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ABSTRACT

An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-
scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped
in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and
the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing
pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale
reconnection events. A simpler advection–diffusion transport equation for a nearly isotropic particle distribution is
derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic
island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles
are trapped in regions where they experience repeated interactions with the induced electric field or contracting
magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and
a fixed source yield a power-law spectrum for the accelerated particles with index α = −(3 + MA)/2, where MA
is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with
index −3(1 + τc/(8τdiff)), where τc/τdiff is the ratio of timescales between magnetic island contraction and charged
particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach
number and the timescale ratio τdiff/τc. Observed power-law distributions of energetic particles observed in the quiet
supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale
reconnection processes in a turbulent plasma, including the widely reported c−5 (c particle speed) spectra observed
by Fisk & Gloeckler and Mewaldt et al.
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1. INTRODUCTION

Magnetic reconnection has been widely invoked to explain the
energization of ions and electrons throughout the heliosphere,
from solar flares and Earth’s magnetosphere (e.g., Drake et al.
2006a; Oka et al. 2010; Birn et al. 2012; Cargill et al. 2006,
2012 and references therein) to even the heliopause (Lazarian
& Opher 2009). An interesting series of studies has also con-
sidered particle energization in astrophysical flows, identifying
related first- and second-order Fermi acceleration-like mech-
anisms due to magnetic reconnection (de Gouveia dal Pino &
Lazarian 2005; Kowal et al. 2011, 2012). Despite the wide appli-
cation of some form or another of reconnection mechanisms to a
variety of heliospheric and astrophysical environments, the pre-
cise physical mechanism by which magnetic reconnection en-
ergizes charged particles is still not fully understood. Typically,
particle acceleration within reconnecting current sheets has been
invoked because this can generate direct current (DC) electric
fields that accelerate (or decelerate) charged particles. The idea
that a statistical acceleration mechanism related to magnetic
reconnection was responsible for accelerating particles to high
energies was first advanced quantitatively by Matthaeus et al.
(1984) and Ambrosiano et al. (1988). They investigated the ef-
fect of turbulence on particle acceleration in an MHD field by
computing test particle trajectories in turbulent MHD recon-
necting fields, examining the acceleration mechanism in some
detail. Matthaeus et al. (1984) and Ambrosiano et al. (1988)
found that turbulence influences the acceleration in two ways.
It enhances the reconnection electric field while producing a

stochastic electric field that gives rise to momentum diffusion;
and it produces magnetic “bubbles” and other irregularities that
can temporarily trap test particles in the strong reconnection
electric field for times comparable to the magnetofluid charac-
teristic time. A power-law distribution for the energetic particle
distribution was found from their test particle simulations.

Here we consider the acceleration of particles assuming an
emerging paradigm for the dissipation of magnetic turbulence
via localized small-scale reconnection processes. We examine
the physics of magnetic island merging and include this sta-
tistically in deriving a transport equation for particles experi-
encing energization in a “sea” of dynamically interacting mag-
netic islands embedded in a super-Alfvénic flow such as the
supersonic solar wind. We solve the transport equation for an
incompressible background flow and show that the accelerated
particle distribution is a power law in particle speed c. The
spectral index of the power-law distribution is found to depend
on the Alfvén Mach number, the characteristic diffusion time
of charged particles, and the characteristic time for magnetic
island contraction.

Below, we discuss reconnection in a turbulent magnetofluid
with magnetic island merging. Two forms of the transport
equation for particles experiencing pitch-angle scattering and
interacting with reconnecting magnetic islands are derived; the
first, a gyrophase-averaged transport equation appropriate to
nonisotropic particle distributions and a second that assumes
near isotropy of the particles, which yields a simpler transport
equation. The isotropic 1D form of the transport equation is
solved in the steady-state for an incompressible flow.
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2. MULTIPLE RECONNECTION AND DISSIPATION
IN THE TURBULENT SOLAR WIND

2.1. Simulations of Multiple Magnetic Islands,
Reconnection, and Turbulence

The possibility that local reconnection is a primary dissipation
mechanism in the solar corona and supersonic wind is attract-
ing considerable attention theoretically and observationally. The
dissipation of magnetohydrodynamic (MHD) turbulence by lo-
calized reconnection processes suggests the existence of an im-
portant 2D (with respect to a large-scale magnetic guide field)
component of solar wind turbulence—a possibility that was al-
ready suggested from observations by Matthaeus et al. (1990)
and Bieber et al. (1996) and on the basis of theoretical mod-
els of nearly incompressible MHD (Zank & Matthaeus 1992,
1993), which proposed that solar wind turbulence was of a com-
posite slab–2D character. Although the potential importance
of reconnection in MHD turbulence has long been recognized
(Matthaeus & Montgomery 1980; Matthaeus & Lamkin 1986;
Carbone et al. 1990; Malara et al. 1992; Veltri 1999; Lazarian
& Vishniac 1999), both in terms of dissipation on small scales
and in its effect on large-scale structures, only recently have
detailed quantitative studies of reconnection in turbulence been
considered in simulations (Servidio et al. 2009, 2010, 2011) and
observationally (Greco et al. 2008, 2009a, 2009b; Osman et al.
2011). This work suggests that multiple reconnection events are
intrinsic to and pervasive in magnetized turbulence.

Inhomogeneous magnetic structures or discontinuities are
common in the supersonic solar wind (Burlaga 1968; Tsurutani
& Smith 1979; Neugebauer 2006) and have typically been iden-
tified as narrow noninteracting convected or propagating discon-
tinuities or as boundaries separating flux tubes (Borovsky 2008;
Li 2007, 2008). However, current sheets are coherent structures
known to be generated dynamically by turbulence (Matthaeus &
Montgomery 1980; Matthaeus & Lamkin 1986; Carbone et al.
1990; Bruno et al. 2001; Dmitruk et al. 2004) and likely to be
pervasive and ubiquitous in the turbulent solar wind. If coherent
structures such as current sheets are distributed intermittently
throughout a turbulent solar wind, then one might expect a
corresponding intermittent distribution of locations that exhibit
enhanced dissipation (e.g., Vasquez & Hollweg 2001; Sundkvist
et al. 2007). Servidio et al. (2009, 2010) present an extensive
analysis of 2D MHD turbulence direct numerical simulations
at high magnetic and fluid Reynolds numbers. The simulations
reveal the ubiquitous presence of incompressible MHD recon-
nection occurring at x-type neutral points, interspersed densely
with a complex dynamical population of magnetic islands. The
reconnection events are driven by the stochastic complex dy-
namics of the nonlinear cascade of energy across all scales. The
Servidio et al. (2009, 2010) simulations show that the turbulence
evolves to a complex pattern of multiscale magnetic islands,
possessing an extended distribution of sizes. Like the size dis-
tribution of interacting islands, so too are the reconnection rates
distributed broadly. Servidio et al. find that rapid reconnection
occurs in association with intermittent non-Gaussian current
structures. Observational studies by Greco et al. (2008, 2009a,
2009b) find a close correspondence between the distribution of
solar wind discontinuities at inertial range scales with the distri-
bution of non-Gaussian structures derived from simulations of
strong MHD turbulence. Osman et al. (2011) subsequently asso-
ciated coherent structures in the solar wind with enhancements
in the electron heat flux and the electron and the ion temperature,
indicating that the solar wind is heated inhomogeneously.

The simulations of Servidio et al. (2009, 2010, 2011) assume
a 2D geometry (as indeed do most of the simulations that we
reference below), and one might question the appropriateness of
applying such studies to the 3D solar wind. Although there are
theoretical (Zank & Matthaeus 1992, 1993; Bhattacharjee et al.
1998; Hunana & Zank 2010) and observational (Matthaeus et al.
1990; Bieber et al. 1996) reasons for supposing that turbulence
in the supersonic solar wind is a composite of slab and 2D
fluctuations, numerical simulations of 3D compressible MHD
turbulence by Dmitruk et al. (2004) provide some support for
the 2D perspective. Dmitruk et al. consider 3D compressible
MHD in the presence of a large-scale DC magnetic field in the z
direction and initiate the simulations in a nearly incompressible
regime. They find that current sheet structures form along
the DC field in the evolving turbulent flow. Magnetic field
fluctuations and structures evolve stochastically and resemble
2D reconnecting structures. Dmitruk et al. suggest that the 2D
structures can be related to “component reconnection,” which,
as described by Birn et al. (1989), is the 2D reconnection of the
perpendicular component of the magnetic field in the presence
of a strong guide field. Consequently, despite the complicated
dynamical behavior of the 3D system, the anisotropic structure
of MHD fluctuations with a strong guide field (Shebalin et al.
1983; Oughton et al. 1994) is one that has current sheets aligned
preferentially along the DC field superimposed on 2D structures
and fluctuations.

Kowal et al. (2011) found that parallel particle acceleration
in a reconnecting 2D MHD model without a guide field ended
at a certain energy threshold. However, they found that particles
can continue to increase their parallel speed in a 2D MHD
model with a guide field. Most importantly, fully 3D MHD
reconnecting models with no guide field exhibited the same
trend as 2D models with a guide field in accelerating particles.

2.2. Observations of Magnetic Islands and Merging

Direct observations of magnetic islands (sometimes called
flux ropes or flux transfer events) are common in magnetospheric
plasmas and are widely regarded as signatures of magnetic re-
connection. Reconnecting current sheets are observed in Earth’s
magnetotail and, as a consequence of the Kelvin–Helmholtz in-
stability, on the flanks of the magnetopause and on the borders of
flow vortices (Nykyri & Otto 2004; Eriksson et al. 2009; Moore
et al. 2013). Magnetic islands and discontinuities are observed
to have multiple scales, in agreement with high-resolution simu-
lations of MHD turbulence (Greco et al. 2010). Small-scale flux
ropes are unstable and local, but larger-scale magnetic islands
are observed by various spacecraft in Earth’s magnetosphere
(Moore et al. 2013), allowing for the detailed study of magnetic
reconnection and flux rope formation. By contrast, much less is
known about the corresponding processes in the solar wind.

Solar wind flux ropes are associated primarily with magnetic
clouds inside interplanetary coronal mass ejections (ICMEs).
However, Janvier et al. (2014) identified two populations of
flux ropes, the first being the familiar large-scale structures
associated with magnetic clouds in ICMEs; the second class,
however, is not easily classified. Large-scale flux ropes possess
a Gaussian-like distribution, whereas small-scale flux ropes with
radii <0.1 AU have a power-law distribution. It is possible that
the second population consists mainly of flux ropes around
reconnecting current sheets in the solar wind. Some case studies
of magnetic islands in the vicinity of the heliospheric current
sheet have been presented over the past decade (see, e.g.,
Eastwood et al. 2002; Foullon et al. 2011), but the origin and
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nature of small-scale magnetic islands in the inner heliosphere
remains poorly understood.

