂) − CDa

H

(
∂F̂m

∂p̂

)
,

(
∂φ̂

∂p̂

)
= −

(
T̂

p̂

)
,

(∇̂ · û) +

(
∂ω̂

∂p̂

)
= 0,

(
DT̂

Dt̂

)
= R

cp

(
T̂ ω̂

p̂

)
+

twave

trad

(
∂F̂rad

∂p̂

)
+

CDa

H

(
∂F̂sens

∂p̂

)

+
twave

trad

(
∂F̂conv

∂p̂

)
,

(
∂F̂

↑
LW

∂τ̂lw

)
= F̂

↑
LW − T̂ 4 (0 � τ̂lw � τLW ),

(
∂F̂

↓
LW

∂τ̂lw

)
= −(

F̂
↓
LW − T̂ 4

)
(0 � τ̂lw � τLW ),

(
∂F̂

↓
SW

∂τsw

)
= −F̂

↓
SW (0 � τ̂sw � γ τLW ).

The surface energy budget in nondimensional form is

trad,s

trad

(
dT̂s

dt̂

)
= F̂

↓
SW |ps

− (
T̂ 4

s − F̂
↓
LW |ps

) − trad

twave

CDa

H
F̂sens|ps

,

where trad,s = C/σSBT 3
eq is the surface radiative timescale. Our

assumption that Ts is time-independent, and trad,s can be ignored,
therefore breaks down when trad,s � trad. In our reference
simulations we assume a heat capacity equivalent to that of a
well-mixed water layer with depth 3 m. This means the surface
thermal inertia, C, is actually large enough that trad,s ∼ trad. To
check if this affects our results we recomputed the reference
simulations in Figure 4 with C reduced by a factor of 300,
such that trad,s � trad. We note that this heat capacity is far
less than realistic values for C. At individual grid points, the
time-averaged surface temperature changes up to 2.5% in the
cool Earth-size scenario and up to 6% for the hot super-Earth.
However, reducing C affects the phase curve amplitude of both
runs by less than 0.5%. This confirms that our choice of six
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nondimensional parameters captures the dominant dynamics in
the GCM simulations (Figure 2).

APPENDIX B

TIDALLY LOCKED COORDINATE SYSTEM

A standard geographic coordinate system is defined via the
radial distance from a planet’s center, r, the latitude, θ , which
is the angle away from the equator, and the longitude, λ, which
is the angle about the planet’s north pole. Atmospheres of fast
rotating planets are approximately symmetric around the axis
of rotation due to conservation of angular momentum, so their
time-averaged properties are often displayed as averages over
λ. Here we make use of the approximate symmetry of slowly
rotating tidally locked planets about the axis connecting the
substellar and antistellar points (Figure 1). We define the tidally
locked latitude, θT L, as the angle away from the terminator,
and the tidally locked longitude, λT L, as the angle about the
substellar point. We choose (θ, λ) = (0, 0) to coincide with
the substellar point, and (θT L, λT L) = (0, 0) to coincide with
the north pole (see top row in Figure 1). For example, in tidally
locked coordinates λT L = 0 and 90◦ � θT L � −90◦ defines
the arc that connects substellar and antistellar points via the
north pole.

To translate between standard and tidally locked coordinates
we first transform both spherical coordinate systems into Carte-
sian coordinates, so that the north pole lies at (x, y, z) = (0, 0, r)
and the substellar point lies at (x, y, z) = (r, 0, 0)

x = r cos θ cos λ,

y = r cos θ sin λ,

z = r sin θ, (B1)

and

x = r sin θT L,

y = r cos θT L sin λT L,

z = r cos θT L cos λT L. (B2)

By combining Equations (B1) and (B2) we can express θT L and
λT L in terms of θ and λ:

θT L = sin−1(cos θ cos λ),

λT L = tan−1

(
sin λ

tan θ

)
. (B3)

To plot GCM output in tidally locked coordinates we first
express the GCM output in terms of θT L and λT L, and then
linearly interpolate the output onto an evenly spaced (θT L, λT L)
grid.

Transforming GCM wind velocities into tidally locked coor-
dinates is slightly more complicated. Horizontal winds are de-
fined as (u, v) ≡ (r cos θ (Dλ/Dt), r(Dθ/Dt)). We analogously
define wind velocities in a tidally locked coordinate system as

uT L ≡ r cos θT L

DλT L

Dt

= r cos θT L

(
∂λT L

∂λ

Dλ

Dt
+

∂λT L

∂θ

Dθ

Dt

)

= cos θT L

(
∂λT L

∂λ

u

cos θ
+

∂λT L

∂θ
v

)
,

and

vT L ≡ r
DθT L

Dt

= r

(
∂θT L

∂λ

Dλ

Dt
+

∂θT L

∂θ

Dθ

Dt

)

= ∂θT L

∂λ

u

cos θ
+

∂θT L

∂θ
v.

We evaluate the partial derivatives (∂λT L/∂λ, ∂λT L/∂θ, ∂θT L/
∂λ, ∂θT L/∂θ ) using Equations (B3). The resulting expressions
are long and lead to little insight, so we omit them here.

