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ABSTRACT

We present the largest M31 near-infrared (F110W (close to J band), F160W (H band)) Cepheid sample so far. The
sample consists of 371 Cepheids with photometry obtained from the Hubble Space Telescope PHAT program. The
sample of 319 fundamental mode Cepheids, 16 first overtone Cepheids, and 36 type II Cepheids was identified
using the median absolute deviation outlier rejection method we develop here. This method does not rely on priors
and allows us to obtain this clean Cepheid sample without rejecting a large fraction of Cepheids. The obtained
period–luminosity relations (PLRs) have a very small dispersion, i.e., 0.155 mag in F160W, despite using random
phased observations. This remarkably small dispersion allows us to determine that the PLRs are significantly better
described by a broken slope at 10 days than a linear slope. The use of our sample as an anchor to determine the
Hubble constant gives a 3.2% larger Hubble constant compared to the Riess et al. sample.
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1. INTRODUCTION

The Cepheid period–luminosity relation (PLR) remains an
important rung of the cosmic distance ladder, and is an in-
tegral means of establishing the Hubble constant (Sandage
et al. 2006, Freedman & Madore 2010, and Efstathiou 2014,
hereafter E14).

Apart from using Galactic Cepheids to establish the PLR cal-
ibration, another place that is usually used for this calibration
is the Large Magellanic Cloud (LMC). Extensive studies have
been conducted to study the variable stars content in the LMC
with the Optical Gravitational Lensing Experiment project prob-
ably being the most extensive (Udalski et al. 1999). Cepheids
in the Andromeda galaxy (M31) belong to the closest spiral
galaxy exhibiting near-solar abundances. Observations of these
Cepheids are particularly important since the impact of metal-
licity on the PLR is actively debated (e.g., Freedman & Madore
2010; Majaess et al. 2011). Furthermore, a debate continues
concerning the existence of a broken PLR slope (Sandage et al.
2009). Both these effects may impact the establishment of the
Hubble constant and the cosmic distance scale. The difficulty
with M31 is its crowding (overlapping point-spread functions
(PSFs)) and blending caused by the high inclination. In order
to obtain a representative sample of the whole galaxy, the large
angular size makes wide field CCDs necessary. For a recent
summary of ground-based Cepheid observations in M31 see
Kodric et al. (2013, hereafter K13).

Ngeow et al. (2008) applying statistical tests such as an
F-test find a broken slope at 10 days in the BVIcJH bands but
a linear relation in the Ks band and the Wesenheit functions.
Inno et al. (2013) on the other hand find that their Magellanic
Cloud Period–Wesenheit relations are linear. Garcı́a-Varela et al.
(2013) observe non linear relations in the VI bands and that the
Wesenheit function behaves exponentially.

Near-infrared photometry has the advantage that the extinc-
tion is low (McGonegal et al. 1982) and that the amplitudes of
the Cepheids are usually smaller than in the optical (Madore
& Freedman 1991). The increase in the dispersion of the PLR

caused by random phased observations is minimized for small
amplitudes. Hubble Space Telescope (HST) observations in the
near-infrared allow for very precise PLRs with small dispersion
as shown recently by Riess et al. (2012, hereafter R12). Nev-
ertheless there are also Cepheids with near-infrared amplitudes
of around 0.5 mag. These Cepheids increase the dispersion if
random phased observations are used. An outlier rejection mit-
igates this problem. The optimal solution is to use mean phase
observations or perform a phase correction. HST observations
also help with the problem of crowding. The ground-based ob-
servations are in this case only used to identify the position of
the Cepheid and to obtain the period of the Cepheid.

In this paper we follow this approach and combine ground-
based observations with near-infrared HST observations. As a
Cepheid sample we use the 2009 Cepheids published in K13.
The HST observations are from the PHAT survey of M31
(Dalcanton et al. 2012). The PHAT data cover roughly a third
of the disk of M31 in six filters (F275W, F336W, F475W,
F814W, F110W, and F160W) with two orbits per pointing. The
relative difference to R12 is that we included all three years of
PHAT observations that are now available and that our Cepheid
sample (with up to 180 photometric epochs) is published and
available in the Strasbourg astronomical Data Center (CDS).
The Fliri & Valls-Gabaud (2012) sample (up to 50 epochs)
which is used in R12 is larger but not yet publicly available. As
discussed in E14 the R12 outlier rejection procedure can lead
to underestimated errors in the PLR parameters. We develop an
outlier rejection procedure that is similar to the one proposed by
E14, but more robust (i.e., the convergence is less susceptible to
starting parameters). Another change compared to R12 is that we
develop a sophisticated pipeline that uses difference images to
identify the correct source in the PHAT data instead of relying on
information from the UV filters when the source identification
is unclear. The reason is that there is no UV information for
each Cepheid, while good HST difference images are available
for almost all Cepheids.

The paper is structured as follows: Section 2 discusses the
data reduction and how to identify the correct source in the
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Figure 1. Comparison between our F160W photometry of the published PHAT data and the published PHAT photometry catalogs (Brick 01, Field 09). For this
comparison we use the same DOLPHOT parameters that were used in the PHAT catalog. The distribution of the points is illustrated with contour lines of the
two-dimensional histogram. The lines show the contours where the histogram falls to 90%, 70%, 50%, 30%, and 10% of the peak density. The small difference is due
to the fact that we use the Anderson PSFs that take into account the spatial variation over the field of view. The median difference between the standard DOLPHOT
PSF and the Anderson PSF is −0.015 mag which is also the offset we see in the comparison shown here.

PHAT data. Section 3 describes our outlier rejection procedure.
The PLRs are discussed in Section 4. The impact of the improved
PLRs on the Hubble constant is examined in Section 5 followed
by the conclusions in Section 6.

2. DATA ANALYSIS

The goal is to obtain near-infrared photometry of the Cepheid
sample published in K13. The K13 Cepheid sample contains
2009 Cepheids obtained during the first year (up to 180 epochs)
of PS1 PAndromeda observations (Lee et al. 2012). The sample
consists of 1440 fundamental mode (FM) Cepheids, 126 first
overtone (FO), and 147 type II Cepheids. For 296 Cepheids
the type of Cepheid could not be assigned. The Cepheid type
was automatically assigned in a three-dimensional space of
period, amplitude ratio and phase difference, where the last
two parameters were obtained from Fourier decomposition of
the light curve. In order to obtain near-infrared photometry we
match this data set with the PHAT data (Dalcanton et al. 2012).

We obtained the PHAT data in November 2013 from the
MAST archive. At that time photometry was not available for
all bricks. Therefore we ran DOLPHOT (Dolphin 2000) on
all data with the same parameters that were used on the already
available photometry in the MAST archive. Additionally we put
artificial stars into the images and tested the impact of crowding
on the photometry of the Cepheids. For each Cepheid we put an
artificial star of the magnitude of the Cepheid in proximity to the
Cepheid. We do this iteratively 10,000 times in order to estimate
the impact the environment of the Cepheid has on the photome-
try. As expected for crowding a very close source to the artificial
Cepheid causes the recovered magnitude of the artificial star to
be brighter. With this procedure it is possible to test the ef-
fect of overlapping PSFs, i.e., crowding, but not the impact of
blending. Above a certain distance between fake source and the
corresponding closest source the recovered magnitude should
match the magnitude of the source that was put into the image.