In the absence of multiple spacecraft observations, one may
utilize the Grad–Shafranov reconstruction technique to deter-
mine magnetic field structure. Trenchi et al. (2013) investigated
localized magnetic field structures associated with the dropout
and modulation of solar energetic particles (SEPs; Mazur et al.
2000). Mazur et al. (2000) and Giacalone et al. (2000) suggested
that if SEPs were released impulsively from a small site on the
Sun, and the magnetic field correlation length was large, then the
turbulent random walk of the interplanetary magnetic field lines
would lead to a mixing of field lines that were both connected
and not connected to the source region. By flying through con-
nected and unconnected magnetic field lines, a spacecraft would
observe regions (flux tubes) filled with and empty of particles,
respectively. Ruffolo et al. (2003) offered an interesting alter-
native explanation for the dropouts, suggesting that these were
related to 2D topological structures that develop dynamically
in evolving solar wind turbulence, independently of magnetic
field motions on the solar surface. Ruffolo et al. (2003) assume a
composite 2D–slab turbulence model. Because particles do not
diffuse easily off magnetic field lines, those particles injected
from a localized source on the Sun onto field lines governed by
slab turbulence will experience significant lateral diffusion due
to field line wandering (Matthaeus et al. 1995, 2003). By con-
trast, those magnetic field lines that form quasi-2D structures
or coherent small-scale helical filaments will correspond to re-
gions of high SEP flux. To explore these ideas more closely,
Trenchi et al. (2013) considered the SEP event of 1999 Jan-
uary 9–10, which exhibited multiple SEP dropouts. Trenchi
et al. used a Grad–Shafranov reconstruction technique (Hu &
Sonnerup 2001) to determine the local magnetic field topology.
They find that the maximum SEP fluxes all coincided with 2D
magnetic structures, in a few cases similar to small-scale mag-
netic flux ropes, while others possess a more complex current
sheet-like topology in which several magnetic islands are em-
bedded. The islands had the same chirality and were therefore
separated by x points.

Magnetic islands located near current sheets in the solar wind
may be a consequence of magnetic reconnection, as was shown
from multispacecraft observations (Eriksson et al. (2014)). The
heliospheric current sheet (HCS), representing a large-scale ex-
tension of the solar magnetic equator, is surrounded by numer-
ous secondary small-scale current sheets separated by magnetic
islands, most likely formed by continual reconnection along the
HCS plane. Khabarova et al. (2014) present observations show-
ing that medium-scale and small-scale flux ropes or magnetic
islands are present in the solar wind, at least in the vicinity of
the HCS, and not associated with ICMEs. Furthermore, their
observations indicated that the magnetic islands were experi-
encing an ongoing merging process simultaneously with the
local acceleration of particles.

Finally, recent statistical investigations show that reconnec-
tion events and current sheets are associated with intervals of
intermittent turbulence (Osman et al. 2014). At low heliolati-
tudes, turbulent processes can dominate around the heliospheric
current sheet, with recurrent reconnection observed at least up
to several AU.

2.3. Summary of the Simulations and Observations

Several conclusions can be drawn from the discussion above.
1. Multiple reconnection is a fundamental dissipative process

in an evolving turbulent magnetized plasma, and the turbu-

lent cascade produces a distribution of reconnecting mag-
netic islands.

2. In the presence of a strong guided magnetic field, MHD
turbulence is anisotropic and exhibits a quasi-2D character
with 2D reconnecting structures. Furthermore, a quasi-
2D model with a guide field appears to capture the basic
particle acceleration characteristics exhibited in fully 3D
reconnecting MHD turbulence.

3. The observed statistical properties of magnetic disconti-
nuities in the supersonic solar wind are very similar to
distributions derived from MHD turbulence simulations,
and, moreover, the nonhomogeneously distributed coher-
ent structures exhibit increases in the electron heat flux and
electron and ion temperatures.

4. During SEP dropout events, the regions of enhanced SEP
flux can be identified with 2D magnetic structures, includ-
ing current sheet-like topologies with embedded magnetic
islands separated by x points.

5. Magnetic islands of different scales are observed in Earth’s
magnetosphere frequently, and medium- and small-scale
flux ropes or magnetic islands have been observed in the
vicinity of the HCS, possibly while undergoing a merging
process.

2.4. Magnetic Island Merging and Particle Energization

Although we have emphasized above that reconnection is
intrinsic to MHD turbulence and a natural consequence of
the nonlinear cascade process, considerable insight into the
interaction and formation of magnetic islands is gained from
more typical symmetric, isolated models of reconnection (both
kinetic and MHD; e.g., Sato et al. 1982; Ambrosiano et al.
1988; Hoshino et al. 2001; Drake et al. 2005, 2006a; Pritchett
2006, 2008; Oka et al. 2010; Huang & Bhattacharjee 2013). Of
particular interest is multimagnetic island coalescence (Finn &
Kaw 1977; Pritchett & Wu 1979; Tajima et al. 1987; Pritchett
2007, 2008; Wan et al. 2008; Oka et al. 2010), especially in view
of the observations presented above that showed active merging
of magnetic islands occurring in the solar wind.

In the context of isolated reconnection simulations, a tearing-
mode instability typically generates localized currents and
multiple x lines. The tearing-mode instability is not necessary for
the formation of multiple islands separated by x points because
these arise naturally in freely decaying turbulence—see, e.g.,
Figure 4 of Servidio et al. (2010). In either case, neighboring
islands can be attracted to one another by the Lorentz force. As
illustrated in Figure 1, the merging of the two islands introduces
a reconnection event, marked by the heavy X.

In the context of isolated reconnection models, the reconnec-
tion due to the merging of magnetic islands is termed “antire-
connection” (Pritchett 2008), and the electric field induced by
the antireconnection event is opposite in direction to the electric
field of the primary reconnection event. Such terminology is
of course inappropriate to reconnection associated with island
merging in the context of turbulence because there is no “pri-
mary reconnection event.” Nonetheless, the physics of the island
merger is precisely the same for both MHD turbulence simu-
lations and simulations of isolated reconnection, and we will
sometimes use the “antireconnection” electric field terminology
where its use is unavoidable. As illustrated in Figure 1, the two
magnetic islands eventually merge to form a single large island.
Illustrated in Figure 2 is a cartoon, drawn from the simulations
of Servidio et al. (2009, 2010, 2011), that shows the in-plane
magnetic field. A “sea” of different sized magnetic islands is
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Figure 1. Local oppositely directed magnetic field (lines with arrows) in neigh-
boring islands experiences reconnection, sometimes called “antireconnection”
because the induced electric field is oriented oppositely to the primary reconnec-
tion electric field that led to the initial formation of multiple magnetic islands.
The X identifies the reconnection as two islands merge, the heavy arrows de-
note the reconnection outflow direction, and the dashed line is the separatrix.
The orientation of the reconnection electric field induced by magnetic island
merging is into the page.

clearly apparent, surrounded by in-plane magnetic field lines. A
magnetic field line component orthogonal to the plane depicted
in Figure 2, the guide field, is also present. Particles propagate
along magnetic field lines, sometimes experiencing trapping in
magnetic islands and other times propagating along the guide
magnetic field component. In this way, charged particles ex-
perience energization by being trapped in and escaping from
multiple magnetic islands.

Test particle simulations in a dynamical “sea” of magnetic is-
lands show that particles experience energization, with spectra
that frequently resemble a power law. Three processes essen-
tially govern the gain in energy that a particle experiences. The
first, discussed by Drake et al. (2006a), is based on the idea that
magnetic islands formed during magnetic reconnection will con-
tract. Particles trapped within the collapsing island experience
repeated reflections at the ends of converging mirrors, gaining
energy in a first-order Fermi manner (Drake et al. 2006a). PIC
simulations presented by Oka et al. (2010) showed that mag-
netic islands could “oscillate” or “ bounce,” i.e., undergo both
contraction and expansion. Particles trapped in an oscillating
island may experience a second-order Fermi energization. A
second process for particle energization is also related to the
shortening of the magnetic island field line length but is due
now to the merging of two adjacent islands. The merged mag-
netic field lines (Figure 1) shorten as the merging progresses.
The contraction of the magnetic field leads to an increase in the
particle velocity component parallel to the local magnetic field
and a decrease in the perpendicular energy. By sampling mul-
tiple merging magnetic islands, particles can be energized via
a second-order Fermi process (Drake et al. 2013). A third en-
ergization mechanism is discussed by Oka et al. (2010). In this
case, particles trapped in a merging magnetic island (Figure 1)
can experience multiple interactions with the reconnection elec-
tric field generated by the merging of two islands. This is quite
distinct from the usual energization of particles by an electric
field generated by the reconnection of two long antiparallel mag-
netic field lines. Unlike the usual particle energization process
via reconnection, particles trapped in a merging magnetic island
experience an extended period of interaction with the reconnec-
tion electric field, and thus significant energy gain is possible
(Oka et al. 2010; Pritchett 2008; Tanaka et al. 2010). The test
particle simulations of Oka et al. (2010) suggest that this third

Figure 2. Cartoon of the in-plane magnetic field, based on simulations by
Servidio et al. (2009, 2010, 2011) that show the ubiquitous presence of densely
packed magnetic islands with a range of different sizes. The magnetic guide
field projects out of the plane of the figure.

energization mechanism may be the dominant energization pro-
cess for particles in reconnection layers.

In this paper, we adopt the emerging paradigm that turbulence
in the supersonic solar wind is dissipated via quasi-2D coherent
structures or magnetic islands that are created through dynami-
cal processes. The islands interact nonlinearly, merge, contract,
stretch, and attract and repel one another. We will consider the
three processes above that have been identified as particle ener-
gization mechanisms related to the merging of magnetic islands,
i.e., magnetic island contraction, magnetic field shortening due
to merging, and the antireconnection electric field.

We therefore hypothesize that medium- and small-scale
magnetic islands exist throughout the solar wind, probably as
the end-point of turbulent processes, and that they experience
multiple mergers. In the process of merging, particles are trapped
within the dynamically evolving islands. Charged particles gain
energy via magnetic island contraction, merging, or repeated
interactions with the electric field induced by the merging
process itself. Some particles gain energy, and others lose
energy. We will show that the accelerated particle distribution is
essentially a power law with an index determined by the Alfvén
Mach number and the microphysical timescales associated with
magnetic island contraction and charged particle diffusion.

3. TRANSPORT EQUATION

A charged particle propagating through a sea of dynamically
interacting magnetic islands (Figure 2) surrounded by magnetic
field lines will experience a total force

F = FL + Fc + Fm + FE, (1)

where FL denotes the usual Lorentz force, Fc particle acceler-
ation due to island contraction (Drake et al. 2006a), Fm par-
ticle energization due to island merging (magnetic field line
shortening) (Drake et al. 2013), and FE is the particle accel-
eration due to energization by the reconnection electric fields

4



The Astrophysical Journal, 797:28 (18pp), 2014 December 10 Zank et al.

induced by magnetic island coalescence or other events. Here
FL = q(E + v × B), and q and m denote particle charge and
mass, respectively, v is the (nonrelativistic) particle velocity, E
is the large-scale or mean electric field, and B the large-scale or
mean magnetic field vector.

Consider first the acceleration term due to magnetic island
contraction Fc = m dv/dt |c. Drake et al. (2006a) show the
trajectory of a charged particle trapped in a contracting island
(their Figure 2). Particularly revealing are Figures 2(b) and (c) of
Drake et al. (2006a), which show that the trapped particle gains
energy in a monotonic manner, with increases occurring at the
converging island ends. These figures illustrate very clearly that
the process of energy gain is a standard first-order Fermi process.
The acceleration term is most simply understood on the basis
of the conservation of the first and second adiabatic invariants.
Because parallel action is constant, i.e.,

∫
v‖d�′ = const., where

�′ is the field line length, we have
∫

v‖d�′ ∼ v‖� ∼ const.
on assuming a characteristic length scale � for an island. This
therefore yields

dv‖
dt

= −1

�

d�

dt
v‖ ≡ ηc‖v‖.

