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ABSTRACT

Binary neutron star (NS) mergers are among the most promising sources of gravitational waves (GWs), as well
as candidate progenitors for short gamma-ray bursts (SGRBs). Depending on the total initial mass of the system
and the NS equation of state (EOS), the post-merger phase can be characterized by a prompt collapse to a black
hole or by the formation of a supramassive NS, or even a stable NS. In the latter cases of post-merger NS (PMNS)
formation, magnetic field amplification during the merger will produce a magnetar and induce a mass quadrupole
moment in the newly formed NS. If the timescale for orthogonalization of the magnetic symmetry axis with the spin
axis is smaller than the spindown time, the NS will radiate its spin down energy primarily via GWs. Here we study
this scenario for the various outcomes of NS formation: we generalize the set of equilibrium states for a twisted
torus magnetic configuration to include solutions that, for the same external dipolar field, carry a larger magnetic
energy reservoir; we hence compute the magnetic ellipticity for such configurations, and the corresponding strength
of the expected GW signal as a function of the relative magnitude of the dipolar and toroidal field components.
The relative number of GW detections from PMNSs and from binary NSs is a very strong function of the NS
EOS, being higher (∼1%) for the stiffest EOSs and negligibly small for the softest ones. For intermediate-stiffness
EOSs, such as the n = 4/7 polytrope recently used by Giacomazzo and Perna or the GM1 used by Lasky et al., the
relative fraction is ∼0.3%; correspondingly, we estimate a GW detection rate from stable PMNSs of ∼0.1–1 yr−1

with advanced detectors, and of ∼100–1000 yr−1 with detectors of third generation such as the Einstein Telescope.
Measurement of such GW signals would provide constraints on the NS EOS and, in connection with an SGRB, on
the nature of the binary progenitors giving rise to these events.
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1. INTRODUCTION

Binary neutron star (BNS) mergers are among the most
powerful sources of gravitational waves (GWs) that are expected
to be detected in the next few years by ground-based detectors,
such as the advanced LIGO and Virgo (Abadie et al 2010). BNSs
are also the focus of theoretical modeling of short gamma-ray
bursts (SGRBs) since their merger can lead to the production
of relativistic jets and hence generate powerful gamma-ray
emissions (e.g., see Berger 2014 for a recent review). One of
the main scenarios of BNS mergers predicts the formation of
a spinning black hole (BH) surrounded by an accretion torus
soon after the merger, i.e., in less than approximately one
second (see Faber & Rasio 2012 for a recent review of BNS
merger simulations).

It is, however, known that the total mass of the binary, together
with the NS equation of state (EOS), can lead to different
dynamics in the post-merger phase (e.g., see Baiotti et al 2008;
Hotokezaka et al. 2011; Bauswein et al 2013; Andersson et al
2013). Depending on the initial mass of the system, and going
from high-mass to low-mass BNSs, the end result of the merger
could be a prompt collapse to BH (e.g., Rezzolla et al 2010) or
the formation of a post-merger NS (PMNS). The latter could
be a hypermassive PMNS (i.e., supported by strong differential
rotation) which will collapse in less than one second (e.g., Baiotti
et al 2008), a supramassive PMNS (i.e., supported by rapid and
uniform rotation), and, if the masses are sufficiently low (e.g.,
∼1.22 M� in the case of Giacomazzo & Perna 2013), even a
stable PMNS that will not collapse to a BH independently of
its rotation.

The discovery of two NSs of ∼2 M� (Demorest et al.
2010; Antoniadis et al. 2013) has opened the possibility that
indeed a supramassive, or a stable NS, may be the end result
in a significant number of BNS mergers. Moreover, recent
observations of X-ray plateaus in SGRBs could support the
possibility, that at least in some SGRBs, a supramassive or a
stable NS with a strong magnetic field was formed after the
merger (Rowlinson et al 2013; see also Metzger et al. 2008;
Dall’Osso et al. 2011). The recent discovery of fast radio bursts
(Lorimer et al. 2007; Thornton et al. 2013) has also been
interpreted as the final signal of a supramassive rotating NS that
collapses to a BH due to magnetic braking (Falcke & Rezzolla
2014; cf. Ravi & Lasky 2014). Recent numerical simulations of
BNS mergers followed the formation of a stable PMNS with a
large mass (�2.36 M�), a relatively large radius (≈15 km),
a spin close to break up and a large degree of differential
rotation (Giacomazzo & Perna 2013). Due to the combined
effect of Kelvin–Helmholtz instabilities and dynamo action,
a strong amplification of the internal magnetic field occurs
promptly and the PMNS settles into uniform rotation, with
millisecond spin and a strongly twisted interior magnetic field.
The resulting picture is reminiscent of the so-called standard
magnetar formation scenario (Duncan & Thompson 1992), in
which an ultramagnetized NS is formed in the core-collapse of a
massive star by tapping a fraction of the energy in the differential
rotation of a fast-spinning proto-NS.

Such a scenario would have a very important role because,
along with explaining some electromagnetic observations, the
millisecond spinning, ultramagnetized PMNS could provide a
long-lasting GW signal, which would be extremely valuable
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for studying the EOS of NS matter (e.g., Takami et al 2014) in
analogy with what was proposed for magnetars born in the core-
collapse of massive stars (Duncan & Thompson 1992; Zhang
& Mészáros 2001; Cutler 2002; Stella et al. 2005; Bucciantini
et al. 2006, 2008; Dall’Osso & Stella 2007; Dall’Osso et al.
2009; Metzger et al. 2011).

In this work, we address the possible long-lasting GW signal
following the BNS merger due to the spindown of a magnetically
deformed PMNS, based on the picture studied by Cutler (2002),
Stella et al. (2005), and Dall’Osso et al. (2009). In Section 2,
we analyze the main steps that characterize this picture and
introduce a physical model to calculate the properties of the
strongly magnetized PMNS. In Section 3, we address the role of
the NS EOS in determining the possible outcome of a merger and
compare expectations with available data from known BNSs. In
Section 4, we calculate the strength of the expected GW signals
and, based on the inferred properties of the BNS population,
estimate the rate at which stable or supramassive PMNSs could
be detected, relative to the total population of BNS mergers, by
the forthcoming generation of detectors.

