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ABSTRACT

About 20% of exoplanets discovered by radial velocity surveys reside in stellar binaries. To clarify their origin one
has to understand the dynamics of planetesimals in protoplanetary disks within binaries. The standard description,
accounting for only gas drag and gravity of the companion star, has been challenged recently, as the gravity of
the protoplanetary disk was shown to play a crucial role in planetesimal dynamics. An added complication is the
tendency of protoplanetary disks in binaries to become eccentric, giving rise to additional excitation of planetesimal
eccentricity. Here, for the first time, we analytically explore the secular dynamics of planetesimals in binaries such as
α Cen and γ Cep under the combined action of (1) gravity of the eccentric protoplanetary disk, (2) perturbations due
to the (coplanar) eccentric companion, and (3) gas drag. We derive explicit solutions for the behavior of planetesimal
eccentricity ep in non-precessing disks (and in precessing disks in certain limits). We obtain the analytical
form of the distribution of the relative velocities of planetesimals, which is a key input for understanding their
collisional evolution. Disk gravity strongly influences relative velocities and tends to push the sizes of planetesimals
colliding with comparable objects at the highest speed to small values, ∼1 km. We also find that planetesimals
in eccentric protoplanetary disks apsidally aligned with the binary orbit collide at lower relative velocities than
in misaligned disks. Our results highlight the decisive role that disk gravity plays in planetesimal dynamics
in binaries.
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1. INTRODUCTION

Results of radial velocity surveys demonstrate that ∼20% of
exoplanets reside in stellar binaries (Desidera & Barbieri 2007).
While most of these binaries have wide separation between
stellar components (hundreds of AU), some of them are systems
with relatively short binary periods of ∼100 yr. One of the best
examples of such a binary is γ Cephei (Hatzes et al. 2003),
which consists of two stars with masses of Mp = 1.6 M� and
Ms = 0.41 M� with a semi-major axis of ab = 19 AU (orbital
period Pb = 58 yr) and an eccentricity of eb = 0.41. The planet
with the projected mass Mpl sin i = 1.6 MJ is in orbit around
the primary with a semi-major axis of apl ≈ 2 AU. Several more
planetary systems within tight (ab ≈ 20 AU) binaries are known
at present (Chauvin et al. 2011), including the terrestrial planet
around our stellar neighbor α Cen (Dumusque et al. 2012; see
Hatzes 2013).

For a long time, theorists struggled to explain the origin of
planets in such S-type (according to Dvorak’s 1982 classifica-
tion) systems. The issue lies in the strong dynamical excita-
tion to which any object in a binary is subjected. Gravitational
perturbations due to the eccentric companion are expected to
adversely affect planet formation already at the stage of plan-
etesimal growth. As first shown by Heppenheimer (1978), com-
panion perturbations drive planetesimal eccentricities to high
values, easily approaching 0.1 at 2 AU from the primary. Plan-
etesimals would then be colliding at relative speeds of a couple
km s−1, which is much higher than the escape speed from the
surface of even a 100 km object (about 100 m s−1). As a result,
collisions should lead to planetesimal destruction rather than
growth.

A number of possibilities have been explored to at least
alleviate this problem. In particular, Marzari & Scholl (2000)

studied the dissipative effects of gas drag as the means of
damping the relative velocities of planetesimals. These authors
have shown that for a circular disk in secular approximation,
gas drag induces an alignment of planetesimal orbits such
that the periapses of small objects strongly affected by gas
drag tend to cluster around 3π/2 with respect to the binary
apsidal line. This was originally thought (Marzari & Scholl
2000; Thébault et al. 2004) to assist planetesimal agglomeration
since the relative velocities of colliding bodies are reduced by
such orbital phasing. However, it was subsequently recognized
(Thébault et al. 2008) that the reduction of the relative velocity
caused by apsidal alignment is effective only for planetesimals
of similar sizes. Objects of different sizes still collide at high
speeds, which complicates their growth.

These studies have generally arrived at the same conclusion—
the difficulty of planetesimal accretion—despite the different
ways in which the gas disk and its interaction with planetesi-
mals was treated. While the early calculations (Thébault et al.
2004, 2006, 2008, 2009; Thébault 2011) typically assumed disk
properties to be described by some (semi-)analytic axisymmet-
ric models, several recent studies followed the properties and
evolution of gas disks in binaries using direct hydrodynami-
cal simulations (Paardekooper et al. 2008; Kley et al. 2008;
Marzari et al. 2009a, 2012; Regály et al. 2011; Müller & Kley
2012; Picogna & Marzari 2013). One of the most important as-
pects of disk physics that the latter captures is the development
of non-axisymmetry in the surface density distribution of the
gaseous disk. This non-axisymmetry emerges under the grav-
itational perturbation of the binary companion, predominantly
in the form of non-zero eccentricity of the fluid trajectories
(Marzari et al. 2012). Another phenomenon is the disk pre-
cession, which sometimes develops in simulations and has a
subsequent effect on planetesimal dynamics.
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An entirely different way of lowering planetesimal eccentric-
ities in binaries has been pursued by Rafikov (2013, hereafter
R13), who demonstrated that planetesimal eccentricities can
be considerably lower than previously thought by properly ac-
counting for the gravity of a massive axisymmetric gaseous disk
in which planetesimals form. The non-Keplerian potential of the
disk drives rapid precession of planetesimal orbits, suppressing
the companion’s driving of their eccentricity.

Note that massive protoplanetary disks must have been quite
natural in γ Cep-like systems since all of the known systems
(with the exception of α Cen) harbor Jupiter-like planets with
Mpl sin i = (1.6–4) MJ (Chauvin et al. 2011). It is natural to
expect the parent disk mass to exceed the planet mass by at least
a factor of several (this number is very uncertain but is believed
to be ∼10 for the Minimum Mass Solar Nebula), which does
not make an assumption of a (0.01–0.1) M� disk unreasonable
despite the fact that sub-millimeter surveys find very low fluxes
of thermal dust emission in young binaries with semi-major axes
of several tens of AU (Harris et al. 2012).

As discussed above, the assumption of a purely axisymmet-
ric disk may be too simplistic since simulations indicate that
protoplanetary disks in binaries often develop significant ec-
centricities. To that effect, Silsbee & Rafikov (2015, hereafter
SR15) presented the first investigation of the secular excitation
of planetesimal eccentricities by the simultaneous action of the
gravitational perturbations due to both the eccentric gaseous disk
and the companion star. They showed that the non-axisymmetric
gravitational field of such a disk excites planetesimal eccentric-
ity (in addition to the excitation produced by the companion)
and usually does not allow it to drop below the disk eccentric-
ity, which may be rather high as suggested by some simula-
tions (Okazaki et al. 2002; Paardekooper et al. 2008; Kley &
Nelson 2008). This would again suppress planetesimal growth.
On the other hand, SR15 outlined several ways in which this
issue can be alleviated, for example, if the gaseous disk is pre-
cessing rapidly or if its own self-gravity is capable of reducing
disk eccentricity to low levels. At the same time, SR15 did not
include gas drag in their calculations, eliminating the possi-
bility of planetesimal apsidal alignment and their eccentricity
damping by drag.

Our current work builds upon the results of previous studies
by exploring planetesimal dynamics in disks coplanar with the
binary under the combined effects of (1) gravitational perturba-
tions due to the eccentric gaseous disk in which planetesimals
are embedded, (2) the gravity of the eccentric companion, and
(3) gas drag. While we do not model disks in binaries using hy-
drodynamical simulations, we still capture their main features,
namely their non-axisymmetry and the possibility of preces-
sion. Our results are then used in a companion paper (Rafikov &
Silsbee 2015, hereafter Paper II) to explore the details of planet
formation in binaries.

We thereby extend the existing semi-analytical studies in
which only gas drag (and not disk gravity) was accounted for
(Thébault et al. 2004, 2006, 2008, 2009; Leiva et al. 2013).
We also go beyond the works of R13 and SR15 in which
gas drag was neglected and only the gravitational effects of
the gaseous disk and binary companion were considered. In
addition, we extend the study of Beaugé et al. (2010) devoted to
exploring planetesimal dynamics in eccentric, precessing disks
by accounting for the gravitational potential of such a disk.

This paper is structured as follows. We discuss our general
setup in Section 2 and then derive equations for the evolution of
orbital elements of planetesimals in eccentric disks in Section 3.

A prescription for the gas-drag-induced eccentricity evolution
is described in Section 4. Solutions to the equations of plan-
etesimal dynamics in non-precessing and precessing disks are
presented in Sections 5 and 6 (as well as Appendices B and C)
correspondingly. The diversity of planetesimal dynamical be-
havior is discussed in Section 7. We derive the relative velocity
distribution of objects of different sizes in Section 8. We provide
an extensive discussion of our dynamical results and their ap-
plications in Section 10. We compare different approximations
for treating planetesimal dynamics in Section 10.1, briefly dis-
cuss limitations of this work in Section 10.2, and summarize our
main conclusions in Section 11. Finally, some of our analytical
derivations use the local approximation for treating elliptical
motion, which is reviewed in Appendix A.

2. PROBLEM SETUP

Our general setup is similar to that explored in SR15. We
consider an elliptical disk around a primary star in a binary with
semi-major axis ab, eccentricity eb, and component masses Mp
(primary) and Ms (secondary). We define μ ≡ Ms/(Mp + Ms)
and ν ≡ Ms/Mp. Binary, disk, and planetesimal orbits within
it are assumed to be coplanar. This distinguishes our work
from many other studies focused on the effects of Lidov–Kozai
oscillations (Lidov 1962; Kozai 1962) on planetesimal dynamics
in systems with inclined companions (Marzari et al. 2009a;
Batygin et al. 2011; Zhao et al. 2012).

Non-axisymmetric disk structure is described via the non-
zero disk eccentricity, which is a viable approximation given
that simulations tend to show the prevalence of the m = 1
azimuthal harmonic of the disk shape distortion (Marzari et al.
2012). Fluid elements in a disk follow elliptical trajectories with
an eccentricity eg(ad ) that is a function of the semi-major axis
ad of a particular ellipse. All of them have the primary star of
the binary as a focus. For simplicity, we assume all fluid ellipti-
cal trajectories have aligned apsidal lines, uniquely determining
disk orientation via a single parameter �d—the angle between
the disk and binary apsidal lines. The latter is assumed to be
fixed in space as the precession of the binary under the gravity
of the disk is slower than all other processes. The assumption of
apsidal alignment does not affect the qualitative features of plan-
etesimal dynamics and can be easily relaxed using the results of
Statler (2001).