For field line shortening, d�/dt < 0 and thus ηc‖ > 0, implying
that the parallel velocity increases in time during magnetic
island contraction. Conservation of the first adiabatic invariant
v2

⊥/B = const. shows that

dv2
⊥

dt
= 1

B

dB

dt
v2

⊥ ≡ ηc⊥v2
⊥.

Because the island is contracting, dB/dt > 0, and so the
perpendicular energy increases in time as the magnetic island
contracts. Recall that for a 2D magnetic island, the magnetic
field decreases with radial distance as B = Ψ(r)/r , where Ψ(r)
is the magnetic flux,4 so that for a characteristic island size,
Ψ ∼ B�. The contracting island flux is constant so that

dB

dt
= − Ψ

�2

d�

dt
⇒ 1

B

dB

dt
= −1

�

d�

dt
,

from which we infer that

ηc‖ = ηc⊥ ≡ ηc.

For a contracting island, we therefore obtain the acceleration
terms (Drake et al. 2006a, 2013)

dv‖
dt

∣∣∣∣
c

= ηcv‖ and
dv⊥
dt

∣∣∣∣
c

= 1

2
ηcv⊥. (2)

The island contracts at a speed V = d�/dt . Dimensionally, the
rate of energy gain due to conservation of longitudinal action is
then simply ηc = −αV/�, where the coefficient α is taken to
be the ratio of the reconnecting magnetic island magnetic field
energy density to the total magnetic energy density, i.e., b2/B2

(Drake et al. 2006a, 2013; Bian & Kontar 2013). A characteristic
speed of contraction is V ∼ VA, the local Alfvén speed. Of
course, if the magnetic island is expanding, a particle will lose

4 Consider a magnetic field in the 2D plane perpendicular to the z axis. Thus,
∇⊥ · B⊥ = 0, allowing us to assume B⊥ = −∇ × Ψ(x, y)êz. Expressed in
cylindrical coordinates, B⊥ = Br êr + Bφêφ , where Br = −(1/r)∂Ψ/∂φ and
Bφ = ∂Ψ/∂r for Ψ(r, φ). For a circular magnetic island,
B⊥ = Bφêφ = ∂Ψ(r)/∂r . Consequently, 〈B⊥〉r = Ψ(r) − Ψ(0).

energy at the corresponding rate. If contraction is favored, a
particle will experience a gain in energy. Bian & Kontar (2013)
use an identical argument, identifying ηc as proportional to the
mean compression associated with an average over the ensemble
of magnetic islands in the region of interest.

Consider now magnetic island merging (Figure 1) while
neglecting the induced antireconnection electric field. Here we
follow the analysis of Fermo et al. (2012) and Drake et al.
(2013). On crudely approximating the merged island as a circle,
we assume that the merging of two islands of initial areas A1
and A2 yields a single island of area A = A1 + A2 = const.
Thus, the merged island scales according to r ∼ √

A/π . Again,
we assume that the first and second adiabatic invariants hold, so
that for an island of characteristic magnetic field line length �,

dv‖
dt

= −1

�

d�

dt
v‖ ≡ ηm‖v‖.

Because the island area is assumed constant, 2πr = 2π (r2
1 +

r2
2 )1/2 < 2π ((r1 +r2)2)1/2, implies that the characteristic length �

decreases with merging, or d�/dt < 0. The second assumption
is that magnetic flux is constant (because reconnection simply
changes magnetic connectivity, and the flux will be the larger
of the fluxes in the two initial islands). Thus, combining the
constant area of the merged island A ∼ 2πr� with the constant
flux Ψ  B2πr yields

B

�
∼ const. or

1

B

dB

dt
= 1

�

d�

dt
< 0.

Consequently, during island merging, the perpendicular particle
energy changes according to

dv2
⊥

dt
= 1

B

dB

dt
v2

⊥ = 1

�

d�

dt
v2

⊥ ≡ ηm⊥v2
⊥.

Thus, ηm‖ = −ηm⊥ ≡ ηm, and the particle acceleration terms
for merging islands (neglecting the induced antireconnection
electric field) become (Drake et al. 2013)

dv‖
dt

∣∣∣∣
m

= ηmv‖, and
dv⊥
dt

∣∣∣∣
m

= −1

2
ηmv⊥. (3)

In this case, a particle gains in parallel energy and loses in
perpendicular energy.

Denote the fluctuating reconnection electric field by δE′ and
regard this as a perturbation on the electric field E measured in
the stationary frame. We can therefore write

FE = m
dv
dt

∣∣∣∣
E

= qδE′. (4)

Note that the characteristic timescale for the existence of
the fluctuating reconnection electric field for a characteristic
island size � and Alfvén speed VA is τE ∼ �/VA, yielding
〈δE′〉 ∼ δE0e

−t/τE for a typical individual event.
We begin with the 6D Liouville equation and assume that

fluctuating magnetic fields define a scattering term δf/δt)s and
then rewrite the equation in the Vlasov form. The acceleration
term is separated into two parts, one corresponding to the
usual Lorentz electromagnetic force term FL associated with
the large-scale fields and the other to energization by coalescing
magnetic islands, as discussed above. In principle, all electric
fields generated by reconnection processes are included but in
dissipative turbulence; this amounts to electric fields induced
by magnetic islands. We restrict our attention to nonrelativistic
particles for the present. We therefore have

5



The Astrophysical Journal, 797:28 (18pp), 2014 December 10 Zank et al.

∂f

∂t
+ vi

∂f

∂xi

+
FL

m
· ∇vf

= δf

δt

)
s

− Fc

m
· ∇vf − Fm

m
· ∇vf

− FE

m
· ∇vf − ∇v ·

(
FL

m
+

Fc

m
+

Fm

m
+

FE

m

)

f = δf

δt

)
s

− dv
dt

∣∣∣∣
c

· ∇vf − dv
dt

∣∣∣∣
m

· ∇vf

− dv
dt

∣∣∣∣
E

· ∇vf − ∇v ·
(

Fc

m

)
f, (5)

where ∇v is the gradient operator with respect to the particle
velocity. Ordinarily, the velocity divergence terms on the right-
hand side of Equation (5) are absent in the Vlasov equation
because (typically) the force terms are independent of the
particle velocity (except the Lorentz term v × B for which
∇v · (v × B) = 0). However, both Fc/m = ηc(v‖, v⊥/2) and
Fc/m = ηc(v‖,−v⊥/2) are functions of particle velocity, for
which ∇v · Fc/m = 2ηc and ∇v · Fm/m = ηm − ηm = 0.

Our purpose is to derive an equation that describes the trans-
port of charged particles in a region of characteristic size L that
is much larger than the characteristic size of magnetic islands,
i.e., L � �, with a timescale characterized by the large-scale
super-Alfvénic flow velocity U within which the reconnecting
region is embedded. Consequently, the characteristic timescale
for the system is T ∼ L/U . If we normalize Equation (5)
with respect to the transport time and length scales and suppose
that the characteristic pitch-angle scattering time is ∼τs and the
characteristic fluctuating merging magnetic island timescale is
τc,m,E ∼ �/VA, then it is straightforward to see that the scat-
tering term is proportional to T/τs , and the merging terms are
proportional to T/τc,m,E ∼ (VA/U )(L/�). Because T � τs and
L � �, both terms on the right-hand side of Equation (5) may
justifiably be regarded as O(1/ε), where ε(� 1) is the measure
of the ratio of the scattering, contracting, merging, or fluctuating
reconnection electric field timescale to the transport timescale.
The right-hand side can therefore be separated from the slowly
varying left-hand side.

In the absence of an applied electric field, E = −U × B
is the motional electric field associated with the large-scale
flowing plasma. To eliminate the electric field and move into
the frame that ensures that particle scattering does not result in
momentum or energy changes, we transform to the flow frame
and rewrite v = c + U or c = v − U. We further assume
that the flow is super-Alfvénic, specifically, that U � VA, VA
the Alfvén speed. In principle, we could alternatively assume
that the cross-helicity of the background turbulent fluctuations
responsible for scattering the particles is zero. In either case, we
can avoid boosting to the background flow plus Alfvén speed.
Consequently, the transport equation below is appropriate only
to the super-Alfvénic solar wind and not to the sub-Alfvénic
regions such as low in the solar corona. For simplicity, we
assume that flow accelerations are absent in the large-scale flow
field. The transformation of Equation (5) to the plasma flow
frame then yields immediately

∂f

∂t
+ (Ui + ci)

∂f

∂xi

+
q

m
(c × B)i

∂f

∂ci

= δf

δt

)
s

− dc
dt

∣∣∣∣
c

· ∇cf − dc
dt

∣∣∣∣
m

· ∇cf − q

m
δE · ∇cf

− ∇v ·
(

dc
dt

∣∣∣∣
c

)
f, (6)

where δE is the induced electric field in the moving frame.
Because we are not interested in the gyromotion of the particles,
we gyrophase average Equation (6), making the assumption that
f (x, t, c, μ, φ)  f (x, t, c, μ), where μ = cos θ is the cosine
of the particle pitch angle.

Let b ≡ B/|B| and introduce the Cartesian basis set e =
(ê1, ê2, ê3 = b). The magnetic field, no matter how complex,
defines the z or ê3 coordinate through the directional vector
b. δE3 is the corresponding electric field fluctuation in this
direction. The gradient operator is given by

∂

∂c
= êc

∂

∂c
+ êθ

1

c

∂

∂θ
+ êφ

1

c sin θ

∂

∂φ
,

where

c = c(sin θ cos φê1 + sin θ sin φê2 + cos θb);
c‖ = c cos θb = cμb = c‖b;
c⊥ = c⊥

(
cos φê1 + sin φê2

) ;
êc = (sin θ cos φê1 + sin θ sin φê2 + cos θb);
êθ = (cos θ cos φê1 + cos θ sin φê2 − sin θb);
êφ = − sin φê1 + cos φê2.

The expressions for energy gain in a contracting magnetic island,
Equation (2), can then be written as〈

dc‖
dt

∣∣∣∣
c

· ∇cf

〉
φ

= ηccμ

(
μ

∂f

∂c
+

1 − μ2

c

∂f

∂μ

)
;

〈
dc⊥
dt

∣∣∣∣
c

· ∇cf

〉
φ

= − 1

2
ηcc(1 − μ2)

(
∂f

∂c
− μ

1

c

∂f

∂μ

)
;

〈∇c · (
ηcc‖

)〉
φ

= 〈∇c · (ηcc⊥/2)〉φ = ηc;〈∇c · (
ηmc‖

)〉
φ

= ηm = −〈∇c · (ηmc⊥/2)〉φ ,

where 〈· · ·〉φ denotes an average over gyrophase. We therefore
obtain〈

dc
dt

∣∣∣∣
c

· ∇cf

〉
φ

= ηcc
1 + μ2

2

∂f

∂c
+

1

2
ηc(1 − μ2)μ

∂f

∂μ
+ 2ηcf.

(7)
Similarly, the merging magnetic island energization terms can
be expressed as〈

dc
dt

∣∣∣∣
m

· ∇cf

〉
φ

= ηmc
3μ2 − 1

2

∂f

∂c
+

3

2
ηm(1 − μ2)μ

∂f

∂μ
. (8)

Finally, the fluctuating electric field δE term, expressed in
terms of the Cartesian basis δE = δE1ê1 + δE2ê2 + δE3ê3
becomes, after gyrophase averaging,

〈δE · ∇cf 〉φ = δE3

(
μ

∂f

∂c
+ (1 − μ2)

1

c

∂f

∂μ

)
. (9)

Gyrophase averaging will obviously eliminate particle energiza-
tion by the fluctuating electric field components orthogonal to
the b direction because the gain and loss of energy as the parti-
cle gyrates will gyrophase average to zero. Consequently, only
δE3 defined by the magnetic field direction can contribute to the
energy gain or loss of the particle.

