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ABSTRACT

The collision dynamics of dusty bodies are crucial for planetesimal formation. Decimeter agglomerates are
especially important in the different formation models. Therefore, in continuation of our experiments on mutual
decimeter collisions, we investigate collisions of centimeter onto decimeter dust agglomerates in a small drop
tower under vacuum conditions (p � 5 × 10−1 mbar) at a mean collision velocity of 6.68 ± 0.67 m s−1. We use
quartz dust with irregularly shaped micrometer grains. Centimeter projectiles with different diameters, masses, and
heights are used, their typical volume filling factor is Φp,m = 0.466 ± 0.02. The decimeter agglomerates have a
mass of about 1.5 kg, a diameter and height of 12 cm, and a mean filling factor of Φt,m = 0.44 ± 0.004. At lower
collision energies, only the projectile gets destroyed and mass is transferred to the target. The accretion efficiency
decreases with increasing obliquity and increasing difference in filling factor, if the projectile is more compact
than the target. The accretion efficiency increases with increasing collision energy for collision energies under a
certain threshold. Beyond this threshold at 298 ± 25 mJ, catastrophic disruption of the target can be observed.
This corresponds to a critical fragmentation strength Q∗ = 190 ± 16 mJ kg−1, which is a factor of four larger than
expected. Analyses of the projectile fragments show a power-law size distribution with an average exponent of
−3.8 ± 0.3. The mass distributions suggest that the fraction of smallest fragments increases for higher collision
energies. This is interesting for impacts of small particles on large target bodies within protoplanetary disks, as
smaller fragments couple better to the surrounding gas and re-accretion by gas drag is more likely.

Key words: planets and satellites: formation – protoplanetary disks

Online-only material: color figures

1. INTRODUCTION

Planets form in disks of gas and dust around young stars, the
protoplanetary disks. It is widely accepted that the process of
planet formation starts with micron-sized dust grains. Evidence
for this is found by astronomical observations (Pinte et al.
2008; Hernández et al. 2007) and by analysis of meteorites
(Brearley 1999; Scott & Krot 2005). Out of these grains the
kilometer-sized planetesimals are formed, which can grow
to ever larger bodies by accretion and will eventually form
planets. The formation processes involved in the growth of these
planetesimals, however, are not yet understood in detail.

Various models try to explain the formation of planetesimals.
These can roughly be divided into two main groups. One group
of models is based on growth through mutual collisions between
dust agglomerates. Collisions of grains can lead to sticking
and bigger aggregates are formed. In this way, aggregates
can grow efficiently to millimeter sizes (Blum & Wurm 2008;
Zsom et al. 2010; Windmark et al. 2012a). However, the bigger
the agglomerates get the more problematic growth by mutual
collisions becomes. At aggregate sizes in the millimeter range,
mutual collisions do not necessarily lead to sticking, but rather
lead to bouncing (Güttler et al. 2010; Jankowski et al. 2012). In
the case of larger particles fragmentation of aggregates is also a
typical collision result (Teiser et al. 2011a; Schräpler et al. 2012).
On the other hand, in collisions of aggregates of different sizes
the bigger body can gain mass and grow even at higher collision
velocities (Teiser et al. 2011b; Kothe et al. 2010; Meisner et al.
2013; Güttler et al. 2010). Part of the mass sticks to the bigger
body directly. In addition to that, experiments (Wurm et al.
2001a, 2001b) as well as simulations (Jankowski et al. 2014)
show that small particles ejected after the impact couple well
to the surrounding gas and can be re-accreted onto the larger

body by gas drag. These studies are conducted in free molecular
flow, where the mean free path of the surrounding gas is big
compared to the target, or in the transition regime to viscous
laminar flow. Sellentin et al. (2013) analyzed the collisions
of small particles onto large targets in numerical simulations
and found that the ejecta are not re-accreted assuming viscous
laminar flow, where the mean free path is small in comparison
to the target. Numerical simulations showed that growth can be
efficient even in a regime where bouncing is dominant, as a broad
velocity and size distribution can provide few fast and larger
particles, which can sweep up smaller particles (Windmark
et al. 2012a, 2012b). Theoretical collision studies also predict
that agglomerates of grains in the 100 nm range can grow to
much larger sizes than agglomerates of micron-sized grains,
especially if they consist not only of silicates but of water ice
(Okuzumi et al. 2012; Kataoka et al. 2013). If particles can
grow to such large sizes and stay highly porous as predicted,
then bouncing will start to dominate at much larger aggregate
sizes. Growth could then be very efficient especially in the outer
parts of protoplanetary disks, as the bouncing barrier could be
shifted beyond the critical size range where the lifetimes of
agglomerates are extremely short due to radial drift. However,
currently there is no experimental proof for agglomerates in this
parameter range.

The second group of models considers concentration of par-
ticles to high densities and subsequently a gravitation forced
collapse. Gravitational attraction is not important for the inter-
action of (individual) small particles, as their masses are still
small. Concentrating particles to high densities can result in
gravitational instability as a dense cloud of particles can col-
lapse under its own weight. Several different mechanisms to
achieve these high particle densities are being discussed. These
include particle concentration by baroclinic instability (Lyra &
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Klahr 2011), turbulence (Johansen et al. 2006; Lambrechts &
Johansen 2012), or streaming instability (Johansen et al. 2007;
Youdin & Goodman 2005). Chiang & Youdin (2010) give a
review of different models.