Because gas moves on ellipses, its surface density generally
varies along the trajectory (Statler 2001; Ogilvie 2001). To
obtain the gas surface density Σ(rd, φd ) at a point in a disk with
polar coordinates (rd, φd ), we specify the gas surface density at
periastron for each elliptical trajectory Σp(ad ) as a function of
the semi-major axis of the corresponding ellipse ad. SR15 show
how this and the knowledge of eg(ad ) can be used to derive
Σ(rd, φd ) everywhere in the disk. In this work, following SR15,
we assume a simple power-law dependence for both eg and Σp:

Σp(ad ) = Σ0

(
aout

ad

)p

, eg(ad ) = e0

(
aout

ad

)q

, (1)

where aout is the semi-major axis of the outermost elliptical
trajectory of the disk, and Σ0 and e0 are the values of Σp and eg
at aout. The gravity of the companion truncates the disk at this
outer radius aout, which for eccentric binaries with eb = 0.4 is
about (0.2–0.3)ab (Artymowicz & Lubow 1994; Regály et al.
2011). Unless stated otherwise, we will be using aout = 5 AU in
this work.
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In all calculations of this paper we will be using a disk model
with p = 1 and q = −1. Some motivation for singling out these
particular values of p and q for circumstellar disks in binaries
has been provided in R13 and SR15.

The total disk mass Md ≈ 2π
∫ aout

ain
Σp(ad )addad enclosed

within aout can be used to express Σp as

Σp(ad ) = 2 − p

2π

Md

a2
out

(
aout

ad

)p

≈ 3 × 103g cm−2Md,−2a
−1
out,5a

−1
d,1 (2)

(the numerical estimate is for p = 1), where Md,−2 ≡
Md/(10−2 M�), aout,5 ≡ aout/(5 AU) and ad,1 ≡ ad/AU. In
Equation (2) we neglected disk ellipticity and assumed p < 2,
so that most of the disk mass is concentrated in its outer part.

3. BASIC EQUATIONS

We are interested in the dynamics of planetesimals orbiting
the primary within the disk and coplanar to it. We characterize
their orbits with the semi-major axis ap, the eccentricity ep, and
the apsidal angle (with regard to the binary apsidal line) �p.
The orbital evolution of planetesimals is treated in a secular
approximation, i.e., neglecting short-term gravitational pertur-
bations (Murray & Dermott 1999). We also assume ep � 1 as
well as eg � 1 and introduce, for convenience, the planetesimal
eccentricity vector ep = (kp, hp) = ep(cos �p, sin �p).

In this work, we fully account for gravitational perturbations
due to both the binary companion and the eccentric disk using
the approach advanced in SR15. For the disk properties de-
scribed by Equation (1), SR15 calculated an analytic expression
for the planetesimal disturbing function accounting for the grav-
ity of both the disk and the secondary. They then derived a set
of Lagrange equations (see their Equations (16) and (17)) de-
scribing the evolution of ep under the influence of gravitational
forces alone.

In addition, we take into account the effects of gas drag
on the secular evolution of planetesimal eccentricity. Drag-
induced dissipation also results in non-conservation of energy
and evolution of ap. However, to zeroth order, we can neglect this
since the radial inspiral of planetesimals usually occurs on much
longer timescales than their eccentricity evolution (Adachi et al.
1976). As a result, we can concentrate on the behavior of ep at
fixed ap and determine the relative velocities of planetesimals
and their collisional outcomes.

Gas drag introduces additional terms in the eccentricity
evolution equations of SR15, which we re-write in the following
form:

dhp

dt
= Akp + Bb + Bd cos �d (t) + ḣdrag

p , (3)

dkp

dt
= −Ahp − Bd sin �d (t) + k̇drag

p . (4)

Here A = Ab + Ad is the planetesimal precession rate. It is
contributed both by the gravity of the secondary (Ab) and the
disk (Ad), with

Ab = ν

4
npα2

bb
(1)
3/2(αb) ≈ 3

4
npν

(
ap

ab

)3

(5)

≈ 5.9 × 10−4yr−1ν
M

1/2
p,1

ab,20
a

3/2
p,1,

where np = (GMp/a3
p)1/2 is the planetesimal mean rate,

Mp,1 ≡ Mp/M�, ap,1 ≡ ap/AU, ab,20 ≡ ab/(20 AU), b
(j )
s (α)

is the standard Laplace coefficient (Murray & Dermott 1999),
αb ≡ ap/ab and the approximation in Equation (5) works for
αb � 1. The disk contribution is

Ad = 2π
GΣp(ap)

apnp

ψ1 = (2 − p)ψ1np

Md

Mp

(
ap

aout

)2−p

≈ − 6.3 × 10−3yr−1a
−1/2
p,1

Md,−2

M
1/2
p,1aout,5

, (6)

where the numerical estimate is for p = 1 so that ψ1 =
−0.5 (SR15). Dimensionless coefficients of order unity ψ1
and ψ2 (see Equation (8)) have been calculated in SR15
and are functions of the disk model and the distance of the
planetesimal orbit from the disk edges. One can see that for
reasonable assumptions about the disk mass (Md ∼ 10−2 M�),
the planetesimal precession rate at 1 AU is dominated by the
disk gravity.

Eccentricity excitation by the binary (Bb) and the disk (Bd) is
described by

Bb = −ν

4
npα2

bb
(2)
3/2(αb)eb ≈ −15

16
npν

(
ap

ab

)4

eb, (7)

Bd = π
GΣp(ap)

apnp

ed (ap)ψ2, (8)

= 2 − p

2
ψ2eg(ap)np

Md

Mp

(
ap

aout

)2−p

, (9)

with the latter explicitly depending on the local value of the disk
eccentricity eg(ap).

Note that �d in Equations (3) and (4) is not necessarily
constant—it can be an explicit function of time, allowing one to
treat the case of a precessing disk.

The terms ḣ
drag
p and k̇

drag
p , absent in the original version of

Equations (3) and (4) in SR15, represent the effect of gas drag
on the eccentricity evolution; they are derived in Section 4. The
main goal of this work is to see how their introduction affects
planetesimal dynamics.

4. DRAG FORCE CALCULATION

Next we derive the expressions for the drag-induced eccen-
tricity evolution terms ḣ

drag
p and k̇

drag
p applicable to the case of

an eccentric disk.
Because of our assumption of small eccentricities for both gas

and planetesimals, it is reasonable to employ the local (or guid-
ing center) approximation. This approach is often used in stud-
ies of planetesimal and galactic dynamics (Binney & Tremaine
2008) and forms a basis of the so-called Hill approximation
(Hénon & Petit 1986; Hasegawa & Nakazawa 1990). Local ap-
proximation considers planetesimal motion in a local Cartesian
x−y reference system aligned with the radial and azimuthal
directions, respectively. The main features of this approxima-
tion are reviewed in Appendix A. In particular, Equations (A8)
describe how kp and hp evolve under the effect of external
force F.
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In our case, F is the drag force arising because of the motion
of planetesimals with respect to gas. Adachi et al. (1976) gives
the following expression for quadratic drag force appropriate
for rapidly moving objects with sizes larger than the mean free
path of gas molecules:

F = −CD

2
πd2

pρgvrvr , (10)

where CD is a constant drag coefficient taken to be 0.5 through-
out this paper, dp is the particle size, and ρg is the gas density. The
relative particle–gas velocity vr is given by Equations (A5)–(A7)
with relative particle–gas eccentricity components

hr = hp − hg, kr = kp − kg, (11)

and eg = (kg, hg) = eg(cos �d, sin �g) being the local value of
the gas eccentricity vector. Using these expressions, we obtain
the force components Fx and Fy:

Fx = −3CD

8
mpDva

r (kr sin npt − hr cos npt), (12)

Fy = −3CD

16
mpDva

r (kr cos npt + hr sin npt), (13)

where mp is the planetesimal mass, and the relative velocity va
r

is given by Equation (A7). The prefactor D is given by

D = np

Σg

ρpdp

r

h
, (14)

with ρp being the particle bulk density and h = cs/np being the
disk scale height (cs = (kTg/μ)1/2).

Now we plug the expressions for Fx, Fy into the first
two Equations (A8) and then average them in time t over
the planetesimal orbital period (this is the secular, i.e., time-
averaged approximation). One can easily see that to get the
result to lowest-order in er we do not need to keep the terms
O(er , ed, ep) in the expression for ρg . As a result, we find

k̇drag
p = −3CD

4π
E

(√
3

2

)
Dkrer , (15)

ḣdrag
p = −3CD

4π
E

(√
3

2

)
Dhrer , (16)

where E(
√

3/2) ≈ 1.211 is a complete elliptic integral, and
e2
r = k2

r + h2
r .

We can rewrite Equations (15) and (16) in the following form:

k̇drag
p = −kp − kg

τd

, ḣdrag
p = −hp − hg

τd

, (17)

where the eccentricity damping time

τd = 4π

3CDE
(√

3/2
)D−1e−1

r

≈ 600 yr C−1
D

aout,5ap,1

M
1/2
p,1Md,−2

h/r

0.1

10−2

er

dp,1. (18)

Here dp,1 ≡ dp/(1 km) and numerical estimate is for p = 1
and ρp = 3 g cm−3; in the case of quadratic drag law (10) τd

depends on kp and hp through er; see Equations (11).

5. ECCENTRICITY EVOLUTION

Results of Section 4 allow us to understand the behavior of
ep. For simplicity, we start by considering the case of a non-
precessing disk, i.e., �d =const. Even in this case Equations (3)
and (4) with the quadratic drag terms (15) and (16) cannot
generally be solved analytically because of the τd dependence
on er.

However, it can be easily shown that solutions of these
equations inevitably converge to a steady-state form—the free
eccentricity, which depends on initial conditions (R13; SR15),
damps out and ep converges to the forced eccentricity vector
(Beaugé et al 2010). This is illustrated in Figure 1 where we
solve evolution equations numerically. It is clear that starting
with arbitrary initial conditions and after initial (sometimes
oscillatory) evolution, kp and hp do converge to the same
steady state values (depending only on the disk parameters and
planetesimal size), which are given by Equations (22) and (23)
derived below. This point is additionally illustrated in Figure 2(a)
where we plot the trajectory of ep as it evolves in hr–kr
coordinates. There one can clearly see ep converging to a fixed
point solution, in an oscillatory fashion for large planetesimals,
and exponentially for small objects, which rapidly couple to the
gas disk.