The gyrophase averaging of the left-hand side of Equation (6)
proceeds in the usual way (Skilling 1975; Isenberg 1997; le

6
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Roux et al. 2007; Webb et al. 2009; see Zank 2013 for details).
Including the magnetic island energization terms then yields

∂f

∂t
+ (Ui + cμbi)

∂f

∂xi

+
1 − μ2

2

×
[
c∇ · b + μ∇ · U3bibj

∂Uj

∂xi

− 2bi

c

DUi

dt

]
∂f

∂μ

+

[
1 − 3μ2

2
bibj

∂Uj

∂xi

− 1 − μ2

2
∇ · U − μbi

c

DUi

dt

]

× c
∂f

∂c
= ∂

∂μ

(
νs(1 − μ2)

∂f

∂μ

)
− q

m
δE3

×
(

μ
∂f

∂c
+

1 − μ2

c

∂f

∂μ

)
−

(
ηc

1 + μ2

2
+ ηm

3μ2 − 1

2

)
c
∂f

∂c

− 2ηcf −
(

1

2
ηc +

3

2
ηm

)
μ(1 − μ2)

∂f

∂μ
, (10)

where we have assumed the simplest possible diffusion form for
the pitch-angle scattering term

δf

δt

)
s

= ∂

∂μ

(
νs(1 − μ2)

∂f

∂μ

)
,

νs = 1/τs , and τs  Ω is a characteristic pitch-angle scattering
time, Ω = eB/m, the particle gyrofrequency. Here, D/Dt ≡
∂/∂t + Uj∂/∂xj is the convective derivative. The gyrophase-
averaged Equation (10) describes the transport of energetic
particles experiencing pitch-angle scattering in a turbulent
plasma embedded with merging and contracting magnetic
islands. The distribution function f (x, v, μ, t) is gyrotropic but
not isotropic. Equation (10) therefore allows for the description
of arbitrarily anisotropic distributions, including beams, etc.
Such a description will undoubtedly be important in considering
the possible development of firehose or Weibel instabilities, as
suggested by Drake et al. (2006b, 2010); Schoeffler et al. (2011),
in the reconnection regions due to the energization of particles.
Several points about the gyrophase-averaged Equation (10) are
noteworthy. Two particle energization terms are present (i.e.,
∝ c∂f/∂c), one due to the divergence of the large-scale flow
velocity, ∇ · U, which is the familiar term responsible for the
energization of particles at shocks, and the other due to magnetic
island contraction (ηc) and magnetic field line shortening due to
island merging (ηm). Notice the close correspondence between
the ∇ · U and the contracting island terms. Both enter as first-
order terms proportional to (1 − μ2)/2, the first describing the
convergence of the bulk flow on the timescale L/U and the latter
the convergence/contraction of an island on the timescale �/VA.
By contrast, the energization term associated with magnetic
island merging has the coefficient

ηm

3μ2 − 1

2
,

which is proportional to the second-order Legendre polynomial.
This indicates immediately that energization via island merging
(neglecting for the present the role of the antireconnection
electric field) will yield only second-order Fermi energization,
in agreement with the result of Drake et al. (2013). Physically, it
is clear that assuming conservation of adiabatic moment within
the contracting magnetic island will simply redistribute energy
between the parallel and perpendicular components. Bian &

Kontar (2013) arrive at a similar conclusion although via a quite
different approach.

Numerous simulations of test particle energization in re-
connecting current sheets yield particle distributions that are
essentially isotropic. We invoke this assumption and consider
the Legendre polynomial expansion of the gyrophase-averaged
Equation (10). This allows us to derive a simpler transport equa-
tion analogous to the energetic particle transport equation used
in, e.g., cosmic ray investigations. Accordingly, we expand the
gyrophase-averaged particle distribution function f as

f (x, t, c, μ) =
∞∑

n=0

1

2
(2n + 1)Pn(μ)fn(x, t, c),

where fn(x, t, c) =
∫ 1

−1
f Pn(μ)dμ.

Following the derivation in Zank (2013) and neglecting flow
shear and acceleration terms yields an infinite set of partial
differential equations in the coefficients fn of the Legendre
polynomials. The expression is lengthy (Equation (A1)), and
we relegate a sketch of the derivation and the fully expanded
equation to the Appendix. Applying the Legendre polynomial
expansion to the electric field term on the right-hand side of
Equation (10) yields

− q

m

δE3

2m + 1

[
(m + 1)

∂fm+1

∂c
+ m

∂fm−1

∂c

]

− q

m

δE3

c

[
(m + 1)(m + 2)

2m + 1
fm+1 − m(m − 1)

2m + 1
fm−1

]
.

The third term on the right-hand side of Equation (10) maps to

− ηc

2

(
c
∂fm

∂c
+

(m − 1)m

(2m + 1)(2m − 1)
c
∂fm+2

∂c

+

(
(m + 1)2

2m + 3
+

m2

2m − 1

)
c
∂fm

∂c
+

(m + 2)(m + 1)

(2m + 3)(2m + 1)
c
∂fm+2

∂c

)

+
3ηm

2

(
1

3
c
∂fm

∂c
− (m − 1)m

(2m + 3)(2m + 1)
c
∂fm−2

∂c

−
(

(m + 1)2

2m + 3
+

m2

2m − 1

)
1

2m + 1
c
∂fm

∂c

− (m + 2)(m + 1)

(2m + 3)(2m + 1)
c
∂fm+2

∂c

)
,

and the final two terms map to

− 2ηcfm −
(

1

2
ηc +

3

2
ηm

)(
(m + 1)(m + 2)(m + 3)

(2m + 1)(2m + 3)
fm+2

+
m(m + 1)

(2m − 1)(2m + 3)
fm − m(m − 1)(m − 2)

(2m + 1)(2m − 1)
fm−2

)
.

The full set of infinite partial differential equations corre-
sponding to the Legendre expansion of the gyrophase-averaged
Equation (10) is given by Equation (A1) in the Appendix, in-
cluding the above terms.

To include the possible effects of second-order Fermi ener-
gization in a reduced model describing a nearly isotropic distri-
bution function, we need to consider the f2 approximation (i.e.,
consider m = 0, 1, 2 or f0, f1, f2 �= 0 and fn = 0 ∀ n � 3). For
simplicity, we henceforth neglect the shear terms ∂Uj/∂xi and

7
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convective derivatives DUi/Dt—these are easily if tediously
incorporated.

The m = 0 expansion yields

∂f0

∂t
+ Ui

∂f0

∂xi

− c

3

∂Ui

∂xi

∂f0

∂c
+ ηc

2

3
c
∂f0

∂c
− 2ηcf0

= − ∂

∂xi

(cbif1) − q

m

δE3

c2

∂

∂c

(
c2f1

)
−

[
1

3

∂Ui

∂xi

+
ηc

3
+ ηm

]
1

c2

∂

∂c

(
c3f2

)
, (11)

which shows explicitly the important result that island
contraction yields a first-order energization term for the
isotropic or zeroth-order distribution function f0 proportional
to (c/3)∂f0/∂c. The first of the energization terms is familiar
from the transport of cosmic rays and describes energy gain or
loss due to a compressive or divergent large-scale flow field (e.g.,
diffusive shock acceleration). The second energization term on
the left results from contracting magnetic islands. The right-
hand side of Equation (11) contains the higher-order moments
of the expansion, f1 and f2. To compute these terms, subject
to the closure assumption that fm = 0 ∀ m � 3, we need to
consider the next-order expansions. On considering the m = 1
terms, we find

∂f1

∂t
+ Ui

∂f1

∂xi

+
2

3
cbi

∂f2

∂xi

+
c

3
bi

∂f0

∂xi

− c

5

∂Ui

∂xi

∂f1

∂c
+ c

∂bi

∂xi

f2

+
1

5

∂Ui

∂xi

f1 = −νsf1 − q

m

δE3

3

[
2
∂f2

∂c
+

∂f0

∂c

]
− 2

q

m

δE3

c
f2

− 4

5
cηc

∂f1

∂c
− ηm

2c

5

∂f1

∂c
− 1

5
(ηc + 3ηm) f1 − 2ηcf1.

By assuming that f1 � f0 and f2 � f0 and that the scattering
frequency νs = (τs)−1 is large (fast scattering), we obtain the
approximate result

f1  −cbiτs

3

∂f0

∂xi

− q

m

δE3

3
τs

∂f0

∂c
. (12)

Thus, the first-order correction may be approximated by (1) the
diffusion description (as is well known, and the spatial diffusion
coefficient is proportional to the particle scattering frequency νs

and independent of the reconnection terms) and (2) the induced
antireconnection electric field energization term.

To obtain the solution for f2, we consider the m = 2 order
expansion. The appropriate expansion yields the equation

∂f2

∂t
+ Ui

∂f2

∂xi

− 5c

21

∂U

∂xi

∂f2

∂c
+

c

15

∂U

∂xi

∂f0

∂c
+

2

5
cbi

∂f1

∂xi

− c

5

∂bi

∂xi

f1

+
1

7

∂Ui

∂xi

f2 = −3νsf2 − 2

5

q

m
δE3

∂f1

∂c
+

q

m

2

5

δE3

c
f1

− ηc

c

15

∂f0

∂c
− ηc

16c

21

∂f2

∂c
− ηm

c

5

∂f0

∂c

− ηm

2c

7

∂f2

∂c
− 1

7
[ηc + 3ηm] f2 − 2ηcf2.

Again making the assumption of rapid scattering and the
subsequent smallness of the higher-order corrections, we find
that the approximate solution for f2 is

f2  − 1

15

∂Ui

∂xi

cτs

3

∂f0

∂c
− ηc

1

15

cτs

3

∂f0

∂c
− ηm

1

5

cτs

3

∂f0

∂c
. (13)

The first term introduces diffusion in energy due to particle
pitch-angle scattering, and the second and third terms are en-
ergy diffusion terms due to contracting and merging magnetic
islands, respectively. Notice also that the reconnection energiza-
tion terms also include the effect of particle scattering. Scattering
produces two interesting effects for second-order Fermi ener-
gization. First, one can obtain second-order Fermi heating from
a single island because particle pitch-angle scattering can some-
times scatter particle pitch angles close to 90◦, in which case the
particle will be lost to the island, and sometimes particle pitch
angles will be scattered close to 0◦, leading to particle trapping
and therefore heating. Multiisland interaction is not therefore a
requirement for second-order Fermi heating to occur. Second,
in a multiisland context, particle scattering can ensure parti-
cle escape and entrance of particles into multiple contracting
or merging magnetic islands and therefore facilitates a second-
order Fermi energization. Notice also that the antireconnection
electric field does not enter at this order.