For a field close to the center of M31 (Brick 01, Field 09)
we compare the photometry of the already published PHAT
catalog with the photometry we obtain when we use the same
DOLPHOT parameters as in the PHAT catalog (the catalog
also includes the parameter files). As can be seen in Figure 1
our photometry matches that of the published PHAT catalog
in this field. The small offset can be attributed to the fact
that we make use of the improved Anderson PSFs (Anderson
& King 2006) in our photometry. The Anderson PSFs take
into account the spatial variation over the field of view. But
when we investigate the crowding of the Cepheids using these
DOLPHOT parameters we observe a strange behavior. The
recovered magnitude of the fake star is fainter if there is no
source close by, i.e., min − mout < 0 mag. This effect is of the
order of min − mout ≈ 0.04 mag for a closest source separation
of 4 pixels (crowding becomes relevant for separations closer
than 1.5 pixels). This problem seems to be caused by the
background determination, since the flux of the artificial star
can only be attributed to the background, due to the lack of
other sources nearby. A change of the sky fitting parameter of
DOLPHOT from the default parameter that is used by PHAT,
to the one recommended for highly crowded fields alleviates
the problem, i.e., min − mout ≈ 0.01 mag. Using this parameter
we can see in Figure 2 that crowding is not present for closest
neighbor distances larger than 1.5 pixels and that the crowding
typically changes the magnitude of the Cepheid by no more than
≈ 0.035 mag. Of course this is only statistically true and the real
change of the magnitude can be higher and is also dependent
on the magnitude of the source that is close to the Cepheid.
Changing the background determination parameter also changes
the photometry. The comparison to the PHAT catalog can be
seen in Figure 3. The photometry of the Cepheids is only slightly
affected by the change of the background parameter. The results
are also not significantly changed by the different sky fitting.
The impact of crowding on the photometry of the Cepheids
is also very small and we therefore use the complete Cepheid
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Figure 2. Impact of crowding on our Cepheid sample depending on the distance
of the closest source. For each Cepheid a fake source with the same magnitude
as the Cepheid is put in the proximity of the Cepheid. This is done iteratively
10,000 times for each Cepheid. The difference in magnitude of the fake source
(min) and the recovered source (mout) is a measure of the impact of the Cepheids
environment on the crowding. This median difference for all iterations of all
Cepheids is shown for different distance bins of the closest source to the fake
source. min −mout should be zero for large distances, but due to the background
determination it is ≈ −0.01 mag. This behavior gets worse if the standard
background determination parameter is used instead of the parameter for highly
crowded fields that is used here. Crowding is only relevant for sources that have
the closest source closer than 1.5 pixels. For separations closer than 1 pixel
the pixel quantization causes a plateau. Even then the magnitude typically
changes only by 0.035 mag. For these very close separations DOLPHOT might
not recover the fake source, which means that there is blending (which is not
examined here). The crowding does also depend on the magnitude difference
between the fake source and the closest source. The triangles show the crowding
for magnitude differences of 3 mag or larger (i.e., the fake source is at least 3
mag brighter that the closest source), the crosses for 2 mag or larger, the squares
for 1 mag or larger, and the points for all magnitude differences (including the
cases where the fake source is fainter than the closest source).

sample. Although our results do not change significantly due
to crowding, for the interested reader the Appendix includes all
results without using the Cepheids that have sources closer than
1.5 pixels.

We developed a pipeline that identifies the Cepheids from
the first year of PAndromeda observations (K13) in the PHAT
data. For each Cepheid the pipeline astrometrically matches the
corresponding PHAT frames (of all filters) to the PS1 reference
frame. After that step we create stamp outs (i.e., small images
around the Cepheid) from the aligned PHAT data and the PS1
data. Additionally the pipeline produces difference images from
the PHAT data. The number of epochs for each Cepheid is
highly dependent on its position (i.e., if it is in an overlap
of PHAT bricks). However, due to the observing strategy the
optical PHAT filters have at least two epochs (compare to
Figure 5 in Dalcanton et al. 2012). Then the Cepheid is identified
automatically from these PHAT difference images. This rather
sophisticated procedure is necessary due to the fact that it is often
unclear which source is the Cepheid in question, as the HST
images resolve the error circle of the PS1 source into typically
multiple sources. To make sure that the correct source is selected
we inspect the result from the pipeline by eye. This involves
checking the PHAT stamp outs and difference frame stamp outs
of each Cepheid for consistency. This means making sure that
the same source is selected in all filters.5 The pipeline works
remarkably well and the few times it fails6 the information from
the WFC3-UVIS frames helps to identify the correct source
visually. R12 use the UVIS information to select the correct
source when there is a close neighboring source. Although the
UVIS data can be very helpful, the problem with this approach
is that there are not always UVIS observations available and that

5 Note that we do allow the pipeline to find different coordinates in each
filter. This way we obtain another quality check for the determination of
position from the difference frames.
6 Usually it fails when there are only two frames available that are taken
shortly after one another causing the resulting difference frame to show small
variability.

Figure 3. Same as Figure 1 but with a DOLPHOT sky fitting parameter that is recommended for highly crowded fields. Due to the change in the background
determination method our photometry is not consistent any more to the published PHAT catalog. The sky fitting affects the faint stars more than the bright stars. This
trend might affect the slope of the PLR but indeed the photometry of the Cepheids only changes slightly due to their brightness. The results are not significantly
affected by the change in sky fitting parameter.
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Figure 4. Comparison of our photometry with R12. The Cepheid marked in red
(triangle) with a D is due to a misidentification in R12. The mean magnitude
difference is Δm = −0.019±0.011 mag (blue solid line). The standard deviation
is shown as a black dashed line.

the UVIS data can be too shallow to find the source. This is why
a source identification based solely on the UVIS information
proved to be inferior to the difference image method.

We were able to identify 557 Cepheids from the 2009
Cepheids published in K13 in the PHAT data (all bands):7

528 have F110W (close to J band) measurements, 494 have
F160W (H band) measurements, and 492 Cepheids have both
F110W and F160W data. While we use all bands for the source
identification, in this paper we will only discuss the Cepheids
with WFC3-IR data. The obtained magnitudes are random
phased. We perform no phase correction since the PS1 epochs
in K13 do not cover all PHAT epochs. The precision of the
periods from just the first year of PAndromeda observations can
be insufficient to determine the correct phase for some PHAT
epochs two years apart from the K13 data. With the full PS1 data
set of three years we will be able to perform phase corrections.
In the few cases in which multiple PHAT measurements are
available we therefore use the mean magnitude.

