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ABSTRACT

Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the
underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made
on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between
the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made
arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge,
a Miyamoto–Nagai disk, and a Navarro–Frenk–White dark matter halo – and then model the kinematic data of the
halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration.
Additionally, we use the gas terminal velocity curve and the Sgr A∗ proper motion. With the distance of the Sun
from the center of the Galaxy R� = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has
a break at 17.2+1.1

−1.0 kpc and an exponential cutoff in the outer parts starting at 97.7+15.6
−15.8 kpc. Also, we find that the

tracer velocity anisotropy is radially biased with βs = 0.4 ± 0.2 in the outer halo. We measure halo virial mass
Mvir to be 0.80+0.31

−0.16 × 1012 M�, concentration c to be 21.1+14.8
−8.3 , disk mass to be 0.95+0.24

−0.30 × 1011 M�, disk scale
length to be 4.9+0.4

−0.4 kpc, and bulge mass to be 0.91+0.31
−0.38 × 1010 M�. The halo mass is found to be small, and this

has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but
interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our
estimates of local escape velocity vesc = 550.9+32.4

−22.1 km s−1 and dark matter density ρDM
� = 0.0088+0.0024

−0.0018 M� pc−3

(0.35+0.08
−0.07 GeV cm−3) are in good agreement with recent estimates. Some of the above estimates, in particular Mvir,

are dependent on the adopted value of R� and also on the choice of the outer power-law index of the tracer number
density.

Key words: dark matter – Galaxy: fundamental parameters – Galaxy: halo – Galaxy: kinematics and dynamics –
stars: horizontal-branch
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1. INTRODUCTION

Mass is the fundamental property of any galaxy. An accurate
measurement of the Galaxy mass has repercussions in many
sectors, e.g., in its mass assembly history (Wechsler et al.
2002), identifying a realistic Galaxy in a simulation (e.g.,
Vera-Ciro et al. 2013; Wang et al. 2012), or its analogue
(Robotham et al. 2012), simulating the tidal streams or the orbit
of the satellite galaxies (e.g., Newberg et al. 2010), studying
the tidal impact of the Galaxy on the satellite galaxies (e.g.,
Johnston 1998; Kallivayalil et al. 2013; Nichols et al. 2014),
etc. Various approaches have been undertaken to determine
the mass distribution of the Galaxy, e.g., the timing argument
(Kahn & Woltjer 1959; Li & White 2008), the local escape
speed (Leonard & Tremaine 1990; Smith et al. 2007; Piffl et al.
2014), the orbital evolution of the satellite galaxies and globular
clusters (Lin & Lynden-Bell 1982; Boylan-Kolchin et al. 2013),
modeling the tidal streams (Law et al. 2005; Newberg et al. 2010;
Sanders & Binney 2013b; Sanderson & Helmi 2013), the H i gas
rotation curve (e.g., Sofue et al. 2009), fitting a parameterized
model to the available observational constraints (e.g., Dehnen
& Binney 1998; McMillan 2011; Irrgang et al. 2013), etc. Each
of these methods has its own inherent limitation, for example,
the local escape speed method suffers from the paucity of high-
velocity stars, and also it is unclear whether the phase space

is fully filled up to the escape velocity. The use of an H i gas
rotation curve suffers from the fact that there is no extended
H i disk reported for the Galaxy, and hence it fails to probe the
mass that lies beyond the extent of the disk. For an in-depth
discussion and description of the various methods, we refer the
reader to two recent reviews by Courteau et al. (2014) on the
Galaxy masses and by Sofue (2013) and references therein on
the rotation curve.

A simple yet robust method to probe the Galaxy mass is
provided by an application of the Jeans (1915) equation. The
spherical Jeans equation for a system in dynamic equilibrium is
given by

− ρ
dΦ
dr

= dρσ 2
r

dr
+ ρσ 2

r

2β

r
, (1)

where Φ is gravitational potential, ρ is stellar density, σr is
radial velocity dispersion, and β is velocity anisotropy, and
all of them can be a function of galactocentric distance r.
Thanks to massive stellar surveys such as Sloan Digital Sky
Survey (SDSS)/Sloan Extension for Galactic Understanding
and Exploration (SEGUE) that provide a catalog of position
and radial velocity measurements of a large number of halo
tracers, it is now possible to use the Jeans analysis to put the
most stringent constraints on the halo parameters out to the
maximum observed distance. Among all the parameters that
enter the Jeans analysis, the most uncertain quantity is velocity
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anisotropy β, which is defined as

β = 1 − σ 2
θ + σ 2

φ

2σ 2
r

, (2)

where σθ and σφ are the velocity dispersions along the spherical
polar (θ ) and azimuthal (φ) directions, respectively. With
β ∈ [−∞, 1], β > 0 signifies dominance of radial motion
of stars, β < 0 signifies dominance of tangential motion, and
β = 0 signifies an isotropic system. If β is not known, then
the Jeans analysis suffers from a degeneracy known as the
mass-anisotropy degeneracy. In general terms it means that the
same radial velocity dispersion profile can be obtained either
by lowering the β value or by increasing the mass. Numerous
studies based on the kinematics of different stellar species,
namely, the subdwarfs (Smith et al. 2009a), the main-sequence
stars (Brown et al. 2010), and the blue horizontal branch (BHB)
stars (Kafle et al. 2012, hereafter K12), concur that β ∼ 0.6
(radial) in the solar neighborhood. There have been recent
attempts to constrain the β beyond the solar neighborhood,
including K12, who use the line-of-sight velocity of a BHB
sample to measure β(r) to a radius of ∼25 kpc. They find a non-
monotonic trend in β starting with 0.5 (radial) at small r, which
falls to −1.2 (tangential) at r = 17 kpc and then rises again
to 0 at ∼25 kpc. An additional measurement of β = 0.0+0.20

−0.41
at r = 24 kpc is also reported by Deason et al. (2013) in their
proper-motion studies of the main-sequence halo stars obtained
from the Hubble Space Telescope (HST). This measurement of
β has broken the mass-anisotropy degeneracy at least out to
r = 24 kpc (K12). To address the problem, practices such as
reporting the masses for some arbitrary set of β (e.g., Battaglia
et al. 2005) or assuming them from simulations (Xue et al. 2008)
are a reasonable start. However, to avoid a bias, an approach of
marginalizing over all possible values of β must be taken. It is
worth noting that an independent approach for a mass modeling
using halo stars and assuming the Jeans equation is only a good
starting point and helpful to make a testable prediction.

One preferred approach (Battaglia et al. 2005; Xue et al.
2008; Kafle et al. 2012) with the Jeans analysis is to decompose
the Galaxy into its dominant components (disk, bulge, and
halo). Inherent degeneracies among the components are a major
concern of this approach, and it means that assuming a higher
disk and/or bulge mass would lower the halo mass and vice
versa. To break the degeneracies, the entire parameter space
should be explored. An alternative approach is the tracer mass
formalism (Bahcall & Tremaine 1981; Watkins et al. 2010),
which is based on moments. It is a robust technique to estimate
the underlying mass of the system provided that the density and
mass profiles are power laws and the anisotropy is constant with
radius, which is certainly not true for the Galaxy.

In this paper, we work toward constructing a holistic model
of the Galaxy by combining the best available data in hand, such
as the proper motion of Sgr A∗, the gas terminal velocity in the
inner r < R� of the Galaxy, and kinematics of the large number
of halo tracers provided by SDSS/SEGUE. Our aim is to provide
the stellar halo number density and kinematic profiles out to the
maximum observed distance, the dark matter halo mass and
concentration, and the disk and bulge mass parameters. For
this we take an approach of fitting parameterized mass models
of the Milky Way to observational constraints. This is largely
similar to earlier works by, e.g., Dehnen & Binney (1998),
McMillan (2011), Irrgang et al. (2013), but includes detailed
modeling of distant halo stars. Such a model must reproduce

known local standard estimates such as the escape velocity
vesc ≈ 545 km s−1 (Smith et al. 2007; Piffl et al. 2014), the dark
matter density ρDM

� ≈ 0.4 GeV cm−3 (Catena & Ullio 2010;
McMillan 2011), the total column density Σtotal

� ≈ 70 M� pc−2

(Kuijken & Gilmore 1989a, 1989b, 1989c, 1991; Bovy & Rix
2013; Zhang et al. 2013), and the angular velocity of the Sun
with respect to Galactic center ω� ≈ 30 km s−1 kpc−1 (Reid &
Brunthaler 2004; McMillan & Binney 2010).

We organized the paper as follows: in Section 2 we discuss the
giant star data, outline the selection criteria (for diagnostic, see
Appendix A), and estimate the distance (for full calculation, see
Appendix B). In Section 3 we present the halo kinematical pro-
file. In Section 4 we discuss the models for density, anisotropy,
and potential that are used to fit the kinematics of the halo. In
Section 5 we present our results and discussion. Finally, we
summarize in Section 6.

2. DATA: GIANT STARS

Among the wide varieties of known halo tracers, here we
are interested in K giants. These have long been studied (e.g.,
Ratnatunga et al. 1989; Ratnatunga & Freeman 1989; Morrison
et al. 1990, etc) to probe the distant halo. K giants are brighter
and hence effectively go deeper. Additionally, they are abundant
in number in SEGUE (Yanny et al. 2009), a spectroscopic
subsurvey of SDSS. They can therefore supplement the existing
catalogs of distant tracers such as the BHB stars (Yanny et al.
2000; Sirko et al. 2004; Xue et al. 2008) and the variable stars
(Watkins et al. 2009; Sesar et al. 2011).