Decimeter bodies and their collision dynamics play an im-
portant role in both groups of models. They are of interest for
the coagulation models as bodies start to decouple from the sur-
rounding gas and drift inward toward the star when they reach
the decimeter to meter range. It is therefore crucial to concen-
trate these particles and form larger bodies before they drift into
the star and are lost for planetesimal formation. This also il-
lustrates the high relevance of decimeter bodies for the models
taking gravitational attraction into account, as the concentration
mechanisms are strongest for particles on the verge of decou-
pling from the gas. Here, the collision dynamics of the decimeter
bodies are interesting as well. Even in areas of high particle con-
centration, mutual collisions can result in fragmentation and the
generation of small particles. These small particles might not
stay in the area of high particle concentration.

The outcome of a collision can be described by μ = Mf /M0,
the ratio of the masses of the largest fragment Mf and the orig-
inal body M0. For planetesimal formation the threshold con-
dition between bouncing (μ = 1) and fragmentation (μ < 1)
as well as the condition for catastrophic disruption (μ = 0.5)
are of importance. These threshold conditions have been stud-
ied by Beitz et al. (2011) and by Schräpler et al. (2012) for
collisions of centimeter sized spheres and cylinders and by
Deckers & Teiser (2013) for mutual collisions of cylindrical
decimeter bodies. The specific energy Q, defined as the ratio of
threshold collision energy and mass of the collision partners,
makes the results for collisions at different sizes comparable.
For collisions of mutual decimeter agglomerates Qμ=1 is at
5 × 10−3 J kg−1 (Deckers & Teiser 2013). In this study, we
expanded these experiments in order to investigate the thresh-
old to catastrophic disruption Qμ=0.5, commonly referred to as
critical fragmentation strength Q∗, for decimeter dust agglom-
erates. As the threshold conditions cannot be analyzed in mutual
collisions, because agglomerates are too fragile for high accel-
erations, we analyzed collisions of centimeter projectiles onto
decimeter targets.

2. EXPERIMENT

Collision experiments are conducted under vacuum condi-
tions in a small drop tower with a height of about 3 m (ex-
perimental setup see Figure 2). The mean collision velocity is
6.68 m s−1. It follows the distribution in Figure 3 with a standard
deviation of 0.67 m s−1.

2.1. Sample Preparation

The mechanical properties of silicate dust agglomerates
primarily depend on two parameters, the size distribution of the
dust grains and the aggregate porosity, as can be seen in a variety
of experiments (Deckers & Teiser 2013; Meisner et al. 2013;
Beitz et al. 2011; Schräpler et al. 2012; Blum & Wurm 2008). As
in our previous experiments (Deckers & Teiser 2013; Meisner
et al. 2012) we use quartz powder consisting of irregularly
shaped grains (producer: Sigma-Aldrich). Figure 1 shows the
size and mass distribution of the quartz dust measured with a
particle size analyzer (Mastersizer 3000, manufacturer: Malvern
Instruments). Here, the particle sizes are analyzed by laser
diffraction, i.e., by analyzing the scattered light of the dispersed
particles. The mean particle radius from the size distribution is
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Figure 1. Size and mass distribution of the Quartz dust grains used in the
experiments: the plots show the fraction of the number of particles and the
fraction of mass against the particle radius.

0.45 μm with a standard deviation of 0.13 μm. From the mass
distribution we get a mean radius of 3.71 μm and a standard
deviation of 2.26 μm. 95% of the particles are smaller than
1 μm, whereas around 63% of the mass is in particles between
1 and 6 μm. For irregularly shaped quartz powder of the same
manufacturer, Kothe et al. (2013) found mean radii of 0.63 μm
and 2.05 μm for the size and mass distribution, respectively.

In this study, we investigate the collisions of centimeter pro-
jectiles onto decimeter targets. The agglomerates are prepared in
the same way as described by Deckers & Teiser (2013; decime-
ter targets) and Meisner et al. (2012; centimeter projectiles). The
dust is compressed in a cylindrical mount with a hydraulic press
and then pressed out of the mould. By doing so, we get cylin-
drical agglomerates (target bodies) with a diameter of 12 cm,
a height of around 12 cm and a mean volume filling factor of
Φt,m = 0.44 ± 0.004.

The mass, being just over 1.5 kg, and height of every agglom-
erate are measured before the experiment in order to specify their
volume and volume filling factor. Projectiles with three different
diameters, 1.5 cm, 2 cm, and 3 cm, with masses between 2.5 g
and 20 g and heights ranging from 1 to 3 cm were used in the
experiments. They were also compressed manually in a cylin-
drical mould to achieve a defined volume filling and geometry.
By varying the mass of the projectiles, we can conduct experi-
ments at different collision energies at similar collision veloci-
ties. Their mean volume filling factor is at Φp,m = 0.466 ± 0.02.
In the further analysis the difference in filling factor between
projectile and target is defined as ΔΦ = Φp − Φt .
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(a) (b)

Figure 2. (a) Experimental setup for the collision of the centimeter projectile
onto the decimeter target. (b) Illustration of the impact angle α.