To check our photometry we compare it to R12. Fifty one
of the 68 R12 Cepheids are contained in the K13 sample.
Cepheid vn.2.2.463 is present twice in the R12 sample with
the same identifier, position, period and F160W photometry,
but with a different F110W photometry. So there are rather
50 of the 67 R12 Cepheids contained in K13. We run the
remaining 17 Cepheids through our pipeline and include them
in our comparison. We compare the stamp outs provided in R12
to our source identification and find only one deviation. For
Cepheid vn.2.3.69 (PSO J011.4455+41.9120) our difference
frames indicate that the variable source (Cepheid) is indeed
the source next to the one identified in the R12 stamp out. We
marked this Cepheid with a red D in Figures 4 and 5. Figure 4
shows a mean magnitude difference in F160W photometry of
−0.019 ± 0.011 mag. Figure 5 indicates a mean magnitude
difference of −0.258 ± 0.010 mag in F110W. The two outliers
below Δm < −0.5 mag have a very close source nearby and
the offset can be explained by the fact that R12 use aperture

7 The main reason for finding no PHAT counterparts is the smaller sky
coverage of PHAT compared to the PS1 data set. 1515 Cepheids of the 2009
are outside the area covered by F160W observations.
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Figure 5. Same as Figure 4 but with a mean Δm = −0.258 ± 0.010 mag. The
two outliers with Δm < −0.5 mag are likely due to a close second source that
contaminates the aperture photometry of R12. We reproduce the large difference
in photometry when performing aperture photometry ourselves. The offset can
be explained by an error in the aperture correction in R12.

photometry in F110W. However, that does not explain the
offset of approximately a quarter of a magnitude in F110W.
This difference remains approximately the same if we perform
aperture photometry. The reason for this offset is that R12
used the STScI table for the aperture correction that gives the
ensquared energy fraction versus the aperture size in pixels but
assumed this to be the encircled energy fraction (A. Riess 2014,
private communication). This explains the offset in F110W. We
conclude that our photometry matches that of R12.

3. OUTLIER REJECTION

After finding 492 Cepheids with F110W and F160W pho-
tometry in the PHAT data we want to investigate the PLR. As
a first step we have to exclude the outliers of our sample that
can be seen in Figure 6. The Wesenheit magnitude, which is
reddening-free, used in this figure is defined as

W = mF110W − R · (mF110W − mF160W), (1)

where R can be obtained from Schlafly & Finkbeiner (2011,
Table 6 with RV = 3.1)

R = AF110W

AF110W − AF160W
= 2.39. (2)

There are different reasons for outliers in the PLR, namely
blending, crowding, extinction, misidentification, and misclas-
sification. In the case of blending, multiple sources sit along the
same line of sight. This is the most difficult case to resolve due
to the fact that it needs extensive modeling to do so. Vilardell
et al. (2007) studied the impact of blending on the M31 dis-
tance and concluded that blending impacts the M31 distance on
a ∼0.1 mag level which makes it as significant as the impact of
metallicity. Crowding introduces errors in the photometry due
to overlapping PSFs. This is obviously worse in ground-based
observations where the PSFs are larger. The HST PSF is well
determined and stable and as discussed in the previous chapter
(see Figure 2), crowding does not significantly contribute to our
photometric errors. Determining the correct extinction for each
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Figure 6. Unclipped Wesenheit period–luminosity diagram of 413 classified
Cepheids. The shown classification is from K13. The unclassified Cepheids are
omitted. The diagram shows the necessity of outlier rejection. The different
reasons for outliers as well as an outlier rejection procedure are discussed in
Section 3.

Cepheid with spectroscopy is un practical for Cepheids in M31
due to the long exposure times needed and the large spatial ex-
tent of M31. In our case we have NIR photometry available for
which the extinction is low (McGonegal et al. 1982). Another
way to get a handle on extinction is to use Wesenheit magnitudes
W that are independent of reddening.

The simplest cause for an outlier is misidentification, i.e.,
selecting the wrong source when matching two samples. Due
to the method of identifying the PS1 Cepheid in PHAT from
difference images this kind of mismatch should not be present
in our sample. A misclassification of the Cepheid type (FM, FO,
and type II) or the identification of a different kind of variable
as a Cepheid can also lead to an outlier in the PLR.

The Cepheid type determined by K13 is biased by blending
and crowding. Separating FM and FO Cepheids in M31 using
ground-based observations is difficult. Ideally, the type would
be determined with near infrared light curves. For larger
wavelengths the scatter in the PLR is smaller because the
temperature sensitivity on the surface brightness is smaller for
longer wavelengths (Madore & Freedman 2012). Even in HST
data a Cepheid that is clearly FO in the F160W PLR scatters
into the FM in the F814W PLR.8 For this reason we exclude all
unclassified Cepheids9 from K13 from our sample. This leaves
us with 447 Cepheids in F110W, 415 Cepheids in F160W, and
413 Cepheids with photometry in both bands simultaneously.

The typical photometric errors we get from DOLPHOT
are 0.003 mag. These are very small and do not account for
the dispersion of the PLR. The photometric errors are only
one aspect that contributes to the dispersion. Extinction and the
inherent width of the PLR due to the temperature dependence of
the instability strip (Sandage 1958) are other aspects. In the
case of the Wesenheit PLR, different extinction laws for each
Cepheid would change R (Equation (2)) and therefore increase

8 We see this behavior in the data of the optical bands, which we do not
discuss in this paper.
9 Cepheids where the type could not be determined.

the scatter in the PLR. The photometric errors in R12 are also
very small and as mentioned in E14, Riess et al. (2011) add
0.21 mag in quadrature to the magnitude errors. An ordinary
clipping routine without priors or rescaling of the magnitude
errors performs very poorly. Introducing priors and rescaling
the errors works, but that either usually clips a large fraction
of the data or the outlier rejection is unsatisfactory. Testing this
method we found no working compromise between clipping
away way too much or almost nothing. The problem of outlier
clipping and potential implications on the PLR-biases has been
recently investigated in detail by E14. As pointed out by E14
that approach possibly underestimates the errors of the PLR.
Additionally the combination of priors and strong clipping
would prevent a study of the broken slope in our data as was done
by Sandage et al. (2009) for their BVI data. On the other hand
stricter outlier rejection leads to less blending in the crowded
central region of a galaxy (Mager et al. 2013).

We therefore develop a simple outlier rejection method that
does not rely on any prior. In the first iteration of the algorithm
we assign all measurements the same error and perform a linear
fit. The error we assign in the first iteration is the average
magnitude error. This ensures (empirically) that at least one
Cepheid is above the clipping threshold.10 After excluding
the largest outlier to that fit we calculate the dispersion. For
the next step we set the median of the absolute regression
residuals (median absolute deviation (MAD)) as the magnitude
error. After the fit the worst outlier over a threshold of κ times
the MAD is rejected and the new MAD is calculated. This
is repeated until the procedure converges. This is a slightly
modified κ–σ clipping with the MAD for each magnitude error.
Another difference to a typical κ–σ clipping is that only the
worst outlier is clipped in one iteration step. A normal κ–σ
clipping without a prior to the slope of the PLR can be heavily
influenced by even a few outliers. These outliers could influence
the PLR fit in a way that the slope is somewhere between the
real PLR and the outliers. The normal κ–σ clipping would than
clip both from the outliers and the real PLR. Clipping only one
outlier in one iteration step ensures that an initially wrong PLR
fit gradually converges to the genuine PLR and does not clip non
outliers on the way. The reason for using the MAD instead of
the dispersion is that in this way it is possible to clip Cepheids
with a misclassified type, or spurious, or odd (e.g., Polaris-like)
Cepheids (see Figure 6).