Damping of the memory of initial conditions can also be
demonstrated by solving Equations (3) and (4) analytically in
the simplified but qualitatively similar case of a linear drag
law, when τd is independent of hp and kp. Such a solution is
presented in Appendix B for the general case of a precessing
gaseous disk. The non-precessing disk solution is obtained by
setting �̇d = 0. This clearly demonstrates the convergence of
ep to a time-independent, forced value.

SR15 have demonstrated that in the absence gas drag, under
the action of only the gravity of the disk and the companion star,
the steady state (forced) eccentricity is given by

en/drag
p =

{
k

n/drag
p

h
n/drag
p

}
= eb + ed , (19)

eb =
{
kb

hb

}
= −Bb

A

{
1
0

}
, (20)

ed =
{
kd

hd

}
= −Bd

A

{
cos �d

sin �d

}
, (21)

where eb and ed are forced eccentricity vectors due to the
secondary and disk gravity, respectively. Note that the accuracy
of the analytical expression (20) for the binary contribution
is known to worsen (beyond the ∼10% level) when ap/ab �
0.1 (Thébault et al. 2006; Barnes & Greenberg 2006). More
refined calculations of eb are possible (Veras & Armitage 2007;
Giuppone et al. 2011) but for the purposes of this work it is
sufficient to use Equation (20).

With the gas drag included, the behavior of ep changes. To
determine the steady-state values of kp and hp and analyze
their properties, we use the prescription (17), set to zero time
derivatives in the left-hand sides of Equations (3) and (4) and
solve the resulting algebraic system with respect to hp and kp.
We find as a result

kp = kb + kd +
(kg − kb − kd ) − (hg − hd )(Aτd )

1 + (Aτd )2
, (22)

4
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(a)

(b)

Figure 1. Time evolution of the components of the relative eccentricity vector er = (kr , hr ) = ep − eg for planetesimals of two different sizes—dp = 0.3 km (red)
and 8 km (green) starting with two different sets of initial conditions—er = (0.015, 0.01) (solid) and er = (−0.03,−0.02) (dashed). Calculations are carried out for
the parameters of the γ Cep system at 2 AU in a 0.001 M� disk aligned with the binary; disk eccentricity at its outer edge aout = 5 AU is e0 = 0.05, and p = 1,
q = −1 (see Equation (1)). After the short initial transient kr and hr converge to the forced values given by Equations (22) and (23).

hp = hd +
(hg − hd ) + (kg − kb − kd )(Aτd )

1 + (Aτd )2
, (23)

where kb, kd, hb, hd are defined in Equations (20) and (21). These
asymptotic results are valid even if τd is a function of er —in
that case they simply represent two implicit relations for hp
and kp.

Solutions (22) and (23) can be re-written in vectorial form as

ep =
{
kp

hp

}
= ef,b + ef,d , (24)

ef,b = kb

(Aτd )

1 + (Aτd )2

{
(Aτd )
−1

}
, (25)

ef,d =
[

e2
g + τ 2

d B2
d

1 + (Aτd )2

]1/2 {
cos (�d + φ)
sin (�d + φ)

}
, (26)

where the phase shift φ is given by

cos φ = eg − ABdτ
2
d(

e2
g + τ 2

d B2
d

)1/2 [
1 + (Aτd )2

]1/2 . (27)

In the limit of vanishing drag, Aτd → ∞, one finds φ → π
and the solution (24)–(26) reduces to the non-drag result with
no free eccentricity (19)–(21); see SR15.

In the limit of strong drag (Aτd → 0) in a circular disk
(i.e., eg = 0) and no disk gravity (i.e., Ad = Bd = 0) one finds
hp/kp → −∞. This means that in this case planetesimal apsidal
lines cluster around �p = 3π/2, in agreement with Marzari
& Scholl (2000). Also, |ep| → Bbτd directly depends on

planetesimal size, which implies that in this limit, planetesimals
of different sizes collide with non-zero speeds even despite their
apsidal alignment (Thébault et al. 2008).

Expressions (24)–(26) clearly show that ep can be split into
two distinct components: a contribution ef,b due to the gravity of
the binary and a contribution ef,b related to both the gravitational
and gas drag effects of the disk. It is also clear that after
reaching steady state, planetesimal orbits are generally aligned
with neither the disk (�p �= �d ) nor the binary (�p �= 0).

5.1. Relative Particle–Gas Eccentricity

In the case of quadratic drag (10), we can further analyze
eccentricity behavior. Using Equations (22) and (23) we express
relative particle–gas eccentricity as

er = |ep − eg| = ec

(Aτd )√
1 + (Aτd )2

, (28)

where we introduced a characteristic eccentricity ec = |en/drag
p −

eg| given by

ec ≡ [
(hg − hd )2 + (kg − kb − kd )2

]1/2

=
[
(Aeg + Bd )2 + B2

b + 2 cos �dBb(Aeg + Bd )
]1/2

|A| .

(29)

Plugging this expression for er into Equation (18), one obtains
the following bi-quadratic equation for (Aτd ):

(Aτd )4 =
(

dp

dc

)2 [
(Aτd )2 + 1

]
, (30)
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(a)

(b)

Figure 2. (a) Planetesimal eccentricity evolution trajectories in kr −hr space in
a non-precessing, aligned (�d = 0) disk for the four cases shown in Figure 1.
One can see the convergence of trajectories starting at different ep to fixed
point solutions (indicated by crosses), which depend on planetesimal radius dp.
(b) The same for a disk precessing at a rate of �̇d = A. Evolution trajectories
converge to a limit cycle behavior in the precessing disk. See Section 6 for more
details. The color and line type scheme is the same for both panels.

where we have introduced a characteristic planetesimal size dc
defined as

dc ≡ 3CDE(
√

3/2)

4π

np

|A|
Σg

ρp

r

h
ec. (31)

All our subsequent results can be formulated completely in
terms of ec and dp/dc, underscoring the significance of these
variables. A detailed discussion of the characteristic values and
general behavior of ec and dc is provided in Sections 7.1 and 7.3.

Solving Equation (30), one finds

|Aτd | = dp

dc

⎡
⎣1

2
+

√
1

4
+

(
dc

dp

)2
⎤
⎦

1/2

, (32)

i.e., that |Aτd | is a function of dr/dc only.

Figure 3. Dependence of er/ec and |Aτd | on planetesimal size dp/dc , given
by Equations (28) and (32), respectively. Asymptotic scalings (34) and (38) are
also indicated. For dp ∼ dc one finds |Aτd | ∼ 1 and er ∼ ec .

Plugging Equation (32) into Equation (28), one also finds the
general expression for the relative particle–gas eccentricity

er = ec

dp

dc

⎡
⎣

√
1

4
+

(
dc

dp

)2

− 1

2

⎤
⎦

1/2

(33)

valid for arbitrary dp/dc.
We illustrate the behaviors of |Aτd | and er given by

Equations (32) and (33) in Figure 3. This reveals the meaning of
the characteristic size dc: objects with dp ∼ dc have |Aτd | ∼ 1,
i.e., their stopping time due to gas drag is comparable to their
orbital precession period and their relative eccentricity with re-
spect to gas is er ∼ ec.

It is instructive to further explore general solutions (32), (33)
valid for arbitrary dp/dc in the two limits covered next.

5.2. Small Objects, dp � dc — Strong Drag (|Aτd | � 1)

In the limit of strong gas drag we expect the damping time
τd to be very short and |Aτd | � 1, so that the gas-particle
velocity differential is rapidly reduced to zero. According to
Equation (32), this regime is valid for small objects with
dp � dc, when

|Aτd | ≈ (
dp/dc

)1/2 � 1. (34)

From Equation (28), the relative particle–gas eccentricity is

er ≈ |Aτd | ec ≈ ec

(
dp/dc

)1/2
(35)

to leading order in (Aτd ).
Equations (22) and (23) become

kp → kg + [(hd − hg)(Aτd )

− (kg − kb − kd )(Aτd )2], (36)

6



The Astrophysical Journal, 798:69 (19pp), 2015 January 10 Rafikov & Silsbee

hp → hg + [(kg − kb − kd )(Aτd )

+ (hd − hg)(Aτd )2]. (37)

Here brackets encompass the leading order subdominant terms,
compared to the zeroth order terms outside brackets.

It is clear from these asymptotic expressions that in the case
of strong drag, the eccentricity vector of planetesimals tends
toward the eccentricity vector of the gas, ep → eg . It is only
weakly sensitive to gravitational perturbations due to either the
companion or the disk. Thus, to leading order, the value of the
eccentricity vector is independent of particle size (which enters
only through τd ).

5.3. Big Objects, dp � dc — Weak Drag (|Aτd | � 1)

In the opposite limit of weak drag or long damping time
|Aτd | � 1 valid for large objects with dp � dc, Equation (32)
yields

(Aτd ) ≈ dp/dc � 1, (38)

while the relative particle–gas eccentricity is

er ≈ ec; (39)

see Equation (28). Thus, in the weak drag regime, er saturates
at the value independent of the size of the object.

Equations (22) and (23) reduce in this limit to

kp → kb + kd + [(hd − hg)(Aτd )−1

+ (kg − kb − kd )(Aτd )−2], (40)

hp → hg + [(kg − kb − kd )(Aτd )−1

− (hd − hg)(Aτd )−2]. (41)

Again, terms in brackets are subdominant compared to the
leading terms (outside brackets).

This solution shows that in the limit of weak drag ep →
en/drag
p , i.e., the behavior of the particle eccentricity vector is

determined predominantly by the gravitational effects of the
secondary and the disk. Thus, ep is again almost independent of
the particle size.

6. PRECESSING DISKS

So far we have assumed the orientation of the disk to be fixed
in the binary frame. However, some simulations find disks in
binaries to precess (e.g., Marzari et al 2009b; Müller & Kley
2012). We now study how planetesimal dynamics change in the
case of a disk uniformly precessing at a constant rate of �̇d .
Figure 2(b) displays the evolution of ep for the same parameters
as in panel (a) of that figure, but in a disk precessing at the rate
�̇d = A. One can see that the main difference compared to
the non-precessing case is that in the long run ep converged to
limit cycle behavior (Beaugé et al. 2010) rather than to a fixed
point, as in panel (a). The sizes and shapes of the asymptotic
limit cycles depend on both the planetesimal size dp and the
disk precession rate �̇d , as discussed in detail in Appendix C
and shown in Figure 9. This certainly complicates planetesimal
dynamics.

To gain additional insights, in Appendix B, we derive a full
time-dependent solution for ep in a precessing disk for the

case of linear gas drag, when τd is independent of the relative
particle–gas eccentricity er. This solution fully accounts for the
gravitational and gas drag effects of the precessing disk as well
as for the gravity of the binary companion.