2.1. Selection Criteria

We mine the ninth SDSS data release DR9 (Ahn et al. 2012) to
construct our giant star catalog. The first set of selection criteria
we impose to prepare the catalog are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Giants classified by SSPP

0.5 < mg − mr < 1.3,

0.5 < mu − mg < 3.5,

14 < mr < 20,

log g < 2.9,

reddening estimate E(B − V ) < 0.25 and

mg − mr > 0.086[Fe/H]2 + 0.38[Fe/H] + 0.96,

(3)

where mg and mr are the extinction-corrected magnitudes.
The metallicity [Fe/H] and the stellar parameters we use, i.e.,
surface-gravity log g and effective temperature Teff , are the ones
labeled in the SDSS DR9 as “ADOP,” meaning the average of
various estimators that the SSPP3 pipeline uses, and also are the
ones recommended by Yanny et al. (2000). The quadratic color-
metallicity cut in Equation (3), devised by Xue et al. (2014) and
inferred from An et al. (2008), is basically meant to eliminate
the contamination from red horizontal branch and red clump
stars. Note that we take a slightly conservative cut on log g to
minimize the contamination of dwarfs. Additionally, we apply
a second set of selection criteria given by{

signal-to-noise ratio S/N > 15 and

no critical and cautionary flags raised by SSPP
(4)

3 SEGUE Stellar Parameter Pipeline is a pipeline that processes the spectra
SEGUE obtains.
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as a quality control cut. This is to ensure the accuracy and
the reliability of the stellar parameters and radial velocity
values that SSPP provides. Combination of the above given sets
of selection criteria yields 5330 candidate giants. For further
diagnostics about selection criteria and candidate giants, see
Appendix A.

As shown in the next section, we estimate the most probable
distance of the stars, which gives the height, z, of the stars from
the Galactic plane. We then impose the condition |z| > 4 kpc to
select the halo stars. This leaves us with 5140 stars.

2.2. Distance Estimation

Correct distance measurements of the giant stars are critical
for studying the kinematics of the halo and also for modeling
the mass. For a correct treatment of the observational errors,
we set up the distance estimation in a Bayesian framework; the
calculations are given in full in Appendix B. The procedure we
follow is the same as given by Xue et al. (2014). The essence of
the exercise is that for each star with some set of observables,
say, S = {m, c, [Fe/H]}, we obtain a corresponding absolute
magnitude by matching it to color-metallicity fiducials of red
giant sequences of clusters. In the end, with the inferred absolute
magnitude and a given apparent magnitude, we use the standard
photometric parallax relation to compute the distance for a star.
Instead of a single valued number, the setup allows us to compute
a full probability distribution or posterior distribution p(μ|S) of
the distance modulus μ.

3. THE VELOCITY DISPERSION PROFILE

With the distance modulus posterior distributions p(μ|S)
and the line-of-sight velocities, we now proceed to determine
kinematic profiles of the stellar halo, namely, the radial σr (r),
polar σθ (r), and azimuthal σφ(r) velocity dispersion profiles.
The line-of-sight velocities we analyze are the ones provided by
SSPP under the heading “ELODIERVFINAL.” We find that 89%
of our sample has uncertainties in radial velocity of <10 km s−1.
These velocities are in the heliocentric frame of reference, and
for the purpose of modeling we need to transform them into
the one centered at the Galactic center. For this we assume the
velocity of the local standard of rest to be an IAU-adopted value
of vLSR = 220 km s−1; the motion of the Sun with respect to
the local standard of rest to be U� = +11.1 km s−1, V� =
+12.24 km s−1,W� = +7.25 km s−1 (Schönrich et al. 2010);
and the distance of the Sun from the center of the Galaxy to be
R� = 8.5 kpc.

Had the full-space motion of the stars been known, one could
measure σr (r), σθ (r), and σφ(r) by simply dividing the sample
into the radial shells and then computing the second moment of
the components of the velocity. Unfortunately, we only know
the velocity along one direction, i.e., along the line of sight;
therefore, obtaining all three dispersion profiles requires a more
careful modeling of the halo kinematics.

Given that we are only interested in the dispersion profiles, we
consider a gaussian velocity ellipsoid model with rotation about
the z-axis. This model does not require any a priori knowledge
of the underlying potential or the tracer density distribution.
Generally, the velocity ellipsoid can have a tilt, although it is
evident from the recent studies by Smith et al. (2009b) and Bond
et al. (2010) that the tilt with respect to the spherical coordinate
system for the Galactic halo is consistent with zero, so we ignore
it. Therefore, we write the velocity distribution as a function of

radius as

p(v|Θ, l, b, r) = N (vr |0, σr (r))N (vθ |0, σθ (r))

× N (vφ|vrot, σφ(r)), (5)

where the model Θ = {σr, σφ, σθ , vrot} is given by

σr (r) = Interpolation (σr,m, rm)

σθ (r) = Interpolation (σθ,m, rm)

σφ(r) = Interpolation (σφ,m, rm), and

the notation N represents the gaussian distribution centered at
x̄ and with dispersion σ given by

N (x|x̄, σ ) = 1√
2πσ

exp

[
− (x − x̄)2

2σ 2

]
. (6)

Here rm are grid points in radius r, which we call nodes. Each
of these nodes will have a corresponding value of the velocity
dispersion. Thus, the final dispersion profile is obtained from a
linear interpolation over the nodes.

While the location of the nodes can be fixed arbitrarily, for
a more systematic approach, we choose them such that for
r < 70 kpc each node has 500 stars. For r > 70 kpc, as a
result of fewer stars, we choose them such that each node has 30
stars. This is a nonparametric approach to obtaining a kinematic
profile and is a useful technique in our case for two reasons. First,
we do not have an exact distance but a probability distribution of
distance modulus p(μ) of each star in our sample. Hence, unlike
previous studies, e.g., Kafle et al. (2012, 2013), the data cannot
be segregated into the radial bins because a star near a bin edge
could have some finite probability to be in a neighboring bin.
In fact, depending on the distance probability of each star, this
approach enables each star to make an appropriate contribution
to each node where p(μ) is nonzero. Second, in Kafle et al.
(2012) undulations were reported in the kinematic profiles of
the BHB stars. Hence, we do not want to restrict our analysis
by making an assumption about the functional forms of σr , σθ ,
and σφ .

In the absence of proper-motion information, we marginal-
ize Equation (5) over the tangential velocities, vl and vb.
The resultant marginalized distribution function (DF) can be
expressed as

p(vlos|Θ, l, b) ∝
∫ ∫ ∫

p(v|Θ, l, b, μ)p(μ) dvl dvb dμ. (7)

Above the DF is convolved with the distance modulus posterior
of each star p(μ) from Equation (B1). The convolution corrects
for the spatial selection effect and also enables us to propagate
the distance uncertainties to our final estimate of the kinematic
profiles.

Finally, to obtain the dispersion profiles, we use the likelihood
estimation technique based on Markov Chain Monte Carlo
(MCMC) random walks. For all experiments below, we use
an MCMC algorithm, namely, a stretch move as described
in Goodman & Weare (2010) to sample from the posterior
probability distribution given by our model. Our MCMC walks
were run for sufficient autocorrelation time, so as to ensure that
the distributions of parameters were stabilized around certain
values. The advantage of this method over standard MCMC
algorithms such as Metropolis–Hastings is that this method
explores the parameter space efficiently and also produces
independent samples with a much shorter autocorrelation time.
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Figure 1. Radial velocity dispersion profile, σr (r), of the stellar halo. The black squares with error bars are the σr values for the giants computed in this paper, the red
squares with error bars are the estimates for BHB stars taken from K12, the blue dot with error bar is the measured value for BHB stars from Deason et al. (2012),
the magenta dots with error bars are Battaglia et al. (2005) combined estimate for the mixed sample of halo objects populating at large r, and the green dots with
horizontal and vertical error bars are the reported values for SEGUE subdwarfs by Smith et al. (2009a). The dashed black line is our best-fit model for a combined
BHB and giant sample (the shaded purple region).

(A color version of this figure is available in the online journal.)

The log-likelihood function, L, we use is

L(Θ) =
n∑

i=1

log p(vlos,i |Θ, li , bi), (8)

where the sum is over the total number of stars n. The
MCMC run gives us the posterior distributions of the model
parameters Θ = σr, σθ , σφ, vrot at given distances. The values
corresponding to the highest likelihood are considered the best
estimates of the model parameters, and the uncertainties are
computed from the 16th and 84th percentile of the distributions.

Our σr profile of the halo giants is shown in Figure 1 by black
squares. It starts high at 190 km s−1, in the inner region, drops
to 100 km s−1 at distance r ∼ 20 kpc, and then remains flat till
r ∼ 70 kpc. This is consistent with the trend seen in BHB stars
(Kafle et al. 2012), shown by red squares. However, note that the
break in the σr (r) profile of BHB stars is at a radius of ∼17 pc,
which is slightly smaller than that of the giants. We suspect
this to be due to larger distance errors of giants. Distance errors
will have the effect of smoothing sharp transitions. At radius
r > 70 kpc, for giants we find that there is a further drop in the
σr , reaching as low as 35 km s−1 at ∼155 kpc. The magenta data
point taken from Battaglia et al. (2005) also shows a low σr at
such a large distance. Similarly, in the range r ∼ 100–150 kpc
Deason et al. (2012) find a low σr ≈ 50–60 km s−1 among their
BHB sample (blue data). Similar trends in σr (r) for different
populations reported above are reassuring, since they trace the
same gravitational potential. The large error bar in the σr (r)
value for the giant sample at r ∼ 5.9 kpc is because, close to the
Sun and along the Galactic pole, the contribution of the radial
velocity to the line-of-sight velocity is low.

Figure 2. Posterior distributions of the velocity dispersions of the giants at
r = 5.9 kpc; the red, black, and blue lines show the probability distribution
functions for σr , σθ , and σφ , respectively.

(A color version of this figure is available in the online journal.)

Although we can measure σr , we are unable to constrain
the tangential components of the dispersion, σθ and σφ , for the
following reasons. First, with a line-of-sight component of the
velocity alone, we cannot measure the tangential dispersions
at distances r � R�. Second, the distance uncertainty of our
sample of giants is large, rendering large uncertainties in the
tangential dispersions. However, at the first node r ∼ 5.9 kpc the
tangential velocity contributes significantly to vlos, which makes
it possible to compute σθ and σφ ; see Figure 2. Here we find
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that the halo is radial, β = 0.4+0.4
−1.3, which is in agreement with

the previous results using the subdwarfs (Smith et al. 2009a),
the main-sequence stars (Bond et al. 2010), and the BHB stars
(Kafle et al. 2012) at a similar distance.

The issue we ignore in this study is the effect of substructures
on kinematics. In K12, it was shown that the effect of the two
most dominant structures in the halo, the Sagittarius stellar
stream and the Virgo overdensity, is negligible.