2. A GENERIC SCENARIO FOR GW EMISSION

The general scenario for efficient GW emission from the
newly formed, millisecond spinning and strongly magnetized
PMNS can be summarized as follows (see Cutler 2002).

1. The mechanism for field amplification at the merger implies
that the axis of symmetry of the strongly twisted magnetic
field will start almost aligned with the spin axis.

2. The NS is distorted into an ellipsoidal shape by the
anisotropic magnetic stress. Free body precession will
be excited by even a small misalignement between the
magnetic symmetry axis and the spin axis. We indicate
the tilt angle with χ from here on.

3. Strictly speaking, the largest deformation of the PMNS
shape is caused by its fast rotation at ∼ kHz frequency. The
rotationally induced distortion is, however, always aligned
with the instantaneous spin axis and thus plays no role in
the dynamics of free body precession (see Cutler 2002 for
a detailed discussion of this point). This is why we only
consider the magnetically induced distortion.

4. The energy of freebody precession is viscously dissipated
and the conserved angular momentum is redistributed in
the stellar interior. As a result, the PMNS ends up rotating
around an axis that corresponds to its largest moment of
inertia, so as to minimize spin energy at constant angular
momentum.

5. A toroidal magnetic field produces a prolate ellipsoid, i.e.,
one in which the smallest moment of inertia is the one
relative to the axis of symmetry of the magnetic field.

6. For a prolate ellipsoid, viscous dissipation implies that the
magnetic symmetry axis is driven orthogonal to the spin
axis. This maximizes the time-varying quadrupole moment
of the rotating top, hence its GW emission efficiency.

After this sequence of events, the PMNS becomes a potential
source of GWs. The strength of the emitted signal will be
determined by the strength of the GW-induced spindown torque,
and by the competition with the additional torque due to
magnetic dipole braking (see Section 2.3).

2.1. Growth of the Internal Field: Theoretical and
Observational Support

General relativistic MHD simulations of BNS mergers show
that a strong toroidal field is always produced during the
merger (Giacomazzo et al. 2011), even starting with a purely
poloidal magnetic field. For the specific choice of an initial
dipole ∼1012 G, Giacomazzo & Perna (2013) showed that
hydrodynamical instabilities during the merger can generate
poloidal and toroidal components of at least ∼1013 G; further
amplification was seen while following the remnant’s evolution
for tens of milliseconds after the merger, with the energy in
the toroidal field becoming larger than the poloidal energy by
at least one order of magnitude. It is expected that the interior
field can grow even stronger in the subsequent evolution, up to
�1016 G, as suggested by recent local simulations at very high
resolution (Zrake & MacFadyen 2013; Giacomazzo et al. 2014).

The timing and X-ray emission properties of the galactic
population of magnetars suggest the presence of internal fields
much stronger than the external dipoles (e.g., Dall’Osso et al.
2012). Internal magnetic fields of ∼1015 G are also derived by
energy arguments, in particular, based on the 2004 Giant Flare
from SGR 1806 (Stella et al. 2005). Recent observations (Rea
et al. 2010, 2012, 2013) have revealed outbursting behavior and
enhanced quiescent X-ray luminosity in a few NSs with dipolar
fields in the 5 × 1012 to 5 × 1013 G range, well below the few
×1014 G strength believed necessary to cause crustal fractures,
trigger magnetic outbursts, and enhance the NS quiescent X-ray
luminosity. By means of magnetothermal simulations of the NS
crust, it was shown (Perna & Pons 2011; Pons & Perna 2011;
Viganò et al. 2013) that magnetic stresses can fracture the crust
even in NSs with relatively low external dipoles, as long as the
internal toroidal field is very strong (� a few ×1015 G), thus
accounting for the outbursts of “low-B” field NSs.

2.2. The Twisted-torus Magnetic Configuration

The magnetic field of the PMNS at the end of the merger phase
is expected to quickly settle into an equilibrium state, driven by
the growth of magnetic instabilities on very short timescales.

A general equilibrium configuration for a wide range of
initial conditions was found by means of extensive numerical
simulations (Braithwaite & Nordlund 2006; Braithwaite 2009)
in the form of the so-called twisted-torus, i.e., a linked toroidal-
poloidal magnetic field. The poloidal component contains an
inner bundle of field lines that close inside the NS and therefore
do not contribute to the exterior field.

We consider here such a configuration and, following the
existing literature, restrict attention to the case where the toroidal
field does not reach the exterior, which requires that it remains
confined within the close-field-line region. While only a part of
the poloidal flux extending beyond the NS surface contributes
to the exterior dipolar field, both closed and open poloidal field
lines contribute to the total poloidal energy. The latter will thus
depend explicitly on the size of the closed field line region,
and might exceed the energy of the (exterior) dipole even by a
large factor.

In order to derive the relevant physical properties of a magne-
tized PMNS, we have slightly generalized previous treatments
of the twisted torus (Mastrano et al. 2011; Mastrano & Melatos
2012) to allow for an arbitrary size of the closed-field-line re-
gion, according to the prescription of Akgün et al. (2013). De-
tails of this generalization are provided in Appendix A1. We
have then chosen a specific configuration of the magnetic field
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within a class of solutions that, compared to previous studies of
the twisted torus, allow for (1) a larger magnetic energy reser-
voir in the NS interior and (2) stabilization of a stronger toroidal
field, for the same strength of the exterior dipole. While our pro-
cedure is valid, in general, the specific choice of the magnetic
field geometry determines all numerical estimates. A detailed
study of how these change according to the size of the closed-
field-line region will appear in a separate work (in preparation).