2.2. Setup for the Collision Experiments

Both, the projectile as well as the target, are placed inside
a vacuum chamber at a typical ambient pressure of p �
5 × 10−1 mbar. The vacuum chamber is evacuated slowly,
for about one hour, in order to prevent damage to target and
projectile by the escaping gas. Collision experiments with dust
agglomerates have to be carried out under vacuum conditions
in order to neglect the influence of residual gas within the
agglomerates and to reduce the influence of gas drag on the
collision dynamics. The setup for the collision experiments is
shown in Figure 2.

The projectile is placed onto an ejection mechanism, which
mainly consists of a metal plate and a gear drive, at the top of
the drop tube. When the evacuation of the tube and the vacuum
chamber is complete, the gear drive moves the metal plate to the
side and the projectile is dropped down. The sideward movement
of the metal plate leads to a rotation of the projectile, which then
drops down with an oblique orientation (see Figure 4). A high
speed camera observes the collision with the cylindrical target
at the bottom of the vacuum chamber at 500 frames per second.
The chamber is illuminated by two halogen lamps.

The collision velocity is determined from the camera images.
Due to variations in the ejection of the projectiles, the collision
velocity varies, too. The mean collision velocity is 6.68 ±
0.67 m s−1. Figure 3 shows the velocity distribution. The black
line is the distribution function, a normal distribution with a
standard deviation of 0.67 m s−1. The dashed lines show the
lowest and the highest velocity, respectively.

3. RESULTS

The linear velocity of the projectile is determined by tracking
the edges of the agglomerate. The agglomerates have a mean
collision velocity of 6.68 m s−1. Due to variations in the ejection
mechanism, the agglomerates follow the velocity distribution
in Figure 3. The variation in the ejection of the projectiles
can also lead to a rotation around their symmetry and/or their
transverse axis. For these cases the angular velocity is derived
from the camera images as well. Together with the moments of
inertia, the rotational energy can be calculated. As both mass
and velocity of the agglomerates vary, and thereby influence the
outcome of a collision (see Figure 5), and in order to include
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Figure 3. Velocity distribution and distribution function (normal distribution,
σ = 0.67). The dashed lines show the lowest and the highest velocity,
respectively.

(A color version of this figure is available in the online journal.)

the rotational movement of an agglomerate when necessary,
we take the collision energy of the agglomerates as reference
for our results. The kinetic energy of the projectile is defined as
Ekin = 1/2(mv2 +Ixω

2
x +Iyω

2
y), with Ix and Iy being the moment

of inertia around the symmetry and transverse axis respectively,
ωx and ωy the corresponding angular velocities and m being
the mass. It is important to note that the projectile rotation can
only be derived from the two-dimensional projection of the
agglomerate, as the experiments are observed only with one
camera and no three-dimensional data are available. However,
the contribution of the rotation energy is small in comparison to
the total kinetic energy of the projectile. It is only significant in
one of the collisions, where it makes up about one third of the
kinetic energy.

Two different outcomes of collisions can be observed within
this study. At lower collision energies only the projectile gets
disrupted and a small part of it sticks to the target, so the target
gains mass. The contact between the grown dust cone and the
target material is firm, so the material does not drop off when
the target is tilted or retrieved from the vacuum chamber. At
higher collision energies catastrophic disruption of the target
can be observed. Catastrophic disruption means, that the largest
fragment has less than half the mass of the original agglomerate.
There is a sharp transition between collisions with mass gain and
catastrophic disruption of the target with no collision leading to
only slight damage of the target. Table 1 gives an overview of
all experiments and their results.

Figure 4 shows an example for both possible collision
outcomes. The red circle in (a) marks the grown structure on the
target and in (b) marks the area where the breaking up of the
target is visible from the front. Similar to the fragmentation
observed in mutual decimeter collisions (Deckers & Teiser
2013), the fracture lines lie perpendicular to the symmetry axis
of the agglomerate and are not well visible from the front.

3.1. Threshold between Mass Gain
and Catastrophic Disruption

The method of error propagation was used to calculate the
error of linear and angular velocity of an agglomerate, assuming
an error of two pixels for the projectile position. Together with
the errors in calculating the mass (Δm = 0.01 g) and volume
(Δh = 0.01 cm) of the projectiles, we can determine the error
of the collision energy.
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Figure 4. Example for the two collision outcomes: (a) mass gain, (b) catastrophic disruption. The circle in (a) shows a typical grown dust cone. The circles in (b) show
typical target fragmentation. Most fragmenting lines are not visible, so the fragmentation strength is determined by measuring the mass of the biggest fragment.