4. FITTING THE MODEL

We now proceed to modeling the σr (r) profile of the halo in
order to probe the Galactic potential, Φ(r). For this we rearrange
the Jeans Equation (1) as

dσr (r)2

dr
= −1

r

[
r
dΦ(r)

dr
+ σr (r)2

(
2β(r) +

d ln ρ(r)

d ln r

)]
. (9)

We solve this first-order differential equation in r numerically,
forcing a boundary condition r → ∞ as σr → 0. For some
supplied profile for potential Φ, density ρ, and anisotropy β,
we use the numerical solution for σr (r) to fit the observed σr (r)
obtained in Section 3 (Figure 1). In the following sections we
describe parametric forms of Φ(r), ρ(r), and β(r) that are used
in our model; for a quick reference see Table 1.

4.1. Density ρ(r)

Studies of the morphology of the Milky Way halo suggest
that a good fit to the stellar halo density distribution is a
double power law with a shallow slope inside a break radius
(rb) and a sharp fall-off outside. For example, analyzing the
main-sequence turnoff stars, Bell et al. (2008) conclude that
a power law, ρ ∝ r−α , with index of α = 2 for the inner
region and 4 in the outer region with a break at r � 20 kpc
is a reasonable representation. Similar conclusions were also
made by Watkins et al. (2009) in their studies of RR Lyrae
stars out to 100 kpc and by Deason et al. (2011) for BHB
stars out to 40 kpc. Apart from SDSS, the study by Sesar et al.
(2011) of the main-sequence turnoff stars obtained from the
Canada–France–Hawaii Telescope Legacy Survey suggests a
slightly shallower fall of 3.8 beyond the break radius r = 28 kpc.
More recently, Sesar et al. (2013) using variable stars suggest
a broken power law but with a much smaller break radius of
∼16 kpc. In agreement with Watkins et al. (2009), Deason et al.
(2011), here we adopt a double power-law fit to the halo density
with an inner slope of 2.4 and an outer slope of 4.5 with break
at radius rb. As we will discuss later, the drop seen in the σr

profile at r ≈ 20 kpc seems likely to be a consequence of the
break in the density. Hence, to further investigate this issue, we
keep the break radius (rb) as a free parameter of our model.

The outermost (r � 100 kpc) region of the halo is diffuse and
highly structured (Sesar et al. 2007; Sharma et al. 2011b). Only
a handful of stars have been observed at such large distances,
and so the density profile is largely unknown. With a catalog
of a comparatively larger number of outermost halo stars, we
investigate what the decline of σr (r) after r � 90 kpc tells us
about the density profile. For this, we investigate a truncated
model of the outer halo with a truncation radius rt. A similar
approximation has also been made by Dehnen et al. (2006), but
with a forced sharp truncation at r = 160 kpc. However, we
soften the truncation by using an exponential functional form
that has a tunable parameter Δ that determines the strength of
the fall (see also Sharma et al. 2012). We then let the MCMC

likelihood fit determine both the position of rt and the scale
length of the fall Δ. The first row in Table 1 shows the form
of the density profile that we adopt. Note that we assume
the logarithmic slope at r = rt to be continuous. This gives
ε = (rt/Δ) − 4.5, and the slope at r � rt as ε − r/Δ.

4.2. Anisotropy β(r)

The velocity anisotropy (β) is the most uncertain quantity
that enters the Jeans equation, and only recently has β(r)
been measured directly. The full phase-space studies of the
subdwarfs in Smith et al. (2009a) and main-sequence stars in
Brown et al. (2010) suggest that the halo within d < 10 kpc
is radial with β ≈ 0.7. Recently, K12 studied the line-of-sight
velocity of BHB stars and found that at a similar distance range
(r < 12 kpc) the halo is radial β ∼ 0.5. Moreover, K12 also
found that the β(r) profile of the stellar halo has features that
include a tangential dip (β = −1.2) at r ∼ 17 kpc. In the
range 19 � r/kpc � 25, K12 find the β to be consistent with
zero given the uncertainty. Further confirmation of this comes
from Deason et al. (2013), who used the HST proper-motion
information of the main-sequence stars to find that at similar
distance r ∼ 25 kpc the halo is isotropic β = 0.0+0.4

−0.2. For
r > 25 kpc, so far there has been no direct measurement of β(r).
Therefore, in this regime we have no choice but to assume some
model for β. A trend that β(r) rises from 0 and attains a positive
value at large distances has been reported (see Figure 13 of K12)
for the ΛCDM stellar halos of Bullock & Johnston (2005) and
also for the halo stars in the cosmological simulations of Sales
et al. (2007). We assume a similar trend here, i.e., at distance
r > r2, β(r) is constant and equal to the βs value. However,
in between the maximum observed radius r = 25 kpc and the
distance r2, β(r) is assumed to be linear. This is more physical
than introducing an abrupt transition like a step function. In other
words, r2 determines the slope of the β(r) profile joining βs and
β|r=25 kpc. Here we assume r2 to be 50 kpc. This transition is
also consistent with the results from the simulation. However, in
both of the above-mentioned simulations the transitions cease at
a much closer radius than we assume here. The formula shown
in the second row of Table 1 summarizes our model for the
anisotropy profile.

4.3. Potential Φ(r)

The next quantity required for the σr modeling is the po-
tential, Φ(r). We essentially construct a model of the Galactic
potential with three components: an oblate spheroidal bulge,
an axisymmetric disk described by Miyamoto & Nagai (1975),
and a spherical dark halo described by a ΛCDM motivated
Navarro–Frenk–White (NFW; Navarro et al. 1996) profile. The
formulae are given in Table 1.

The Galactic dark matter halo assumed to follow an NFW
profile is characterized by two parameters, the virial mass
Mvir and the concentration c (third row of Table 1). Here the
overdensity of the dark matter compared to the average matter
density, δth, is considered to be 340 (Bryan & Norman 1998).
The values for Hubble constant H0 = 70.4 kms−1 Mpc−1 and
the matter density of the universe Ωm = 0.3 are taken from
Komatsu et al. (2011);4 in other words, we assume that the
mean density is Ωmδth times the cosmological critical density.

4 Recently, the Planck Collaboration has revised the value of H0 downward to
67.3 kms−1 Mpc−1 (Planck Collaboration et al. 2013). However, we still use
the WMAP7 result from Komatsu et al. (2011) for an easy comparison with
previous works.
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Table 1
Model Prescription of the Assumed Components of the Galaxy

Physical Quantity Model Comments

Stellar Halo

Density ρ(r) ∝
⎧⎨⎩

(r/rb)−2.4 if r < rb
(r/rb)−4.5 if rb � r < rt
(rt /rb)−4.5 (r/rt )ε exp

[− r−rt
Δ

]
if r � rt .

rb is the break radius, rt is the truncation radius, and Δ is
the scale length of fall. Assuming that the logarithmic
slope at r = rt is continuous gives ε = rt

Δ − 4.5.

Anisotropy β(r) =

⎧⎪⎨⎪⎩
Interpolate(observed values) if r � 25 kpc{

Max{ r−25
r2−25 βs, βs} if βs < 0

Min{ r−25
r2−25 βs, βs} if βs � 0

if r > 25 kpc
Observed values are taken from the literature (Kafle
et al. 2012; Deason et al. 2013), 25 is maximum
observed distance in kiloparsecs, βs is the velocity
anisotropy outside radius r2.

Dark Halo

NFW potential (Navarro et al.
1996)

ΦNFW = −GMvir ln(1+rc/Rvir)
g(c)r ,

g(c) = ln(1 + c) − c
1+c

, and

Rvir =
(

2MvirG
H 2

0 Ωmδth

)1/3 Mvir, c, and Rvir are the virial mass, concentration, and
the virial radius, respectively. δth is an overdensity of the
dark matter compared to the average matter density, H0

is the Hubble constant, and Ωm is the matter density of
the universe.

Disk

Miyamoto & Nagai (1975)
potential

Φdisk(R, z) = − GMdisk√
R2+(a+

√
z2+b2)2

a, b, and Mdisk are the scale length, scale height, and
mass, respectively.

Bulge

Spheroidal bulge (Binney &
Tremaine 2008, Equations
(2.207a) and (2.207b))
density

ρbulge(R, z) = ρb0

(
m
ab

)−αb

e−m2/s2
, where

m =
√

R2 + z2/q2
b

ρb0 is a density normalization, which is a function of
Mbulge. s is a scale length. Values for remaining
parameters ab, αb , and qb are assumed to be 1 kpc, 1.8,
and 0.6, respectively, and are adopted from Section 2.7,
page 111, of Binney & Tremaine (2008).

The Galactic disk is thought to have two major components,
i.e., a thick and a thin disk (e.g., Gilmore & Reid 1983).
Generally, the disk is modeled as exponential in a sense that
the surface density falls exponentially as a function of distance
from the center of the Galaxy R and height from the Galactic
midplane z. Since here we use the spherical Jeans equation, we
consider an analytic and easy-to-use three-dimensional model
of the disk, which is provided by a flattened disk of Miyamoto
& Nagai (1975) type. Its functional form is given in the second-
to-last row of Table 1. There, a and b are its scale lengths and
Mdisk is the mass.

The Galactic bulge is assumed to be spheroidal. This provides
a reasonable axisymmetric approximation for the bulge seen
from COBE/DIRBE near-infrared data. It is also similar to the
axisymmetric approximation of the Bissantz & Gerhard (2002)
model considered in McMillan (2011). The last row of Table 1
presents the mass density of the assumed model for the bulge
and is taken from Equations (2.207a) and (2.207b) in Binney
& Tremaine (2008). To compute the force generated by such a
spheroidal system, we use Equations (2.129a) and (2.129b) of
Binney & Tremaine (2008). The values for some of the bulge
parameters are kept fixed, such as oblateness parameter qb and
power-law index αb. These were adopted from Section 10.2.1
of Binney & Merrifield (1998). We found that at a distance
greater than four times the scale length s, the spheroidal bulge
contribution to the overall potential is similar to that of a
point mass.

Both the disk and bulge models are functions of radius and
polar angle. But here we work in a framework of the spherical
Jeans equation. Hence, we only consider the radial component

of the force due to disk and bulge, i.e., along the basis vector
êr , which we average over the spherical shells. The average
force exerted on a unit mass at given radius r due to all three
components of the Galaxy is modeled by

dΦ(r)

dr
= 〈∇Φbulge(R, z).êr〉 + 〈∇Φdisk(R, z).êr〉 +

dΦNFW(r)

dr
.