2.2.1. Magnetic Ellipticity

The anisotropic stress due to the interior magnetic field will
induce a distortion of the PMNS shape, hence a mass quadrupole
moment Q ∼ I0εB that is best expressed in terms of the moment
of inertia of the unperturbed star, I0, and its total magnetic
ellipticity, εB. The latter can be formally defined as the fractional
difference between two main eigenvalues of the moment of
inertia tensor. Let the axis of symmetry of the internal field be
the z axis, and the x and y axes lie in a plane perpendicular
to it, then εB ≡ (Izz − Ixx)/I0. To calculate the magnetically
induced ellipticity, we followed Mastrano et al. (2011), adjusting
the calculations to our different choice for the interior field
configuration. More details about our procedure are given in
Appendix A2.

Our main result is the following numerical expression,

εB � 2.725 × 10−6

(
Bdip

1014 G

)2 (
R∗

15 km

)4

(1)

×
(

M∗
2.36 M�

)−2 (
1 − 0.73

ET

Epol

)
, (2)

where the (positive) contribution of the poloidal component
and the (negative) contribution of the toroidal component are
consistently accounted for.6

2.2.2. Interior Magnetic Field versus Exterior Dipole

Stability considerations set a maximum to the allowed
toroidal-to-poloidal field ratio. Stable stratification of NS mat-
ter allows for much larger values of this ratio than previously
thought (Reisenegger 2009; Akgün et al. 2013). We derived the
maximum allowed ratio for the specific magnetic configuration
represented in Figure 1, by following the procedure of Akgün
et al. (2013). Since our discussion here is necessarily limited in
scope, we refer the reader to that paper for a thorough derivation.
A generalisation of our calculations to arbitrary magnetic fields
is postponed to a forthcoming paper. Adopting the general ex-
pression of the NS field given in Section 1, we integrate its two
components within their respective domains (see Section 2.2)
and obtain the total energies

Epol � 64.675η2
polB

2
0R3

ns = 0.0055b2
polB

2
0R3

ns

� 5.5 × 1047

(
Bdip

1014 G

)2( Rns

15 km

)3

erg (3)

ET � 9.152η2
TB2

0R3
ns = 0.0105b2

TB2
0R3

ns � 11.6

(
bT

bpol

)2

Epol,

(4)

6 Mastrano et al. (2011; Mastrano & Melato 2012) give εB versus
Λ = Epol/(Epol + ET). The latter goes from 0 (for a purely toroidal field) to 1
(for a purely poloidal field). In terms of Λ, Equation (1) becomes
εB � 4.7 × 10−6(Bdip/1014G)2(1 − 0.422/Λ), omitting R∗ and M∗.
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Figure 1. Representation of magnetic field lines in the chosen configuration.
The NS surface is indicated by the thick gray dashed circle. A mixed
toroidal–poloidal field in the NS interior is matched to a pure dipole in the
exterior with no surface currents. The toroidal field is confined within the region
of closed poloidal field lines, the boundary of which is indicated by the thick
closed curve. The extension of this region can be adjusted freely at a fixed
strength of the exterior dipole, Bdip. This adjustment induces: (1) a change in
the total poloidal field energy, without changing Bdip; (2) a change in the total NS
ellipticity, εB, at fixed values of Bdip and ET (see Section 2.2.1); (3) a change in
the stability threshold for the toroidal-to-poloidal field ratio (see Section 2.2.2).

where ηpol,T are dimensionless constants measuring the relative
strength of the two field components, B0 is the field normal-
ization, Bdip = 2ηpolB0, and the following definitions hold:
B

(max)
pol ≡ bpolB0, B

(max)
T ≡ bTB0, B(max), indicating the maxi-

mum value of either field component inside the NS volume.
With these expressions, and after calculating the parameters

khydro, kpol, and kT defined in Equations (79)–(82) of Akgün et al.
(2013), we derived the condition for stability of the magnetic
field in terms of the energy ratio between its components (see
Equation (83) of Akgün et al. 2013)

Epol

ET
� 0.00894

b2
T

(Γ/γ − 1) p
, (5)

where Γ = 1+1/n for a polytrope with index n, γ is the adiabatic
index of the NS fluid,7 and p = 8πPc/B

2
0 , with Pc as the NS

central pressure. The ratio b2
T/p is derived by inverting

ET

EG
� 0.1098

b2
T

p
, (6)

where EG = (3/5 − n)(GM2/R) is the NS binding energy.
Combining Equations (5) and (6) we finally get

Epol

ET
� 0.0814

(Γ/γ − 1)

Etor

EG
. (7)

7 The factor (Γ/γ − 1) ∼ fp/2 � a few % in an NS core, where fp is the
charged particle fraction (Reisenegger & Goldreich 1992).
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Figure 2. Spindown of a PMNS born with a spin period of 1 ms, in two representative cases. Left panel: initially the GW-induced torque dominates and a strong GW
signal can be emitted. The dipole magnetic field is Bdip � 1014 G and the interior toroidal field energy corresponds to εB � 10−3. As the spin frequency decreases
the electromagnetic torque progressively kicks in, while the amplitude and frequency of the GW signal both decay faster than they would if only GW emission were
effective. Right panel: the spindown is dominated from the beginning by the electromagnetic torque. Here Bdip � 3 × 1014 G and the same εB � 10−3. No strong GW
signal is expected in this case, but a bright electromagnetic transient, e.g., a short GRB extended emission or plateau, could result.

Assuming fp � 0.05 (Reisenegger & Goldreich 1992) the
coefficient Γ/γ − 1 � 0.02, hence the stability condition reads(

ET

1050 erg

)
� 3

(
Bdip

1014 G

)(
Γ/γ − 1

0.02

)(
R∗

15 km

)(
M∗

2.36 M�

)
.