We use this solution as a basis for understanding planetesimal
dynamics in a precessing disk in the more complicated but
realistic case of quadratic gas drag. This regime, which does
not admit a general analytical solution even for the long-term
behavior, is explored in Appendix C. There we show that
planetesimal dynamics with drag law (10) depend on the relative
role played by the binary companion, as described in the next
section.

6.1. Strong Binary Perturbation Case

The results in Appendices B and C show that whenever binary
gravity dominates ep excitation and the condition

|(A − �̇d )eg + Bd | � |Bb| (42)

is fulfilled, planetesimal dynamics proceed as if the disk were
not precessing: neither the gas eccentricity eg nor the eccentricity
driven by disk gravity ed, Equation (21), is significant compared
to the forced eccentricity due to the binary eb = Bb/A (note that
both the binary and disk gravity contribute to A).

In this case, ep is close to the relative planetesimal-gas
eccentricity er and is approximately constant. As a result, the
planetesimal orbit maintains a roughly fixed orientation with
respect to the binary orbit and

kp ≈ kb

(Aτd )2

1 + (Aτd )2 , hp ≈ −kb

(Aτd )

1 + (Aτd )2 , (43)

with kb defined by Equation (20). Planetesimal orbits are aligned
with the binary (�p → 0) for |Aτd | → ∞ (weak drag), but in
the case of strong drag, |Aτd | → 0, the planetesimal apsidal
line points at �d = 270◦, which agrees with Marzari & Scholl
(2000) despite the disk precession.

Interestingly, even though gas eccentricity eg does not appear
in these expressions (and neither does the precession rate �̇d ,
at the lowest order), the effect of the gas drag is explicitly
present via the non-trivial τd dependence. Thus, our precessing
disk results obtained in the limit (42) apply equally well to
planetesimal dynamics in a purely axisymmetric (eg = 0)
gaseous disk, extending the results of R13 to the case of non-
zero gas drag—note that A in Equations (43) and in the definition
of kb is the full precession rate due to both the binary and
the disk.

The value of er in the regime (42) is given by Equations (28)
and (33) with dc and |Aτd | computed using ec ≈ eb = |Bb/A|
(i.e., Equation (29) in the limit Bd → 0, eg → 0); see
Equations (31) and (32).

6.2. Weak Binary Perturbation Case

In the opposite case of weak driving of ep by the binary
companion, we combine solutions (C5) and find the relative
particle–gas eccentricity to be

er = ∣∣epr
c

∣∣ |A − �̇d | τd√
1 + (A − �̇d )2 τ 2

d

, (44)

replacing Equation (28) in the case of the precessing disk. Here
we defined the characteristic eccentricity as

epr
c = − Bd

A − �̇d

− eg, (45)
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(a) (b)

(c) (d)

Figure 4. Map of the characteristic eccentricity ec as a function of e0 and Md (upper panels) for two different disk orientations—�d = 0 (a) and (b)—and as a function
of ap and Md for two values of disk eccentricity e0 at aout (lower panels). The calculation is done for γ Cep system at ap = 2 AU (the observed semi-major axis of the
planet). The dashed red line corresponds to Mp sin i for the observed planet in the γ Cephei system. The purple line is where |Ad | = |Ab| and the blue line is where
|Bd | = |Bb|. See the text for details.

which, according to SR15, is the relative particle–gas forced
eccentricity in the no drag (τd → ∞) and no binary (Bb → 0)
case. As �̇d → 0, one finds |epr

c | → ec given by Equation (29)
with kb = hb = 0; also, Equation (44) reduces to the non-
precessing disk result (28).

Plugging this expression for er into Equation (18) one finds

|A − �̇d | τd = dp

d
pr
c

⎡
⎣1

2
+

√
1

4
+

(
d

pr
c

dp

)2
⎤
⎦

1/2

, (46)

with a new characteristic planetesimal size

dpr
c ≡ 3CDE(

√
3/2)

4π

np

|A − �̇d |
Σg

ρp

r

h

∣∣epr
c

∣∣ . (47)

These expressions are different from Equations (31) and (32)
in that they use A − �̇d instead of A and |epr

c | instead of ec.
It is then clear that whenever a precessing disk dominates the
planetesimal dynamics Equation (33) also holds provided that
we replace dc → d

pr
c and ec → |epr

c |. The same is true for
our asymptotic results on ep behavior presented in Sections 5.2
and 5.3 if we also take kb → 0.

In the limit �̇d → 0, the value of ef reduces to ef,d given
by Equation (26), but when |�̇d | � |A|, rapid disk precession
suppresses excitation of planetesimal eccentricity by the disk
gravity, i.e., the first term in Equation (45).

It is worth noting that the results of Appendix B for the case
of linear drag suggest that neglecting binary gravity in the case
of a precessing disk might require a condition different from
the direct opposite to the constraint (42). Indeed, the asymptotic
solution (B5) for the relative eccentricity of planetesimals in the
case of weak drag (τd,1, τd,2 � |A−�̇d |−1) shows that the term

proportional to kb can be neglected only when

|(A − �̇d )eg + Bd | � |Bb|
(

A − �̇d

A

)2

, (48)

which is a more stringent criterion whenever |�̇d | � |A|.
The same constraint may be needed in the case of quadratic
drag. However, in practice, one often finds |�̇d | � |A|; see
Paper II in which case Equation (48) is just the opposite of the
condition (42).

7. DIVERSITY OF PLANETESIMAL DYNAMICS

Results of Section 5 demonstrate that the steady state value
of the eccentricity vector ep is fully determined by just two key
parameters—the characteristic eccentricity ec and the critical
planetesimal size dc; see Equation (33). The eccentricity ec sets
the overall scale of ep, while dc is the planetesimal size at which
planetesimal coupling to gas changes from weak to strong.
We now explore the behavior of these variables as a function
of system parameters to elucidate some important features of
planetesimal dynamics.

7.1. Behavior of ec

In Figures 4(a) and (b) we show ec computed for the γ
Cep system at 2 AU—the semi-major axis of its planet—as
a function of disk mass Md and eccentricity e0, for two disk
orientations—aligned (�d = 0) and anti-aligned (�d = π )
with the apsidal line of the binary.

One can immediately see a feature common to both panels—a
narrow valley of high ec (white because of saturation at high ec)
at almost constant Md. It appears because at this value of disk
mass, Ad = −Ab and A = 0, giving rise to a secular resonance.
According to Equations (19)–(21) and (29), ec gets driven to
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high values as A → 0. This resonance has been previously
discussed in R13 and SR15.

Equations (5) and (6) predict that at a given distance from the
primary ap, this resonance occurs for the disk mass

Md,A=0 = Ms

3

4(2 − p)|ψ1|
(

ap

ab

)1+p (
aout

ab

)2−p

≈ 1.5 × 10−3 M�
Ms

0.4 M�

aout,5

a3
b,20

a2
p,2, (49)

where aout,5 ≡ aout/(5 AU), ap,2 ≡ ap/(2 AU), and ab,20 ≡
ab/(20 AU). This estimate agrees with Figures 4(a) and (b) for
the γ Cep parameters and a disk with p = 1 and ψ1(p = 1) =
−0.5 (SR15).

The existence of this resonance is independent of the relative
disk–binary orientation because planetesimal precession rates
Ab and Ad are determined by the axisymmetric components of
the binary and disk gravitational potentials. For this reason,
Md,A=0 is the same for all disk orientations. To the right of
the secular resonance, disk gravity dominates the planetesimal
precession rate and suppresses ec if the disk eccentricity is
small (R13).

At high disk eccentricity, typically e0 � 0.05, this suppres-
sion vanishes because for large Md � 10−3 M�, disk gravity
starts to dominate ep excitation. This statement is true above the
blue line |Bb| = |Bd | in Figures 4(a) and (b) (the origin of the
low-ec band at small Md and high e0 in Figure 4(a) is discussed in
Section 7.2). Further increase of the disk mass in this region does
not affect ec because the planetesimal dynamics switch to the
so-called DD regime (SR15) in which ep(ap) ≈ |ψ2/ψ1|eg(ap),
independent of Md. As a result, high eg leads to high ep.

In Figures 4(c) and (d) we explore the dependence of ec on the
distance from the binary ap and Md for two different values of
the disk eccentricity e0 = 0.1 and 0.01. Here we look only at an
aligned disk case. Again, an obvious feature of these maps is the
secular resonance around the blue dashed curve for |Ad | = |Ab|,
where ec is very large and collisional growth is impossible. In
Figure 4(d) there is also a “valley” of low ec to the right of the
blue line |Bb| = |Bd |, whose origin is discussed in Section 7.2.

These maps make it clear that ec becomes independent of
Md (at a given separation ap) when the disk mass becomes
large enough. This is a direct consequence of the planetesimal
dynamics switching into the DD regime (SR15) when both the
eccentricity excitation and apsidal precession of planetesimals
are dominated by the disk gravity with a negligible contribution
from the binary companion. In the high-Md regime, ec decreases
as ap decreases. This is a consequence of our adopted disk
model, in which ed ∝ ap and the fact that ec ∝ ed in the DD
regime.

7.2. Valley of Stability in Aligned Disks

Figures 4(a) and (b) show that irrespective of the disk
orientation, ec is low for high Md � 10−2 M� and small disk
eccentricity, e0 � 10−2. Outside this corner of phase space, ec
is much higher, which makes planetesimal growth problematic
there. At the same time, in the case of an aligned disk (�d = 0),
low values of ec are also possible in a narrow “valley” stretching
toward high e0 and low Md. Since this feature may have
interesting implications for planet formation in binaries (see
Paper II for details), we discuss its origin in more detail.

Equation (29) implies that in an aligned disk hg = hd = 0 so
that

ec ≈ |kg − kd − kb| =
∣∣∣∣Bb + Bd + Aeg

A

∣∣∣∣ . (50)

For massive disks, to the right of the vertical |Ab| = |Ad | line
in Figure 4(a), one can set A ≈ Ad and relate it to Bd via
Equations (6) and (8). As a result, Equation (50) becomes

ec ≈
∣∣∣∣∣Bb + Bd

(
1 + 2ψ1ψ

−1
2

)
Ad

∣∣∣∣∣ . (51)

For the disk model considered here (p = 1, q = −1), one
has ψ1 = −0.5, ψ2 = 1.5 and 1 + 2ψ1ψ

−1
2 = 1/3 so that

ec ≈ |Ad |−1|Bb + Bd/3|. Also Bd > 0 while Bb is always
negative; see Equations (7) and (8). Given that Bd ∝ e0Md it
is then obvious that one can make ec ≈ 0 by choosing e0Md

such that |Bb| ≈ |Bd |/3. Thus, in the case of an aligned disk,
a “valley” of low ec is described by the relation e0 ∝ M−1

d as
long as |Ad | � |Ab| (i.e., for massive disks).