The approximate solutions for f1 and f2 can be used to
determine a closed transport equation in f0. Let us introduce
the notation

κs ≡ c2τs

3
; Kij ≡ biκsbj ,

which will describe the spatial diffusion coefficient in the final
transport equation. The most general form of the transport
equation for a distribution that is close to isotropic is then
given by

∂f0

∂t
+ Ui

∂f0

∂xi

− c

3

∂Ui

∂xi

∂f0

∂c
+ 2ηc

c

3

∂f0

∂c
+ 2ηcf0

= ∂

∂xi

(
Kij

∂f0

∂xj

)
+

1

3

q

m
δE3

∂

∂xi

(
cbiτs

∂f0

∂c

)

+
q

m

δE3

c2

∂

∂c

(
c3

3
biτs

∂f0

∂xi

)
+

( q

m

)2 δE2
3

c2

∂

∂c

(
c3

3
τs

∂f0

∂c

)

+
1

5

(
1

3

∂Ui

∂xi

+
ηc

3
+ ηm

)2 1

c2

∂

∂c

(
c2κs

∂f0

∂c

)
. (14)

We can rewrite Equation (14) slightly by introducing a scattered
antireconnection electric-field-induced velocity

VE ≡ 1

3

q

m
δE3τs, (15)

which has a sign dependence because of the charge. We
use VEi = −|VE|bi ≡ |VE|i and assume that (q/m)δE3 is
independent of x to obtain

∂f0

∂t
+

(
Ui + 3|VE |i

)∂f0

∂xi

− c

3

∂Ui

∂xi

∂f0

∂c
+

1

c2

∂

∂c

(
c3

3
2ηcf0

)

= ∂

∂xi

(
Kij

∂f0

∂xj

)
− c

∂

∂xi

(
|VE|i ∂f0

∂c

)
− |VE|ic ∂2f0

∂xi∂c

+ 3
V 2

E

τs

1

c2

∂

∂c

(
c2 ∂f0

∂c

)
+

1

5

(
1

3

∂Ui

∂xi

+
ηc

3
+ ηm

)2

× 1

c2

∂

∂c

(
c2κs

∂f0

∂c

)
. (16)

In many respects, the transport Equation (16) is very similar to
the standard Parker–Axford–Gleeson transport equation, elab-
orated further below. Equation (16) illustrates that particles
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propagating within a region containing dynamically merging
magnetic islands and antireconnection electric fields can experi-
ence first-order energization or cooling. Related transport equa-
tions that include the effects of fluctuating electric fields have
been derived previously by le Roux et al. (2002); Kichatinov
(1983); Fedorov et al. (1992); Dorman et al. (1987), although
not related to the concept of merging magnetic islands.

Equation (14) can be rewritten in a particularly revealing and
useful phase space conservation form,

∂f0

∂t
+

∂Si

∂xi

+
1

c2

∂

∂c

(
c2Jp

)
+

1

c2

∂

∂c

(
c2Dcc

∂f0

∂c

)
= 0, (17)

where

S ≡ −K · ∇f0 − c

3

∂f0

∂c
(U − 3|VE|) ,

is the energetic particle streaming in space,

Jp ≡ c

3
(U + |VE|) · ∇f0 +

c

3
2ηcf0,

is the streaming in momentum space, and the diffusion coeffi-
cient in velocity space is given by

Dcc = κs

[
3|VE |2 +

1

5

(
1

3

∂Ui

∂xi

+
ηc

3
+ ηm

)2
]

.

By estimating δE3 ∼ VAB and introducing a char-
acteristic particle speed c0, we can order the terms in
Equation (16) using c̄ ≡ c/c0. The second and third
terms on the right-hand-side scale as ΩVAτs c̄∂

2f0/∂xi∂c and
ΩVAτs c̄

2∂/∂c̄
(
c̄3bi∂f0/∂xi

)
, whereas the fourth term scales as

Ω2
(
V 2

A/c2
0

)
τs c̄

2∂/∂c̄
(
c̄2∂f0/∂c̄

)
. Thus, the first-order correct

transport equation for V 2
A/c2

0 � 1 is

∂f0

∂t
+ (Ui + 3|VE |bi)

∂f0

∂xi

− c

3

∂Ui

∂xi

∂f0

∂c
+

1

c2

∂

∂c

(
c3

3
2ηcf0

)

= ∂

∂xi

(
Kij

∂f0

∂xj

)
− c

∂

∂xi

(
|VE|i ∂f0

∂c

)
− |VE|ic ∂2f0

∂xi∂c
.

(18)

Evidently, only island contraction and the induced antireconnec-
tion electric field associated with island merging are important
for particle energization at the leading order. The transport equa-
tion that describes energization by contracting islands alone (i.e.,
ηc �= 0, ηm = 0, δE3 = 0) is given by

∂f0

∂t
+ Ui

∂f0

∂xi

− c

3

∂Ui

∂xi

∂f0

∂c
+

1

c2

∂

∂c

(
c3

3
2ηcf0

)

= ∂

∂xi

(
Kij

∂f0

∂xj

)
+

1

c2

∂

∂c

(
c2 κs

45

(
∂Ui

∂xi

+ ηc

)2
∂f0

∂c

)
,

(19)

where the second term on the right-hand side of Equation (19)
describes second-order Fermi energization associated with both
the flow divergence and magnetic island contraction. Particle
diffusion, expressed through the spatial diffusion coefficient κs

enables particles to experience on average more compressive/
contraction energy gains than losses. By contrast, in the presence

of merging alone (i.e., neglecting both magnetic island contrac-
tions ηc = 0 and the antireconnection electric field δE3 = 0),
the transport equation reduces to

∂f0

∂t
+ Ui

∂f0

∂xi

− c

3

∂Ui

∂xi

∂f0

∂c
= ∂

∂xi

(
Kij

∂f0

∂xj

)

+
1

c2

∂

∂c

(
c2 κs

45

(
∂Ui

∂xi

+ ηc

)2
∂f0

∂c

)
, (20)

showing that the reconnection through merging contributes to
particle energization only through a second-order Fermi process.

Finally, retaining only the antireconnection electric field and
setting ηc = ηm = 0 yields

∂f0

∂t
+ (Ui + 3|VE|bi)

∂f0

∂xi

− ∂Ui

∂xi

c

3

∂f0

∂c
= ∂

∂xi

(
Kij

∂f0

∂xj

)

− c
∂

∂xi

(
|VE|i ∂f0

∂c

)
− |VE|ic ∂f 2

0

∂xi∂c
+

1

c2

∂

∂c

(
c2DE

cc

∂f0

∂c

)
,

(21)

where

DE
cc ≡ κs

(
1

45

(
∂Ui

∂xi

)2

+ 3|VE|2
)

,

is the second-order velocity diffusion coefficient.
Were we to neglect the second-order Fermi acceleration terms

on the right-hand side of Equation (16), the transport equation
would be very similar to the standard Gleeson–Axford–Parker
transport equation used in the study of cosmic ray transport (e.g.,
Zank 2013) except for the reconnection terms. Equation (16)
illustrates that particles propagating within a region, such as
a reconnecting current sheet that produces numerous merging
and contracting magnetic islands and antireconnection electric
fields, can experience first-order and second-order energization.
The second-order energization of particles relies on the presence
of scattering (the second Fermi acceleration term is the product
of both reconnection and spatial diffusion), which allows the
particle to scatter out of an energization region before losing
energy.

Finally, we mention that we have also derived the correspond-
ing focused transport equation for relativistic charged particles
and its isotropic, advection–diffusion counterpart. The equa-
tions are structurally identical except for a relativistic factor in
the time derivative and the use of the momentum rather than the
velocity variable.

4. PARTICLE ENERGIZATION IN
AN INCOMPRESSIBLE FLOW

Let us consider perhaps the simplest of problems: an incom-
pressible super-Alfvénic flow, ∇ ·U = 0, with a steady injection
of particles of fixed initial speed c0 at the origin, and consider
a 1D problem. We further assume for analytic convenience that
the spatial diffusion coefficient is constant, and we neglect the
second-order energy diffusion terms. We will consider several
examples to illustrate the effect of the different energization
mechanisms.

4.1. Particle Acceleration by the Antireconnection
Electric Field Alone

After rearranging (21) slightly and discarding the second-
order velocity diffusion term, introducing ξ = ln(c/c0) yields

9
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the governing equation as (neglecting the “0” subscript on f0)

∂2f

∂x2
− 2|VE |

κ

∂2f

∂x∂ξ
− U + 3|VE |

κ

∂f

∂x
= −n0δ(c − c0)

4πκc2
c0δ(x),

(22)
where all the coefficients are constant, including the particle
number density n0. The principal part of the differential operator
in Equation (22) shows that Equation (22) is hyperbolic with
characteristic curves ξ+ = −2(|VE|/κ)x + const. and ξ− =
const. To solve (22), we introduce a Laplace transform in the
variable ξ , f̄ (x, s) = L[f (x, ξ )], which reduces (22) to the
second-order nonhomogeneous ordinary differential equation,

d2f̄

dx2
− g(s)

κ

df̄

dx
= −Q

κ
δ(x); (23)

g(s) = U + 3|VE | + 2|VE|s = 2|VE|(s − s0);
s0 = −(3 + U/|VE |)/2; Q = n0

4πc2
0

.

The complementary solution to Equation (23) is

f̄(x, s) =
{

A, x > 0

Aeg(s)s/κ , x < 0
,

after demanding f̄ (x, s) be bounded as x → +∞, assuming that
f̄ (x, s) → 0 as x → −∞, and assuming continuity of f̄ (0, s)
i.e., f̄ (−ε, s) = f̄ (ε, s) as ε → 0. The constant A can be
obtained by integrating Equation (23) over the interval [−ε, ε]
and taking the limit ε → 0, which yields the jump condition[

df̄

dx

]
= −Q

κ
,

where [F ] ≡ F0− − F0+. Evaluating the derivatives across x =
0 yields A = Q/g(s), or

f̄ (x, s) =

⎧⎪⎪⎨
⎪⎪⎩

Q

g(s)
, x > 0

Q

g(s)
eg(s)s/κ , x < 0

. (24)

The solution ahead (x < 0) of the particle injection point decays
exponentially from the source with a scale length determined
essentially by the spatial diffusion coefficient κ and the bulk
velocity U and is constant behind (x > 0) the source.

The inversion of f̄ (x, s) for x > 0 is straightforwardly
obtained by the method of residues for the simple pole at s = s0.
For x < 0, some care needs to be exercised in choosing the
contour in the complex s plane because one needs to ensure the
convergence of the integral

1

2πi

∫ a+i∞

a−i∞

exp [(ξ + 2|VE|x/κ) s]

s − s0
ds.

Only if ξ + 2|VE|x/κ > 0 can an enclosed contour containing
s0 be chosen, whereas if ξ + 2|VE|x/κ < 0, the closed contour
cannot include s0. When the latter condition holds, f (x, c) = 0.
The solution for x < 0 is then obtained, yielding the full solution
for c > c0 as

f (x, c)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n0

8πc2
0|VE |

(
c

c0

)−(3+U/|VE )/2

H (c − c0), x > 0

n0

8πc2
0|VE |

(
c

c0

)−(3+U/|VE )/2

H (ξ + 2|VE |x/κ), x < 0

, (25)

where H (x) is the Heaviside step function. The solution for
x < 0 essentially reflects “causality” because recall that ξ +
2|VE|x/κ is one of the characteristic variables of the hyperbolic
Equation (22), and the step function implies ln(c/c0) +
2|VE|x/κ > 0. The solution for c > c0 is a simple power
law in particle speed. By integrating Equation (25) over c, one
can obtain the spatial distribution of the number density n for
the energized particles, thus

n(x) =

⎧⎪⎪⎨
⎪⎪⎩

n0

8πc0 (U + |VE|) , x > 0

n0

8πc0 (U + |VE|) exp

[
(U + |VE|) x

κ

]
x < 0

.

(26)
The number density is constant downstream of the particle
source and decays exponentially upstream of the source. The
latter is the result of particles having to diffuse upstream against
the flow.