(8)
This suggests that, at the end of the amplification process, a

massive magnetar can be formed with a stable mixed field domi-
nated by the toroidal component. The latter can, in principle, tap
the energy �1050 erg that was originally in differential rotation,
e.g., for the magnetic configuration of Figure 1. The strength of
the exterior dipole will be determined by the total energy in the
poloidal field and by the size of the closed-field-line region.

Finally, by adopting the scalings of Equation (3), we can write
the stability condition (8) as

ET

Epol
� 545

(
Bdip

1014 G

)−1(
M

2.36 M�

)(
R∗

15 km

)−2(Γ/γ − 1

0.02

)
.

(9)

2.3. Spindown of the Newly Formed NS

A rotating ellipsoid with the symmetry axis tilted with respect
to the spin axis by an angle χ has a GW-induced spindown
luminosity (Cutler & Jones 2001, and references therein)

ĖGW = −2

5

G(IεB)2

c5
ω6

s sin2χ (1 + 15 sin2χ ), (10)

where νs is the spin frequency and ωs = 2πνs .
Once the prolate ellipsoid has become an orthogonal rotator,

the GW-induced spindown is maximized and the resulting
spindown formula becomes

ĖGW = −32

5

G(IεB)2

c5
ω6

s , (11)

which we will use throughout this work.
When the additional torque due to the dipole magnetic field

is included, the total spin down of the PMNS becomes

ω̇s = −B2
dipR

6

6Ic3
ω3

s − 32

5

GIε2
B

c5
ω5

s , (12)

where Bdip is the dipole field at the NS pole8 and R the PMNS
radius.

In Figure 2, we plot the solution of Equation (12) in two
representative cases, showing the critical role of the ratio
between the interior toroidal field and the exterior dipole in
setting the intensity and duration of the spindown-induced GW
signal. When GW emission initially dominates the spindown,
it will do so only for a limited time after which magnetic
dipole takes over. If magnetic dipole braking dominates at
birth, on the other hand, it will do so even at later times
due to its weaker dependence on ω. In this case, the PMNS
spin energy is released electromagnetically and could produce
observables, e.g., plateaus in SGRBs (Rowlinson et al. 2013;
also see Dall’Osso et al. 2011 for long GRBs).

In this paper, we will only be concerned with the GW signal,
thus we aim at determining the conditions under which the GW
torque dominates the PMNS spindown. However, we will be
interested in tracking the spindown for as long as possible since
the population of potential sources, stable and supramassive
PMNSs, will display distinctive features in the evolution of
their signals. The GW signal emitted by a stable PMNS will be
characterized by steadily decreasing frequency and amplitude,
with dipole braking significantly accelerating the evolution at
late times. On the other hand, the collapse of the supramassive
object will truncate the signal, thus leaving a very specific
signature.

2.4. Orthogonalization Timescale

Given the near alignment implied by the initial conditions,
significant GW emission will ensue only after the tilt angle χ
has become large. During this very early phase, the PMNS is,
however, subject to magnetic dipole braking, with a spindown
time τem,i = ωi/(2ω̇i) � 1 day B2

dip,14P2
i,ms. A necessary

condition for the PMNS to be able to radiate its huge spin energy
reservoir via GWs is that the growth time of the tilt angle, τχ , be
shorter than τem,i. In the opposite case, a bright electromagnetic
transient of duration ∼τem,i would carry away much of the
initial spin energy, leaving much less energy available for GW
emission once χ has grown significantly.

Dall’Osso et al. (2009) derived the expression τχ ∼
13ET,50P2

msT
−6

10 s, where the strong temperature dependence is

8 The magnetic dipole moment is μd = BdipR
3/2.
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due to bulk viscosity being the most important dissipation mech-
anism. Using this expression, they calculated the time for the tilt
angle to grow to, e.g., π/3 rad, explicitly accounting for the fact
that the very efficient modified-URCA reactions cause the NS
temperature to change significantly during the process. They
concluded that, for the region of parameter space where GW
spindown wins over magnetic dipole braking, orthogonaliza-
tion is always achieved in a time significantly shorter than τem.i.

3. STABLE VERSUS UNSTABLE MAGNETARS:
DIFFERENT EOS AND TIME OF COLLAPSE

Whether a merger forms, a stable or a supramassive PMNS
will depend on the mass of the binary components and on
the maximum mass (Mmax) allowed by the NS EOS. A stable
PMNS can be formed in the merger of a relatively low-mass
BNS (Giacomazzo & Perna 2013), for a sufficiently stiff EOS
that allows a maximum NS mass Mmax � 2.3 M�. For a given
EOS, fast rotation9 provides additional support against collapse,
increasing the mass limit by up to ∼20% when break-up speed
is approached (Lyford et al. 2003). Supramassive PMNSs could
thus be formed in a wider range of conditions and may well
represent a large fraction of the whole population, especially
when considering the softer EOS among those consistent with
the observational constraint Mmax > 2.1 M�.

NS masses generally refer to the gravitational mass, Mg, the
corresponding rest-mass being approximately10 (Timmes et al.
1996)

Mr = Mg + 0.075 M2
g . (13)

For a given EOS the equilibrium mass of a NS is a function
of the central density, M̂g(ρc), and the maximum mass Mg,max
indicates the peak in this function. Models with Mg > Mg,max
are unstable and immediately collapse to BHs when rotation is
negligible.

When rotation is included one can formally write the equilib-
rium mass as a function of the spin period P, or of the rotation
rate Ω, as (Lasky et al. 2014; Ravi & Lasky 2014)

M̂g(P ; ρc) = M̂g(ρc)+ΔM(P ; ρc) = M̂g(ρc)(1+αP −β), (14)

where both coefficients α and β depend on the star’s EOS.11

The maximum mass, Mg,max(Pmin), now depends explicitly on
the maximum allowed rotation rate, i.e., the mass-shedding limit
Ωmax or the corresponding minimum period Pmin. The latter is
given, to an accuracy of a few percent, by (Stergioulas 2003 and
references therein)

Ωmax = C(χs)
√

GMg,max/R3
max, (15)

where Mg,max and Rmax are the mass and radius of the maximum
mass nonrotating model, χs = 2GMg,max/(c2Rmax) its com-
pactness, and the function C(χs) = 0.468+0.378χs . Comparing
with, e.g., the numerical results of Lasky et al. (2014) for three
selected EOS, gives indeed a very good agreement.