From this discussion we see that ec ≈ 0 for values of e0 and
Md that are close to the curve

Md,|Bb|=|Bd | = Ms

15

8(2 − p)|ψ2|
eb

e0

×
(

ap

ab

)2+p+q (
aout

ab

)2−p−q

≈ 1.2 × 10−3 M�
Ms

0.4 M�

eb

0.4

0.1

e0

a2
out,5

a4
b,20

a2
p,2,

(52)

on which |Bb| = |Bd |; see Equations (7) and (8) in which we
took p = 1, q = −1. This relation is shown by the blue line in
Figure 4 and is quite close to the valley of low ec.

Note that according to Equation (51), the value of ec can be
lowered globally in a massive disk if its structure is such that
1+2ψ1ψ

−1
2 = 0. However, this is not the case for the disk model

used in this work.
The situation is different for the low mass, aligned disks to the

left of the |Ad | = |Ab| (blue dashed) line in Figure 4(a). Here
A ≈ Ab and Bb dominates over Bd for low enough Md at a fixed
e0, which, in the terminology of SR15, corresponds to Case BB
of planetesimal excitation. In this regime, Equation (50) shows
that

ec →
∣∣∣∣eg +

Bb

Ab

∣∣∣∣ =
∣∣∣∣eg − 5

4

ap

ab

eb

∣∣∣∣ (53)

Our adopted radial scaling of eg in the form Equation (1) with
q = −1 results in a particular value of

e0

∣∣
ec→0 = 5

4

aout

ab

eb = 0.125
aout/ab

0.25

eb

0.4
, (54)

for which ec → 0. This critical value of e0 is independent of
Md explaining why the valley of low ec starts going almost
horizontally for Md � Md

∣∣
A=0 in Figure 4(a).

Moreover, e0|ec→0 is also independent of ap, which means
that ec → 0 globally when e0 → e0|ec→0 in parts of the disk
where |Ab| � |Ad | and |Bb| � |Bd |. This is the reason why
in the upper left corner of Figure 4(c) ec is considerably lower
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than in the same region of Figure 4(d), despite e0 being an order
of magnitude higher in the former case. Indeed, according to
Equation (54), e0 = 0.1 used in Figure 4(c) is very close to
e0|ec→0 for the adopted system parameters. As a result of this
coincidence, ec is strongly suppressed in the BB regime in a
rather eccentric (e0 = 0.1) disk.

A narrow region of low ec stretching along the blue curve
|Bb| = |Bd | in Figures 4(c) and (d) is the same valley of
stability, but now revealing itself in Md − ap coordinates.1 It
may lie inside (for low e0) as well as outside (for high e0) of
the secular resonance. Note that in Figure 4(c) the |Ad | = |Ab|
and |Bd | = |Bb| curves fall almost on top of each other, which
is a coincidence caused by our choice of e0 = 0.1 in this case.
Because of that, the valley of stability appears as a very narrow
band of low ec just to the left of the |Bd | = |Bb| curve in
this panel.

If the disk is not aligned with the binary orbit and �d is not
small, then both hd and hg are nonzero and contribute to ec;
see Equation (29). Moreover, for disks that are close to being
anti-aligned with the binary, kb and kd have the same sign,
eliminating the possibility of their mutual cancellation. As a
result, the low-ec valley at high e0 and low Md disappears as
long as |�d − �b| � 10◦.

To summarize, the valley of stability creates favorable condi-
tions for locally lowering planetesimal velocity in aligned disks
around some particular locations even in low-mass disks with
Md � 10−2 M�.

7.3. Behavior of dc

Next we discuss the behavior of the characteristic size dc at
which planetesimals of similar (but not equal) mass collide at
the highest relative velocity ∼ ecvK . Equation (31) shows that
for a given value of ec, critical size dc scales inversely with the
planetesimal precession rate|A|. If planetesimal precession is
dominated by the potential of the secondary, then A = Ab, and
one finds

dc = CDE(
√

3/2)

πν

r

h

Σg

ρp

(
ab

ap

)3

ec

≈ 30 km
CD

ν

0.1

h/r

Md,−2a
3
b,20

aout,5

ec

0.1
a−4

p,1, (55)

where the numerical estimate is for a p = 1 disk and ρp =
3 g cm−3.

In the opposite case, when precession is dominated by the
disk gravity and A = Ad , one obtains

dc = 3CDE(
√

3/2)

8π2ψ1

r

h

Mp

ρpa2
p

ec

≈ 1km
CD

ψ1

0.1

h/r

ec

0.1
Mp,1a

−2
p,1, (56)

independent of the disk mass. It is obvious that in the disk-
dominated case, dc is much smaller than in the binary-dominated
case for ap � 1AU, a fact predicted in R13.

This difference can be easily seen in Figure 8, where the
situation depicted in panel (a) corresponds to the DD regime
where Equation (56) applies. As a result, the planetesimal size

1 Curves of |Ad | = |Ab| and |Bd | = |Bb| run parallel to each other in
Figures 4(c) and (d) because ed ∝ ap in our disk model; see Equations (5)
and (8).

for which the low-er “waist” in this figure is narrowest is around
1 km. In constrast, Figure 8(b) shows a situation in which the
disk gravity has been turned off, so the dynamics are in the BB
regime and Equation (55) applies. Not surprisingly, this pushes
the characteristic dp at the narrowest point of the waist to be
about 30 km.

Using this reasoning, one might expect the critical “danger-
ous” size dp at which er ∼ ec for objects of comparable size to
be smaller for more massive disks in which |Ad | � |Ab|. How-
ever, this logic directly applies only if ec were kept the same.
In reality, changing A also directly affects the value of ec; see
Equation (29). Figure 5 shows that in practice, the behavior of
dc largely reflects that of ec, with all the features of ec maps
(e.g., valleys of low dc) present in dc maps as well. In particu-
lar, the valley of stability shows up prominently in Figures 5(a)
and (d).

The only noticeable difference with Figure 4 is the increase
of dc with decreasing ap in the high-Md (DD) regime; see
Figures 5(c) and (d), a behavior that is predicted by
Equation (56). Also, in agreement with Equation (55), dc de-
creases with increasing ap in the outer disk for small Md (upper
left in Figures 5(c) and (d)) even though ec varies weakly there.
In this region, planetesimal dynamics are determined predom-
inantly by the binary companion (BB regime of SR15) and
Equation (55) applies.

8. DISTRIBUTION OF RELATIVE
PLANETESIMAL VELOCITIES

Our next step is to study the behavior of the relative approach
velocity v12 between planetesimals with sizes d1 and d2. It is
this velocity that determines the outcome of their collision.

We now provide a calculation of the distribution df12/dv12
of v12 between the two planetesimal populations, one with the
eccentricity vector ep(d1) and another with ep(d2). In previous
sections, we have shown that after the initial transient period,
when the free eccentricity damps out, the value of ep becomes
time-independent and is uniquely determined by the planetes-
imal size. Then the only additional orbital parameter that can
give rise to the variation of the relative velocity v12 is the differ-
ence in semi-major axes b12 between approaching particles; see
Equation (A7) of Appendix A. Using Equations (A4) and (A7),
this relation can be written as

v12 = Ωap

[
e2

12 − 3

4

(
b12

ap

)2
]1/2

, (57)

where a is the mean semi-major axis of both planetesimals, and
the condition of close approach x12 = 0 is used. Note that in this
expression we ignored the contribution of particle inclination to
the velocity. This is a reasonable assumption since we expect
eccentricity excitation in the binary plane to dominate over the
out-of-plane excitation.

Ida et al. (1993) consider encounters between the two popu-
lations of objects with fixed eccentricity vectors e1 = (k1, h1)
and e2 = (k2, h2). They derive the following expression for the
flux of objects with an eccentricity e2 approaching a given object
with an eccentricity e1 with random orbital phases, having a sep-
aration of their semi-major axes b12 in the range (b12, b12+db12):

dF12 = 1

π2

Σ2

apm2i12

v12db12[
e2

12 − (b12/ap)2
]1/2 . (58)
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(a) (b)

(c) (d)

Figure 5. Same as Figure 4 but for the behavior of the characteristic size dc given by Equation (31).

Here e12 = [(h1 − h2)2 + (k1 − k2)2]1/2 is the relative eccen-
tricity between the two particle populations, i12 is their rela-
tive inclination, and Σ2 is the surface density of objects with
eccentricity e2.

Using Equation (57), we can express db in Equation (58) via
dv12, resulting in a differential particle flux per unit v12

dF12

dvr

= 4

3π2

Σ2ap

m2i12

e2
12 − (3/4)(b12/ap)2

|b12|
[
e2

12 − (b12/ap)2
]1/2 . (59)

We now express b12 via v12 using Equation (57) and introduce

vmin = 1

2
e12nap, vmax = e12nap. (60)

Then it is clear that vmin < v12 < vmax and we can re-write
(59) as

dF12

dv12
= 1

π2

Σ2

m2i12

v2
12[(

v2
max − v2

12

) (
v2

12 − v2
min

)]1/2 . (61)

From this we find that the distribution of relative velocities
df12/dv12 of different planetesimals normalized to unity is given
by the following expression:

df12

dv12
= v−1

max

E(
√

3/2)

v2
12[(

v2
max − v2

12

) (
v2

12 − v2
min

)]1/2 . (62)

Particle sizes enter into this expression only through e12 via
Equations (60).

This distribution of relative velocities is shown in Figure 6.
It diverges at both v = vmin and v = vmax, but the total particle
flux is finite and given by

F12 =
∫ vmax

vmin

dF12

dv12
dv12 = E(

√
3/2)

π2

Σ2emax

m2i12
. (63)

With the distribution function (61), one finds that the mean
relative velocity 〈v12〉 ≈ 0.81vmax = 0.81e12npap, while the
rms velocity is given by vrms = 〈v2

12〉1/2 = 0.828e12npap.