We perform the outlier rejection in the Wesenheit PLR.
As a consequence this means that we need both F110W and
F160W photometry simultaneously and therefore our sample
will consist of 413 Cepheids (FM, FO, and type II Cepheids)
before the clipping is performed. The main reason for using the
Wesenheit function is to minimize the bias caused by extinction
and to have a homogenous sample in both F110W and F160W.
Clipping in each filter separately could lead to a Cepheid being
rejected in one filter but not in the other. Our κ = 4 clipped
Wesenheit PLR can be seen in Figure 7, while the clipped
outliers can be seen in Figure 8.

The number of clipped Cepheids is 42 (38 FM, 3 FO, and
1 type II), ∼10% of the sample. As can be seen most of our
outliers are too bright in respect to the best fit PLR, which points
to misclassification or blending. About half of the clipped FM
Cepheids rejected reside on the FO PLR. Most of the outliers
at 0.55 � log(P ) � 0.85 are most likely misclassified as FM

10 The dispersion of the initial fit can be so large that nothing would be
clipped if this large dispersion would be chosen as the error.
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Figure 7. Wesenheit period–luminosity relation clipped with the MAD method.
The fit parameters to the FM (319 Cepheids, blue solid line) and FO (16
Cepheids, red solid line) PLRs are given in Table 1 (no. 7 for the FM and no. 9
for the FO). The 36 type II Cepheids apparently show no linear relationship (see
Section 4). The log(P ) > 1 FM PLR is shown as a black dashed line (no. 8 in
Table 1). The photometric errors (0.009 mag on average) are smaller than the
symbols. The bottom panel shows the residuals relative to the FM fit.
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Figure 8. Clipped outliers by the MAD method. The PLR relations are the
same as in Figure 7. Most of the outliers are most likely due to a misclassified
Cepheid type.

instead of being classified as FO. Indeed a lot of them are in a
region of the amplitude ratio (A21) diagram (Figure 9) populated
by both FO and FM Cepheids, which makes them difficult to
classify. This is especially true when the light curves, as in
our case, are determined from ground-based observations in
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Figure 9. Amplitude ratio diagram. The amplitude ratio A21 is determined from
a Fourier decomposition in the rP 1 band (K13). All Cepheids that are not clipped
(compare to Figure 7) are plotted as gray squares. For better visibility the errors
for those Cepheids are omitted. The clipped Cepheids (compare to Figure 8)
are shown as blue circles (FM), red triangles (FO), and inverted green triangles
(type II). The dashed magenta lines define the boundary that was used in K13 to
define the parameter space of FO Cepheids. As already discussed in K13 there
is a transition region between FM and FO Cepheids and this is most likely the
reason that most of the FM outliers that reside on the FO PLR at log(P ) ∼ 0.75
(compare to Figure 8) are misclassified as FM and are rather FO.

optical bands. Crowding and blending will influence A21 which
contributes to the misclassification. Blending will decrease
amplitudes and the influence of crowding depends on the
magnitude difference of the two sources (compare to Figure 2).
Extinction does not influence the type classification since the
classification in K13 only uses the Fourier parameters of first and
second order and the extinction only changes the zeroth order
(i.e., the mean magnitude). But the greatest contributing factor
for the misclassification will be that FO Cepheids populate more
than the region characterized in the amplitude ratio diagram in
Figure 9. To resolve this issue we would need spectroscopy or
light curves in the near infrared (e.g., see Baranowski et al.
2009). The two clipped sources with the largest periods are
also in a transition region between FM and type II in the phase
difference diagram (see right panel Figure 9; K13) and could
therefore also be misclassified.

E14 introduces an internal scatter σint to the χ2 minimization
in order to obtain a χ2 of unity:

χ2 =
∑

i

(
mW,i − mP

W

)2

(
σ 2

phot,i + σ 2
int

) . (3)

The clipping is performed iteratively until convergence.
Figure 10 shows the clipped Wesenheit PLR if clipped with
the E14 method. Figure 11 shows the corresponding outliers.
With a threshold of κ = 3 this algorithm clips 39 FM, 0 FO,
and 1 T2 Cepheid. For the FM Cepheids the parameters of the
fitted line and the dispersion are close to the those of the MAD
clipping method (compare to Table 1). This is not surprising
since the sample is the same but for one FM Cepheid that is ad-
ditionally clipped by the E14 method. Of course the threshold
was also chosen such that both methods perform as identically
as possible, while still using an integer value for the threshold.
If we would not require the threshold to be integer, we could
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Table 1
PLR Fit Parameters

No. Band Type Range Nfit a (log P = 1) Slope b σ σint
a χ2

dof
b

1 F110W FM All 319 19.521(0.012) −2.749(0.057) 0.204 . . . 1.000
2 F110W FM log P > 1 110 19.476(0.037) −2.497(0.209) 0.243 . . . 1.415
3 F110W FO All 16 18.953(0.051) −2.686(0.157) 0.105 . . . 1.000
4 F160W FM All 319 18.991(0.003) −2.966(0.033) 0.155 . . . 1.000
5 F160W FM log P > 1 110 18.960(0.028) −2.779(0.171) 0.178 . . . 1.318
6 F160W FO All 16 18.431(0.051) −2.960(0.145) 0.082 . . . 1.000
7 Wesenheit FM All 319 18.255(0.007) −3.267(0.071) 0.138 . . . 1.000
8 Wesenheit FM log P > 1 110 18.244(0.016) −3.172(0.117) 0.147 . . . 1.145
9 Wesenheit FO All 16 17.708(0.134) −3.339(0.281) 0.074 . . . 1.000
10 Wesenheit FM All 318 18.256(0.004) −3.270(0.036) 0.136 0.128 1.126
11 Wesenheit FM log P > 1 110 18.244(0.016) −3.172(0.117) 0.147 0.128 1.183
12 Wesenheit FO All 19 17.705(0.135) −3.414(0.282) 0.265 0.265 1.062

Notes. The magnitude errors were set to the same value, namely to the dispersion σ . In the cases where the E14 clipping method
was used (nos.10, 11, and 12) the internal scatter (σint) was added in quadrature to the photometric errors (compare to Figure 10).
The errors of the fitted parameters were determined with the bootstrapping method. Lines 8 and 11 show identical parameters
since the only difference is that the magnitude errors for line 11 include the photometric errors determined by DOLPHOT which
as mentioned earlier are negligible compared to σint.
a Internal scatter as defined by E14.
b Reduced χ2.
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Figure 10. Wesenheit period–luminosity relation clipped with the E14 method.
The fit parameters to the FM (blue solid line) and FO (red solid line) PLRs are
given in Table 1 (no. 10 for the FM and no. 12 for the FO). The log(P ) > 1 FM
PLR is shown as a black dashed line (no. 11 in Table 1). Same as in Figure 7 the
type II Cepheids show no linear relationship (see Section 4). The errors shown
here are σ =

√
σ 2

phot + σ 2
int, where σphot is the photometric error which is very

small compared to the internal scatter σint.

find a threshold that gives the same result as the MAD clipping.
Using the same threshold for the FO Cepheids as for the FM
Cepheids results in no clipping at all. The MAD method on
the other hand does only require one threshold for all Cepheid
types. The convergence of the internal scatter method is very
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Figure 11. Clipped outliers by the E14 method. The PLR relations are the same
as in Figure 10. None of the FO Cepheids are clipped (3 for the MAD method)
and one additional Cepheid is clipped in comparison to the MAD clipping
method (compare to Figure 8).

sensitive to the threshold κ and the starting value of σint (we
chose σint = 0). While the basic idea behind both methods is the
same, namely increasing the error by a constant that is described
by the dispersion, the method introduced by E14 requires one
additional free parameter and according to our tests the con-
vergence performance depends on the starting parameters. The
MAD clipping method on the other hand does not depend on
the starting parameters and is very easy to implement.