The EOS GM1 used by Lasky et al. (2014) has Mg,max =
2.37 M� and Rmax = 12 km, corresponding to χs � 0.586
and Ωmax � 9.3 × 103 rad s−1 (Pmin � 0.67 ms). For this

9 We only consider uniform rotation here.
10 This accounts for the NS binding energy, including leading-order
relativistic corrections as well as finite entropy effects.
11 This is true for relativistic models, while in Newtonian models β = 2 and
only α depends on the stellar structure.

EOS, α = 1.58 × 10−10 and β = 2.84 (Lasky et al. 2014),
giving Mg,max(Pmin) � 2.77 M�. For comparison, Giacomazzo
& Perna (2013) adopted a polytropic EOS with n = 4/7 and
K = 30, 000 that well approximates the behavior at high density
of the EOS by Shen et al. 1998 (see Oechslin et al. 2007). This
polytropic EOS has a maximum mass Mg,max ∼ 2.43 M� (and
radius ∼12 km) for a nonrotating NS, while the maximally
rotating model12 has a maximum Mg,max(Pmin) ∼ 2.95 M� (see
Giacomazzo & Perna 2013 for more details). Finally, a relatively
softer EOS that is widely used is the APR (Akmal et al. 1998)
with Mg,max = 2.2 M�, Rmax = 10 km, α = 3.03 × 10−11

and β = 2.95 (Lasky et al. 2014). With these figures, we get
Pmin � 0.51 ms and Mg,max(Pmin) � 2.54 M�.

Based on the measured masses of nine BNSs, the mass
distribution of NSs in binaries was found to be peaked at 〈Mg〉 �
(1.32 ± 0.11) M� (Kiziltan et al. 2013) which corresponds to
〈Mr〉 � (1.45 ± 0.13) M�, with the errors indicating a 68%
probability interval. A “typical” equal-mass binary would have
Mr = (2.91 ± 0.18) M�, or Mg = (2.45 ± 0.13) M�, close to
the maximum for the n = 4/7 polytrope described above, but
uncomfortably large, e.g., the APR EOS. Such numbers suggest
that, for the n = 4/7 EOS (or, possibly, the GM1), a large
majority of BNS mergers would produce either a supramassive
or a stable PMNS, with the latter potentially representing a
sizeable fraction. A BH would be the most likely result for softer
EOS, possibly with a small fraction of supramassive PMNSs
rotating close to break-up.

To further clarify this point, we plot in Figure 3 the measured
NS masses in nine BNSs (Kiziltan et al. 2013, their Table 1)
along with lines indicating Mg,max for the EOS GM1 and the
n = 4/7 polytrope. These lines assume that the total rest-mass is
conserved in the merger: any loss of rest-mass due to, e.g., mass
ejection or the formation of a disk/torus around the remnant,
would shift them upward in the plot. For three systems only the
total gravitational mass is well determined, hence we plot them
separately showing the 68% probability range for the total mass
in the right panel of Figure 3.

4. SOURCE DETECTION

Three main factors determine the rate at which GW signals
of massive magnetars formed in BNS mergers can be revealed
with advanced detectors: (1) the total rate of BNS mergers, Ṅ ,
and the fraction of such events that will form a massive PMNS,
call it pns; (2) the intrinsic signal strength as a function of the
physical properties of the sources; (3) the detector’s properties.

4.1. Signal-to-noise Ratio

The maximum strain received from an ideally oriented13 NS
spinning at frequency νs and at a distance D is

h(f ) = 4π2GIεB

c4D
f 2, (16)

where f = 2νs is the frequency of the GW signal.
As the detector collects the signal, the NS spins down and

both frequency and strain decrease. The signal-to-noise ratio

12 The formulae for rotating models give Ωmax � 9.52 × 103 rad s−1

(Pmin � 0.66 ms).
13 Ideal orientation to the detector’s arms and optimal angle between spin and
line of sight.
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Figure 3. Left panel: measured gravitational masses for NSs in BNSs (Kiziltan et al. 2013). Points below the diagonal lines indicate systems that will potentially form
a stable PMNS, i.e. Mg < Mg,max, for two different EOS: (a) a polytrope with n = 4/7 and K = 30,000, that well approximates the nuclear EOS by Shen et al. 1998
(dashed line); (b) GM1 from Lasky et al. 2014 (dotted line). The two lines are obtained assuming the conservation of rest-mass in the merger and an approximate
Mr − Mg relation (see the text). Mass-loss shifts the lines upward. For example, the two lines are separated by a rest-mass difference of �0.04 M�. Right panel: for
three BNSs, individual masses are loosely constrained and only the total gravitational mass is well determined. The 1σ error ranges (Kiziltan et al. 2013) are plotted:
PSR J1829+2456 falls between the two lines. Conclusions are uncertain for the remaining systems.

(S/N) for an ideal matched-filter search is thus defined as

S/N = 2

[∫ ff

fi

df
|h̃(f )|2
Sh(f )

]1/2

, (17)

where Sh(f ) is the detector’s (one-sided) noise spectral density
and h̃(f ) is the Fourier transform of h[f (t)]. The latter will
depend on the frequency spindown (see Sathyaprakash & Schutz
2009), hence on both Bdip and εB, in general (see Dall’Osso et al.
2009). It is useful for our purposes to write it in the limit where
df/f t is only due to GW emission(

S

N

)
GW

� 10

(
D

33.5 Mpc

)−1 (
R

15 km

)(
M

2.36 M�

)1/2

×
[(

ff

kHz

)−2

−
(

fi

kHz

)−2
]1/2

. (18)

The choice of the low end of the frequency range, ff , can be
very important for the value of S/N, while fi has a marginal role
as long as it is not too close to ff . This will be a crucial point
in the next section, where we aim at assessing the effective
detectability of our sources.