APPENDIX C

COMPUTING PHASE CURVES

The area-averaged and observer-projected flux from a planet
as seen by a distant observer is

F (ξ ) =
∫ π/2
−π/2

∫ −ξ+π/2
−ξ−π/2 F

↑
LW |p=0 cos(λ + ξ ) cos2(θ )dλdθ∫ π/2

−π/2

∫ −ξ+π/2
−ξ−π/2 cos(λ + ξ ) cos2(θ )dλdθ

,

where ξ is the phase angle, i.e., the angle between the observer’s
line of sight and the substellar point (ξ = 0 at secondary eclipse,
ξ = π at transit), and F

↑
LW |p=0 is the outgoing thermal flux at

the top of atmosphere. This equation is expressed in standard
latitude–longitude coordinates, and assumes that the orbit is
viewed edge-on (Cowan & Agol 2008). The planet’s total flux
as seen by a distant observer is πa2 × F (ξ ).

The maximum thermal flux emitted by a planet corresponds
to the flux emitted by the dayside of a bare rock, which we call
Frock. We compute Frock by setting the outgoing thermal flux
equal to the incoming stellar flux at every point, F

↑
LW |p=0 =

L∗(1 −α) cos(θ ) cos(λ), so Frock = 2/3 ×L∗(1 −α). We define
the dayside-averaged observer-projected temperature of a bare
rock as σSBT 4

rock = Frock. This temperature is related to the
equilibrium temperature of a planet with effective heat transport
via Trock = (8/3)1/4Teq .

APPENDIX D

FINDING ALL DIMENSIONAL TRANSFORMATIONS
THAT ONLY AFFECT ONE NONDIMENSIONAL

PARAMETER

We illustrate how to find the set of all transformations on
the dimensional parameters that only vary one nondimensional
parameter. Our approach is similar to the commonly used
technique in dimensional analysis of finding a complete set of
nondimensional parameters via matrix methods (Price 2003).
The method is general, but we illustrate it assuming (a, Ω, Teq )
are fixed to directly explain our parameter choices in Table 1b. To
transform the remaining dimensional parameters, we consider
multiplying each of them by a different constant,

(R′, c′
p, g′, p′

s , κ
′
SW , κ ′

LW ,C ′
D) =

(Cv1R,Cv2cp, Cv3g,Cv4ps, C
v5κSW ,Cv6κLW ,Cv7CD),

where a prime denotes a transformed parameter, C is a constant,
and (v1, v2, ...) are different exponents. At the same time we
want to keep all nondimensional parameters except one fixed.
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As an example we consider all transformations that multiply
R/cp by a factor of C. This means(

R

cp

)′
= C ×

(
R

cp

)
⇒ Cv1C−v2

(
R

cp

)
= C

(
R

cp

)
⇒ Cv1−v2 = C1(

a2

L2
Ro

)′
= 1 ×

(
a2

L2
Ro

)
⇒ C−v1+v2/2

(
a2

L2
Ro

)
= C0

(
a2

L2
Ro

)
⇒ C−v1+v2/2 = C0(

twave

trad

)′
= 1 ×

(
twave

trad

)
⇒ C−v1−v2/2+v3−v4

(
twave

trad

)

= C0

(
twave

trad

)
⇒ C−v1−v2/2+v3−v4 = C0

...

We consider the exponents of C in the resulting equations. They
form a linear system of equations and can be written in matrix
form Av = (1, 0, 0, ...) as

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0
−1 1/2 0 0 0 0 0
−1 −1/2 1 −1 0 0 0

0 0 0 0 1 −1 0
0 0 −1 2 0 1 0

−1 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6
v7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

The matrix columns correspond to the exponents of
(R, cp, g, ps, κSW , κLW ,CD), and the matrix rows correspond
to each nondimensional parameter. For example, the first row
of the matrix corresponds to R/cp, and has only two non-zero
entries (corresponding to the exponents with which R and cp
appear in R/cp).

This system of equations is underdetermined, that is, it has
infinitely many solutions (there are six rows/six equations,
but seven columns/seven unknowns). All solutions can be
expressed as a particular solution v to the equation Av =
(1, 0, 0, ...), plus any vector that lies in the kernel (nullspace) of
A: {v + x, where x satisfies Ax = 0}. We express the set of all
solutions as

{v + k · x} = (−1,−2,−1 − k, 1 − k,−3 + k,−3 + k, k) ,

where k is an arbitrary number, and each entry of this vector
corresponds to the power to which C is being raised for each
dimensional parameter. For example, to increase R/cp by C, the
first dimensional parameter, R, is multiplied by C−1, the second
dimensional parameter, cp, is multiplied by C−2, etc.

To vary R/cp over the largest possible range compatible with
the dimensional constraints in Table 2 amounts to finding the
largest and smallest values of C that are still consistent with
Table 2, while k is allowed to take on any value. We first solve
this problem by inspection, and then compare our parameter
choices to the values we get from numerical optimization. For
our reference case of a cool, Earth-sized planet, we find k = 0
and 1/

√
1.5 � C � 1 (Table 1b).

We note that one can use this method similarly to find the set
of all transformations that leave all nondimensional parameters
invariant (see Table 1 a, Figure 2). This set of transformations
is simply given by the kernel of A.
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