(A color version of this figure is available in the online journal.)
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Table 1
Overview of the Conducted Experiments and Their Results

No. mp ΔΦ α v E Result eac MF

[g] [◦] [ms−1] [mJ] [%] [g]

1 2.53 0.059 0 7.54 71.92 0 3.95
2 2.73 0.022 0 7.47 76.17 0 5.5
3 2.62 0.047 34.5 6.18 50.03 0 4.73
4 2.43 −0.06 11.8 6.57 52.45 0 7.24
5 2.49 0.037 43.2 7.20 64.54 0 5.26
6 2.57 0.013 5 6.92 61.53 0 6.89
7 3.77 0.022 0 6.64 80.62 0 7.35
8 2.61 0.046 20 6.25 51.04 0 5.21
9 2.83 0.028 68 6.47 59.23 0 4.7
10 11.5 0.015 0 6.52 244.14 0 12.3
11 9.1 0.023 5 5.96 151.17 0 7.26
12 5.44 0.029 38.9 6.31 109.54 0 5.63
13 7.12 0.026 13.9 5.9 123.8 0 6.12
14 7.46 0.039 35.2 6.47 156.33 0 4.4
15 8.34 0.048 0 7.44 206.68 0 9.48
16 9.03 0.036 32.8 6.62 197.89 0 7.51
17 10.44 −0.029 24.5 7.46 290.03 0 11.23
18 8.63 0.023 60.2 6.19 165.21 0 3.2
19 9.98 0.012 22 7.51 294.66 0 9.97
20 6.71 0.046 23 7.05 115.35 0 5.92
21 6.98 0.036 48.5 4.81 129.75 0 3.65
22 7.79 0.013 11.5 7.43 215.11 0 10.02
23 7.19 0.008 58.1 7.26 189.23 0 4.98
24 9.8 0.012 17 6.22 193.33 0 6.55
25 10.39 0.02 19 5.99 186.19 0 9.24
26 10.65 0.005 45 5.91 185.81 0 8.08
27 10.69 0.022 69 6.8 246.86 0 6.11
28 19.86 20.7 6.35 400.15 1 450
29 16.26 0.025 7 6.43 335.82 1 500
30 14.28 0.016 29.2 6.6 311.4 1 540
31 11.98 0.074 0 7.31 320.35 1 365
32 9.44 0.039 32 7.99 301.1 1 678

Notes. mp is the mass of the projectile, ΔΦ the difference in filling factor (ΔΦ = Φp − Φt ), α the impact
angle, v the collision velocity, and E the collision energy. The collision Result is set to 0 for mass gain and
1 for catastrophic disruption. eac is the accretion efficiency in mass gain collisions and MF the mass of the
largest fragment in fragmenting collisions.

Figure 5 shows the results of the collisions, with mass gain set
to zero and catastrophic disruption to one, plotted against mass,
velocity and collision energy of the projectiles. The error of the
projectile mass is assumed to be 0.01 g (not shown in the plot).
Data points are moved slightly on the y axis for better visibility.
The gray bars show the area between the highest value, where
mass gain is observed and the lowest value for catastrophic
disruption (including errors).

Variations both in mass and velocity influence the outcome of
a collision. This can be seen in the top two plots, where the gray
bars show the overlap in the two collision results. Therefore,
neither mass nor velocity alone can be taken as independent
parameters. Thus we take the collision energy as reference for
the analysis of the collision experiments.

The bottom plot shows the collision result in dependency
of the collision energy. The threshold between mass gain and
catastrophic disruption is in the center of the area highlighted in
gray. The threshold collision energy is 298 ± 25 mJ.

3.2. Accretion Efficiency

After every collision with mass gain the target was retrieved
from the vacuum chamber and the mass gain was determined

by weighing the part of the projectile that sticks to the surface.
Although the grown dust cone is firmly attached to the target
surface, it can be removed from the surface by force. The
accretion efficiency eac can then easily be calculated by dividing
the gained mass by the mass of the projectile prior to the
collision. Once again the error is calculated by error propagation,
assuming an error in the sticking mass of 0.01 g, which
corresponds to about 1%–10% of the sticking mass. Even at
similar collision energies the accretion efficiencies vary quite a
bit, shown by the two dashed lines in Figure 6. This is a result
of the fact that the accretion efficiency does not only depend on
the collision energy, but also on the volume filling factor and
the impact angle, which is shown in the following sections.

3.2.1. Dependency on the Impact Angle

The impact angle α is determined by measuring the angle
between the impact site of the projectile and the center of the
cylinder mantle (see Figure 2). The rotation of the projectile
and especially its orientation at the moment of impact cannot be
determined exactly, as only one camera is used. However, we
consider the influence of the projectile orientation to be small
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Figure 5. Collision result (0 = mass gain, 1 = catastrophic disruption) plotted
against projectile mass, velocity, and energy. The error in mass of 0.01 g is not
shown in the plot. See the text for details.

(A color version of this figure is available in the online journal.)
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Figure 6. Accretion efficiency: the thick dashed line is a linear fit, the thin
dashed lines show the range of results

and negligible in comparison to the impact angle resulting from
the impact position with respect to the target.

In Figure 7, the accretion efficiency is plotted against the
impact angle. The accretion efficiencies are divided into three
groups. In every group the collisions have similar collision
energies and similar differences in volume filling factor. Figure 7
shows the mean values for these two parameters and their
standard deviation. The residual scatter might be caused by the
oblique orientation of the projectile, but this cannot be quantified
in more detail.
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Figure 7. Dependency of the accretion efficiency on the impact angle for
collisions with similar collision energies and differences in filling factor. The
lines in red, black, and orange are linear fits to the data.

