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ABSTRACT

The formation of rotationally supported protostellar disks is suppressed in ideal MHD in non-turbulent cores
with aligned magnetic fields and rotation axes. A promising way to resolve this so-called “magnetic braking
catastrophe” is through turbulence. The reason for the turbulence-enabled disk formation is usually attributed to the
turbulence-induced magnetic reconnection, which is thought to reduce the magnetic flux accumulated in the disk-
forming region. We advance an alternative interpretation, based on magnetic decoupling-triggered reconnection
of severely pinched field lines close to the central protostar and turbulence-induced warping of the pseudodisk of
Galli and Shu. Such reconnection weakens the central split magnetic monopole that lies at the heart of the magnetic
braking catastrophe under flux freezing. We show, through idealized numerical experiments, that the pseudodisk
can be strongly warped, but not completely destroyed, by a subsonic or sonic turbulence. The warping decreases
the rates of angular momentum removal from the pseudodisk by both magnetic torque and outflow, making it
easier to form a rotationally supported disk. More importantly, the warping of the pseudodisk out of the disk-
forming, equatorial plane greatly reduces the amount of magnetic flux threading the circumstellar, disk-forming
region, further promoting disk formation. The beneficial effects of pseudodisk warping can also be achieved by a
misalignment between the magnetic field and rotation axis. These two mechanisms of disk formation, enabled by
turbulence and field-rotation misalignment respectively, are thus unified. We find that the disks formed in turbulent
magnetized cores are rather thick and significantly magnetized. Implications of these findings, particularly for the
thick young disk inferred in L1527, are briefly discussed.
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1. INTRODUCTION

How disks form is a longstanding, unsolved problem in
star formation (Bodenheimer 1995). Observationally, it has
been difficult to determine when and how the disks first come
into existence during the star formation process. Although
disks are routinely observed around evolved Class II young
stellar objects (see Williams & Cieza 2011 for a review) and
increasingly around younger Class I sources (e.g., Brinch et al.
2007; Jørgensen et al. 2009; Lee 2011; Takakuwa et al. 2012;
Harsono et al. 2014; Lindberg et al. 2014), observations of the
youngest disks have been hampered by the emission from their
massive envelope. Nevertheless, rotationally supported disks
are beginning to be detected around deeply embedded, Class 0
protostars (Tobin et al. 2012; Murillo et al. 2013; N. Ohashi,
2013, private communication). This impressive observational
progress is expected to accelerate in the near future, as ALMA
becomes fully operational.

Theoretically, disk formation is complicated by magnetic
fields, which are observed in dense, star-forming, cores of
molecular clouds (see Crutcher 2012 for a review). In the
simplest case of a non-turbulent core with the magnetic field
aligned with the rotation axis, both analytic considerations
and numerical simulations have shown that the formation of a
rotationally supported disk (RSD hereafter) is suppressed, in the
ideal MHD limit, by a realistic magnetic field (corresponding
to a dimensionless mass-to-flux ratio of λ ∼ a few; Troland
& Crutcher 2008) during the protostellar mass accretion phase
through magnetic braking (Allen et al. 2003; Galli et al. 2006;
Price & Bate 2007; Mellon & Li 2008; Hennebelle & Fromang

2008; Dapp & Basu 2010; Seifried et al. 2011; Santos-Lima
et al. 2012). This suppression of RSDs is termed the “magnetic
braking catastrophe.”

There are a number of mechanisms proposed in the literature
to overcome the catastrophic braking, including (1) non-ideal
MHD effects (ambipolar diffusion, the Hall effect and Ohmic
dissipation), (2) misalignment between the magnetic and ro-
tation axes, and (3) turbulence (see Li et al. 2014 for a criti-
cal review of the proposed mechanisms). Ambipolar diffusion
does not appear to weaken the braking enough to enable large-
scale RSD formation under realistic conditions (Krasnopolsky &
Königl 2002; Mellon & Li 2009; Duffin & Pudritz 2009; Li et al.
2011). Ohmic dissipation can produce small, AU-scale, RSDs
in the early protostellar accretion phase (Machida et al. 2011;
Dapp & Basu 2010; Dapp et al. 2012; Tomida et al. 2013). How
such disks grow in time remain to be fully quantified. Larger,
102 AU scale RSDs can be produced if the resistivity or the Hall
coefficient of the dense core is much larger than the classical
(microscopic) value (Krasnopolsky et al. 2010, 2011; Santos-
Lima et al. 2012; Braiding & Wardle 2012a, 2012b). Large
RSDs can also form if the magnetic field is misaligned with the
rotation axis by a large angle (see Hull et al. 2013 for observa-
tional evidence for misalignment but Davidson et al. 2011 and
Chapman et al. 2013 for evidence of the contrary), provided that
the dense core is not too strongly magnetized (Joos et al. 2012;
Li et al. 2013; Krumholz et al. 2013).