The solution for c < c0 can be derived directly from the
analysis above by noting that defining |ξ | = | ln(c/c0)| yields
the same Equation (22) if we use ξ �→ |ξ |. The corresponding
solution for c < c0 then follows from Equation (25) if we
substitute | ln(c/c0)| for ξ . Thus, for particle speeds c < c0, we
obtain

f (x, c)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n0

8πc2
0|VE|

(
c

c0

)(3+U/|VE )/2

H (c0 − c), x > 0

n0

8πc2
0|VE|

(
c

c0

)(3+U/|VE )/2

H (|ξ | + 2|VE|x/κ), x < 0

,

(27)

which when combined with (25) yields a (logarithmically) tri-
angular particle distribution bounded by two symmetric power
laws. The spatial dependence of the number density for cooled
particles is similar to that of Equation (26). A sketch of the solu-
tion is illustrated in Figure 3. The step function in Equation (27)
shows that 2|VE|x/κ > ln(c/c0), illustrating that some particles
experience deceleration (cooling) through interacting with the
reconnection electric field. This is not surprising because par-
ticles can as easily lose energy as gain energy in the presence
of a direct electric field for an isotropic distribution of charged
particles. This effect is contained in the transport equation that
we derived for the case of a nearly isotropic distribution. The
power-law solutions (25) and (27) yield the complete solution
to the stationary Equation (22), and the normalization constant
shows that half of the injected particles are accelerated, and
half are decelerated. Thus, in terms of net acceleration, there is
none because half the particles are cooled, and the other half
are energized symmetrically for an isotropic distribution; there
is, however, an accelerated component that has energies greater
than c0, and this component admits a power-law distribution
for accelerated ions or electrons. Any approach to accelerating
particles using a direct electric field, whether simulations, as in
Oka et al. (2010), or theoretically, as in this work, must always
result in a distribution of heated and cooled particles.

The power-law index can be estimated from

|VE| = |q|
m

|δE3|τs ∼ |q|
m

VAB

Ω
= VA,

so that the index (3 + U/|VE|)/2 ∼ (3 + MA)/2, where
MA = U/VA is the Alfvén Mach number. For Alfvén Mach
numbers MA < 5, the spectral index is hard, being less than 4.

10
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Figure 3. Sketch of the solutions (25), (26), and (27), illustrating the exponential
decay of the particle number density n(x) upstream from the source of
injected monoenergetic particles and the symmetric logarithmically triangular
distribution f (x, c/c0) of accelerated and cooled particles.

4.2. Particle Acceleration by Magnetic
Island Contraction Alone

The original discussion of particle acceleration by magnetic
island reconnection (Drake et al. 2006a) focused on the effects
of magnetic island contraction exclusively. The subsequent
numerical simulations by Oka et al. (2010) separated the
contributions of the various energization mechanisms associated
with particle acceleration. To isolate particle acceleration by
magnetic island contraction, we consider the solution of the
transport Equation (19), i.e., only ηc �= 0, in the limit of
an incompressible flow. As with the previous example, we
introduce ξ = ln(c/c0) to obtain (neglecting the 0 subscript
on f0)

∂2f

∂x2
− U

κ

∂f

∂x
− 2ηc

3κ

∂f

∂ξ
− 2ηc

κ
f = −Q

κ
δ(c − c0)δ(x), (28)

where Q = n0/4πc2. Unlike Equation (22), Equation (28)
is strictly parabolic. The Laplace transform in ξ , f̄ (x, s) =
L[f (x, s)], yields a second-order linear nonhomogeneous ordi-
nary differential equation,

d2f̄

dx2
− U

κ

df̄

dx
− g(s)f̄ = − Q

κ
δ(x); (29)

g(s) = 2ηc

3κ
(s + 3);

Q = n0

4πc2
0

.

Equation (29) is solved straightforwardly using the method
of variation of parameters. The complementary solutions of

Equation (29) are

y1(x) = eλ1x, y2(x) = eλ2x; (30)

λ1,2 ≡ U/κ ± √
Δ

2
,

√
Δ =

[(
U

κ

)2

+
8ηc

3κ
(s + 3)

]1/2

= λ1 − λ2.

On noting that y1 → 0 and y2 → ∞ as x → −∞, and y1 → ∞
and y2 → 0 as x → ∞, the solution of Equation (29) is
given by

f̄ (x, s) = n0

4πc2
0κ

1

λ1 − λ2

[
eλ1x (1 − H (x)) + eλ2xH (x)

]
,

or, equivalently,

f̄ (x, s) = n

8πc2
0

√
3

2κηc

1√
s − s1

{
eλ1x, x > 0

eλ2x, x < 0
, (31)

after expressing κ(λ1−λ2) = κ
√

Δ = √
8κηc/3

√
s − s1, where

s1 = −3

(
1 +

U 2

8κηc

)
.

On rewriting (31) slightly, we can use a tabulated Laplace
integral transform (Erdélyi et al. 1954, p. 246. formula (6))
to obtain

f (x, c/c0) = n0

8πc2
0

√
3

2κηc

(
c

c0

)−3(U 2/(8κηc)+1)

× 1√
π ln(c/c0)

exp

[(
U

2κ
− ηc

6κ ln(c/c0)
x

)
x

]
× H (| ln(c/c0)|]). (32)

It is instructive to express the solution (32) in terms of the dif-
fusive timescale τdiff ≡ κ/U 2, the magnetic island contraction
timescale τc ≡ η−1

c , and the diffusion length scale Ldiff ≡ κ/U .
The distribution function (32) for the accelerated particles then
becomes

f (x, c/c0) = n0

8πc2
0U

√
3τc

2τdiff

(
c

c0

)−3(τc/(8τdiff )+1) 1√
π ln(c/c0)

× exp

[(
1

2
− 1

6 ln(c/c0)

τdiff

τc

x

Ldiff

)
x

Ldiff

]
× H (| ln(c/c0)|]). (33)

Evidently, solution (33) is essentially a power law for c > c0,
which is consistent with the numerous test particle simulations
cited above that yield isotropic power-law distribution functions
for the energized particles. However, it is apparent that the un-
derlying microphysics of the energization process in contracting
magnetic islands and the physics of charged particle pitch-angle
scattering plays a critical role in determining the actual power-
law exponent. If the characteristic magnetic island contraction
time τc � 8τdiff , the power-law spectral index is very hard
with f ∼ c−3. Plotted in Figure 4 are several solutions (33),
of which the hardest spectrum corresponds to assuming a ratio
of τc/τdiff = 0.5 at x/Ldiff = 1. For c > c0, the distribution
is essentially a power law with slope ∼−3. Also illustrated in
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Figure 4. Plot of the normalized solution (33) for particles accelerated by
magnetic island contraction alone. Four curves are plotted, one for a value of
τc/τdiff = 0.5 and three for τc/τdiff > 1. For c/c0 > 1, all the solutions are
essentially power laws, with the small value of the ratio τc/τdiff yielding a
spectral index ∼ − 3. Increasing values of τc/τdiff yield steeper spectra. The
solution is normalized to f0 ≡ n0

4πc2
0U

√
3τc/(8τdiff at the normalized spatial

location x̄ ≡ x/Ldiff .

(A color version of this figure is available in the online journal.)

Figure 4 are three examples of the solution to Equation (33) for
different choices of the ratio τc/τdiff = 5, 7, 9. These slopes are
steeper and correspond to the power-law index of Equation (33).

Precise estimates of both τc and τdiff are beyond the scope
of this paper, but order-of-magnitude estimates are possible.
We may take τc = (ηc)−1 = �/VA (Drake et al. 2006a;
Bian & Kontar 2013; neglecting a possible factor of b2/B2).
Considering the relation τc � 8τdiff or �/VA � 8c2τs/(3U 2)
and rewriting τs = λmfp/c, where λmfp is the particle scattering
mean free path, yields

�

VA

� 8cλmfp

3U 2
or

3MA

8

U

c
� λmfp

�
. (34)

The inequality (34) delineates the conditions under which a
relatively hard power-law index (α = −3 to say −5) can be
expected. The inequality (34) is easily met for typical quiet-time
solar wind conditions because the left-hand side is of O(1). Of
course, for particle energization to occur relatively efficiently via
the magnetic island contraction mechanism, particle scattering
within the island should be relatively weak, and so the condition
� � λmfp is implicitly assumed. We note that nonlinear particle
feedback effects might well damp the magnetic islands’ ability
to accelerate particles, leading to a steeper spectrum than
suggested here.

Acceleration by the island contraction mechanism can there-
fore be expected to produce rather hard power-law spectra, as
illustrated in Figure 4. However, unlike the induced or antirecon-
nection electric field case above or diffusive shock acceleration,
the properties of the power-law solution are not determined from
macroscopic flow boundary conditions but rather by the detailed
microphysics of charged particle scattering and magnetic island
contraction.

4.3. Complete First-order Correct Solution

Having identified the individual contributions of the first-
order antireconnection electric field and magnetic island

contraction to the energization of particles in regions of re-
connecting current sheets, we consider briefly solutions to the
full first-order correct steady-state transport Equation (18) for
an incompressible flow. The steady-state 1D equation may be
expressed as (neglecting the 0 subscript again)

∂2f

∂x2
− 2

|VE|
κ

∂2f

∂x∂ξ
− U + 3|VE|

κ

∂f

∂x
− 2ηc

3κ

∂f

∂ξ
− 2ηc

κ
f

= −Q

κ
δ(c − c0)δ(x), (35)

where the various terms have been defined above. Like the anti-
reconnection electric field case, Equation (35) is a hyperbolic
equation with the same characteristic curves. The discussion of
Section 4.1 therefore carries over. We follow the analysis of
Section 4.2, Laplace transforming (35) to obtain the second-
order, nonhomogeneous linear ordinary differential equation

d2f̄

dx2
− g(s)

κ

df̄

dx
− h(s)

κ
f̄ = −Q

κ
δ(x); (36)

g(s) ≡ U + 3|VE | + 2|VE |s;
h(s) ≡ 2ηc

3
(s + 3),

to obtain

f̄ (x, s) = n

4πc2
0

1

κ
√

Δ

{
eλ1x, x > 0
eλ2x, x < 0

, (37)

λ1,2 ≡ g(s)/κ ± √
Δ

2
;

κ
√

Δ ≡ 2|VE |
[
(s−s1)2− ηcκ

3|VE|3
(
U − 3|VE| +

ηcκ

3|VE|
)]1/2

;

s1 ≡ − 1

2

(
U + 3|VE |

|VE| +
2ηcκ

3|VE |2
)

.

By using formula (36), p. 249 of Erdélyi et al. (1954), the inverse
Laplace transform of Equation (37) yields the solution

f (x, c/c0) = n0

8πc2
0|VE|

(
c

c0

)−(3+U/|VE |+2ηcκ/(3|VE |2)/2

× exp

[
− 2ηc

3|VE |x
]

I0 (Φ) H [ln(c/c0)]

× H

[
ln(c/c0) +

2|VE|
κx

]
; (38)

Φ ≡
√

ηcκ

3|VE |3
(

U − 3|VE| +
ηcκ

3|VE|
)

×
(

(ln(c/c0))2 +
4|VE |

κ
ln(c/c0)x

)1/2

,

where I0 is the modified Bessel function of order 0. Note again
the presence of the characteristic curves ξ+ = −2|VE |/κ+const.
and ξ− = const. We do not repeat the discussion about
accelerated and cooled particles. Equation (38) describes the
particles that have acquired speeds c > c0, and the power-law-
like character of the solution is evident. As before, the nature
of the solution (38) is most clearly revealed when expressed
in terms of characteristic scales and the Alfvén Mach number.
Hence
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Figure 5. Plot of the normalized solution (39) for particles accelerated by the
antireconnection electric field and magnetic island contraction. Five curves are
plotted, two for values of τc/τdiff < 1 and three for τc/τdiff > 1. (a) These
solutions assume that MA = 7, which is possibly appropriate for the inner
heliosphere within 1 AU or for periods of solar minimum. (b) These solutions
assume that MA = 11, which is possibly appropriate for the outer heliosphere
beyond ∼2 AU or for periods of solar maximum. The solution is normalized to
f0 ≡ n0

4πc2
0U

√
3τc/(8τdiff at the normalized spatial location x̄ ≡ x/Ldiff .