(A color version of this figure is available in the online journal.)
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Figure 8. Dependency of the accretion efficiency on the difference in filling
factor for collisions with similar collision energies. The dashed line is a linear
fit to the data.

For low collision energies (black data points, dashed
line) the accretion efficiency shows virtually no dependency
on the impact angle, the linear fit follows the equation
5.43%–0.01%/degree. For medium (orange data points, dot-
ted line) and higher energies (red data points, dot–dashed line)
a clear trend is visible that the accretion efficiency decreases
with increasing impact angle. Here, the equation of the linear
fit is 7.45% − 0.071%/degree and 11.25% − 0.084%/degree,
respectively. The accretion efficiency is highest for a central
collision. For non-central collisions the accretion efficiency de-
creases with increasing impact angle.

3.2.2. Dependency on the Volume Filling Factor

As the collisions at low collision energies show (almost) no
dependency on the impact angle, these results can be used to
investigate the dependency on the difference in volume filling
factor ΔΦ = Φp − Φt . Here, only collisions with similar
collision energies are used.

Figure 8 shows that the accretion efficiency decreases for an
increasing difference in filling factor. The dashed line is a linear
fit to the data with the equation 7.1% − (49 · ΔΦ)%. Here, the
median collision energy is at Em = 63 ± 11 mJ. This means
that the more compact the projectile is in comparison to the
target, the lower the accretion efficiency is. This trend can also
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Figure 9. Dependency of the normalized accretion efficiency on the collision
energy. The thick dashed line is a linear fit to the data and the thin dashed lines
show the rms error of the fit.

Table 2
Values for the Parameters in Equation (1)

a 0.025%/mJ

b −49%

c1 −0.01%/degree
eac,1(α = 0) 5.43%

E � 80 mJ

c2 −0.071%/degree
eac,2(α = 0) 7.45%

170 mJ � E � 250 mJ

c3 −0.084%/degree
eac,3(α = 0) 11.25%

170 mJ � E � 250 mJ

eac(ΔΦ = 0) 7.1%

eac(E = 0) 5.86%

be seen for projectiles that are more porous than the target, i.e.,
the difference in filling factor is negative.

3.2.3. Normalized Accretion Efficiency

Taking the dependency of the accretion efficiency on the
impact angle (Figure 7) and difference in volume filling factor
(Figure 8) into account, one can now take a closer look at
the dependency on the collision energy. This can be done by
including the slopes of the linear fits in Figures 7 and 8 into
the calculations: e(E, ΔΦ = 0, α = 0) = e(E, ΔΦ, α) + (−49 ·
ΔΦ)+ci ·α (the values of ci are given above in Table 2). Thereby
we obtain the normalized accretion efficiencies, i.e., for a central
collision of agglomerates of the same porosity.

The normalized accretion efficiencies show a significantly
reduced spread (see thin dashed lines in Figure 9). Moreover, the
accretion efficiency increases with increasing collision energy.
The thick black dashed line is a linear fit to the data with the
equation 5.86% + 0.025%/mJ and a standard error of the slope
of 0.003%/mJ. The two thin dashed lines have the same slope
and are obtained by adding and subtracting the root mean square
(rms) error of the linear fit, respectively.

3.3. Fragmentation Strength μ

After every fragmenting collision, the mass of the largest
fragment Mf of the target was weighed. The fragmentation
strength μ = Mf /M0 can now be calculated by dividing the
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Figure 10. Fragmentation strength μ in dependency of the collision energy

largest fragment mass by the mass of the target before the
collision. Figure 10 shows the values for μ plotted versus the
collision energy.

For all fragmenting collisions, the fragmentation strength is
less than 0.5. This shows that in all of these collisions we see
catastrophic disruption of the target. In all other collisions, μ
is derived by dividing the target plus the sticking mass by the
original target mass. Mass gain is very small in comparison to
the target mass, so we get μ ∼= 1 (see inset in Figure 10).

3.4. Distribution of Projectile Fragments

In addition to the accretion efficiency, the distribution of
projectile fragments, in size as well as in mass, was analyzed
as well. The smaller fragments were analyzed by placing them
on a black background and taking camera images. From these
images the cross section of every particle can be calculated as
well as the radius assuming spherical particles. In this analysis
we have a resolution limit of the cross section of five pixels. The
biggest fragments were weighed and the radius was calculated
from the mass, again under the assumption of spherical particles.
The top part of Figure 11 shows the distribution of particles for
one collision (no. 17 in Table 1) at a high collision energy
by plotting the number of particles as function of their radius
(bin size 0.01 cm). The dashed line is a power-law fit with an
exponent of −3.7 ± 0.1, the dotted lines show the area where
the distributions are fitted. All 12 analyzed particle distributions
follow a power law, the average exponent is −3.8 ± 0.3, the
error is given by the standard deviation of all measurements.
The lower part of Figure 11 shows all size distributions and a
power law with the exponent −3.8. Here, the normalized number
of particles is plotted versus the normalized radius, i.e., the ratio
of particle radius and radius of a sphere with the mass of the
projectile. The number of particles is normalized to the value at
a normalized radius of 0.1 cm for every distribution.