9. RELATIVE VELOCITY BETWEEN PLANETESIMALS

The results of the previous section clearly demonstrate that
the relative velocity with which two planetesimals with sizes
d1 and d2 approach each other prior to collision is determined
by their relative eccentricity e12 = |ep(d1) − ep(d2)|. Using
solutions (22) and (23), it is trivial to show that

e12 = ec

∣∣Aτd,1 − Aτd,2

∣∣√(
1 + A2τ 2

d,1

) (
1 + A2τ 2

d,2

) , (64)

where τd,i ≡ τd (di), i = 1, 2. According to the results of
Section 5, Aτd and, subsequently, e12, are functions of (1)
the sizes of the colliding planetesimals d1,2 and (2) the binary
parameters and local disk properties, which set the values of both
ec and dc; see Equations (29) and (31). We already explored the
latter in Section 7 and now we turn our attention to understanding
e1,2(d1, d2).

In Figure 7 we map out e12(d1, d2) (as well as the relative
velocity v12 = e1,2vK ) at the location of the planet ap = 2 AU
in the γ Cephei system for different characteristics of the disk,
for which a model (1) with p = 1, q = −1 is adopted. We
vary disk mass Md, eccentricity at its outer edge e0, and its
orientation with respect to the binary orbit �d , one at a time,
keeping other disk parameters fixed. All panels clearly show
several key invariant features.

First, there is a critical size of order dc, around d1 = d2 ∼
(0.1–1) km, at which maps exhibit a “waist,” in which e12 is small
for collisions of equal size bodies. Second, e12 becomes small
for encounters between both the small bodies, with d1, d2 � dc,
and for large objects with d1, d2 � dc. Third, e12 saturates
at a value roughly independent of d1 or d2 for collisions of
particles with very different sizes, i.e., when d1 � dc � d2, and
vice versa.

These gross features, as well as the variations of the overall
velocity scale seen in these maps, are addressed below using the
results of Section 5. Given that particles can be in different drag

11
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Figure 6. Distribution of the relative approach velocity v12 of colliding planetesimals given by Equation (62). The relative velocity is normalized by its maximum
value vmax = e12npr , where e12 is the relative eccentricity of the two planetesimals, which is a function of their sizes, see Sections 9.1–9.3. The minimum approach
velocity is vmax/2.

(a) (b)

(c) (d)

Figure 7. Relative approach velocity (right color bar) and relative eccentricity (left color bar) of planetesimals with sizes d1 and d2 experiencing close approach. The
calculation is done for the γ Cephei system at 2 AU assuming an eccentric disk with p = 1, q = −1 and other disk parameters— Md , e0, �d—varying as indicated
on the panels. Eccentricity and planetesimal size scales ec and dc in different panels can be inferred from Figures 4(a) and (b) and 5(a) and (b).
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regimes—strong or weak—we will consider several possibilities
separately.

9.1. Strong–Strong Encounters

When both planetesimals are in the strong drag regime,
d1, d2 � dc, both |Aτd,1| � 1 and |Aτd,2| � 1. Then
Equation (64) predicts that

ess
12 ≈ ec

∣∣∣∣Aτd,1

∣∣ − ∣∣Aτd,2

∣∣∣∣ (65)

≈ ec

∣∣∣∣∣
(

d1

dc

)1/2

−
(

d2

dc

)1/2
∣∣∣∣∣ , (66)

where we used Equation (34) to express |Aτd | in terms of
planetesimal sizes. Since d1,2 � dc in the strong drag limit,
one finds that ess

r � ec, which explains the low values of er in
the lower left corner in the maps in Figure 7.

Physically, in this regime, the relative velocity of two plan-
etesimals is considerably lower than their individual velocities
because of the apsidal alignment of their orbits by gas drag, see
Marzari & Scholl 2000) and similar magnitudes of ep.

9.2. Weak–Weak Encounters

When both planetesimals are in the weak drag regime
|Aτd,1| � 1 and |Aτd,2| � 1, one finds using Equation (64)
that

eww
12 ≈ ec

∣∣|Aτd,1|−1 − |Aτd,2|−1
∣∣ (67)

≈ ec

∣∣∣∣dc

d1
− dc

d2

∣∣∣∣ , (68)

where Equation (38) has been used. Since d1,2 � dc in the
weak drag limit, one again finds that eww

r � ec, explaining the
low relative eccentricity in the upper right corner in the maps in
Figure 7.

In this case, apsidal alignment is again at work, lowering er
compared to ep(d1), ep(d2). However, now it is caused by the
disk+binary gravity, which affects planetesimals in the same
way when they are weakly coupled to gas. This is because the
gas damps the free eccentricity, but is not strong enough to
significantly change the forced eccentricity.

9.3. Weak–Strong Encounters

When one of the planetesimals (e.g., of size d1) is in the strong
drag regime, |Aτd,1| � 1, while the other is in the weak drag
regime, |Aτd,2| � 1, Equation (64) shows that their relative
eccentricity e12 is just

esw
12 ≈ ec. (69)

One can see that e12 is roughly independent of the sizes of
particles participating in an encounter.

9.4. Overall e12 Scale as a Function of Disk Parameters

The overall scale of e12 in each of the maps shown in Figure 7
is characterized by e12 in one of the high-velocity corners.
According to Section 9.3, this scale is just ec, which allows

us to use the results of Section 7 to understand how the typical
e12 varies as we change the disk parameters.

A comparison of panels (a) and (b) of Figure 7 shows that disk
mass Md plays an important role in setting e1,2: planetesimals in
low-mass disks (Md = 4 × 10−4 M�) collide with much higher
speeds than in higher mass (Md = 2 × 10−2 M�) disk. This is
because for the chosen value of e0 = 0.05 the low-mass disk
is in the BB regime and the value of ec ≈ 0.05 is high; see
Figure 4(a). Increasing Md as in panel (a) brings the disk into
the DD regime and also close to the valley of stability. For that
reason, in a higher mass disk with Md = 0.02 M�, one gets a
much lower ec ≈ 0.008.

Lowering e0 for a high-mass disk as in panel (c) reduces the
relative velocity scale even more simply because for e0 = 0.007
the system gets even deeper into the valley of stability, where
the corresponding ec ≈ 1.5 × 10−3; see Figure 4(a).

A comparison of panels (a) and (d) shows that changing disk
orientation also strongly affects er: there is no valley of stability
in the misaligned disk and the characteristic eccentricity scale
becomes ec ≈ 0.014. As a result, particles in a misaligned disk
collide at higher speeds than in the aligned disk.

10. DISCUSSION

Our work extends and complements existing results on
planetesimal dynamics in binaries in several important ways.

First, for the first time, our solutions for ep in Section 5
simultaneously account for a number of key physical ingredients
needed for a complete description of the secular dynamics of
planetesimals in binaries: the gravity of both the eccentric disk
and the eccentric companion as well as the gas drag, which
causes orbital phasing of planetesimals and reduces their relative
eccentricity in certain regimes.

Second, we provide a rigorous derivation of the equations
of eccentricity evolution due to gas drag (15)–(18) in an ec-
centric disk. Previously, Adachi et al. (1976) derived analo-
gous equations for the case of a circular disk, while Beaugé
et al. (2010) proposed a set of empirical equations similar to
Equations (15) and (16) but without proper calculation of the
constant pre-factors.

Third, we derive an analytic expression (62) for the relative
velocity distribution function df12/dv12 for locally homoge-
neous populations of objects with fixed eccentricity vectors,
which is appropriate in the limit |ep| � 1 in the presence of
gas drag. We also provide an in-depth analysis of e12 behavior
for objects of different sizes in systems with different param-
eters (Section 9). Previously the distribution of planetesimal
encounter velocities has been explored only numerically by fol-
lowing a large number of trace particles in simulations of differ-
ent kinds (Thébault et al. 2006, 2008, 2009; Paardekooper et al.
2008; Fragner et al. 2011). Thus, our derivation of df12/dvr

represents an important analytical step in understanding plan-
etesimal dynamics.

We now provide a more detailed comparison of our results
with previous studies and discuss the limitations of this work.

10.1. Comparison of Different Dynamical Approximations

The main novelty of our study is the extension of the line of
analytical investigation of disk gravity effects, which was started
in R13 and SR15 for axisymmetric and non-axisymmetric disks,
respectively, by including gas drag. Previous (semi-)analytical
studies of planetesimal dynamics in binaries neglected the
gravitational effect of the disk.
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(a) (b)

(c) (d)

Figure 8. Comparison of different approximations for describing planetesimal dynamics (indicated on panels), as reflected in the map of the relative eccentricity of
planetesimals er of different sizes; see the text for details. Maps are drawn for an aligned disk in γ Cep at 1 AU (note the different semi-major axis compared to other
figures).

Table 1
Different Approximations for Planetesimal Dynamics in Binaries

Gravitational Effects W/O Gas Drag With Gas Drag
Included

Binary companion only 2, 3 4, 5, 6, 8, 9, 10
Axisymmetric disk 7 1
and binary companion
Non-axisymmetric disk 8 1
and binary companion

Notes. (1) This work; (2) Giuppone et al. 2011; (3) Heppenheimer 1978; (4)
Marzari & Scholl 2000; (5) Paardekooper et al. 2008; (6) Beaugé et al. 2010;
(7) Rafikov 2013; (8) Silsbee & Rafikov 2015; (9) Thébault et al. 2006; (10)
Xie & Zhou 2008.

Our calculations account for both the precession of planetesi-
mal orbits due to the axisymmetric part of the disk potential and
the eccentricity excitation due to its non-axisymmetric compo-
nent. Disk non-axisymmetry is modeled via its nonzero eccen-
tricity, i.e., m = 1 distortion, which can be a function of radius.
We expect this approximation to capture the key effect of the
disk asymmetry, as higher-m distortions of the disk shape are
relatively small (Marzari et al. 2012).

In Table 1 we summarize some existing (semi-)analytical
treatments of planetesimal dynamics including this work (note
that this list is not exhaustive), classified according to the
physical ingredients that are taken into account. We primarily
focus on studies of secular effects to put our work in proper
context. Our current results cover all dynamical regimes listed
in this table in appropriate limits. The majority of previous
studies considered planetesimal dynamics in the presence of
gas drag with only the direct binary gravitational perturbations
taken into account (Marzari & Scholl 2000; Thébault et al.
2004, 2006, 2008, 2009; Paardekooper et al. 2008). As shown
in SR15, this approximation is unwarranted as long as the disk

mass Md � 10−2 M� since then the disk potential dominates
gravitational perturbation.