4.2. The Detector’s“Range” R

The intensity of a received GW signal also depends on the
source’s direction and on the orientation of its spin axis with
respect to the line of sight. At a fixed detection threshold, fa-
vorably oriented sources are detectable out to much larger dis-
tances than badly oriented, yet identical, ones. A proper average
of these orientation-dependent horizons, which accounts for the

probability of different sources making different angles with re-
spect to the detector’s arms and having different angles between
their spin axes and the lines of sight, is the detector’s “range,”
R (Finn & Chernoff 1993). This allows us to write the total rate
of detectable events simply as14

Ṅdet = 4

3
πṄpnsR3 . (19)

Note that not all detected sources will actually be withinR: some
will be farther away, but with a particularly favorable orientation
while others, that are well within R, will go undetected being
unfavorably oriented.15

If we define the optimal horizon Dopt as the maximum
distance at which an optimally oriented source can be detected
with an ideal matched-filter search made using one single
interferometer, then the range is simply obtained as R =
Dopt/2.26 (see section 4.3 in Finn & Chernoff 1993).

For a single-detector search, we set, for simplicity, the
detection threshold at S/N = 8 (Abadie et al. 2010). We do
not need to determine it more accurately at this stage, in view
of the significant improvement in sensitivity that the operation
of a network of detectors will guarantee over the single-detector
case (Schutz 2011). For this reason, the estimates that follow
may well be regarded as conservative ones.

The maximum distance at which S/N is above threshold,
Dopt, can only be obtained as a function of source parameters. In
particular, given the dependence of S/N on ff (Equation (18)),

14 We just added the factor pns to the formula given by Finn & Chernoff
(1993).
15 The fraction of detected sources that will be beyond a given distance can
also be estimated (Finn & Chernoff 1993).
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Figure 4. Contours of the optimal S/N in the Bd vs. ET plane, for a single
detector search and an ideally oriented source at a distance of 75 Mpc. We
define this, somewhat arbitrarily, as the maximum distance at which S/N is
above the threshold in a sufficiently large region of the parameter space (about
half). Following Abadie et al. (2010), the threshold for detectability is set at
S/N = 8. No NS can be found in the instability region defined by inequality (8).

we will consider stable and supramassive NSs separately.
Indeed, while ff for the former is determined by spindown
causing a decrease of the signal amplitude (Figure 2), for the
latter, it is determined by the collapse of the NS which, in
general, occurs much earlier (see below).

4.2.1. Stable PMNS

If a stable PMNS is formed in the merger, a strong GW signal
starts within a few tens of minutes, once the angle between the
rotation axis and the symmetry axis of the toroidal field has
grown sufficiently. The initial frequency is fi = 2νs,i and GWs
should dominate the spindown, initially, in order for the signal
to be detectable at all. As the PMNS spin frequency decreases,
the magnetic dipole torque becomes relatively more important
(see Equation (12)), the signal amplitude and frequency decay
progressively faster than they would under pure GW emission,
and GW emission eventually fades away once the spin down is
dominated by the magnetic dipole. This determines the lower
end of the frequency interval, ff .

We have calculated S/N according to Equation (17) includ-
ing self-consistently both torques in the expression for the spin-
down. Since S/N depends on two parameters (Bdip, EB), the
distance up to which it remains above threshold is not unequiv-
ocally determined. We choose as our horizon a distance at which
S/N � 8 for approximately half of the parameter space of in-
terest, which turns out to be Dopt � 75 Mpc for a PMNS with
M = 2.36 M�, R = 15 km and νs,i = 1 kHz (see Giacomazzo &
Perna 2013), translating to R � 33.5 Mpc. The S/N contours
in the B

∫
d versus

∫
EB plane for this specific configuration are

shown in Figure 4, where the range of the two magnetic field
components was chosen appropriately for our case.

4.2.2. Supramassive PMNS

The collapse of a supramassive PMNS sets the frequency
= fcoll. It occurs when the star’s mass, Mns, equals the maximum
mass at a given spin period, Mg,max(Pmin). By inverting the
definition of M̂g(P ; ρc) of Section 3, we can write (Lasky et al.
2014)

fcoll = 2

(
Mns − Mg,max

αMg,max

)1/β

, (20)

the solution of which is plotted in Figure 5, as a function of Mns,
for the three selected EOS discussed in Section 3. In general,

n=4/7GM1APR

2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55
M �M��

500

1000

1500

2000

fcoll

Figure 5. Signal frequency at which a supramassive PMNS collapses, fcoll =
2νs,coll vs. the initial mass, for the three selected EOS discussed in Section 3.
The red dashed lines indicate the initial mass at which fcoll = 1 kHz (spin
period of 2 ms), with only lower initial masses collapsing at lower frequencies,
implying a narrow range of allowed masses ΔM � 0.02 M� for the n = 4/7
and GM1 EOS. For the APR EOS the allowed range is Δ M < 0.01 M�.

the frequency at collapse decreases with the mass and becomes
lower than 1 kHz only if Mns lies in an extremely narrow range
just above Mg,max. A much lower S/N than for stable PMNSs
is thus expected, which implies a smaller horizon and a much
smaller number of events. One must restrict attention to the
smallest masses in order to get the strongest signals, visible
to the largest distances. However, this reduces drastically the
number of possible targets.