The effects of turbulence on magnetized disk formation were
first explored by Santos-Lima et al. (2012), who demonstrated
that a strong enough turbulence can enable the formation of a
102 AU-scale RSD. The beneficial effects of turbulence on disk
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formation were confirmed numerically by a number of authors,
including Seifried et al. (2012, 2013), Santos-Lima et al. (2013),
Myers et al. (2013), and Joos et al. (2013). However, why the
turbulence is conducive to disk formation remains hotly debated.
Santos-Lima et al. (2012, 2013) attributed the disk formation
to the turbulence induced or enhanced magnetic reconnection
(Lazarian & Vishniac 1999; Kowal et al. 2009), which reduces
the strength of the magnetic field in the inner, disk-forming,
part of the accretion flow. Seifried et al. (2012, 2013) proposed
instead that the turbulence-induced tangling of field lines and
strong local shear are mainly responsible for the disk formation:
the disordered magnetic field weakens the braking and the shear
enhances rotation. Joos et al. (2013) found that the turbulence
produced an effective magnetic diffusivity that enabled the
magnetic flux to diffuse outward, broadly consistent with the
picture envisioned in Santos-Lima et al. (2012, 2013). It also
generated a substantial misalignment between the rotation axis
and magnetic field direction (an effect also seen in Seifried et al.
2012 and Myers et al. 2013), which is known to promote disk
formation. The lack of consensus on why turbulence helps disk
formation in magnetized cloud cores motivated us to examine
this important issue more closely.

We carry out numerical experiments of disk formation in
magnetized dense cores with different levels of initial turbu-
lence. We find that the magnetic flux threading the circumstellar,
disk-forming region on the equatorial plane is indeed reduced
by turbulence. We show that this reduction can be explained by
a combination of magnetic decoupling-triggered reconnection
of severely pinched field lines close to the central object and a
simple geometry effect—warping of the well-known magnetic
pseudodisk (Galli & Shu 1993) out of the disk-forming, equato-
rial plane by turbulence—without having to rely on turbulence-
induced magnetic reconnection. We find that the turbulence-
induced pseudodisk warping also reduces the rates of angular
momentum removal by both magnetic torque and outflow, which
is conducive to disk formation. We describe the problem setup in
Section 2. The numerical results are presented and analyzed in
Section 3. We compare our results to previous work and discuss
their implications in Section 4 and conclude with a summary in
Section 5.

2. PROBLEM SETUP

We will adopt the basic setup of Santos-Lima et al. (2012; see
also Krasnopolsky et al. 2010), where a rotating, magnetized,
turbulent but non-self-gravitating dense core accretes onto a
central object of fixed mass. This setup is idealized, but has
an important advantage for our purpose of understanding why
turbulence helps disk formation in a magnetized core. It enables
us to repeat the type of calculations by Santos-Lima et al.
(2012), but at a better spatial resolution in the disk-forming
region (and a lower numerical diffusivity for the magnetic
field). The higher resolution is achieved using the ZeusTW code
(Krasnopolsky et al. 2010), which can follow the core collapse
and disk formation on a non-uniform grid in a spherical polar
coordinate system. This coordinate system is more natural than
the Cartesian coordinate system for disk formation simulations,
especially for implementing clean boundary conditions near the
accreting protostar for both the matter and magnetic field (see
Section 2.2 of Mellon & Li 2008 and discussion below). Our
goal is to develop a qualitative understanding based on simple
numerical experiments. Quantitative results may be modified
when self-gravity is included (see discussion in Section 4.4).

Following Li et al. (2011) and Krasnopolsky et al. (2012), we
start our simulations from a uniform, spherical core of 1 M� and
radius R0 = 1017 cm in a spherical coordinate system (r, θ, φ).
The initial density ρ0 = 4.77 × 10−19 g cm−3 corresponds to a
molecular hydrogen number density of 105 cm−3. We adopt an
isothermal equation of state with a sound speed a = 0.2 km s−1

below a critical density ρc = 10−13 g cm−3, and a polytropic
equation of state p ∝ ρ5/3 above it. Following Krasnopolsky
et al. (2010), we adopt the following prescription for the initial
rotation speed:

vφ = vφ,0 tanh(�/�c), (1)

which implies that the equatorial plane is the plane of disk
formation. We adopt vφ,0 = 2 × 104 cm s−1 and �c =
3 × 1015 cm to ensure that a large, well resolved, rotationally
supported disk is formed at a relatively early time in the absence
of any magnetic braking (see Figure 1 of Krasnopolsky et al.
2010 and Figure 19). The goal of our numerical experiments is
to determine whether such a disk is suppressed by a realistic
level of magnetic field in the absence of turbulence and, if yes,
whether turbulence can weaken the magnetic braking enough to
allow the disk to reappear.