(A color version of this figure is available in the online journal.)

f (x, c/c0) = n0

8πc2
0VA

(
c

c0

)−(3+MA+2τdiff/(3τc)M2
A)/2

× exp

[
−2τdiff

3τc

MA

x

Ldiff

]
I0 (Φ) H [ln(c/c0)]

× H

[
ln(c/c0) +

2

MA

x

Ldiff

]
; (39)

Φ =
√

τdiff

3τc

M2
A

(
MA − 3 +

τdiff

3τc

M2
A

)

×
(

(ln(c/c0)2 +
4

MA

ln(c/c0)
x

Ldiff

)1/2

.

Solutions (39), i.e., for c > c0, are plotted in Figure 5. Figure 5
(top) assumes MA = 7, and Figure 5 (bottom) uses MA = 11,
together with the four values of τc/τdiff used in Figure 4. The

solutions for both values of MA exhibit power laws for virtually
all values of c > c0, and the slope depends on the choice of
MA and τc/τdiff . However, it is interesting that the power-law
exponent α in Equation (39) for (c/c0)−α does not accurately
represent the slope of the solutions plotted in Figure 5. The
parameters used in the plot would give an exponent α much
steeper than plotted. Instead, the modified Bessel function has
a positive slope and contributes to the (c/c0) distribution by
flattening the overall slope. The smaller Mach number plots
(Figure 5, top) have harder spectra, with power-law exponents
ranging from ∼ − 3.2,−3.53,−3.63, to ∼ − 3.7, compared
to the higher Mach number plots (Figure 5 bottom), where the
exponents now range from ∼ − 3.2,−3.8, and −4, to ∼ − 4.1
for τc/τdiff = 0.5, 5, 7, and 9, respectively. The argument of
the modified Bessel’s function (39) is large, allowing it to be
approximated as

I0(x)  ex

√
2πx

.

On neglecting the factor of 2π and assuming that a ln2(c/c0) �
ab ln(c/c0), where a ≡ (M2

A/3τ̄ )(MA − 3 + M2
A/3τ̄ ), τ̄ ≡

τc/τdiff , b ≡ 4(x/Ldiff )/MA, yields

f ∼
(

c

c0

)−(3+MA+2τdiff/(3τc)M2
A)/2

×
(

c

c0

)√
M2

A/(3τ̄ )(MA−3+τdiff/(3τc)M2
A)−0.14

. (40)

Here the factor 0.14 results from approximating the term
1/

√
ln(c/c0) in the range c/c0 ∈ [10, . . . , 100]. It is easily

verified that the expression (40) yields virtually identical values
for the power-law slopes derived from the plots of Figure 5.

The solutions given in Sections 4.1–4.3 are appropriate only
locally in the solar wind because we neglected the divergence
term in the transport Equation (18). However, we can estimate
quite easily the relative importance of the divergence term com-
pared to the acceleration timescales. The 1D time-dependent
transport Equation (18) is simply

∂f0

∂t
+ (U + 3|VE|) ∂f0

∂x
− c

3

∂U

∂x

∂f0

∂c
+

2ηc

3
c
∂f0

∂c
+ 2ηcf0

= ∂

∂x

(
K

∂f

∂x

)
− 2|VE|c ∂2f

∂x∂c
.

If we neglect the spatial diffusion term and introduce a character-
istic scale length �E so that the last term may be approximated as
−2|VE |/�Ec∂f/∂c, the transport equation may be approximated
as a first-order quasi-linear equation. One of the characteristics
is then given by

1

c

dc

dt
= −1

3

∂U

∂x
+ 2

ηc

3
+ 2

|VE |
�E

, (41)

which is the inverse of the particle acceleration timescale.
The last two terms are the inverse acceleration timescales
due to magnetic island contraction and the antireconnection-
induced electric field, respectively. To understand the physical
meaning of �E , we express the length scale in terms of a
timescale that is related to the duration of the magnetic island
merging event (because this is the time available to a trapped
particle to experience repeated encounters with δE3); thus
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Figure 6. Plot of the Alfvén Mach number and derived spectral index (3+MA)/2
for the antireconnection-induced electric-field-alone case as a function of
heliocentric distance for the period 1976–1979.

(A color version of this figure is available in the online journal.)

�E ∼ VAτm, where τm is the time taken for the merging
of two adjacent magnetic islands. If � is the characteristic
size of a magnetic island, then τm ∼ �/VA. Thus, because
ηc ∼ VA/� and |VE| ∼ VA, the acceleration rate due to
magnetic island merging (both island contraction and induced
electric field) is τ−1

acc  2VA/(3�) + 2VA/� = 8VA/(3�).
We can now compare the size of the particle acceleration
rate to that of the expansion or cooling term ∂U/∂x 
U/R, where R is the solar wind spatial scale ∼1 AU. If we
assume that � is less than the correlation length scale at 1 AU
(i.e., ∼0.01 AU), then say τ−1

acc ∼ 3(50 km s−1)/(10−3 AU) and
U/R ∼ (400 km s−1)/(1 AU) implies that the acceleration rate
is at least 100 times greater than adiabatic cooling. This justifies
our neglecting the divergence term to compute the accelerated
particle spectrum.

4.4. The Alfvén Mach Number Throughout the Heliosphere

In view of the central role played by the Alfvén Mach number
in the solutions described in Sections 4.1–4.3, in this subsec-
tion we present observations describing the variation of the
Alfvén Mach number as a function of heliocentric distance and
solar activity. In Figure 6, we plot the Alfvén Mach number
as a function of heliocentric distance, together with the corre-
sponding value of the spectral index (3 + MA)/2 derived from
the induced electric field acceleration example. Specifically, we
used hourly data from Helios 2, Pioneer Venus, Orbiter, IMP8,
and Voyager 2 for 1976–1979 as described by Khabarova &
Obridko (2012), together with Voyager 1 and Helios 1 data
sets for the corresponding period. The values were derived as
described in http://omniweb.sci.gsfc.nasa.gov/ftpbrowser/bow_
derivation.html, taking into account the multispecies content of
the solar wind and averaged by distance and all spacecraft. From
Figure 6, the Alfvén Mach number is approximately constant
beyond ∼1.5 AU with a value of 10–11, yielding a spectral in-
dex of ∼6.5–7 for this region. By contrast, the Alfvén Mach
number increases from a value of about 5 at 0.3 AU to ∼9 at
1 AU. The corresponding spectral index for the antireconnection
case changes from 4 to just less than 6. Of course, the variance,
as illustrated by the error bars of Figure 6, can be large. Figure 7
shows that the Alfvén Mach number at 1 AU in the ecliptic plane

Figure 7. Plot of the Alfvén Mach number (top) and sunspot number (bottom)
as a function of time through the solar cycle using 27 day averaged OMNI2
data.

can vary significantly with solar cycle. During solar maximum,
values of MA ∼ 7–8 are common, after which MA increases
as the solar minimum approaches (see also Svalgaard & Cliver
2010). Current sheet crossings are associated with plasma char-
acterized by the highest possible Alfvén Mach number because
of the abruptly decreasing strength of the interplanetary mag-
netic field and the enhanced solar wind density. Therefore, even
at 1 AU, the corresponding spectral index should reach values
typical for the outer heliosphere (and much more) in the vicinity
of the heliospheric current sheet.

It is interesting that if we consider the antireconnection-
induced electric field-alone solution (Section 4.1), the roughly
constant value of MA in the outer heliosphere between ∼1.5 and
6 AU suggests that f ∼ c−6.5 or c−7 should hold throughout this
region during quiet times. It is also intriguing that from about
0.5–1 AU, the value of the Alfvén Mach number yields a spectral
index in the range of ∼4–5, or f ∼ c−4–c−5 (Figure 6), which is
similar to quiet-time observations of suprathermal (1–50 keV)
particle spectra with c−5 reported by Fisk & Gloeckler (2006,
2012) and Mewaldt et al. (2001) for the supersonic solar
wind. Similarly, during solar maximum periods at ∼1 AU,
MA ∼ 7–8, for which f ∼ c−5–c−6. However, these spectra
may be masked in part by particle acceleration due to diffusive
shock acceleration during solar maximum. Nonetheless, particle
acceleration by reconnection of the kind described here may be
useful in providing a seed particle population during this time.

5. CONCLUSIONS

Multiple reconnection has been identified as a primary dissi-
pation process in an evolving turbulent magnetized plasma. Dis-
sipation proceeds through the dynamical interaction of quasi-2D
magnetic islands that form a “sea” of coherent structures within
which particle energization proceeds. This perspective is sup-
ported by both numerical simulations (kinetic and MHD) and
observations in the supersonic solar wind. Merging magnetic
islands produce a reconnection-induced electric field within a
larger closed structure, magnetic islands experience contrac-
tion, and magnetic field lines decrease in length during the

14

http://omniweb.sci.gsfc.nasa.gov/ftpbrowser/bow_derivation.html
http://omniweb.sci.gsfc.nasa.gov/ftpbrowser/bow_derivation.html


The Astrophysical Journal, 797:28 (18pp), 2014 December 10 Zank et al.

merging process. Particles trapped in the vicinity of merging
islands (Figure 1) repeatedly experience the induced electric
field, leading some to gain energy. Particles trapped within con-
tracting magnetic islands gain energy via a first-order Fermi
mechanism. Oka et al. (2010) find that the electric field created
by magnetic merging is the most effective of the particle mech-
anisms associated with the merging of magnetic islands. This in
part may be due to the possibility that magnetic islands can oscil-
late rather than uniformly contract. An interesting result that is
supportive (but not uniquely definitive) of the idea that magnetic
islands might energize particles was obtained by Tessein et al.
(2013). Tessein et al. used ACE magnetic field data to identify
coherent structures in the solar wind using an approach related
to that developed by, e.g., Greco et al. (2009a) and Osman et al.
(2011). Using ACE energetic particle data and employing a PVI
(partial variance of increments) analysis, Tessein et al. found
a strong association of energetic particles in the range 0.047–
4.75 MeV with solar wind discontinuities. One possible expla-
nation (although certainly not the only one) is that the particles
seen at PVI events were energized locally, possibly by recon-
nection events.

Khabarova et al. (2014) have presented observations that
show the presence of magnetic islands in the vicinity of the
heliospheric current sheet. They find that (1) magnetic islands in
the solar wind possess a range of spatial scales and (2) magnetic
islands experience dynamical merging in the solar wind. This
work extends a variety of solar wind observations that support
the physical picture described here, viz., one of a turbulent solar
wind plasma in which quasi-2D magnetic islands with a range
of spatial scales experience multiple reconnection events.