(10)

The dominant contributor to the overall potential of the
Galaxy in the innermost region r � 5 kpc is the bulge, in
5 kpc < r < 15 kpc is the disk, and at even larger distances
is the halo. Therefore, fixing a potential of any component
would systematically alter the contribution of the others. Thus,
we keep the parameters free and allow the data to resolve the
degeneracies.

Before proceeding with the fit, we first study the effect of
density and anisotropy profiles in the σr (r) model. The model
σr (r) is obtained by substituting the above-described density,
anisotropy, and potential profiles in Equation (9). In Figure 3(a),
we demonstrate the role of the assumed density profile for the
case of β = 0.5, c = 10, and Mvir = 1012 M�. The solid
(dotted) line is the case of a single power law with a slope of 2.4
(4.5), whereas the dashed line is the case of a double power-law
density profile with an inner slope 2.4 and an outer slope 4.5,
with the break being at rb = 50 kpc. In the figure the σr for
the double power-law case attains the values for single power-
law cases in the inner and outer parts with a sharp transition
ceasing exactly at the break radius rb. Furthermore, the dashed-
dotted line in the figure is the same as in the case of the dashed
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Figure 3. Effect of density and anisotropy parameters in the σr model: (a) shows
an effect of assumed density power laws for the case of constant β, c, and Mvir;
and (b) shows an effect of assumed β profile and its parameter r2 and βs for the
case of double power-law density and constant c and Mvir. In all cases bulge and
disk parameters are kept fixed as Mdisk = 1011 M�, a = 4.5 kpc, b = 0.8 kpc,
Mbulge = 1010 M�, s = 1.9 kpc, ab = 1 kpc, αb = 1.8, and qb = 0.6.

line but with an exponential fall-off beyond rt = 120 kpc with
parameter Δ = 1.1 kpc. Note that the σr for the dashed-dotted
line and dashed line cases are the same out to rb = 50 kpc,
but beyond that the dashed-dotted line declines further owing to
added exponential fall-off in the density profile. Since the slope
in the latter case is a function of r, the transition is smoother
than one near the first break rb. For r > rt , σr decreases gently.
This suggests that the break in the σr (r) profile is a result of the
break, rb, in the density distribution.

In Figure 3(b), we demonstrate the effect of the underlying
β profile for the case of c = 10, Mvir = 1012 M�, density
power-law index of 2.4 (inner region) and 4.5 (outer region), and
rb = 23 kpc. The β(r) plotted here are taken from the second
row of Table 1. The dotted line and dashed-dotted lines show
β(r) with βs = 0.5 and r2 = 75 kpc and 50 kpc, respectively.
These two runs can be compared to see the effect of r2 on the
σr (r) model. Clearly, the chosen value of r2 that determines the
distance at which β saturates and attains constant βs value is
just the measure of the slope of the transition. Also, as expected,
in the case of r2 = 75 kpc the slope is smaller than in the case of
r2 = 50 kpc as it attains the βs at larger r. The effect of r2 seems

minimal in the overall σr (r) profile. Hence, we keep it fixed at
50 kpc for the rest of the analysis. Furthermore, the above two
runs can be compared with the dashed line to see the effect of
adopted βs , which is 0.5 in the former runs and 0.9 in the latter
one. As expected, larger βs = 0.9 means that the σr (r) shifts up
and vice versa. The βs can systematically shift the σr (r) profile
and bias the mass estimate; we keep it free.

The model parameters we are interested in measuring are
the stellar halo density power-law break radius (rb), truncation
radius (rt), truncation softening (Δ), and maximum anisotropy
(βs); dark matter halo concentration (c) and the virial mass
(Mvir); disk scale lengths (a and b) and mass (Mdisk); and bulge
scale length (s) and mass (Mbulge). We consider flat priors for
all the parameters in the following range: rb ∈ [8, 30] kpc,
rt ∈ [60, 140] kpc, Δ ∈ [0, 20] kpc, βs ∈ [−5, 1], c ∈ [1, 60],
Mvir ∈ [0.05, 3] × 1012 M�, Mdisk ∈ [0.1, 5] × 1011 M�, a ∈
[0.1, 12] kpc, b ∈ [0.01, 0.5] kpc, Mbulge ∈ [0.1, 3] × 1010 M�,
and s ∈ [1, 3] kpc.

Next, we use the MCMC and likelihood maximization to
compute the model parameters of interest. The likelihood
function we use is

L(θ |Data) = p(θ |p(σr |r))p(θ |vterm, l, σvterm )p(ωLSR(θ )),

where θ = {rb, rt , Δ, βs, c,Mvir,Mdisk, a, b,Mbulge, s} is the set
of model parameters we explore. The last term is the prior on
ωLSR. The first term is

p(θ |p(σr |r)) =
m∏

k=1

p(σr (rk, θ )|rk). (11)

In this model σr (rk, θ ) is given by Equation (9). The probability
p(σr |rk) is the posterior distribution of σr parameter at the kth
node and is obtained from Equation (8) in Section 3, in other
words, the distribution of each data point in Figure 1. This
setup avoids assuming gaussian errors for the measured values;
instead, we already have the full probability distribution of σr

at each r, and we make use of this.
Our catalog only contains the halo stars, and with the halo

stars alone we cannot construct the rotation curve for the inner
region of the Galaxy. Fortunately, the shape of the rotation curve
or the circular velocity vcirc in the innermost region of the Galaxy
r < R� kpc, where the bulge and the disk dominate, can be
computed from alternative measures such as using tangent point
velocities (e.g., Malhotra 1995; McClure-Griffiths & Dickey
2007) or the gas rotation curve (e.g., Sofue et al. 2009). Here we
use the terminal velocity curves from Malhotra (1994, 1995), as
done, e.g., in Dehnen & Binney (1998), Widrow et al. (2008),
McMillan (2011).

By measuring the terminal velocity along all lines of sight
between Galactic longitudes |l| < π/2 for latitude b = 0◦, it
is possible to derive a measurement of the rotation curve of the
inner Galaxy. Assuming that the Galaxy is axisymmetric, vterm
as a function of l is given by

vterm(l) = vcirc(R� sin l) − vLSR sin l, (12)

where vLSR = vcirc(R�). Now we define our second term in
likelihood as

p(θ |vterm, l, σvterm ) =
∏
k

N
(
vterm(lk, θ )|vk

term, σ k
vterm

, lk
)
. (13)

There will be effects of nonaxisymmetry of the Galaxy and
noncircular motion of the interstellar medium on the vdata

term.
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Figure 4. Terminal velocity vterm as a function of Galactic longitude l. The
points are the data taken from Malhotra (1994, 1995). The error bars of 7 km s−1

shown are introduced to allow for noncircular motions. The overplotted line is
our best-fit model resulting from our final MCMC run corresponding to Figure 6.

(A color version of this figure is available in the online journal.)

To take into account these effects, following Dehnen & Binney
(1998), we assume σvterm = 7 km s−1 and avoid the region
affected by the bar by only using data with | sin l| > 0.3. The
data with assumed uncertainties are shown with black points in
Figure 4.

An additional prior we impose is on vLSR. There is a
wide variation in claims about vLSR at R� ranging between
184 km s−1 (Olling & Merrifield 1998) and 272 km s−1 (Méndez
et al. 1999). Many of these claims depend on the assumed
R� and are normally measured using the data within the solar
annulus. In their studies of masers, McMillan & Binney (2010)
find that the angular velocity is constrained better ranging
between 29.9 and 31.6 km s−1 kpc−1. As a summary of all
these works, we assign a prior with a uniform distribution of

p(ωLSR) = U(23, 34). (14)

The range in ωLSR of [23, 34] km s−1 kpc−1 corresponds to a
range in vLSR of [196, 289] km s−1 at R� = 8.5 kpc.

We have the σr run for two different tracers, i.e., giant and
BHB stars, labeled with red and black in Figure 1. While the
σr run of the giant data is measured out to a larger distance
(r ∼ 155 kpc) than of the BHB stars (r ∼ 40 kpc), the giant
stars have comparatively larger uncertainties in r and σr (r) than
BHB stars. Importantly, the β(r � 25 kpc) profile that goes
into our modeling is also unknown for the giant data but known
for the BHB data. It is therefore more sensible to take the best
portion of the data in hand and combine them. Therefore, for
our final round of measurements, we take an adjoined σr (r): the
BHB data from K12 in the range 12 � r/kpc � 40 and the giant
star data in the range 40 � r/kpc � 155. Note that our model
for the σr (r) (see Figure 3) does not predict the flattening out
of the profile in the inner region r � 12 kpc. However, the first
two σr (r) values in the figure for the BHB sample show a clear
flattening. This is something that needs to be investigated in the
future; currently we ignore these data points.

During an MCMC run, for every proposed set of val-
ues of model parameters, particularly one defining the po-
tentials, we get a prediction for ωLSR (shown in Figure 5 by
a hatched histogram). We are able to constrain the ωLSR =
30.2 ± 1.2 km s−1 kpc−1. Interestingly, this is within the

Figure 5. Angular velocity (ω) at R�. The black histogram shows the posterior
distribution of ω obtained from the MCMC run for the case with uniform prior.
The best-fit value of ω is 30.2 ± 1.2 km s−1 kpc−1. The blue dotted line is the
normal distribution with a mean value of 28.8 km s−1 kpc−1 and a dispersion of
0.2 obtained for V� = 12.24 km s−1 and R� = 8.5 kpc from Reid & Brunthaler
(2004), which we later use as a prior.

(A color version of this figure is available in the online journal.)

uncertainty range of the Reid & Brunthaler (2004) result
28.8 ± 0.2 km s−1 kpc−1 for V� = 12.24 km s−1 obtained
using the Sgr A∗’s proper motion. Also, our estimate falls in
the prescribed range 29.9–31.6 km s−1 kpc−1 in McMillan &
Binney (2010), who use the proper motions of masers. Our
measurement therefore can be taken as an independent mea-
surement of the vLSR at R� = 8.5 kpc. Since our constraint of
ωLSR has larger uncertainties compare to the one obtained using
Sgr A∗ data, from here on unless otherwise mentioned we use
N (ωLSR|28.8, 0.2) as a prior instead of a uniform distribution.