For an approximately Gaussian distribution of remnant
masses peaked at 2.45 M� and with σM = 0.13 M� (see
Section 3), only ∼5% and 6% of them would lie between Mg,max
and (Mg,max + 0.02) M�, for the GM1 and the n = 4/7 EOS,
respectively. This fraction becomes quickly negligible for softer
EOS, while for stiffer EOS most mergers would produce stable
PMNSs given that Mg,max is above the Gaussian peak. For illus-
tration, we have considered a 2.45 M� remnant with R = 15 km
and initially spinning at break up, νs,i � 1500 Hz for the
n = 4/7 polytrope. According to Equation (20) it will col-
lapse when fcoll � 1 kHz, or the spin period �2 ms. We derived
the optimal horizon for this relatively favorable case as was
done in the previous section. The result is shown in Figure 6
with Dopt = 35 Mpc, corresponding to R � 16 Mpc. This con-
siderably smaller horizon compared to the stable PMNSs causes
a factor 10 reduction in the sampling volume. Together with the
small fraction of objects that fall in this favorable mass range, it
implies that a number ∼100–200 times smaller of such events
can be detected compared to the stable PMNSs.

4.3. The Expected Event Rate

In light of the above findings, the number of PMNSs that can
be revealed with the forthcoming generation of GW detectors
will be dominated by stable PMNSs, and will strongly depend
on the NS EOS. The discussion of Section 3, summarized in
Figure 3, suggests that a sizeable fraction, pns ∼ 0.2–0.5, of
the whole population of BNS mergers could result in a stable
or marginally supramassive PMNS for the GM1 or the n = 4/7
polytropic EOS. This fraction grows to ∼ unity for harder EOS’s,
in particular, those with Mg,max � 2.5 M�. For relatively softer
EOS’s like, e.g., the APR; on the other hand, the maximum
mass quickly becomes too low and essentially all mergers would
immediately produce a BH. The detection of a ∼ kHz frequency
GW signal with hour-long spindown following a BNS merger, as
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Figure 6. Contours of the optimal S/N in the Bd vs. ET plane, for a single
detector search, and an ideally oriented supramassive PMNS at Dopt = 35 Mpc.
We chose Mg = 2.45 M�, R = 15 km, and an n = 4/7 (K = 3000) polytropic
EOS, for which the breakup frequency is 1500 Hz, and the collapse frequency
fcoll � 1 kHz. With the initial spin frequency taken to be at breakup, we have
fi = 3 kHz and = fcoll � 1 kHz. We define Dopt, somewhat arbitrarily, as the
maximum distance at which the S/N is above threshold in a sufficiently large
region of the relevant parameter space. No NS can be found in the instability
region defined by Equation (8).

discussed here, would thus provide a very interesting constraint
on the EOS of NS matter. This would be especially valuable
when combined with an independent determination of the total
population of BNS, which could provide a direct measure of the
fraction pns.

Since Ṅdet ∝ Ṅ (see Equation (19)), we can express the rate
of detection of PMNS signals relative to the rate of detection of
BNS mergers with advanced detectors as

Ṅdet

Ṅ
∼ pns

(
RPMNS

RBNS

)3

∼ 0.003, (21)

where RBNS ∼ 170 Mpc (Abadie et al. 2010) and we assumed
pns ∼ 0.3 (thus excluding EOSs softer than the GM1). In this
case, the small fraction mostly reflects the difference in the
sampling volume for the two different types of signals.

“Realistic” estimates of the detection rates of BNS mergers
with advanced detectors range from 40 to 400 events per year
(Abadie et al. 2010), and were derived phenomenologically
based on a statistical study of the population of known BNS in
the Galaxy (Kalogera et al. 2004). By adopting these numbers,
we conclude that stable PMNSs may be detectable at a rate
of Ṅset ∼ (0.1 − 1) yr−1 with Advanced detectors, for the
GM1 or the n = 4/7 polytropic EOS. For stiffer EOS, with
Mg,max � 2.5 M�, nearly all mergers would produce a PMNS,
thus the detection rate could be higher by a factor of ≈3. For
softer EOS, on the other hand, these figures drop significantly
following the drop in the coefficient pns.

We finally note that third generation detectors, such as the
Einstein Telescope, will have a higher sensitivity by up to
a factor of ∼10 (Punturo et al 2010). This will increase the
detector’s range, R by the same factor, making stable PMNSs
detectable up to R � 300 Mpc, and even supramassive ones up
to R � 150 Mpc. The detection rate will thus increase by a very
large factor, ∼103, which is extremely important, in particular,
for supramassive PMNSs. Indeed, with advanced detectors these
objects will also become interesting sources, with a likely rate
of detection of a few events per year.

5. SUMMARY AND DISCUSSION

The GW signatures of a newly born NS are very sensitive to
the EOS. Intense GW emission is expected under the presence of
a strong toroidal magnetic field, as a result of the star’s prolate
ellipsoidal shape. In such a configuration, viscous dissipation
drives the magnetic symmetry axis orthogonal to the spin axis,
hence maximizing the strength of the emitted GW radiation.

GWs from highly magnetized NSs newly born in core
collapse supernovae have been studied in a number of works.
Here, motivated by recent numerical simulations of binary NS
mergers which show magnetic field amplification, we have
studied the conditions under which strong GW emission is
expected in the post-merger phase, if this is characterized by
the presence of a short-lived, or stable, highly magnetized NS.
To this aim, we have extended the set of equilibrium states for
a twisted torus magnetic configuration to include solutions that,
for a given external dipolar field, carry a larger magnetic energy
reservoir. We have then computed the magnetic ellipticity for
such configurations, hence the strength of the GW signal, once
the system has orthogonalized.

We find that the strength of the signal, and hence its detectabil-
ity, is mainly dependent on the NS EOS. The dependence is
twofold. First, whether the merger of two NSs leads to a supra-
massive NS (which eventually collapses to a BH) or to a stable
NS, is highly dependent on the NS EOS. For a given distribution
of remnant masses, stiffer EOSs yield a higher fraction of stable
NSs. Second, the GW signal itself, and, in particular, the two
distinct and robust spectral features that characterize the post-
merger emission, are very sensitive to the NS EOS (e.g., Takami
et al. 2014). For an intermediate EOS, such as the n = 4/7 poly-
trope, or the GM1 used by Lasky et al. (2014), we estimate that
we expect GW emission from PMNSs in about 0.3% of all GW
detections from BNS mergers. Correspondingly, we expect a
detection rate of about 0.1–1 events per year with advanced de-
tectors; this rate would increase by a factor of ∼103 with third
generation detectors, such as the Einstein Telescope, which will
have a higher S/N by up to a factor of 10. These detectors would
be able to observe even the weaker emission from the unstable
PMNSs, albeit with lower rates.