Besides the size distribution, we also analyzed the mass
distribution of the projectile fragments. The mass of the small
particles was calculated from their radius, assuming the particles
are spherical and the volume filling factor remains unchanged
in the collision.

The smallest particles, i.e., particles with radii of less than
0.1 cm, are by far the most numerous. As the mass of each
of these particles is very small, their mass fraction is at a
relatively low value. The few large particles, however, make
up a large fraction of the fragment mass, as their mass is much
higher. In the analysis of the mass distributions we only took
the distributions into account where the biggest particle has
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Figure 11. Fragment distribution at a collision energy of 290 mJ and overview
of all size distributions. The dotted lines mark the area where the distributions
are fitted

a radius of more than 0.4 cm. The other distributions with no
such big fragment were neglected, as we cannot rule out that a
large fragment was disrupted in a secondary collision. Analysis
of the ejecta velocities show that if big fragments move from
the target freely, their average velocity is 2 m s−1 (see circle
4 in Figure 13). This fast velocity of big fragments supports
the idea that these fragments might break up in secondary
collisions and in some size distributions no big fragment can
be found. Kothe et al. (2010) showed that millimeter aggregates
fragment in collisions at velocities of a few m s−1. However, big
fragments do not always move away from the target freely. In
many collisions the biggest fragments roll along the surface of
the target and are thereby not affected by secondary collisions at
higher velocities. Whether secondary collisions influenced the
smallest particles or not remains uncertain, as the fragment size
distribution cannot be derived from the camera images reliably
(see Section 3.5).

Figure 12 shows values for the mass fractions of the smallest
particles, the biggest particle and all other fragments with radii
in between of fragment distributions of collisions at different
collision energies. The error was calculated taking an error of
two pixels for the cross section of the small fragments and 5 mg
for the weighed particles. For those mass fractions that were
calculated by averaging the results of more than one distribu-
tion, the statistical error was added. The mass fraction of the
smallest fragments by trend increases with increasing collision
energy. On the other hand, the fraction of the biggest fragment
decreases.
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Figure 12. Averaged mass distribution of smallest fragments (radii < 0.1 cm),
the biggest fragment (radius > 0.4 cm), and all other fragments with radii in
between in dependency of the average collision energy.

(A color version of this figure is available in the online journal.)

3.5. Projectile Fragment Velocities

Figure 13 displays the break up of a projectile after a collision
and the ejection of fragments. The time interval between pictures
is 10 ms, the arrows show the distance particles moved between
two pictures.

In the four pictures, ejecta of different sizes and velocities can
be seen. As there are a lot of ejecta and most of them move in
groups close to one another it is difficult to analyze them. Even
then it is possible to track individual fragments and thereby
get the velocity not only of these individual particles but of
the group of particles moving at the same velocity. In this way
we can make a rough classification into groups of particles.
These different groups of ejecta can be observed in all of
the collisions.

Most of the ejecta move away from the impact site very fast,
their velocities are between 1 and 7 m s−1 (circles 1, 2, 3, and 5).
The fastest ejecta are therefore almost as fast as the projectiles
before the collision, which have a mean velocity of 6.68 m s−1.

Some ejecta, however, are significantly slower and move
at average velocities of 0.3–1 m s−1 (circle 6). Most of these
fragments follow a parabola and return to the target. In this case,
they do not stick to the target, but drop off the surface when the
target is retrieved from the vacuum chamber. They therefore do
not contribute to the measured accretion efficiencies.

Figure 14 shows the mean ejecta velocity (data points) and
the range of ejecta velocities (bars) for collisions at different
collision energies. Both range and mean value do not change
significantly with increasing collision energy. This is in good
agreement with Teiser et al. (2011a), who find that for projectiles
of constant mass the ejecta velocities do not change with
increasing collision velocity.

The fastest ejecta with velocities of up to 7 m s−1 are very
small and therefore difficult to observe, especially when they
are not in the focal plane of the camera. These ejecta where thus
not found in all collisions.

4. DISCUSSION

4.1. Critical Fragmentation Strength

In contrast to the previous experiments on mutual decimeter
collisions (Deckers & Teiser 2013), the decimeter agglomerates
fragment into several pieces independent of the collision point.
For all fragmenting collisions the largest fragment had less
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Figure 13. Projectile fragments ejected after a collision. The times given are the
time differences to the collision moment. The arrows show the distance particles
moved between two pictures.

than half the mass of the original agglomerate. This means
that in these collisions we observed catastrophic disruption of
the decimeter target. Although we do not observe a smooth
transition to catastrophic disruption, we can constrain the
value of Q∗ to an interval. The threshold collision energy of
298 ± 25 mJ corresponds to a critical fragmentation strength
of 190 ± 16 mJ kg−1. This is a factor of four higher than the
result for the threshold conditions for fragmentation in mutual
decimeter collisions suggested (Deckers & Teiser 2013). Gravity
does not contribute to this larger value, as the target bodies are
expected to be under constant tensile stress due to their own
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Figure 14. Ejecta velocities at different collision energies: the data points give
the mean ejecta velocity and the bars show the range of velocities.

weight. As they are supported by a target mount which is much
smaller than the target itself, gravity leads to a constant stress
within the dust agglomerates. This means that in this study we
measured the lower limit of the fragmentation strength.