5. RESULTS AND DISCUSSION

Figure 6 displays the marginalized one- and two-dimensional
distributions obtained from the MCMC. For a quick referral the
table with the best-fit estimates is put alongside the figure. It is
also summarized separately in Table 2 for both cases, i.e., with
and without Sgr A∗ proper motion prior. The reported best-fit
values are the medians of the posterior distributions of the model
parameters, whereas the uncertainties quoted are computed from
16th and 84th percentile values. The best-fit σr model obtained
after substituting the above estimates is shown, against the actual
data, by a black dashed line in Figure 1. It can be seen that the
best fit represents the data well. A small rise in σr (r) data at
r = 70 kpc seems to be a local effect and could be due to
the presence of some kind of shell-like structure at the given
distance. For a proper fitting of such outliers we need to know
the underlying β(r) run of the data.

Figure 6 nicely demonstrates correlations that exist among
different parameters we consider here. For example, one can
observe an expected correlation between βs and Mvir, also
known as the mass-anisotropy degeneracy. Also, one can see
a mild correlation between Mbulge and Mdisk, Mvir and Mdisk,
etc. An anticorrelation is seen between c and Mdisk and Mbulge.

The best-fit estimates of the model parameters enable us to
construct the rotation curve of the Galaxy (shown in Figure 7).
The dashed, dotted, and dashed-dotted lines are the vcirc(R) as
a function of the cylindrical radius R for the halo, disk, and
bulge, respectively, whereas the solid line is the resultant curve.
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Figure 6. Joint likelihood and the marginal posterior distributions of the model parameters obtained from the MCMC exploration of the combined sample of the halo
giant and BHB stars. The labels along the horizontal and vertical direction tell the names of the parameters, i.e., from the left to the right they are the NFW dark matter
halo concentration c, virial mass Mvir in 1011 M�, density break radius rb in kiloparsecs, truncation radius rt in kpc, truncation softening parameter Δ, anisotropy βs ,
disk mass Mdisk in 1010 M�, disk scale length a in kiloparsecs, disk scale height b in kiloparsecs, bulge mass Mbulge in 109 M�, and bulge scale length s in kiloparsecs.
Histograms at the top of each column show the posterior distribution of the model parameters named at the bottom of the column, whereas the heat maps depict the
joint likelihood distribution of two parameters named immediately below and on the leftmost end of the same row. Black lines mark the 1σ confidence contours. The
values in the title of histograms present the best-fit estimates.

(A color version of this figure is available in the online journal.)

Substituting the best-fit rotation curve in Equation (12) gives
us the best-fit terminal velocity curve. In Figure 4 it is plotted
alongside the terminal velocity data.

5.1. Properties of Disk and Bulge

In this paper we use an Miyamoto–Nagai (MN) disk and
a spheroidal bulge. The properties of the disk and the bulge
are mainly governed by the terminal velocity data. They are
also quite sensitive to the prior on vLSR, which in turn depends

on the chosen value of R�. Overall the disk mass is around
1011 M� and the bulge mass is around 1010 M�. The structural
parameters like b and s are difficult to measure. The bulge
mass has a mild dependence on s, but other than that, b and
s have little effect on other parameters (see Figure 6). We find
that a + b is well constrained by the data. This can be seen by
the strong anticorrelation between them and a narrow spread
around it. Our inability to measure b is due to the following
two reasons. First, the priors from terminal velocity data and
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Figure 7. Circular velocity curve of the Galaxy. The dotted, dashed-dotted, and
dashed lines are the circular velocity curves along the meridional plane, z = 0,
for the oblate bulge, Miyamoto–Nagai (MN) disk, and NFW halo, respectively.
The radius R is the distance in the Galactic plane. The individual curves are
constructed from the best-fit estimates of the model parameters. The solid line
shows the resultant circular velocity curves due to all three components of the
Galaxy.

Table 2
Best-fitting Values of the Model Parameters

Galaxy Components Parameter Without vLSR With vLSR

(unit) Prior Prior

Stellar halo rb (kpc) 17.5+1.2
−1.2 17.2+1.2

−1.0

rt (kpc) 100.4+17.7
−16.5 97.7+15.6

−15.8

Δ (kpc) 8.3+7.5
−5.6 7.1+7.8

−4.8

βs 0.6+0.2
−0.2 0.4+0.2

−0.2

Dark halo c 17.5+15.4
−7.5 21.1+14.8

−8.3

Mvir (×1012 M�) 0.62+0.25
−0.21 0.80+0.31

−0.16

Disk Mdisk(×1011 M�) 1.5+0.6
−0.6 0.95+0.24

−0.30

a (kpc) 5.8+0.6
−0.9 4.9+0.4

−0.4

b (kpc) 0.2+0.2
−0.2 0.3+0.2

−0.2

Bulge Mbulge (×1010 M�) 1.2+0.4
−0.5 0.91+0.31

−0.38

s (kpc) 2.2+0.5
−0.6 2.1+0.6

−0.6

Angular velocity ω� (km s−1 kpc−1) 30.2 ± 1.2 · · ·

Sgr A∗ we use basically provide vcirc(R)|z=0, and this is sensitive
only to the sum a + b. Second, in our setup the halo kinematics
responds to forces averaged in radial shells, which decreases
sensitivity to b.

Since b and s are not well determined by the data, the choice
of prior becomes important for them. Traditionally, a double
exponential form is used to fit the disk density. By fitting
exponential disks to mono-abundance populations, Bovy et al.
(2012) finds scale lengths to be roughly in the range 2–4.5 kpc
and scale heights to be roughly in the range 0.2–1 kpc. Here
we use an MN disk, so to facilitate comparison we derive the
appropriate scaling factors. If we fit the surface density of an
MN disk with an exponential form, for 2 < R/kpc < 8.5,
we get a scale length of about 0.82a. Fitting the density in the
vertical direction, in the range 0.5 < z/kpc < 2.0 near the Sun,
we get a scale height of 1.75b. We adopt a uniform prior for
b in the range 0–0.5 kpc, which is within the range expected
for exponential disks. The value of a that we get is also within
the range of expectation. For s we adopt a uniform prior in the

Figure 8. Concentration (c)–virial mass (Mvir) contours for R� = 8.5 kpc. Red
and green contours are for the giant star sample, the blue contour is for the
BHB sample, and the black contour is for a combined sample of BHB and giant
stars in a separate distance range as labeled in the figure. Solid lines depict the
1σ region. A white star denotes the best-fit estimate, and pixel plot shows a
two-dimensional posterior distribution corresponding to the black contour. The
black dashed line demonstrates a typical c − Mvir relation predicted by ΛCDM
dark matter simulation.

(A color version of this figure is available in the online journal.)

range 1–3 kpc, which is around the value 1.9 kpc as suggested
by Binney & Tremaine (2008).

5.2. Anisotropy in the Outer Halo

Our best-fit estimate for the anisotropy in outer parts βs is
0.4 ± 0.2. It is interesting that we are able to constrain βs ;
the reason is as follows. In the innermost region, the terminal
velocity data and prior on ωLSR provide information about the
bulge and also to some extent disk parameters. In the region
12 < r/kpc < 25 the BHB anisotropy is already known and the
kinematics when put in the Jeans equation provides estimates
for rb,Mvir, c, and disk parameters. Now, beyond r > 25 kpc
where βs is introduced, it is in some sense the only unknown.

5.3. Mass and Concentration of Dark Matter Halo

We estimate the mass of the dark matter halo to be Mvir =
0.80+0.31

−0.16 × 1012 M� and the concentration c = 21.1+14.8
−8.3 .

Corresponding values for the virial radius Rvir and virial
velocity are found to be 239.1+27.6

−16.6 kpc and 120.2+13.9
−8.3 km s−1,

respectively. It can be seen in Figure 8 that there is a strong
anticorrelation between c and Mvir. The upper bound on c is
not as well constrained as the lower bound. Simulated virialized
halos in ΛCDM cosmology, in general, predict an inversely
proportional relation between their mass and concentration (e.g.,
Bullock et al. 2001; Macciò et al. 2007; Duffy et al. 2008; King
& Mead 2011). The dashed line in Figure 8 shows one such
relation, c = 327.3 M−0.12

vir , adopted from Macciò et al. (2007).
We see that the prediction of the ΛCDM simulation for the
dark matter halo in the range 1011 � Mvir/M� � 1013 passes
through our measurements. However, note that the predictions
are for pure dark matter simulations and do not include baryonic
processes such as cooling, star formation, and feedback. The
collapse of gas due to cooling leads to adiabatic contraction
of the dark matter halo, which increases its concentration.
Feedback, on the other hand, can have the reverse effect.
Therefore, it is difficult to comment whether the concentration
we get is typical or atypical of the Milky-Way-sized galaxies.
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5.4. Do the Kinematics of the Giant and BHB Stars Result
in a Consistent Galactic Potential?

To answer this, we now run the MCMC separately over a
subset of our sample of the halo giant and the BHB samples
taken from Figure 1. We select BHB and giant stars in a
common radial range, i.e., r � 40 kpc. For the BHB sample
we estimate c = 22.8+12.1

−7.8 and Mvir = 0.74+0.18
−0.12 × 1012 M�,

whereas for the giant sample we estimate c = 20.4+13.8
−8.9 and

Mvir = 0.90+0.46
−0.26 × 1012 M�. The c − Mvir joint-likelihood

distributions for the above two data sets are shown by the blue
and green contours in Figure 8, respectively. The distributions
for both samples seem to be in good agreement, except for the
fact that it is more puffed for giants than the BHB sample. We
find that this is mainly due to larger uncertainties in the σr (r)
values for the giants in comparison with the BHB sample, which
we verified by swapping the error bars in BHBs and giants. To
conclude, the kinematics of the two halo populations, namely,
BHBs and giants, are consistent with the fact that they both feel
the same Galactic potential, at least within the radius r � 40 kpc.