We also provide full analytical solutions for test particle
dynamics in a general precessing or non-precessing disk without
companion perturbation; see Equations (44)–(47). Previously,
Beaugé et al. (2010) studied this regime for a precessing disk
but did not account for the gravitational effect of the disk (i.e.,
only gas drag was taken into account). In Figure 8 we illustrate
the differences in various descriptions of planetesimal dynamics.
It shows the relative eccentricity as a function of planetesimal
sizes d1 and d2 at 1 AU in an aligned disk of Md = 10−2Mp

and e0 = 0.1 around a primary of γ Cephei in four different
limits. Panel (a) presents a full calculation with all physical
ingredients (gas drag, gravity of both the eccentric disk and the
binary companion) accounted for using the solutions obtained
in Section 5.

In panel (b) we show how things change if disk gravity is com-
pletely switched off by setting Ad = Bd = 0—an approxima-
tion common to a number of previous studies (Marzari & Scholl
2000; Thébault et al. 2004, 2006, 2008, 2009; Paardekooper
et al. 2008; Beaugé et al. 2010; Leiva et al. 2013). One can see
that without disk gravity, relative planetesimal velocities go up
by a factor of several. Moreover, the “waist” between the two
high-e12 regions in panel (b) is narrowest at d1 ∼ d2 ∼ 102 km,
which is considerably larger than in panel (a) where this hap-
pens for d ∼ 0.3 km objects. This difference is in complete
agreement with Equations (55) and (56).

In panel (c) we account for the gravitational effect of a non-
axisymmetric disk but neglect gas drag (τd → ∞), i.e., use
Equations (19)–(21), as was done in SR15. In the absence of
gas drag there is no apsidal alignment of planetesimal orbits
and they approach each other at random phases. Also, er is
independent of d1 and d2 (the size-dependent drag is absent)
explaining uniform color in Figure 8(c). The absence of gas
drag results in rather high relative velocities of planetesimals,
making their survival in collisions problematic. Thus, apsidal
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alignment of planetesimal orbits and eccentricity suppression
due to gas drag are very important for the proper description of
their dynamics.

Finally, in panel (d) we retain only the axisymmetric compo-
nent of the disk potential, neglecting the eccentricity excitation
by the disk, i.e., Bd = 0 but Ad �= 0. In this limit, also neglect-
ing gas drag (accounted for here), R13 predicted a dramatic
lowering of ep. A comparison with panel (a) clearly shows this
is not the case when gas drag is included, which can be un-
derstood by noting that ec in Equation (29) can significantly
deviate from |en/drag

p | because of the eg contribution. This is why
lowering |en/drag

p | by setting Bd = 0 and increasing |A| does not
necessarily result in smaller ec, as expected in R13.

To summarize, simultaneously accounting for all the physi-
cal processes affecting planetesimals—gas drag, disk, and sec-
ondary gravity—is very important for understanding planetesi-
mal growth. Omission of even a single physical ingredient can
significantly affect the conclusions drawn from the dynamical
calculations.

Previously, Kley & Nelson (2007) and Fragner et al. (2011)
numerically explored planetesimal dynamics in gaseous disks
that were evolved using direct hydrodynamical simulations.
They accounted for the effect of disk gravity on planetesimal
motion and at least some of their calculations assumed copla-
narity of the disk and the binary. However, even though the setup
of these studies is very similar to that of our present work, some
subtle differences prevent direct comparison of their results. In
particular, when estimating the relative velocities of planetesi-
mals based on their orbit crossing, Kley & Nelson (2007) do not
take into account the apsidal phasing of their orbits (Marzari
& Scholl 2000), clearly obvious in their Figure 10. As a re-
sult they find very high relative speeds even between equal-size
planetesimals, which we believe is an artifact of their neglect of
apsidal phasing. Fragner et al. (2011) study the case of a circular
binary in which apsidal phasing is naturally absent, resulting in
high relative speeds of planetesimals. As a result, the applica-
bility of calculations using circular binaries to understanding
planetesimal dynamics in eccentric systems like γ Cep is not
obvious.

10.2. Limitations of this Work

Finally, we discuss the limitations of our study. Some of them
have to do with the adoption of secular, i.e., orbit-averaged, ap-
proximation. While averaging over the planetesimal orbit is
justified because n−1

p is always much shorter than other period-
icities (e.g., of planetesimal apsidal precession), when averaging
over the longer binary period, one may overlook important dy-
namical features of the systems possessing very massive disks.
Indeed, Equation (6) suggests that for Md ∼ 0.1 M�, the plan-
etesimal precession rate |Ad | becomes comparable to the binary
angular frequency—np ≈ 0.1 yr−1 for γ Cephei. In these con-
ditions, averaging over the latter is not justified and new effects,
such as the possibility of evection resonance (Touma & Wisdom
1998) inside the disk, may also affect planetesimal dynamics.

Other effects omitted in our study, such as the density waves
or higher-m contributions to the azimuthal mass distribution
in the disk and short-term fluctuations of the disk potential,
may also affect planetesimal dynamics. They may account for
some of the difference between the results of this work, which
uses a secular, time-averaged description of the disk and binary
potential, and direct numerical studies of Kley & Nelson (2007)
and Fragner et al. (2011). Planetesimal eccentricity can be

additionally excited by the stochastic gravitational perturbations
due to the turbulence in the disk. This issue has been previously
investigated for disks around single stars (Ida et al. 2008; Yang
et al. 2009, 2012) and for circumbinary disks (Meschiari 2012).

Coplanarity of the disk and the binary orbit is another re-
striction that can be easily eliminated in future studies. We
believe that small but non-zero inclination (Xie & Zhou 2009)
would not affect our solutions for the behavior of planetes-
imal eccentricity. However, as shown in Xie et al. (2010),
such non-zero inclination has a strong effect on planetesimal
collision rates.

There is also room for improvement within the framework
of our model. Some approximations that we adopt, such as the
power-law behavior of Σ(a) and ed (a) and constant2 �d (a), are
dictated by our desire to obtain analytical solutions using the
results of SR15 whenever possible. Also, we did not investigate
the conditions under which our model (1) represents a steady-
state solution for a fluid disk perturbed by a companion (Statler
2001). More refined semi-analytical or numerical calculations
using improved disk models are certainly desirable but are
unlikely to seriously affect our results and conclusions.

11. SUMMARY

We studied secular dynamics of planetesimals and explored
prospects for planet formation around one of the components
of an eccentric binary. We believe that our study includes most,
if not all, of the important physical ingredients relevant for
this problem—perturbations due to the binary, gas drag, and
gravitational effects of an eccentric disk. This is the first time
planetesimal dynamics in binaries have been studied analytically
in such generality. The analytical nature of our solutions for
planetesimal dynamical variables allowed us to explore their
dependence on system parameters in great detail.

Our main results can be summarized as follows.

1. We find that under the action of gas drag as well as
the gravitational effects of the binary companion and
the eccentric disk, the planetesimal eccentricity vector ep

converges to a constant value depending on the planetesimal
size and the disk and binary properties. We obtained
complete analytical solutions for ep in the case of a non-
precessing disk and analyzed them in detail, extending the
results of previous studies.

2. We showed that relative particle–gas (Equation (33)) and
particle–particle velocities can be expressed as simple
functions of only two key parameters—the characteristic
eccentricity ec and planetesimal size d/dc in units of
characteristic size dc, given by Equations (29) and (31).
The behavior of these variables has been explored in detail
in Section 7.

3. We show that in massive disks containing enough gas
to form giant planets (Md � 10−2 M�), planetesimal
dynamics are always in the regime where the apsidal
precession of planetesimal orbits is dominated by disk
gravity, i.e., in the DB or DD regimes in the classification
of SR15. Significantly eccentric (e0 � 10−3) disks also
dominate the eccentricity excitation of planetesimals by
their gravity (DD regime). This emphasizes the key role of
the disk gravity in relation to planet formation in binaries.

2 Variable �d (a) can be used to describe disks with density waves.
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4. We derive the explicit form of the relative velocity distri-
bution between the populations of planetesimals with dif-
ferent sizes and show that it depends only on the relative
eccentricity e12 of the approaching objects.

5. In disks aligned with the binary, planetesimals collide
with lower velocities than in misaligned disks. Thus,
planetesimal growth favors disk–binary apsidal alignment.

6. We also present analytical results for the dynamics of
planetesimals in precessing disks in certain limits.

Our results will be used in Paper II to understand planet
formation in small separation binaries, such as γ Cep and α
Cen. They can also be used to understand the circumbinary
planet formation.

We are grateful to Jihad Touma for useful discussions.

APPENDIX A

LOCAL APPROXIMATION

Here we review local (or guiding center) approximation,
which is often used in studies of planetesimal and galactic
dynamics (Binney & Tremaine 2008) and forms the basis of the
so-called Hill approximation (Hénon & Petit 1986; Hasegawa
& Nakazawa 1990). In this approach, eccentric motion of a
planetesimal is considered in a locally Cartesian frame (xp, yp),
with ex , ey pointing in the radial and horizontal directions,
correspondingly. The origin of this frame is in circular Keplerian
motion at some characteristic semi-major axis a0, which is close
to the planetesimal semi-major axis ap, so that bp ≡ |ap−a0| �
ap. Equations of motion for a particle of mass mp subject to
external force F = (Fx, Fy) can be reduced to

ẍp − 2npẏp − 3n2
pxp = Fx/mp, ÿp + 2npẋp = Fy/mp.

(A1)

Provided that ep � 1, one can represent planetesimal motion
unperturbed by external forces as

xp = bp − a0(kp cos npt + hp sin npt),

yp = ψp − 3

2
npbpt + 2a0(kp sin npt − hp cos npt), (A2)

where ψp is a constant and ep = (kp, hp). This is an exact
solution of Equations (A1) with F = 0 and is a superposition of
linear shear and epicyclic motion.