GWs from highly magnetized PMNSs produced in mergers
would be especially interesting if detected in connection with
a short GRB. In fact, while there is plenty of circumstantial
evidence that these events are produced by a merger, whether
the final product is a stable (or unstable) NS, or a promptly
formed BH is still a subject of investigation. Extended emission,
occasionally in the form a plateau, has been seen in about half
of Swift SGRBs. In some cases, this emission ends abruptly
(possibly indicating the collapse of a hypermassive NS to a BH),
while in some other cases it declines with a power law, possibly
indicating the presence of a stable NS (Rowlinson et al. 2013).
Detection of GWs from the PMNS would allow us to discern
its identity, and hence shed light on the nature of the binary
progenitors of SGRBs. In addition, contemporary detections of
an SGRB and GWs would further constrain the NS EOS (e.g.,
Giacomazzo et al. 2013).

For this work, S.D. was supported by the SFB/Transregio
7, funded by the Deutsche Forschungsgemeinschaft (DFG).
B.G. acknowledges support from MIUR FIR Grant
No. RBFR13QJYF, and R.P. from NSF grant No. AST 1009396
and NASA grant No. NNX12AO67G.
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APPENDIX

A.1. The Twisted-torus Configuration

In spherical coordinates, the interior poloidal field is

Bpol(r̂ , θ ) = B0[ηpol∇α̂(r̂ , θ ) × ∇φ̂ + ηTβ̂(r̂ , θ )∇φ̂], (A1)

where r̂ = r/Rns is the dimensionless radial coordinate and
∇φ̂ = φ̂/(r̂ sin θ ), with φ̂ as the unit vector in the φ-direction.
B0 is a normalization (in Gauss), α̂ the (adimensional) flux
function, i.e., the poloidal magnetic flux threading a polar
cap of radius ω̃ = R∗r̂ sin θ , ηpol and ηT are dimensionless
constants measuring the relative strength of the two field
components and the “current function” β̂ ≡ β̂(α̂), as required
by axysimmetry. Since no currents exist in the exterior, this
implies that electrical currents can only flow on poloidal field
lines that close inside the NS, hence the bounding region for
BT. In particular, β̂ = (α̂ − 1)n is usually assumed, with n> 1
to ensure regularity of the supporting currents at the boundary
of the toroidal field region. Finally, the exterior dipole field is
matched at the NS surface to the interior field by taking the flux
function α̂(r̂ , θ ) = f (r̂) sin2θ .

The function f is determined16 by first imposing the magnetic
force and current density to remain finite everywhere inside the
NS. For a trial form f (r̂) ∝ r̂p this implies either p = 2 or p >
3, suggesting a polynomial solution for f. Smoothly matching the
interior and exterior fields requires continuity of the magnetic
field at the NS surface, and that no surface currents exist. To
satisfy this at least three terms in the polynomial are needed;
therefore, the “simplest” solution is f (r̂) = c2r̂

2 + c4r̂
4 + c5r̂

5.
The coefficients are determined by normalization of f (r̂), thus
fixing the field shape. Different choices for the polynomial
terms are, however, possible, which affect the shape and size
of the closed-field-line region. For the purpose of this work, we
have chosen the configuration represented in Figure 1, which
corresponds to f (r̂) = (435/8)r̂2 − (1221/4)r̂4 + 400r̂5 −
(1185/8)r̂6 and β̂ = (α̂ − 1)2.

A.2. Magnetic Ellipticity

The two components of the inertia tensor Izz and Ixx are
obtained through the magnetically induced density perturbation
by (Mastrano et al. 2011)

Ijk = R5
∗

∫
dV[ρ(r̂) + δρ(r̂ , θ )]

(
r̂2δjk − x̂2

jk

)
. (A2)

With these definitions, the total ellipticity is eventually
expressed as

εB = πR5
∗

I0

∫
dθdr̂δρ(r̂ , θ )r̂4sinθ (1 − 3 cos2 θ ), (A3)

hence the relation between the magnetic field structure and
the induced ellipticity of the NS is obtained directly from
δρ(r̂ , θ ). To calculate the latter, we follow the steps described
by Mastrano et al. (2011), who write the equation of hydrostatic
equilibrium to first order in the magnetic perturbation in the
Cowling approximation,

− B2
0

r̂2 sin2 θ

(
η2

pol∇α̂Δ̂α̂ + η2
Tβ̂∇β̂

) = ∇δp + δρ∇Φ . (A4)

16 A full derivation is given by Akgün et al. (2013).

Here δp is the magnetically induced pressure perturbation, Φ
the unperturbed gravitational potential, and the Grad–Shafranov
operator is Δ̂ = ∂2

r +(sin θ/r̂2)∂θ [(sin θ )−1∂θ ]. The θ -component
of Equation (A3) relates the magnetic term to δp alone. Feeding
the latter in the r̂-component gives the density perturbation
inside the NS as a function of α̂, r̂ , θ and the parameters (B0, ηT,
ηpol). The poloidal and toroidal field contribute with opposite
signs to δρ(r̂ , θ ), hence the ellipticity due to the poloidal field
is positive according to our definition, while the toroidal field
produces a negative εB. Solving Equation (A3) for δρ(r̂ , θ )
with our chosen α̂(r̂ , θ ), we plug it into Equation (A2) to
eventually obtain the total magnetic ellipticity of the NS reported
in Equation (1).
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