5.5. Break in Slope of Stellar Halo Density Profile

Kinematics of halo stars allow us to constrain the density
profile of the halo. We had modeled the density profile in the
inner region by a double power law with fixed slopes, but
the location of the break radius was kept free. For BHBs we
measure rb to be 17.1+1.2

−1.0 kpc, and for giants we measure it to
be 22.1+4.1

−3.1 kpc. A reason for the different rb for these two halo
populations could be the uncertainties in the distances, which
are larger for the giants than for the BHBs. Our estimate for
the break radius is slightly smaller than ∼27 kpc as claimed
in Deason et al. (2011) or ∼25 kpc as found in Watkins et al.
(2009). Interestingly, our estimates are in good agreement with
the recent study of RR Lyrae stars in Sesar et al. (2013), who
suggest a break in the power law at a much smaller radius of
∼16 kpc. A smaller break radius also complies with the study
of SDSS main-sequence turnoff stars in Bell et al. (2008), who
conclude that the slope of the density profile at r � 20 kpc
should be shallower in comparison with the radius outside this
range. Here, a point worth noting is that our estimate of the
break radius is linked to the kinematic features, whereas all the
above values from the literature are inferred from the studies of
the spatial distribution.

5.6. What More Do We Learn from the Tracers Extending
Out to the “Edge” of the Galactic Halo?

To find an answer, we now run the MCMC hammer over
the halo giant stars spanning 5 � r/kpc � 155. The red
contour in Figure 8 shows the corresponding c − Mvir joint
distribution, which is found to almost coincide with the green
contours obtained for a giant catalog with r � 40 kpc. Similarly,
a comparison of the blue contour in the figure, which is for the
BHB sample within 12 � r/kpc � 40, with the black contour,
which is for a combined sample of BHB and giant stars in
distance ranges 12 � r/kpc � 155, shows that they are similar.
This suggests that the giant data in the range 40 < r/kpc < 155
do not add much to our knowledge of c and Mvir, i.e., the
potential of the Galaxy. This is mainly due to our adoption of a
parameterized form for the distribution of dark mater, namely,
the NFW profile. The NFW profile predicts that for r � Rvir/c
the density falls as r−3. Therefore, data that extend out to about
two times the scale radius Rvir/c should be sufficient to constrain

the two independent parameters Mvir and c of the NFW profile.
However, if one wants to really compute the density out to the
virial radius, e.g., by nonparametric schemes, then kinematic
data till the virial radius would be required. In our case the
distant giant stars (r > 40 kpc) turn out to be useful to probe
the density distribution of the tracer population, i.e., the stellar
halo. We find rt = 97.7+15.6

−15.8 kpc and Δ = 7.1+7.8
−4.8 kpc. It is

interesting to note that the hydrodynamical simulations (e.g.,
Abadi et al. 2006) to investigate the properties of luminous
halos surrounding isolated galaxies do not predict a truncated
halo; rather, they find that the halo extends to the virial radius. In
the future, our results regarding the density profile of the outer
stellar halo should be useful for testing theories of stellar halo
formation. Recently, Deason et al. (2014), using A-type stars
from SDSS, find a sudden drop in density profile of the stellar
halo as traced by BHBs and blue stragglers, lending further
support to our kinematics detection of such a drop.

5.7. Repercussions of the Lighter Halo

The number of subhalos of a given mass scales directly with
the host halo mass (Springel et al. 2008). Therefore, an accurate
estimate of the Galaxy mass has importance in understanding
the missing satellite problem. One interpretation of the problem
(Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999;
Bullock 2010) is that the ΛCDM paradigm predicts a larger
number of massive subhalos for the Milky-Way-sized halo (e.g.,
Boylan-Kolchin et al. 2011). The problem can be solved if the
mass of the Galaxy is low. Figure 5 in Wang et al. (2012)
allows us to directly compare the host halo mass with the
probability of containing three or less than three subhalos with
vmax > 30 km s−1 (maximum value of the circular velocity).
The relation is inferred from the studies of the halos obtained
from the Millennium Simulation series, Aquarius and Phoenix
projects. For a direct comparison we scale our measurement
of c,Mvir to compute the mass M200 interior to r200 from the
center of the halo, at which the mean density is 200 times
the critical density. We obtain M200 = 0.72+0.24

−0.13 × 1012 M�
and corresponding concentration c200 = 16.2+11.6

−6.7 . Figure 5 in
Wang et al. (2012) suggests that for the mass equal to our
M200 there is ∼70% probability that the Galaxy should host
three or less than three subhalos with vmax > 30 km s−1.
Interestingly, from observations it is known that there are
only three brightest satellites of the Galaxy, namely, the Small
Magellanic Cloud, Large Magellanic Cloud, and Sagittarius
dwarf have vmax ∼ 30 km s−1. This at least suggests that there
is no discrepancy between the observed number of luminous
satellites with vmax > 30 km s−1 and the number predicted by
ΛCDM. Furthermore, Vera-Ciro et al. (2013) also concludes
that for Milky Way mass ∼8 × 1011 M�, which is similar to our
mass, the number and internal dynamics of the dwarf spheroidal
satellites of our Galaxy are consistent with the predictions of
the ΛCDM model. Therefore, we remark that the scarcity of
massive subhalos is not a failure of the ΛCDM paradigm but a
repercussion of assuming higher virial mass for the Galaxy.

Another impact of the Galaxy mass is in describing the overall
dynamics of the orbiting satellite galaxies. For our low estimate
of Galaxy mass, are the satellites still bound is a natural question
to ask. To study this, we measure the escape velocity vesc using

vesc(r) =
√

2|Φ(r)|, (15)

where

Φ(r) = 〈Φbulge(R, z)〉 + 〈Φdisk(R, z)〉 + ΦNFW(r).
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Figure 9. Escape velocity of the Galaxy. The observed escape velocity vesc of
the Galaxy is shown as a function of the galactocentric distance r. The vesc at
R� is shown by a black dot with error bar. Red stars shows the total velocities
for the named Milky Way classical satellite galaxies adopted from Table 1 of
Pawlowski & Kroupa (2013).

(A color version of this figure is available in the online journal.)

Our estimate of vesc as a function of the galactocentric radius
r is shown in Figure 9. The stars in the figure show the total
velocities for the named Milky Way satellite galaxies. The
velocities are computed from a recent compilation tabulated
in Table 1 of Pawlowski & Kroupa (2013). Also, the velocities
are corrected for our assumption of the velocity of the local
standard of rest, i.e., 245 km s−1 at R� = 8.5 kpc, except Leo
II, which seems to be marginally unbound. We can conclude
from Figure 9 that all the given satellites are bound despite our
low estimate for the Galaxy mass.

In Figure 10 we present the cumulative mass M(< r) of the
Galaxy. It is computed using the formula for the centrifugal
equilibrium

M(< r) = r2

G

dΦ
dr

,

where dΦ/dr is taken from Equation (10) and uses spherical
averaging. Infalling satellites are destroyed by their host’s
gravitational potential, resulting in tidal streams. Attempts to
model these streams (Newberg et al. 2010; Law & Majewski
2010; Carlin et al. 2012) also provide an alternate constraint on
the Galaxy mass. In Figure 10 the black dot with error bar is
the Law et al. (2005) estimate of the Galaxy mass within 50 kpc
obtained by modeling the Sagittarius dwarf spheroidal galaxy
tidal streams. It is interesting to note that our estimate given
the range of uncertainty agrees well with this result. However,
the diamond point, which is mass within r < 60 kpc obtained
by Newberg et al. (2010) by modeling the Orphan Stream, is
significantly smaller than our prediction. One possible reason
could be that they model the orbit and not the stream, and the
possible misalignment between stream and orbit could bias the
result (Sanders & Binney 2013a).

5.8. Local Constraints on Mass Density,
Surface Density, and Escape Velocity

The local (at R�) dark matter density provides a strong basis
for the experimental endeavors for indirect detection of the dark
matter; see Strigari (2013) for a review of the topic. Therefore,
determination of the local mass distribution, the work originally
pioneered by Oort (1932), has recently received a great deal

Figure 10. Cumulative mass of the Galaxy. The shade shows the observed
mass of the Galaxy M(< r) as a function of the galactocentric distance r. The
black dot with error bar is the Law et al. (2005) estimate of the Galaxy mass
within 50 kpc obtained by modeling the Sagittarius dwarf spheroidal galaxy
tidal streams, whereas the diamond point is mass within r < 60 kpc obtained
by Newberg et al. (2010) by modeling the Orphan Stream.

(A color version of this figure is available in the online journal.)

of attention. Our best-fit model of the halo potential allows
us to compute the local dark matter density ρDM

� , which we
measure to be ρDM

� = 0.0088+0.0024
−0.0018 M� pc−3, equivalent to

0.35+0.08
−0.07 GeV cm−3. Our result is in good agreement with the

recent estimates of 0.3 ± 0.1 GeV cm−3 by Bovy & Tremaine
(2012), 0.40±0.04 GeV cm−3 by McMillan (2011), or 0.389±
0.025 GeV cm−3 by Catena & Ullio (2010). However, we note
slightly lower estimates of 0.007 M� pc−3 given in Holmberg
& Flynn (2000), who utilize a catalog of A–F stars obtained
from the Hipparcos survey and of 0.0065 ± 0.0023 M� pc−3

given in Zhang et al. (2013), who utilize K dwarf stars from
SDSS/SEGUE.

Also, we measure the local escape velocity, using
Equation (15), to be vesc,R� = 550.9+32.4

−22.1 km s−1. Our esti-
mate seems to be slightly higher but within the range of un-
certainties of 544+64

−46 km s−1 found using the high-velocity halo
stars in Smith et al. (2007). Moreover, the most recent esti-
mate of vesc,R� , again using the high-velocity stars, is provided
to be 544+64

−46 km s−1 (Piffl et al. 2014). There vesc,R� is de-
fined to be the minimum speed required to reach three virial
radii, where Rvir = 180 kpc. For a fair comparison we redefine
Equation (15) to be equal to

√
2|Φ(R) − Φ(3Rvir)| and com-

pute vesc,R� = 528+24
−17 km s−1 for R� = 8.5 kpc, which is in the

lower range of quoted values in Piffl et al. (2014).
Yet another quantity of interest is whether our disk is

maximal (Carignan & Freeman 1985; van Albada et al. 1985).
A convention (Sackett 1997; Courteau et al. 2014) is that in
a maximal disk 72% of the total rotational support vtotal

circ is
contributed by a disk vdisk

circ , i.e.,

F =
(

vdisk
circ (Rmax)

vtotal
circ (Rmax)

)2

� 0.72, (16)

where Rmax is a radius at which vdisk
circ (R) is maximum. For

our model, we find Rmax = 7.4 kpc and F = 0.5 or
vdisk

circ (Rmax)/vtotal
circ (Rmax) = 0.7, i.e., at this radius 30% of the

total rotational support is by a disk.
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Because of a lesser contribution of the disk to the total rotation
curve, we find the Galaxy disk at Rmax to be submaximal.
Recently, Bovy & Rix (2013), using SEGUE dwarfs, found
a slightly higher value of F = 0.69 and concluded the disk to
be maximal. They assumed an exponential disk, for which F is
measured at R = 2.2 Rd (scale length of the exponential disk).
It is, however, interesting to note that in their studies of 12 out
of 15 distant spiral galaxies, Kregel et al. (2005) find on average
F = 0.28, which is nearly half of our estimate for the Galaxy.