4.2. Accretion Efficiency and Its Dependency
on Collision Parameters

The accretion efficiency depends on three collision parame-
ters: the collision energy, the impact angle, and the volume fill-
ing factor. The dependency on the impact angle can be seen in
Figure 7. The accretion efficiency is highest for central collisions
and decreases with higher impact angle.

The dependency on the difference in volume filling factor
can be seen in Figure 8. The more porous the projectile is in
comparison to the target, the higher the accretion efficiency
becomes. This fits very well to the findings of Beitz et al.
(2011) who investigated the accretion efficiency for collisions
of cylindrical dust agglomerates made up of the same quartz
powder used in this study. They investigated mutual collisions
of agglomerates with a diameter of 3 cm and mass of 13 g.
The collision geometry used by Beitz et al. (2011) is different
from this study, as their projectiles were more porous than the
targets, i.e., a negative difference in volume filling factor. They
found that the accretion efficiency increases, the more porous
the projectile is in comparison to the target.

Figure 9 shows the dependency of the normalized accretion
efficiency on the collision energy. The accretion efficiency in-
creases with higher collision energies. This is in good agree-
ment with the results of Beitz et al. (2011) for mutual col-
lisions of centimeter-sized cylindrical dust agglomerates as
well. They found the accretion efficiency to be higher for in-
creasing collision velocities and suggest a linear dependency.
Kothe et al. (2010) analyzed the accretion efficiency for multi-
ple collisions of highly porous millimeter-sized dust projectiles
(Φ = 0.15 ± 0.01) onto centimeter-sized compact dust targets
(Φ ≈ 0.4–0.5) at collision velocities between 1.5 m s−1 and
6 m s−1. Their aggregates are made up of monodisperse, spheri-
cal SiO2 particles with a diameter of 1.5 μm. Kothe et al. (2010)
also find an increase in accretion efficiency with increasing
collision velocity. Wurm et al. (2005) also analyzed collisions
of millimeter-sized dust projectiles onto centimeter-sized dust
targets (both have Φ ≈ 0.34) made of irregular SiO2-grains
but found no clear dependency of the accretion efficiency for
collision velocities between 6 m s−1 and 15 m s−1. For these
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velocities the accretion efficiency remains more or less constant
around 10%.

We are able to give an analytical function for the dependencies
of the accretion efficiency eac on the collision energy E, the
difference in filling factor ΔΦ = Φp − Φt and the impact
angle α:

eac(E, ΔΦ, α) = eac,0 + aE + bΔΦ + ciα. (1)

where eac,0 = eac(ΔΦ = 0) + eac,i(α = 0) + eac(E = 0) is the
offset in the accretion efficiency given by the y intercepts in
the linear fits in Figures 7–9. The values for the parameters in
Equation (1) are given in Table 2.

These results can easily be included into coagulation models
as, e.g., by Dra̧żkowska et al. (2013) or by Windmark et al.
(2012b).

4.3. Fragment Distribution and Velocity

The distributions of the fragment sizes and velocities are crit-
ical parameters for coagulation models. Collisions as analyzed
here are triggered by the different motion of particles in the
gaseous environment of the disk. The projectiles are still well
(or better) coupled to the gas, while the target bodies already
drift fast. The targets are therefore exposed to a constant head
wind, which is of the same magnitude as the relative velocity
between target and projectile. All impact ejecta are therefore
exposed to the same head wind, which accelerates these ejecta
back toward the target. This mechanism has also been discussed
by Teiser & Wurm (2009) and Wurm et al. (2001a, 2001b). If
the ejecta are slow enough this acceleration can be sufficient to
drive them back to the target body and increase the accretion
rate significantly. In their simulations Sellentin et al. (2013) do
not find re-accretion for impacts of small projectiles onto larger
targets in the viscous flow regime, where the mean free path
is much smaller than the particle. Sellentin et al. (2013) find
re-accretion only in the free molecular flow regime, where the
mean free path is much bigger than the particle. However, their
study does not investigate whether re-accretion is possible in
the regime between viscous and free molecular flow.

The projectile fragment distributions all follow a power law
(see Figure 11) with an average exponent of −3.8. This power-
law size distribution is in good agreement with other collision
experiments as well as simulations and analytical calculations
of collision cascades involving secondary collisions. Dohnanyi
(1969) developed a model to describe the collisional evolution
within the asteroid belt and proposed a power-law size distri-
bution with exponent −3.5. Pan & Schlichting (2012) analyzed
collision cascades analytically as well as in simulations and
found power-law size distributions with exponents between −3
and −4. Collision experiments with targets of different ma-
terials, like mortar or silicates, at different impact velocities
find power laws with exponents in the same range (Davis &
Ryan 1990; Takasawa et al. 2011). The size distribution also
fits to simulations of Geretshauser et al. (2011), who propose
a four-population model for collision fragments, with a sub-
resolution population, a power-law population and two big frag-
ments. Paszun & Dominik (2009) simulated collisions of small
highly porous dust agglomerates, with a diameter of 500 μm
and Φ = 0.16–0.25, resulting in power-law size distributions
with exponents between −0.3 an −1.7. These simulations might
indicate that the size distribution without a collision cascade fol-
lows a shallower power law. Experiments by Blum & Münch
(1993) on mutual collisions of ZrSiO4-aggregates with sizes

of 0.2–5 mm at a collision velocity of about 4 m s−1, without
secondary collisions, show a power-law size distribution with
exponent −3.38. This is close to the exponent found in this study
and suggests that secondary collisions might not influence the
size distribution significantly.