4. THE ADOPTED PERIOD–LUMINOSITY RELATIONS

The F110W and F160W PLRs are shown in Figures 12 and 13.
Table 1 contains the corresponding best fit parameters. The fits of
the Wesenheit PLRs shown in Figures 7 and 10 are also included
in this table. The PLR fits are of the form m = a+b · log(P ) with
a dispersion of σ . Nfit is the number of Cepheids contributing

7
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Figure 12. F110W period–luminosity relation. The outlier rejection was
performed with the MAD method in the Wesenheit PLR (Figure 7). A Cepheid
that was clipped in the Wesenheit PLR was rejected in the near-infrared bands.
The fit parameters to the FM (blue solid line) and FO (red solid line) PLRs are
given in Table 1 (no. 1 for the FM and no. 3 for the FO). The log(P ) > 1 FM
PLR is shown as a black dashed line (no. 2 in Table 1). The type II Cepheids
show no linear relationship (see Section 4).

to the fit and σint is given for the cases where the internal
scatter clipping method was used (Efstathiou 2014; see also
Equation (3)). We included the type II Cepheids in the figures
but do not fit a PLR since these do not appear to show one clear
linear relationship. Another reason not to fit a PLR is that the
transition between W Vir stars and RV Tauri is at log(P ) ≈ 1.3
and according to Matsunaga et al. (2009) the PLRs of both type
II subgroups are not collinear. This can also be seen in the recent
study of Ripepi et al. (2014) where the RV Tauri stars are not
on the linear PLR of the other type II Cepheids.

The R12 PLRs with bF110W = −2.725(0.150) and bF160W =
−3.003(0.127) are steeper than our corresponding slopes (the
slopes for the log(P ) > 1 subsample: nos. 2 and 5 in Table 1).
The Wesenheit slope cannot be compared since R12 use R =
1.54 while we use a different value (compare to Equations (1)
and (2)) derived from Schlafly & Finkbeiner (2011, Table 6 with
RV = 3.1). In fact the slopes of the R12 sample are closer to our
PLRs for the full sample (nos. 1 and 4 in Table 1). Nevertheless
the slopes of both samples agree within their 1σ error bars.

The R12 PLR fits (Table 2 in R12) are slightly inconsistent
to the PLR Figure 2 given in R12. Reanalyzing the R12 F160W
data (with the double entry of Cepheid vn.2.2.463 in the data as
mentioned before) we can reproduce the R12 slope but get an
offset of 0.06 mag for m(log(P ) = 1.2). This PLR is closer to
the one shown in the R12 PLR plot.

The comparison of the slopes can also be seen in Figure 14.
The theoretical predictions of Bono et al. (2010) for the slopes of
the different subsamples are all steeper than our measurements
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Figure 13. F160W period–luminosity relation. The outlier rejection was
performed with the MAD method in the Wesenheit PLR (Figure 7). A Cepheid
that was clipped in the Wesenheit PLR was rejected in the near-infrared bands.
The fit parameters to the FM (blue solid line) and FO (red solid line) PLRs are
given in Table 1 (no. 4 for the FM and no. 6 for the FO). The log(P ) > 1 FM
PLR is shown as a black dashed line (no. 5 in Table 1). The type II Cepheids
show no linear relationship (see Section 4).

 Bono et al theoretical all lg(Z/X) = −1.55 (solar)
 Bono et al theoretical long lg(Z/X) = −1.55 (solar)
 This paper all (#1 and #4 from Table 1)
 This paper long (#2 and #5 from Table 1)
 Riess et al long
 Fiorentino et al long
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Figure 14. PLR slope dependence on the wavelength. The R12 slopes (magenta)
are steeper than our slopes for the long period Cepheid sample (log(P ) > 1,
red, nos.2 and 5 in Table 1). The Fiorentino et al. (2013) slope with Z = 0.02
and Y = 0.28 for long period Cepheids (black) is within the error of the slope
of our long period sample result. For a different Helium content the Fiorentino
et al. (2013) slope is steeper and would agree with our total Cepheid sample
(red, nos. 1 and 4 in Table 1). The theoretical predictions of Bono et al. (2010)
are steeper than our measurements for both subsamples.

or those of R12. Unfortunately we cannot compare our results
for the Wesenheit PLR with E14 since they use a Wesenheit
function that includes V and I band magnitudes, which we do
not have.
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Figure 15. Broken slope Wesenheit PLR for FM Cepheids. A broken slope
fit with a common suspension point at 10 days (compare to Equations (16)
and (17) in K13) is shown (no. 1 in Table 2). The short period Cepheid slope
(log(P ) � 1) is shown in cyan and the long period Cepheid slope (log(P ) > 1)
in magenta. The blue solid line is the linear slope fit (no. 7 in Table 1) and the
black dashed line the fit to the long period Cepheid sample (no. 8 in Table 1).

Table 2
Broken Slope PLR Fit Parameters

No. Band blog(P )�1 blog(P )>1 alog(P )=1 σ χ2
dof

a

1 Wesenheit −3.411(0.038) −3.103(0.060) 18.221(0.013) 0.136 0.978
2 F110W −3.028(0.078) −2.433(0.105) 19.455(0.021) 0.200 0.960
3 F160W −3.188(0.050) −2.714(0.069) 18.938(0.014) 0.152 0.956

Notes. The magnitude errors were set to the same value, namely to the dispersion
σ of the corresponding fit in Table 1 (nos. 7, 1, and 4). The errors of the
parameters were determined with bootstrapping.
a Reduced χ2.

In the next step we investigate whether our FM Cepheids show
any signature of the broken slope proposed by Sandage et al.
(2009). For this we use the same approach as in Equations (16)
and (17) in K13. We fit two slopes and a common suspension
point at 10 days. These fits can be seen in Figures 15–17. The
fit parameters are summarized in Table 2. All fits show a steeper
slope for short period Cepheids (log(P ) � 1) than for long
period Cepheids (log(P ) > 1). Note that a Malmquist bias
would influence the faint end slope so that it becomes shallower
than it actually is. We also perform bootstrapping (resample
the data) with 10,000 realizations to check how significant
the broken slope is and show the results in Figures 18–20.
Only for the Wesenheit function there are realizations of the
bootstrapping where the 3σ contours overlap. The break at
exactly 10 days is often adopted in the literature, but there
are also studies contesting that value. Klagyivik & Szabados
(2009), for example, find that the break occurs at 10.47 days.
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Figure 16. Broken slope F110W PLR for FM Cepheids (no. 2 in Table 2). Same
as Figure 15 but with no. 1 (Table 1) as linear slope fit and no. 2 (Table 1) as fit
for the long period Cepheids.
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Figure 17. Broken slope F160W PLR for FM Cepheids (no. 3 in Table 2). Same
as Figure 15 but with no. 4 (Table 1) as linear slope fit and no. 5 (Table 1) as fit
for the long period Cepheids.
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Figure 18. Bootstrapping of the broken slope in the Wesenheit PLR. The
common suspension point y0 is plotted versus the slope. The short period
Cepheid slope (log(P ) � 1) is shown in blue and the long period Cepheid
slope in red. The 1σ , 2σ and 3σ contour lines are also shown as solid lines.