Finally, we check whether the local (at R�) column/surface
density of our best-fit model is within an expected range. The
surface density is computed using

Σ(R) =
∫ 1.1 kpc

−1.1 kpc
ρ(R, z) dz. (17)

The contribution of the disk to the surface density is strongly
dependent on our prior for disk scale length b, so it is not
really a prediction of our analysis. We find that Σtotal

� is
94.0+16.6

−20.3 M� pc−2. This is slightly higher than 71 ± 6 M� pc−2

obtained by Kuijken & Gilmore (1991) and 74 ± 6 M� pc−2

obtained by Holmberg & Flynn (2004), but within the range of
large uncertainties we have. We note that recent measurements
by Bovy & Rix (2013), Zhang et al. (2013), who use the
kinematics of the SDSS/SEGUE dwarfs, suggest a slightly
lower value of Σtotal

� = 68 ± 4 M� pc−2.

5.9. Systematics

The results presented here are potentially subject to system-
atic uncertainties such that the reader should be cautioned. We
use fiducial isochrones for the distance estimation of the gi-
ants. But there might be systematics associated with them, and
this will have an effect on our distance estimates. An indepen-
dent way to validate our distance measurement would be to
use an estimator shown in Schönrich et al. (2012), but this re-
quires proper motions. It remains to be seen if any available
proper motions of the distant giants are accurate enough for
this method to be successfully applicable. Additionally, while
measuring the distance to the halo K giants, we do not take into
account uncertainties in the reddening estimate. We simply use
colors dereddened according to Schlegel et al. (1998) extinction
maps. This could introduce systematics in our distance estimate.
However, we believe that such systematics, if any, would be in-
significant. Firstly, the Schlegel et al. (1998) maps are accurate
for high-latitude stars, and 98% of our sample has |b| > 20◦.
Secondly, although, Schlegel et al. (1998) maps provide total
extinction, they are appropriate for halo stars as most of the dust
is confined to the disk.

We use a sample of giants from SEGUE, which are subjected
to a proper-motion restriction of 11 mas yr−1 (Yanny et al. 2009).
This can potentially introduce a systematic bias for nearby
giants, but the giants that we use for our main analysis are beyond
40 kpc, and for them the above-mentioned proper-motion limit
safely includes all bound halo stars.

We assume that each tracer population is in Jeans equilibrium.
In any case, it is important to note that we can determine
the Galactic potential only to the extent that the phase-space
distribution of tracer stars is in equilibrium (Binney 2013).
However, if the tracer population under study is a superposition
of multiple populations, then the Jeans equation should be
applied separately for each population. In earlier studies with
BHB stars (Kafle et al. 2013; Hattori et al. 2013), correlation
between metallicity and kinematics of halo targets was found.

A similar correlation could exist for giants. So ideally, if one
has a larger sample of stars, one should treat metal-rich and
metal-poor populations separately. Moreover, close to the disk
the potential is not spherically symmetric, so strictly speaking
the spherical Jeans equation is not valid. This can potentially
bias the estimate mass. This should be investigated in the future.

We model the disk by the MN form. In reality, the disk is
described better by double-exponential functions. Moreover, the
disk of the Milky Way is probably a superposition of multiple
populations, each with different scale height and length. These
facts can potentially bias our results. Finally, throughout our
analysis we assume R� = 8.5, and systematics due to our
adopted value can be expected. Claims for a wide range in
R� between ∼7.7 and 8.8 kpc exist in the literature (e.g., Reid
1993; Nikiforov 2004; Gillessen et al. 2013; Francis & Anderson
2014; Reid et al. 2014, etc.). To study the influence of our
adopted value of R�, we reanalyze our data with R� = 8 kpc.
Firstly, we measure the σr (r) run, which we find to be similar
to one shown in Figure 1. Secondly, we run the MCMC model
fitting to the above σr (r) run. Assuming R� = 8 kpc means
that the prior in vLSR changes, and this can have a significant
influence in our measurement. It is mainly because we do not
have halo data within r � 12 kpc, and the information about
disk and bulge properties mostly comes from the assumption
about vLSR at R�. We find that for R� = 8 kpc our model
parameters are Mvir = 1.2 ± 0.3 × 1012 M�, c = 15.2+5.6

−3.2,
Mdisk = 0.71+0.11

−0.13 × 1011 M�, a = 3.0 ± 0.6 kpc, Mbulge =
0.70+0.31

−.32 × 1010 M�, and s = 2.1 ± 0.6 kpc, whereas rb, rt , Δ,
and βs remain unchanged.

Recall that our final results shown in Table 2 or Figure 6 are
obtained for a combined sample of two halo populations, i.e.,
BHBs within a radius r � 40 kpc and giants outside r � 40 kpc.
As discussed earlier in Section 4.1, the density profile for same
sample of BHB stars as ours is already computed in Deason et al.
(2011), and this is what we assume in our analysis. In the region
where giant star data is used we assume the density profile to
be a power law with slope of −4.5, which is consistent with
the findings for BHB (Deason et al. 2011) and RR Lyrae stars
(Watkins et al. 2009). However, there is no direct measurement
of the density of halo giants. Thus, to test the sensitivity of our
results to the density profile, we run the MCMC simulation for
two different values of slope indices, −4 and −5. From our fits
we find that Mvir and c are directly proportional to the density
slope. For each linear step of −0.5 from −4 to −5 we find that
Mvir increases by ∼30% for each step, whereas c increases by
∼20%. For the same steps from −4 to −5, we find that Mdisk and
Mbulge decrease by ∼22% and ∼20%, respectively. Quantities
such as rb, rt, Δ, and disk and bulge scale parameters remain
unchanged. Moreover, the shape of the posterior distributions
of the parameters and hence uncertainties remain the same
for all the cases. It should be noted that the value of βs

remains nearly the same for both the cases, i.e., 0.5 ± 0.2 for
−4 and 0.4 ± 0.2 for −5. This is not unexpected, as data in
12 < r/kpc < 25 for which observed β is available are enough
to constrain Mvir and c. So any change in density profile affects
the enclosed mass. When data beyond 25 kpc are added, the
increase in power-law index is compensated by the increase in
mass so as to leave βs unchanged.

Before concluding, it is worth mentioning that we noted the
parallel work by Bhattacharjee et al. (2014). It has some simi-
larities with our works, e.g., uses of the Jeans equation, SDSS/
SEGUE BHB and giant star catalog, etc. While estimating the
mass using the Jeans equation, we note that they use the density
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profile of the spectroscopic sample, which has a selection bias.
In reality, the Jeans equation requires the underlying density
profile of the tracers and not of the sample. Lastly, it has been
found in the simulations that halo stars, satellites, and the dark
matter halo have different orbital properties (Abadi et al. 2006;
Sales et al. 2007). Hence, assuming a constant anisotropy for
both field stars and satellites could introduce additional system-
atic uncertainties in their mass estimate. However, it should be
noted that they do not model the disk, bulge, and halo separately,
but only provide an estimate for the total mass M(< r) within
some radius.

6. CONCLUSION

A spectroscopic survey such as SEGUE provides us with a
large catalog of distant and different tracer populations. Here
we complemented the BHB star catalog (Xue et al. 2011) of
the halo tracers with a catalog of K-giant stars. The position
and line-of-sight velocities of these tracer populations, the ter-
minal velocity curve, and the proper motion of the Sgr A∗ allow
us to constrain the mass model and tracer properties of the
Galaxy. This also allows us to break the degeneracy due to the
varying relative contribution of the bulge-disk-halo to the ro-
tation curve with the distance. Our presented estimates are the
marginalized results over all possible values of anisotropy pa-
rameter and thus also take the mass-anisotropy degeneracy into
account.

Our main results considering solar motion with respect to
the local standard of rest as U� = +11.1 km s−1, V� =
+12.24 km s−1, W� = +7.25 km s−1 and its position from the
center of the Galaxy at R� = 8.5 kpc are summarized in Table 2
and discussed in Section 5. The following paragraphs highlight
some of our main findings.

Stellar halo. The kinematics of the halo stars enables us to
model the density profile of the stellar halo. We model the halo
number density to be a double power law with an inner slope
of −2.4 and an outer slope of −4.5 with a break occurring at
radius rb. We find rb = 17.2+1.1

−1.0 kpc. The break in the radial
velocity dispersion profile is found to correspond to the break
in the density. The mass estimate is found to be sensitive to the
break radius rb. The giant star data reveal that the outermost
halo stars have a small velocity dispersion, but interestingly
this suggests a truncation of the stellar halo density rather than a
small overall mass of the Galaxy. We find that the stellar halo has
an exponential truncation that starts at radius rt = 97.7+15.6

−15.8 kpc
and has a scale length of Δ = 7.1+7.8

−4.8 kpc. Direct estimation
of the density profile using photometry also seems to support
the features in the density profile of the halo that we see using
kinematics. For example, Sesar et al. (2013) using RR Lyrae
report a break at rb = 16 kpc, and Deason et al. (2014) using
A-type stars suggests a sharp fall beyond 50 kpc. Finally, our
modeling also enables us to place some limits on the anisotropy
in the outer halo, and we find it to be β = 0.4+0.2

−0.2.
Dark matter halo. We find that the mass of the dark matter

halo is 0.80+0.31
−0.16 × 1012 M�, and concentration is 21.1+14.8

−8.3 . The
upper uncertainty on concentration was found to be quite large.
The mass estimate is lower and concentration estimate is higher
than what has been previously measured. For a lower mass like
ours, recent studies by Wang et al. (2012) and Vera-Ciro et al.
(2013) suggest that the number of massive satellite galaxies,
i.e., with vmax > 30 km s−1, observed in the Galaxy matches
predictions for ΛCDM halos of similar mass, potentially solving
the missing-satellite problem at the high-mass end. We also

discussed other repercussions of the more concentrated and
lighter Galaxy, e.g., all the classical satellite galaxies within
the Galaxy were found to be bound.