The size distribution is important in various astrophysical
environments where fragmenting collisions play an important
role, e.g., debris disks (Krivov et al. 2000) or the Kuiper and the
asteroid belt in the solar system.

The distribution of projectile fragments in Figure 12 shows
the trend, that the mass fraction of smallest fragments, i.e.,
particles with radii less than 0.1 cm, increases with increasing
collision energy. Due to the density of the cloud of ejecta
we can only make a rough classification of ejecta velocities.
In all analyzed collisions, we find the same groups of ejecta.
Furthermore, the mean ejecta velocity and the velocity ranges
of ejecta do not change significantly with increasing collision
energy. This suggests that the ejecta velocities do not increase
at higher collision energies and that re-accretion is more
likely for higher collision energies. In addition to that, the
accretion efficiency increases with collision energy as well,
leading to an enhanced growth of the bigger collision partner at
higher collision energies. However, it is unclear how secondary
collisions influenced the size and mass distribution.

The analysis of the projectile ejecta (see Section 3.5) shows
that most of the medium and small particles move away from
the impact site at quite high velocities of several m s−1. These
ejecta are too fast to be re-accreted by gas drag and remain as
small particles in the protoplanetary disk. The group of slowest
fragments, however, get ejected at velocities of 0.3–1 m s−1.
These fragments have to be considered if re-accretion by gas
drag is analyzed.

The collisions of centimeter and decimeter agglomerates at
around 7 m s−1 analyzed in our experiments fit well to the
assumed relative velocities between bodies of these sizes at
1 AU in protoplanetary disks (Weidenschilling & Cuzzi 1993).
Assuming the minimum mass solar nebula (Hayashi et al. 1985)
as disk model, the mean free path of gas molecules at 1 AU
distance is at around 6 cm. This means that the mean free path
and target size are of the same order of magnitude and that we
are in the regime between free molecular flow and viscous flow.
In their experiments Wurm et al. (2001a, 2001b) showed that
re-accretion is still possible if the larger body is 10 times larger
than the mean free path.

The slow ejecta observed in our experiments land back on the
target due to gravity and follow parabolic trajectories similar to
those shown by Wurm et al. (2001b). The acceleration by gas
drag is given by a = ve/τ , where ve is the velocity of ejecta
relative to the head wind and τ the coupling time of particles
to the gas (Teiser & Wurm 2009). In the free molecular flow
regime, τ is given as τ = 3.28×105(1/m)/r (R/1 AU)3 s (Blum
et al. 1996; Teiser & Wurm 2009). The size distribution shows
that most of the projectile fragments have radii of about 0.1 mm.
For a particle with radius 0.1 mm at 1 AU we get τ ≈ 32 s.
Most of the slow fragments are ejected against the incoming
headwind (see Figure 13). For these particles the acceleration
by gas drag is enough to return them to the target if the ejecta
velocity is significantly slower than the headwind of 7 m s−1

and not more than about 0.5 m s−1. In the analysis of the ejecta
velocities, we find that a significant number of slow ejecta
have velocities between 0.3 and 0.5 m s−1. This means that
small and slow ejecta can be re-accreted to the target. A more
detailed analysis of re-accretion and its efficiency is beyond the
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scope of this study, but is subject to current work by Jankowski
et al. (2014).

5. CONCLUSIONS

Two different collision outcomes were observed for the
collisions of centimeter and decimeter agglomerates, which are
made up of irregular micro-meter quartz grains and have volume
filling factors of 0.466 ± 0.02 and 0.44 ± 0.004, respectively:
mass gain and catastrophic disruption of the decimeter target.
From the analysis of the threshold condition for the catastrophic
disruption of the decimeter agglomerates, we can constrain
the critical fragmentation strength to an interval, i.e., Q∗ =
190 ± 16 mJ kg−1.

At lower collision energies, the target gains a small amount,
3% to 12%, of the projectile’s mass. The accretion efficiency
depends on the collision energy and other collision parameters,
impact angle as well as aggregate porosity (see Equation (1)).
With increasing collision energy the accretion efficiency be-
comes higher.

Additionally, the analysis of projectile fragments shows
a power-law size distribution, possibly a result of a colli-
sion cascade involving secondary collisions. The exponent of
−3.8 ± 0.3 is in good agreement with simulations as well as
other experiments.

Small projectile ejecta (radii < 0.1 mm) can return to the
target and be re-accreted to the decimeter agglomerate, if they
are significantly slower than the headwind. Analysis of the mass
distribution reveals an increase in the smallest fragments for
higher collision energies. This leads to a higher re-accretion
probability for collisions of bodies of different sizes within
protoplanetary disks and thereby increased growth of the bigger
body, as it is these smallest fragments that can be re-accreted.
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