Figure 19. Bootstrapping of the broken slope in the F110W PLR. The legend
is otherwise similar to that displayed in Figure 18.

We discuss the break at 10 days here and provide a table for the
relevant parameters of other suspension points in the Appendix.

The results from the bootstrapping already point toward a
broken slope. To determine if the broken slope is significantly
better than the linear slope we perform an F-test. The advantage
of the F-test is that it is not sensitive to the problem of the
uncertainty in the adopted magnitude errors. Due to the fact that
we chose the magnitude errors to be equal to the dispersion in
the linear fit, we are able to get better estimates on the errors
of the fitted parameters. However, this approach does not allow
us to perform a χ2 test. Following Equations (3.40) and (3.41)
from Chatterjee & Hadi (2013) where model 1 is the reduced
model with p1 parameters and model 2 the full model with p2
parameters, the observed F-ratio is

Fobs =
[
χ2

1 − χ2
2

]/
[p2 − p1]

χ2
2 /[N − p2]

, (4)

Figure 20. Bootstrapping of the broken slope in the F160W PLR. The legend
is otherwise similar to that displayed in Figure 18.

Table 3
Parabola PLR Fit Parameters

No. Band alog(P )=1 b c σ χ2
dof

a

1 Wesenheit 18.236(0.011) −3.265(0.029) 0.267(0.089) 0.136 0.980
2 F110W 19.482(0.016) −2.746(0.039) 0.543(0.141) 0.200 0.960
3 F160W 18.960(0.012) −2.964(0.032) 0.427(0.107) 0.152 0.957

Notes. The magnitude errors were set to the same value, namely to the dispersion
σ of the corresponding fit in Table 1 (nos. 7, 1, and 4) and the errors of the
fit parameters determined with bootstrapping. The parabola fit has the form
m = a + b · log(P ) + c · [log(P )]2.
a Reduced χ2.

N denotes the number of data points and the χ2
i are the

corresponding χ2 of the two models. The critical F-value is

Fcrit = F (p2 − p1, N − p2;α) (5)

for a significance level of α, where F is the distribution function
of the F-test. For Fobs � Fcrit the null hypothesis (that model 2
is not significantly better than model 1) is rejected. Simply put
for Fobs � Fcrit model 2 is more significant than model 1. In our
case model 1 is the linear fit (Table 1) and model 2 the fit with
the broken slope (Table 2). For a typical significance level of
α = 0.05 the critical F-value is Fcrit = F (1, 316; 0.05) = 3.87.
Our observed F-values are Fobs,Wesenheit = 8.24, Fobs,F110W =
14.12 and Fobs,F160W = 15.71. Therefore all three broken slope
fits are significant at a level of at least 1−α = 0.95. We confirm
the result from the bootstrapping, i.e., the Wesenheit broken
slope is less significant than the F110W and F160W broken
slopes. Indeed the F110W and F160W broken slopes are also
still significant at a 3σ level.

In the next step we check how well the data are described by
a parabola instead of a broken linear relation. The parabolic fits
are shown in Figures 21–23. The fit parameters are summarized
in Table 3. As can already be seen from the σdof the parabolic
fit will practically be as significant as the broken slope.

A possible reason for the broken slope could be the
Hertzsprung progression. With increasing periods the bump in
the light curve moves to the maximum (brightest magnitude) of
the light curve. For periods larger than 10 days the bump moves
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Table 4
PLR Fit Parameters

No. Band Type Range Nfit a (log P = 1) Slope b σ σint
a χ2

dof
b

1 F110W FM All 271 19.515(0.007) −2.778(0.032) 0.209 · · · 1.000
2 F110W FM log P > 1 93 19.464(0.055) −2.483(0.155) 0.251 · · · 1.435
3 F110W FO All 14 18.947(0.070) −2.714 (0.152) 0.112 · · · 1.000
4 F160W FM All 271 18.987(0.002) −2.979(0.023) 0.158 · · · 1.000
5 F160W FM log P > 1 93 18.950(0.023) −2.755(0.125) 0.184 · · · 1.348
6 F160W FO All 14 18.429(0.072) −2.973(0.154) 0.087 · · · 1.000
7 Wesenheit FM All 271 18.255(0.005) −3.259(0.080) 0.137 · · · 1.000
8 Wesenheit FM log P > 1 93 18.236(0.017) −3.132(0.086) 0.150 · · · 1.209
9 Wesenheit FO All 14 17.712(0.100) −3.333(0.176) 0.077 · · · 1.000

Notes. Same as Table 1 but for uncrowded Cepheids.
a Internal scatter as defined by E14.
b Reduced χ2.
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Figure 21. Parabolic Wesenheit PLR for FM Cepheids (no. 1 in Table 3). The
parabola is shown as a red solid line. The blue solid line is the linear slope fit
(no. 7 in Table 1) and the black dashed line the fit to the long period Cepheid
sample (no. 8 in Table 1).

away from the maximum (see, e.g., K13). Randomly phased
observations might be biased toward brighter magnitudes due
to the bump in the light curve. This effect would be strongest
for Cepheids around 10 days and for larger periods it would
decrease again. This would mean that the magnitudes at 10 days
are systematically brighter than they should be, which could
explain the broken slope.

In the light curves published in Persson et al. (2004) we see
that the bumps are stronger in the J band than in the H band.
This fits to our result that in the F110W band (close to the J
band) the curvature of the parabolic fit to the PLR is stronger
than in the F160W band (close to H band). Also the decrease of
the slope of the long-period Cepheid PLR as compared to the
linear fit to the full sample is stronger in F110W than in F160W.
In view of this, an overestimation of the mean magnitudes of
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Figure 22. Parabolic F110W PLR for FM Cepheids (red solid line, no. 2 in
Table 3). The blue solid line is the linear slope fit (no. 1 in Table 1) and the black
dashed line the fit to the long period Cepheid sample (no. 2 in Table 1).

Cepheids near log(P ) = 1 from random-phase data due to the
bump presence seems indeed to be a plausible explanation for
the observed non-linearity in the PLRs or at least is contributing
to this effect. With the full PAndromeda data set of three years
we will be able to perform a phase correction and therefore be
capable to test whether such a hypothetical bias exists.

5. IMPLICATIONS OF THE IMPROVED
PLR ON THE HUBBLE CONSTANT

As can be seen in Figure 14 and, e.g., in no. 5 in Table 1
our PLR is different from the R12 PLR. Therefore we want to
explore what impact our new sample has on the estimate of the
Hubble constant H0.

We use method no. 10 Table 3 in R12 where M31 is used as
the anchor for the comparison. If we were to use a different fit
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Figure 23. Parabolic F160W PLR for FM Cepheids (red solid line, no. 3 in
Table 3). The blue solid line is the linear slope fit (no. 4 in Table 1) and the black
dashed line the fit to the long period Cepheid sample (no. 5 in Table 1).