Disk, bulge, and local parameters. Additional data in the inner
region, i.e., the gas terminal velocity curve taken from Malhotra
(1994, 1995) and the proper motion of the Sgr A∗ taken from
Reid & Brunthaler (2004), also enable us to constrain the bulge
and disk properties. The disk assumed to be of MN form has a
mass of 0.95+0.24

−0.30 × 1011 M� and a scale length of 4.9+0.4
−0.4 kpc,

while the bulge has a mass of 0.91+0.31
−0.38 × 1010 M�.

Furthermore, it is important for a mass model of the Galaxy
to agree with standard local constraints such as the escape
velocity, the total column density integrated over |z| � 1.1 kpc,
and the dark matter density. The escape velocity and the local
dark matter density are in agreement with recent claims in the
literature. Recent estimates of column density are slightly lower
but within our quoted range. If the Sgr A∗ constraint is not used,
our analysis independently suggests the angular velocity at the
Sun to be ωLSR = 30.2 ± 1.2 km s−1 kpc−1.

In the end, we reiterate that our estimates of the mass
parameters sensitively depend on the choices of R� and the outer
power-law index of the tracer number density. The systematic
uncertainties are of the order of (e.g., Mvir) and sometimes larger
than (e.g., a) the random uncertainties. For example, we find that
Mvir and c are directly proportional to the density slope. For each
linear step of −0.5 from −4 to −5 we find that Mvir increases
by ∼30% for each step, whereas c increases by ∼20% and
Mdisk and Mbulge decrease by ∼22% and ∼20%, respectively.
Further systematics inherent to the choices of parameters and
assumptions we make in our anaylsis are discussed in detail in
Section 5.9.

P.R.K. acknowledges the University of Sydney International
Scholarship and ARC grant DP140100395 for the financial
support. G.F.L. acknowledges support for his ARC Future
Fellowship (FT100100268) and through the award of an ARC
grant DP110100678. S.S. and J.B.-H. are funded through ARC
grant DP120104562 and ARC Federation Fellowship. Also, a
sincere thanks to Hunter (2007) and Pérez & Granger (2007)
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APPENDIX A

DIAGNOSTIC CRITERIA USED FOR
SELECTING THE GIANT STARS

Out of 5330 candidate giant stars, the SSPP classifies 22 as
K giant, 223 as red K giant, 3111 as l-color K giant, 536 as
proper-motion K giant, and 1438 as M giant. For reference, the
[Fe/H] distribution of 5330 stars is shown in Figure 11. The
same distribution is used as a prior on metallicity while inferring
the giant’s distance.

To know how well the criteria listed in Equation (3) clean
our catalog, we use code GALAXIA (Sharma et al. 2011a).
GALAXIA has an analytical model based on Robin et al. (2003)
and uses isochrones from the Padova database (Marigo et al.
2008; Bertelli et al. 1994) to compute photometric magnitudes
for the model stars. First, we generate stars over an area of
8000 square degrees toward the north Galactic pole. For a
fair comparison with observed data, the mock sample is then
convolved with the typical errors in the photometric and stellar
properties quoted by SDSS/SEGUE. According to the provided
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Figure 11. Metallicity ([Fe/H]) distribution of the catalog of giant stars.

specifications, the uncertainties in the SSPP stellar parameters,
the effective temperature (Teff), the surface gravity (log g), and
the metallicity ([Fe/H]), are 117 K, 0.26 dex, and 0.22 dex,
respectively, which in reality also depend on the type and
the signal-to-noise ratio of the spectra. Here we do not deal
with the spectra and thus just assign gaussian random error
to the stellar parameters and the metallicity with dispersion
chosen to be the same as the above uncertainty values. We also
convolve the mock data with the error in magnitude given by
Δm = 0.015 + 10−3+0.4(m−22.6). This relation roughly matches to
the errors in SDSS photometry (Jurić et al. 2008, Figure 7 with
a systematic of 0.015).

The above “ideal” data once convolved with the observational
errors are shown in a color–magnitude diagram (CMD) in
Figure 12(a). Figure 12(b) is again the CMD for the mock
data, but after imposing the set of cuts given in Equation (3)
that we apply to obtain SEGUE giants. The final sample of stars
remaining in our mock catalog is found to contain a negligible
amount (<0.5%) of dwarf contamination. This assures that our
selection criteria perform well, at least for the theoretical data.

APPENDIX B

DISTANCE ESTIMATION

The procedure for distance estimation is the same as in Xue
et al. (2014) but was implemented independently. We rely on
the Bayes rule. It allows us to update an initial probability
(prior) into a revised probability (posterior) and is written for our
case as

p(μ|S) ∝ p(S|μ) × p(μ). (B1)

Here μ = apparentmagnitude (m) − absolutemagnitude (M) is
a distance modulus, whereas S represents a set of observables
given by S = {m, c, [Fe/H]}. The color c is assumed to be
a function of M and [Fe/H]. In Equation (B1), the posterior
p(μ|S) is the probability distribution of μ given the data S;
the prior p(μ) is the information about μ known a priori; and
the likelihood function p(S|μ) gives the likelihood of obtaining
the data S given the μ. Here the likelihood function can be more
explicitly written as

p(S|μ) =
∫ ∫

P(S|μ) p(M) p([Fe/H]) dM d[Fe/H], (B2)

Figure 12. Color–magnitude diagram of the GALAXIA data: (a) CMD of total
sample; (b) CMD after selecting stars according to Equation (3).

where the functional form for the probability P(S|μ) is
given by

P(S|μ) = P(m, c, [Fe/H]|μ) = N (c|c′, σc)

× N (μ + M|m′, σm) × N ([Fe/H]|[Fe/H]′, σ[Fe/H]).

(B3)

Here m′, c′, [Fe/H]′ are the observables for each star and σm,
σc, σ[Fe/H] are the associated uncertainties, respectively. In
Equation (B2), the probability function P(S|μ) is weighed with
the luminosity p(M) and metallicity p([Fe/H]) prior proba-
bilities. The theoretical (Salaris et al. 2002) and observational
evidence (Langer et al. 2000) suggests that the luminosity func-
tion of the giants follows a power law. Therefore, fitting a power
law to the luminosity function of the red giant branch (RGB)
stars in the globular clusters, namely, M5 and M30, shown in
the Figures 2 (for M5) and 4 (for M30) of Langer et al. (2000),
we determine a common slope of 0.32. This leads to the fi-
nal expression for a prior on the luminosity function given by
p(M) = 100.32M/17.79, which is normalized to unity in the
data range M ∈ [−3.5, 3.5]. The magnitude of the RGB star
has been found to be independent of the metallicity content
(Salaris et al. 2002), and hence we neglect the effect of the
stellar metal content in our luminosity priors. A prior for the
metallicity p([Fe/H]) is chosen to be the same as the [Fe/H]
distribution of the data, shown in Figure 11. The color c is a
function of magnitude m and metallicity [Fe/H]. Hence, we do
not need to explicitly assume a prior for the color, but a relation
between c, m, and [Fe/H] has to be defined. We derive this re-
lation from the available isochrones of three globular clusters,
namely, M92, M13, and M71, and an open cluster NGC 6791
taken from An et al. (2008, and references therein). The [Fe/H]
values for M92, M13, and M71 are taken to be -2.38, -1.60,
and -0.81 (Kraft & Ivans 2003; An et al. 2008), respectively,
whereas for NGC 6791 it is assumed to be +0.40 (An et al.
2008). The distance moduli are taken to be 14.64 for M92,
14.38 for M13 (Carretta et al. 2000), 12.86 for M71 (Grun-
dahl et al. 2002), and 13.02 for NGC 6791 (Harris 1996). The
color–magnitude–metallicity relation hence obtained is similar
to Figure 2 of Karaali et al. (2013) and Figure 5 of Xue et al.
(2014). The obtained fiducials (color–magnitude curves) are
found to be well approximated by the seventh-order polynomial
fit. The coefficients of the polynomial are then linearly interpo-
lated in order to fill the gaps between the available isochrones
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Figure 13. Percentage errors in distance estimation of K-giant catalog.

Figure 14. Likelihood distributions of the distance moduli of three giant stars
and the effect of priors. The red, black, and blue lines display the posteriors of
the distance probabilities p(μ|S) for three different stars with coordinates Right
Ascension (RA) and declination (Dec) given in the J2000 epoch; magnitude r;
color g−r; metallicity [Fe/H] in dex; and distance d in kiloparsecs shown in
colored texts above the plots.

(A color version of this figure is available in the online journal.)

of the clusters. Given a color g − r and [Fe/H] for a star, the
interpolated fiducial sequences are then used to compute the
corresponding value of the magnitude Mr.

Finally, to compute the posterior distribution p(μ|S) for
an individual star (Equation (B1)), we also need to consider
a distance prior p(μ). Recent observational evidence (e.g.,
Watkins et al. 2009; Deason et al. 2011; Akhter et al. 2012,
etc) supports a broken power law for the density distribution of
the halo stars. As a convenient summary of all these works,
we assume ρ ∝ r−α , with an inner slope of 2.4, an outer
slope of 4.5, and a break at radius 25 kpc. The change of
variables is done using p(μ)dμ = p(r)dr = 4πr2ρ(r)dr .
Using the photometric parallax relation d/kpc = 10(μ/5−2) and
assuming that d ≈ r , our final expression for the distance prior is
p(μ) = (4/5)π ln(10)r3ρ(r). The uncertainties in the distance
measurement of our catalog are shown in Figure 13. This is
computed from the 16th and 84th percentiles of p(μ|S) of stars.

As an example of this approach, in Figure 14 we present re-
sults for three arbitrary giants from our catalog. The colored
texts at the top of the figure provide the position in right ascen-
sion (RA) and declination (Dec), magnitude mr, color mg −mr ,

metallicity [Fe/H], and distance d for the corresponding stars
shown in the same color on the immediate figures underneath,
which show the posteriors of distance probabilities p(μ|S).
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