Assuming that fluid in a gaseous disk also moves on eccentric
Keplerian orbits, motion of the gas can be represented by
analogous equations

xg = bg − a0(kg cos npt + hg sin npt),

yg = ψg − 3

2
npbgt + 2a0(kg sin npt − hg cos npt). (A3)

Relative motion of a particular fluid element and a particle is
described using relative coordinates xr = xp −xg , yr = yp −yg .
According to Equations (A2)

xr = br − ap(kr cos npt + hr sin npt),

yr = ψr − 3

2
npbr t + 2ap(kr sin npt − hr cos npt), (A4)

where kr ≡ kp − kg , hr ≡ hp − hg are the components of the
relative eccentricity vector, br ≡ bp − bg is the semi-major

axis separation between the particle and fluid element, and
ψr ≡ ψp − ψg . We have also used the fact that ag ≈ a0 ≈ ap

and switched from a0 to ap.
Velocity of Keplerian motion in the local approximation is

obtained by differentiating Equations (A4) with respect to time.
In particular, relative particle–gas velocity is given by

vx,r = npap(kr sin npt − hr cos npt),

vy,r = −3

2
npbr + 2npap(kr cos npt + hr sin npt). (A5)

Analogous formulae apply to the relative motion of two
planetesimals with sizes d1 and d2, with the replacement er →
e12, br → b12, (xr, yr ) → (x12, y12), and so on. In particular,
Equations (A4) shows that two objects with |b12| < ape12 can
experience close approaches. When this happens, x12 = y12 = 0
and b12 can be eliminated from Equations (A5) giving

v12,y(x12 = 0) = 1

2
npap(k12 cos npt + h12 sin npt), (A6)

(here e12 = (k12, h12)) so that the relative approach velocity (i.e.,
the velocity unaffected by the mutual gravitational attraction of
particles) is

v12 = npap

[
k2

12 + h2
12 − (3/4)(k12 cos npt + h12 sin npt)2

]1/2
.

(A7)

Whenever a particle is affected by forces other than the
stellar gravity, i.e., F �= 0, solutions (A2) are no longer strictly
valid. However, one can still represent particle motion via these
solutions, assuming that orbital elements osculate, i.e., evolve,
in time. Hasegawa & Nakazawa (1990) derived equations for
the orbital element evolution, in particular

ȧp = ḃp = 2Fy

npmp

, k̇p = 1

npapmp

(2Fy cos npt + Fx sin npt),

ḣp = 1

npapmp

(2Fy sin npt − Fx cos npt). (A8)

For a given force expression F, these equations, after averaging
over the orbital period, represent the extra terms entering the
Equations (3) and (4).

APPENDIX B

PLANETESIMAL ECCENTRICITY IN A PRECESSING
DISK IN THE CASE OF LINEAR DRAG

Here we derive the full time-dependent solution for planetes-
imal eccentricity starting with arbitrary initial conditions and
assuming that the gas drag is linear, i.e., τd in Equation (17)
is a constant independent of ep. We also include a possibility
of uniform disk precession so that �d (t) = �̇d t + �d0. Then
Equations (3) and (4) represent a linear system of equations
which can be trivially solved to give

{
k(t)
h(t)

}
= efreee

−t/τd

{
cos (At + �0)
sin (At + �0)

}
+

{
kf
hf

}
, (B1)

where the first term represents the free eccentricity, with efree and
�0 being constant, while the second is the forced eccentricity
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ef = (kf, hf ) = ef,b + ef,d , where ef,b is given by Equation (25)
and

ef,d =
[

e2
g + τ 2

d B2
d

1 + τ 2
d (A − �̇d )2

]1/2 {
cos (�d (t) + φ)
sin (�d (t) + φ)

}
,

cos φ = eg − τ 2
d Bd (A − �̇d )(

e2
g + τ 2

d B2
d

)1/2 [
1 + τ 2

d (A − �̇d )2
]1/2 . (B2)

In the limit of slow precession |�̇d | � |A| one finds that
ef is given by expressions (24)–(27). Generally, the relative
planetesimal–gas eccentricity er = ef − eg is

er = ef,b − τd

Bd + eg (A − �̇d )[
1 + τ 2

d (A − �̇d )2
]1/2

{
cos (�d (t) − φr )
sin (�d (t) − φr )

}
,

cos φr = τd (A − �̇d )[
1 + τ 2

d (A − �̇d )2
]1/2 . (B3)

The first forced term ef,b results from excitation by the binary
companion. It is constant in time and is independent of �̇d . The
second term is induced by the disk via both its gravitational
potential and gas drag. This contribution to ef circulates at
the disk precession frequency �̇d and its amplitude is sensitive
to �̇d .

Independent of the initial conditions (i.e., the values of efree
and �0), the free eccentricity contribution damps out on a
characteristic timescale τd . As a result, in the long run, ep

inevitably converges to ef .
In the limit of strong gas drag, τd → 0, one finds that

ef → eg as expected, since drag is strong enough to align
planetesimal orbits with fluid trajectories. In this limit, the
relative eccentricity between planetesimals of different sizes
having different damping times τd,1 and τd,2 is

e12 → |A − �̇d ||τd,1 − τd,2|
[ (

epr
c sin �d

)2

+

(
epr
c cos �d + kb

A

A − �̇d

)2
]1/2

, τd,1, τd,2 � |A − �̇d |−1,

(B4)

where e
pr
c is given by Equation (45).

In the opposite extreme, τd → ∞ (weak drag), one finds
φ → π and ef reduces to the forced eccentricity value (with disk
precession) obtained in SR15. The relative velocity becomes

e12 → 1

|A − �̇d |
∣∣τ−1

d,1 − τ−1
d,2

∣∣ [ (
epr
c sin �d

)2

+

(
epr
c cos �d + kb

A − �̇d

A

)2
]1/2

, τd,1, τd,2 � |A − �̇d |−1.

(B5)

Note that in this expression, kb is multiplied by a factor different
from that in Equation (B4). However, it is clear that in both
limiting cases, e12 � e1, e2, i.e., the relative planetesimal
eccentricity is much less than the individual eccentricities e1
and e2, a result that remains valid in a precessing disk.

APPENDIX C

PLANETESIMAL ECCENTRICITY IN A PRECESSING
DISK IN THE CASE OF QUADRATIC DRAG

In the case of quadratic drag (10), Figure 2(b) clearly shows
the phenomenon of ep convergence to a quasi-stationary limit
cycle behavior, similar to the results of Appendix B. This
behavior is further illustrated in Figure 9, where we show the
dependence of the limit cycles on planetesimal size dp and
disk precession rate �̇d . Because of the nonlinear drag law,
the shapes of the limit cycles in general deviate from ellipses.

Nevertheless, their gross features still can be understood
in our linear solution (B3). In particular, limit cycles are not
centered on (kr , hr ) = 0 because of the binary companion
perturbations, i.e., non-zero ef,b varying as dp (and τd ) change.
The amplitude of the limit cycles goes down for smaller dp
because τd is also smaller, which, according to Equation (B3),
reduces the oscillating contribution to er . As we vary �̇d in
Figure 9(b), the binary contribution stays unchanged and all
limit cycles stay centered on the same point in hr-kr space.

Their sizes vary with �̇d as predicted by Equation (B3). They
shrink at high |�̇d | ∼ |A|, in agreement with Equation (B3).
For slow precession, |�̇d | � |A| limit cycles converge to the
trajectory for the non-precessing disk solution (24) in which
�d is set to vary as �d (t) = �̇d t + �d0. Note that such a
convergence to solution (24) is obvious only in the case of
|�̇dτd | � 1, i.e., when gas drag allows ep to quickly re-adjust
to a new “quasi-static” solution as �d changes. This is the
case shown in Figure 9(b). In the opposite case of |�̇dτd | � 1
(and |�̇d | � |A|), this convergence is not obvious as the disk
precession constantly drives free eccentricity, while the gas drag
is not strong enough to quickly damp it. We leave detailed
exploration of such topics to a future study.

Now, let us rewrite Equations (3) and (4) in terms of the
relative particle–gas eccentricity components kr and hr:

dhr

dt
= Akr − hr

τd

+ Bb + [(A − �̇d ) eg + Bd ] cos �d (t),

(C1)

dkr

dt
= −Ahr − kr

τd

− [(A − �̇d ) eg + Bd ] sin �d (t),

(C2)

with τd given by Equation (18) and dependent upon er.
The explicit time dependence of the last terms in these

nonlinear equations precludes us from finding their general
analytical solutions even in the case of the limit-cycle behavior.
However, we can still obtain analytical results for planetesimal
eccentricity in the two limiting cases, reviewed next.

First, one can assume that the binary companion dominates
eccentricity forcing, which implies that the condition (42) is
fulfilled. Then one can drop the last �d -dependent terms in
Equations (C1) and (C2), removing the explicit time dependence
from them. This is essentially equivalent to neglecting both
the gravitational effect of the disk, i.e., |ed | → 0, and the
gas eccentricity, eg, compared to |eb|. As a result, we find a
steady-state solution (43) for kr ≈ kp and hr ≈ hp, which is
essentially the Equations (22) and (23) with |ed |, |eg| → 0. Then
planetesimal dynamics are described by the analytical results of
Section 5 with ec ≈ |Bb/A|.

In the opposite extreme of weak eccentricity excitation
by the binary companion we introduce new coordinates
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(a) (b)

Figure 9. Limit cycles to which the relative gas–planetesimal eccentricity vector er converges in precessing disks. Panel (a) shows evolution of the limit cycles as
a function of planetesimal size dp, while in panel (b) we vary the disk precession rate �̇d . Calculations have been performed at ap = 2.5 AU in a standard aligned
disk with Md = 10−3Mp , e0 = 0.04, aout = 5 AU in γ Cep system. These parameters place planetesimal dynamics in the strong binary perturbation regime; see
Section 6.1. Crosses mark the centers of the limit cycles computed according to Equation (43). Note the evolution of the positions and shapes of the limit cycles as dp
and �̇d are varied.

H ≡ kghr − hgkr , K ≡ hghr + kgkr (see Beaugé et al. 2010 for
a similar treatment). Then the evolution of H and K is given by

dH

dt
= (A − �̇d ) K − H

τd

+ Bbkg(t) + eg

[
(A − �̇d ) eg + Bd

]
,

(C3)

dK

dt
= − (A − �̇d ) H − K

τd

+ Bbhg(t). (C4)

When the eccentricity excitation by the companion is small, we
can drop the Bb terms in these equations, removing the explicit
time-dependence, which appears because of circulating kg and
hg. As a result, we find the steady state solutions for H and K in
the implicit form

K = epr
c eg

(A − �̇d )2 τ 2
d

1 + (A − �̇d )2 τ 2
d

, H = −epr
c eg

(A − �̇d ) τd

1 + (A − �̇d )2 τ 2
d

,

(C5)

where τd is a function of the relative particle–gas eccentricity
er = e−1

g (K2 + H 2)1/2 given by Equation (44). This solution
corresponds to the eccentricity vector ep fixed in a disk frame,
which uniformly precesses at the rate �̇d .

Using these solutions, it is trivial to show that ep → ef,d

given by Equation (B2) with Bb set to zero. That in the weak
binary perturbation regime we find the same expression for ep

as in the case of linear drag is not surprising: with Bb = 0 one
finds that |er | is constant in time, so that τd is also constant.
Then Equations (C3) and (C4) are the same as in the linear drag
case and have the same steady state solutions (C5).
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