Table 5
Broken Slope PLR Fit Parameters

No. Band blog(P )�1 blog(P )>1 alog(P )=1 σ χ2
dof

a

1 Wesenheit −3.411(0.058) −3.077(0.080) 18.219(0.017) 0.135 0.974
2 F110W −3.071(0.079) −2.430(0.136) 19.446(0.020) 0.205 0.958
3 F160W −3.213(0.061) −2.701(0.103) 18.932(0.015) 0.155 0.952

Notes. Same as Table 1 but for uncrowded Cepheids.
a Reduced χ2.

Table 6
Parabola PLR Fit Parameters

No. Band alog(P )=1 b c σ χ2
dof

a

1 Wesenheit 18.233(0.011) −3.253(0.030) 0.318(0.121) 0.135 0.973
2 F110W 19.475(0.017) −2.767(0.047) 0.595(0.186) 0.205 0.958
3 F160W 18.955(0.012) −2.970(0.036) 0.479(0.142) 0.155 0.952

Notes. Same as Table 3 but for uncrowded Cepheids.
a Reduced χ2.

where M31 only contributes to the fit of the slope, we would
have to do the complete analysis of the SN Ia data. So the
idea is to only check for relative changes in the anchor and
assume nothing changes in the SN Ia galaxy analysis, i.e., plug
our sample in as an anchor and leave everything else the same.
Furthermore, we have to make the reasonable assumption that
the photometric offsets between our sample and the R12 sample
are well understood and described by

〈ΔmF160W〉 = 〈mF160W,R12 − mF160W,K14〉 = −0.019 mag

(6)

〈ΔmF110W〉 = 〈mF110W,R12 − mF110W,K14〉 = −0.258 mag.

(7)

1.0 1.2 1.4 1.6 1.8 2.0

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

log10(P)

W
J,

H
,X

Figure 24. Color corrected Wesenheit (WJ,H,X = F160W − 1.54(F110W −
F160W + 0.066)) of the R12 sample. The solid red line shows a fit of
the slope of −3.20 (no. 10 in Table 3, R12) to the data. The fit gives a
m(log(P ) = 1.2)R12 = 17.701 mag.
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Figure 25. Plot shows how well the color correction factor of X = −0.066mag
from R12 fits to our data that was transformed to the same photometric system
used in R12 (i.e., with applied offsets). The blue solid line shows the mean offset
of 0.004 mag. The brightness trend is also present in R12.

We have to make this assumption so that we can later compare
the offsets between the two samples.

The first step is to fit the color corrected Wesenheit function
of the R12 sample with a slope of −3.20 as given by no. 10
Table 3 in R12 in order to obtain m(log(P ) = 1.2)R12. Figure 24
shows the fit to the color corrected Wesenheit function. In the
next step we check how well the color correction factor of
X = −0.066 mag in R12 applies to our data. As can be seen in
Figure 25 the color correction factor is also consistent with our
sample (the mean offset is only 0.004 mag) when we apply the
offsets described in Equations (6) and (7). The last step is to fit
the color corrected Wesenheit function with the offsets in order
to obtain m(log(P ) = 1.2)K14. The fit shown in Figure 26 was

12
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Figure 26. Color corrected Wesenheit (WJ,H,X = F160W − 0.019 −
1.54(F110W − 0.258 − F160W + 0.019 + 0.066)) for our sample. Same as
in Figure 24 the solid line shows a fit of the −3.20 slope to the data. The fit gives
m(log(P ) = 1.2)K14 = 17.769 mag, which means that our sample is fainter
than the R12 sample.

done with the same slope that was used in the first step. Due to
the small photometric errors in our sample the individual data
points were not weighted by their errors.

The magnitude difference for the two anchor samples is

ΔM = 〈m(log(P ) = 1.2)R12 − m(log(P ) = 1.2)K14〉
= 17.701 mag − 17.769 mag = −0.068 mag. (8)

This corresponds to

Δμ = (m − M)R12 − (m − M)K14 = Δm − ΔM

= − ΔM = 0.068 mag, (9)

i.e., only the difference in the anchor is relevant, since Δm =
0 mag due to the first assumption. Since dL ∼ 1/H0 we get

Δμ0 = μ0,R12 − μ0,K14 = 5 log

(
dL,R12

dL,K14

)
= 5 log

(
H0,K14

H0,R12

)

(10)
and therefore

H0,K14 = 10[Δμ0/5] · H0,R12 = 1.032 · H0,R12. (11)

So our sample gives a 3.2% increased H0 compared to the
R12 sample. This is very surprising when considering that the
R12 sample is in large part a subset of our sample. Figure 27
shows the difference in the two samples.

We checked if there is any indication for this difference in
the spatial distribution of the two data sets, since our sample
covers more of the M31 area. But the subsets are distributed
equivalently across M31. It is not the case that one subsample is
located in the spiral arms and the other is not. As can be seen in
the Appendix the crowding tests also support the argument that
the spatial distribution is not the reason for the offset, since the
offset only changes slightly.
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Figure 27. Comparison between Figures 24 and 26. The blue triangles are our
Cepheids, while the inverted red triangles are the R12 Cepheids. The Wesenheit
WJ,H,X is the color corrected Wesenheit function as defined in Figures 24 and 26
for the respective samples (i.e., the blue Cepheids have the offsets applied as
defined in Equations (6) and (7)). Both fits use a fixed slope of −3.20 that was
also used in R12 for the SN Ia host galaxies.

The offset that is described in this section is very worrisome
since it begs the question how well we can constrain H0 if a
larger Cepheid sample that covers more of the galaxy produces
a different H0.

6. CONCLUSION

In this paper we present a new method of outlier rejection that
does not rely on priors and is capable of clipping misclassified
FO Cepheids from the FM Cepheid sample. The method is
similar to the outlier rejection method established by E14. Both
use the dispersion to correct the underestimated errors from
photometry. The difference is that our MAD clipping method
does not use an additional free parameter.

We use the publicly available PHAT (Dalcanton et al. 2012)
data to obtain near-infrared photometry of a subsample of
Cepheids published in K13. Our data reduction pipeline takes the
HST and PS1 difference images into account in order to identify
the correct source in the PHAT data. With the MAD clipping
method we obtain a sample of 371 Cepheids with F110W and
F160W photometry. The sample consists of 319 FM, 16 FO,
and 36 type II Cepheids. One hundred and ten FM Cepheids
have periods of 10 days or more. The slopes of our PLRs for
Cepheids with periods of 10 or more days are shallower than
the slopes obtained by R12, but agree within the 1σ errors.

We check our sample for a broken slope in the PLR and find
that a broken slope describes the data significantly better than a
linear slope.

An estimation of the effect of our PLRs on the Hubble
constant shows that our sample gives a 3.2% larger H0 than
the R12 sample.

With the full three years of PAndromeda data the Cepheid
sample will increase, especially toward longer periods. Addi-
tionally we will be able to perform phase correction to the PHAT
data. This will help to distinguish between a broken slope PLR
and a parabolic PLR. The phase correction will also improve the
dispersion further, resulting in an even tighter constrained PLR.
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Figure 28. Cepheid stampouts.
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Figure 29. Cepheid stampouts.
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Figure 30. Cepheid stampouts.
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Figure 31. Cepheid stampouts.
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APPENDIX

Our sample will be published in electronic form on the CDS.