We have derived a transport equation for a gyrotropic
distribution of particles experiencing pitch-angle scattering
and energization via electric fields generated in a dissipa-
tive multireconnection super-Alfvénic plasma. Simulations of
particle acceleration in a plasma with multiple reconnection
events frequently exhibit isotropic energetic particle distri-
butions. We therefore simplify the gyrophase-averaged or
focused transport equation by assuming an isotropic particle
distribution. This yields an advection–diffusion transport equa-
tion that resembles the well known cosmic ray transport equation
except for energization terms due to stochastically distributed
reconnection electric fields, contracting magnetic islands,
and magnetic field line shortening associated with magnetic
island merging.

The total acceleration timescale is given by a balance
of the adiabatic term associated with the divergence of the
large-scale flow and the magnetic island merging acceleration
timescale, i.e.,

τ total
acc  −1

3
∇ · U +

8VA

3�
,

where � is a characteristic magnetic island size. At 1 AU,
the divergence term can be neglected locally because it is
∼100 times smaller. The acceleration timescale VA/� reflects
the time available for trapped particles in merging magnetic
islands to either sample repeatedly the reconnection electric field
induced by the merging or be trapped in a contracting magnetic
island. This is a vital distinction between the time available
for charged particles to sample the reconnection electric field
induced by the typical reconnection model that is generated by
antiparallel magnetic fields in the absence of islands. In the latter
case, the acceleration timescale will be determined by Alfvén

speed and the reconnection diffusion length scale (distinct from
the diffusion scale discussed here in the context of particle
transport). Consequently, particle acceleration due to particle
trapping in contracting magnetic islands and acceleration in
the reconnection electric field induced by island merging is a far
more efficient acceleration mechanism than particle acceleration
by reconnection electric fields in the absence of magnetic
islands.

By considering a simple incompressible background flow,
we solved the steady-state isotropic form of the 1D transport
equation with a fixed source and injection speed c0. We assumed
that the spatial diffusion coefficient was constant and neglected
the second-order diffusion terms in energy. We showed that
the adiabatic expansion term was some 100 times slower than
the particle energization terms associated with reconnecting
magnetic islands and could therefore be neglected locally.
We considered in some detail the individual contributions to
particle energization by the induced electric field and contracting
magnetic islands separately. We then solved the first-order
correct transport equation with both the electric field and island
contraction terms present to obtain the general solution.

The solution for the transport equation in which only the
induced or antireconnection electric field energization term is
retained yields pure power-law distributions for the accelerated
particles, i.e., c > c0, where c0 is the injected initial particle
speed. Because the particles experience stochastic encounters
with the induced electric field, half the particles are accelerated,
and half are cooled. Mathematically, this is expressed through
the hyperbolic character of the form of the transport equation in
phase space. The half of the injected particles that are accelerated
have a power-law distribution with index α = −(3+U/|VE |)/2,
where |VE| is a scattered electric-field-induced velocity (15). A
plausible estimate shows that |VE| = VA, yielding a power-law
exponent α = −(3 + MA)/2, where MA is the Alfvén Mach
number for particle speeds c > c0. The half of the injected
particles that lose energy have a power-law spectrum with index
α = (3+MA)/2 for particle speeds c < c0. The full distribution,
when plotted logarithmically, therefore has a triangular shape
with the apex at c = c0.

The transport equation is strictly parabolic when the energiza-
tion terms are restricted to magnetic island contraction alone.
The accelerated form of the accelerated distribution function
is of a power-law-like nature, being a power law for particle
speeds c > c0. The power-law exponent α = −3(1 + τc/(8τdiff))
is a function of the magnetic island contraction timescale
τc and the particle diffusion timescale τdiff = κ/U 2, where
U is the large-scale background flow speed. Both of these
timescales reflect the microphysics of the island contraction
and particle scattering, and neither is particularly well known.
If τc < τdiff , then the accelerated particle distribution is very
hard, tending to a power-law index α = −3. An inequal-
ity was derived, Equation (34), identifying the conditions un-
der which a relatively hard power-law solution can be ex-
pected. Under typical quiet-time solar wind conditions, it is
only necessary that the particle scattering mean-free path λmfp

be larger than the characteristic scale size � of the contracting
magnetic island.

Finally, the full first-order correct transport equation was
solved when both the induced electric field and the magnetic
island contraction energization terms were included. As before,
power-law-like solutions were obtained, with the index depend-
ing on both the Alfvén Mach number and the ratio τc/τdiff .
The value of the approximate power-law exponent is easily
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estimated for this general case because the exponent is deter-
mined primarily by the large argument approximation of the
modified Bessel’s function component of the solution. We de-
rive a solution for particle speeds c greater than a few c0 that
shows the accelerated particle distribution is a power-law-like
solution depending on only the Alfvén Mach number and the
ratio of the magnetic island contraction scale to the particle dif-
fusion timescale. The combination of induced electric field and
magnetic island contraction yields hard spectra for typical pa-
rameters. The numerical solutions confirm that the spectra are
hard, the flatness being determined by the size of the ratio τc/τdiff
for a given Alfvén Mach number. The larger MA implies more
efficient escape from acceleration regions and therefore leads
to steeper power-law-like solutions for the general case. The
governing differential equation was hyperbolic, and therefore
many of the characteristics of the electric-field-alone solution
were similarly present for this more general case.

Given the importance of the Alfvén Mach number in de-
termining the spectral index or the conditions under which
energization via the contracting island mechanism would
generate a power law, we presented observations showing the
averaged radial dependence of MA for the period 1976–1979
from 0.3–∼6 AU. From 0.3–∼1 AU, MA ranges from ∼5–9, and
>1.5 AU, MA ∼ 10–11. In the case of the induced electric-field-
alone solution of the transport equation, this yields a predicted
power-law spectral index that ranges from −4 to −6 in the in-
ner heliosphere to −6.5 to −7 in the outer heliosphere, varying
with solar cycle. At least in the inner heliosphere, this is intrigu-
ingly close to the c−5 quiet-time observations of suprathermal
(1–50 keV) particle spectra in the supersonic solar wind ob-
served by Fisk & Gloeckler (2006, 2012) and Mewaldt et al.
(2001) at 1 AU. These values of MA illustrate that the inequal-
ity (34) will be relatively easily met for both the inner and outer
heliosphere, so that particle acceleration by island contraction
in a reconnecting flow should produce relatively hard spectra.
As we showed, the combination of the induced antireconnec-
tion electric field and island contraction conspire to generate
hard power-law-like solutions of the nearly isotropic form of
the transport equation.

Because dissipation via multiple reconnection in a turbulent
plasma should also occur in subsonic flows, such as in the lower
corona, coronal loops, and the inner heliosheath, it is possible
that the mechanism presented here might apply to particle
acceleration in these regions. However, the transport equation
will need to be rederived to take into account the sub-Alfvénic
flow. Finally, we speculate that particle energization through a
reconnection mechanism might be applicable to collisionless
shock waves. Shocks typically generate significant levels of
vortical turbulence downstream, which may therefore be a
site for the acceleration of electrons or protons. This may be
important for the injection of particles into the diffusive shock
acceleration mechanism, or perhaps even partly responsible for
the acceleration of particles at collisionless shock waves.
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APPENDIX

DERIVATION OF THE ISOTROPIC TRANSPORT
EQUATION FROM THE GYROPHASE-AVERAGED

TRANSPORT EQUATION

A Legendre polynomial expansion of the gyrophase-averaged
Equation (6) can be used to derive a simpler transport equation
analogous to that used to describe the transport of cosmic
rays. We expand the gyrophase-averaged particle distribution
function f as

f (x, t, c, μ) =
∞∑

n=0

1

2
(2n + 1)Pn(μ)fn(x, t, c),

where fn(x, t, c) =
∫ 1

−1
f Pn(μ) dμ.

The orthogonality condition is given by

∫ 1

−1
Pm(μ)Pn(μ) dμ =

⎧⎨
⎩

0 m �= n

2

2n + 1
m = n

,

and some useful recurrence relations are

(n + 1)Pn+1(μ) = (2n + 1)μPn(μ) − nPn−1(μ);
(1 − μ2)

d

dμ
Pn(μ) = nPn−1(μ) − nμPn(μ)

= n(n + 1)

2n + 1
[Pn−1(μ) − Pn+1(μ)] ;

d

dμ
Pn+1(μ) − μ

d

dμ
Pn(μ) = (n + 1)Pn(μ);

μ
d

dμ
Pn(μ) − d

dμ
Pn−1(μ) = nPn(μ);

d

dμ
[Pn+1(μ) − Pn−1(μ)] = (2n + 1)Pn(μ).

We need

μ2Pn = (n + 1)(n + 2)

(2n + 1)(2n + 3)
Pn+2 +

[
(n + 1)2

2n + 3
+

n2

2n − 1

]
Pn

2n + 1

+
n(n − 1)

(2n − 1)(2n + 1)
Pn−2,

to evaluate∫ 1

−1
(3μ2 − 1)PmPndμ − 3

∫ 1

−1
μ2PmPndμ −

∫ 1

−1
PmPndμ,

and

μPn−1 − μPn+1 =
(

n

2n − 1
− n − 1

2n − 1

)
Pn

+
n − 1

2n − 1
Pn−2 − n + 2

2n + 3
Pn+2.

We systematically project and expand each of the terms in
Equation (6) from left to right using the Legendre polynomial
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Pm(μ) and the expansion for f. The left-hand side of Equation (6)
and the diffusion in μ term and the additional reconnection terms
yield the complete transformed focused transport Equation (6),
now, however, expressed as an infinite set of partial differential
equations in the coefficients fn of the Legendre polynomials,

∂fm

∂t
+ Ui

∂fm

∂xi

+
cbi

2m + 1

[
(m + 1)

∂fm+1

∂xi

+ m
∂fm−1

∂xi

]

+ cbibj

∂Uj

∂xi

1

2

∂fm

∂c
− cbibj

∂Uj

∂xi

3

2

(m − 1)m

(2m + 1)(2m − 1)

∂fm−2

∂c

− cbibj

∂Uj

∂xi

3

2

(
(m + 1)2

2m + 3
+

m2

2m − 1

)
1

2m + 1

∂fm

∂c

− cbibj

∂Uj

∂xi

3

2

(m + 2)(m + 1)

(2m + 3)(2m + 1)

∂fm+2

∂c
− c

2

∂Ui

∂xi

∂fm

∂c

+
c

2

∂Ui

∂xi

(m − 1)m

(2m + 1)(2m − 1)

∂fm−2

∂c
+

c

2

∂Ui

∂xi

(
(m + 1)2

2m + 3

+
m2

2m−1

)
1

2m + 1

∂fm

∂c
+

c

2

∂Ui

∂xi

(m + 2)(m + 1)

(2m + 3)(2m + 1)

∂fm+2

∂c

− DUi

dt

bi

2m + 1

[
(m + 1)

∂fm+1

∂c
+ m

∂fm−1

∂c

]
+

c

2

∂bi

∂xi

×
[

(m + 1)(m + 2)

2m + 1
fm+1 − m(m − 1)

2m + 1
fm−1

]
+

1

2

∂Ui
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1

2
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− 1

2
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2
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+
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. (A1)

The infinite set of partial differential Equations (A1) is equiv-
alent to the focused transport Equation (10) and therefore as
challenging to solve. At each order of the expansion, i.e., the
partial differential equation for a Legendre coefficient of par-
ticular order, it is clearly seen that the equation possesses co-
efficients of a higher order. This is another expression of the
closure problem. Closure is typically affected by simply trun-
cating the Legendre polynomial expansion at a finite number of

coefficients. In the body of the text, we consider the m = 1 and
m = 2 approximations.
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