A.1. Stampouts

The stampouts of the 371 Cepheids (319 FM Cepheids,
16 FO Cepheids, and 36 type II Cepheids) can be seen in
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Figure 32. Stampouts of the clipped Cepheids.
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Figure 33. Same as Figure 7 but only for uncrowded Cepheids (217 FM
Cepheids, 14 FO Cepheids, and 34 type II Cepheids).
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Figure 34. Same as Figure 8, but only for uncrowded Cepheids. There are 37
clipped Cepheids (33 FM Cepheids, 3 FO Cepheids, and 1 type II Cepheid).

Figures 28–31. The stampouts for the clipped outliers are shown
in Figure 32. The scaling in each stampout is different and
calculated automatically. Therefore the brightness between two
stampouts cannot be compared. Each stampout has the width of
2.5 arcsec and the white circle centered around the Cepheid has
a radius of 0.5 arcsec.
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Table 7
Broken Slope PLR Fit Parameters

x0 Band blog(P )�1 blog(P )>1 alog(P )=1 σ χ2
dof

a Fobs

5.000 Wesenheit −3.813(0.138) −3.209(0.033) 19.214(0.012) 0.136 0.978 8.195
5.000 F110W −3.366(0.218) −2.684(0.056) 20.322(0.020) 0.203 0.988 4.707
5.000 F160W −3.553(0.166) −2.904(0.042) 19.858(0.015) 0.154 0.980 7.461
6.000 Wesenheit −3.598(0.090) −3.189(0.040) 18.952(0.014) 0.136 0.979 7.845
6.000 F110W −3.240(0.133) −2.634(0.064) 20.090(0.020) 0.202 0.979 7.841
6.000 F160W −3.390(0.087) −2.866(0.048) 19.613(0.014) 0.153 0.972 10.221
7.000 Wesenheit −3.508(0.068) −3.170(0.043) 18.731(0.013) 0.136 0.979 7.710
7.000 F110W −3.202(0.097) −2.567(0.072) 19.891(0.020) 0.201 0.965 12.573
7.000 F160W −3.330(0.068) −2.819(0.055) 19.405(0.014) 0.152 0.960 14.168
8.000 Wesenheit −3.474(0.056) −3.141(0.045) 18.538(0.014) 0.136 0.976 8.923
8.000 F110W −3.154(0.077) −2.503(0.079) 19.721(0.020) 0.200 0.955 15.840
8.000 F160W −3.288(0.057) −2.770(0.061) 19.225(0.013) 0.151 0.951 17.470
8.500 Wesenheit −3.455(0.054) −3.130(0.047) 18.451(0.014) 0.136 0.976 8.959
8.500 F110W −3.117(0.084) −2.483(0.085) 19.648(0.020) 0.200 0.955 15.773
8.500 F160W −3.259(0.050) −2.754(0.062) 19.147(0.013) 0.151 0.951 17.435
9.000 Wesenheit −3.440(0.045) −3.119(0.050) 18.370(0.014) 0.136 0.975 8.969
9.000 F110W −3.084(0.079) −2.464(0.090) 19.579(0.020) 0.200 0.956 15.456
9.000 F160W −3.233(0.051) −2.739(0.068) 19.073(0.013) 0.151 0.951 17.183
10.000 Wesenheit −3.411(0.038) −3.103(0.060) 18.221(0.013) 0.136 0.978 8.237
10.000 F110W −3.028(0.078) −2.433(0.105) 19.455(0.021) 0.200 0.960 14.121
10.000 F160W −3.188(0.050) −2.714(0.069) 18.938(0.014) 0.152 0.956 15.707
10.470 Wesenheit −3.399(0.039) −3.097(0.063) 18.156(0.014) 0.136 0.979 7.723
10.470 F110W −3.007(0.076) −2.419(0.112) 19.401(0.022) 0.201 0.962 13.512
10.470 F160W −3.171(0.048) −2.703(0.072) 18.880(0.015) 0.152 0.958 14.939
11.000 Wesenheit −3.386(0.039) −3.092(0.067) 18.087(0.015) 0.136 0.981 7.140
11.000 F110W −2.987(0.072) −2.401(0.116) 19.343(0.022) 0.201 0.963 13.035
11.000 F160W −3.154(0.047) −2.691(0.076) 18.817(0.015) 0.152 0.960 14.240
12.000 Wesenheit −3.365(0.040) −3.086(0.083) 17.967(0.015) 0.137 0.985 5.971
12.000 F110W −2.956(0.070) −2.367(0.119) 19.241(0.022) 0.201 0.965 12.331
12.000 F160W −3.127(0.040) −2.668(0.091) 18.707(0.017) 0.152 0.963 13.031
15.000 Wesenheit −3.325(0.037) −3.066(0.118) 17.658(0.017) 0.137 0.991 3.977
15.000 F110W −2.873(0.057) −2.325(0.190) 18.990(0.026) 0.202 0.978 8.162
15.000 F160W −3.063(0.044) −2.636(0.139) 18.432(0.020) 0.153 0.977 8.618

Notes. Same as Figure 2 but for different suspension points x0. Additionally the corresponding Fobs (compare to Section 4) is given.
a Reduced χ2.
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Figure 35. Same as Figure 24 but for 56 uncrowded Cepheids.
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Figure 36. Same as Figure 25 but for uncrowded Cepheids.
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Figure 37. Same as Figure 26 but for uncrowded Cepheids.

A.2. Crowding Test

This section of the Appendix provides figures (Figures 33–37)
and tables (Tables 4–6) that include only those Cepheids that
have no source closer than 1.5 pixels (compare to Figure 2), i.e.,
are uncrowded. The uncrowded sample consists of 265 Cepheids
(217 FM Cepheids, 14 FO Cepheids, and 34 type II Cepheids).
For this sample 37 Cepheids were clipped (33 FM Cepheids,
3 FO Cepheids, and 1 type II Cepheid). The relevant F-test
values (compare to Section 4) are Fcrit = F (1, 268; 0.05) =
3.88, Fobs,Wesenheit = 8.08, Fobs,F110W = 12.13, and Fobs,F160W =
13.48. So the broken slopes are still significant at a 2σ level and
the F110W and F160W broken slopes are also still significant
at a 3σ level. Note that the mean F160W offset in Figure 4
changes to −0.018 mag and the offset in Figure 5 changes to
−0.257 mag. Equation (8) changes to

ΔM = 〈m(log(P ) = 1.2)R12 − m(log(P ) = 1.2)K14〉
= 17.689 mag − 17.772 mag = −0.083 mag (A1)

which implies for Equation (9):

Δμ = (m − M)R12 − (m − M)K14 = Δm − ΔM

= − ΔM = 0.083 mag (A2)

and therefore

H0,K14 = 10[Δμ0/5] · H0,R12 = 1.039 · H0,R12. (A3)

So the 3.2% increase to 3.9%.

A.3. Suspension Point

Due to the fact that our data are random phased we cannot be
sure about the correct suspension point. We believe it is better
to determine the suspension point with phase corrected data.
For the interested reader we provide Table 7 that shows the
fit parameters for different suspension points. The best fit for
the broken slope is around eight to nine days but the observed
F-ratio is above the critical F-value for all fits, although also
this value favors a suspension point around eight to nine days.
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