Since the focus of our investigation is on the effects of
turbulence, we will consider only one value, B0 = 35.4 μG,
for the strength of the magnetic field, which is assumed to be
uniform initially and aligned with the rotation axis (i.e., with a
misalignment angle θ0 = 0◦; a misaligned case of θ0 = 90◦ will
be discussed in Section 4). It corresponds to a dimensionless
mass-to-flux ratio λ = 2.92, in units of the critical value
(2πG1/2)−1, for the core as a whole, which is not far from the
median value of λ ∼ 2 inferred by Troland & Crutcher (2008)
for a sample of nearby dense cores. The mass-to-flux ratio for
the central flux tube λc is higher than the global value λ by 50%,
so that λc = 4.38. Our chosen magnetic field is therefore not
unusually strong; if anything, it may be on the weak side.

We add a turbulent velocity field to the magnetized core at the
beginning of the simulation. Although the existence of “turbu-
lence” on the 0.1 pc core scale has been known for a long time
through “non-thermal” linewidth (e.g., Myers 1995), its detailed
properties, such as energy spectra, remain poorly constrained
observationally. For simplicity, we generate the initial turbulent
velocity field as a superposition of 1000 sinusoidal waves of
wavelengths logarithmically spaced between a minimum wave-
length lmin = 2 × 1014 cm and a maximum lmax = 5 × 1016 cm.
The initial velocity vector of each sinusoidal wave has an am-
plitude that is proportional to lp, a random phase, and a random
direction that is perpendicular to an equally random wave prop-
agation vector.4 We have experimented with different number
of waves and random seeds, and found qualitatively similar re-
sults. The main parameter that we decide to vary is the level
of turbulence, which is characterized by the rms Mach num-
ber M. In Section 3, we will discuss in some depth six models
that have the same turbulent velocity field except for the overall
normalization, which is given respectively by M = 0 (non-
turbulent, Model A of Table 1), 0.1 (Model B), 0.3 (Model C),

4 Projection from Cartesian to spherical components on the severely
non-uniform grid can distort this picture somewhat. It can introduce, for
example, a small deviation from the zero-divergence in the initial velocity field.
It is also expected to introduce aliasing of short wavelength waves inside the
coarse resolution regions, which are located at large radii in our simulations. In
addition, the minimum wavelength resolved in the calculation changes from
place to place (as is also true for other non-uniform grids, such as in AMR).
How this would affect the simulation results remains to be quantified.
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Table 1
Models

Model λa M p θ0 RSDb

A 2.92 0.0 N/A 0◦ No
B 2.92 0.1 1 0◦ No
C 2.92 0.3 1 0◦ No
D 2.92 0.5 1 0◦ Yes/transient
E 2.92 0.7 1 0◦ Yes/transient
F 2.92 1.0 1 0◦ Yes/persistent
H ∞ 0.0 N/A 0◦ Yes/persistent
P 2.92 0.0 N/A 90◦ Yes/persistent
U 2.92 1.0 0.5 0◦ Yes/persistent
V 2.92 1.0 2.0 0◦ Yes/persistent

Notes.
a The average dimensionless mass-to-flux ratio for the core as a whole.
b “Persistent” disks are rotationally supported structures that rarely display
large deviations from smooth Keplerian motions, whereas “transient” disks are
highly active, rotationally dominated structures with large distortions and are
often completely disrupted.

0.5 (Model D), 0.7 (Model E), and 1 (Model F). In addition, we
will consider the disk formed in a non-magnetic, non-turbulent
core (Model H) and a case with the magnetic field orthogonal
to the rotation axis (θ0 = 90◦, Model P), for comparison with
the disks formed in the aligned (θ0 = 0◦) case that are enabled
by turbulence (see Section 4).

We choose a non-uniform grid of 120 × 90 × 90. In the
radial direction, the inner and outer boundaries are located
at r = 1014 and 1017 cm, respectively. The radial cell size is
smallest near the inner boundary (5 × 1012 cm or ∼0.33 AU). It
increases outward by a constant factor ∼1.06 between adjacent
cells. In the polar direction, we choose a relatively large cell
size (5◦) near the polar axes, to prevent the azimuthal cell
size from becoming prohibitively small in the polar region;
it decreases smoothly to a minimum of ∼0.52 degrees near
the equator, where rotationally supported disks may form. The
grid is uniform in the azimuthal direction. Our finest cell in
the disk-forming equatorial region has dimensions of 0.33,
0.07, and 0.47 AU in the r-, θ -, and φ-direction, respectively.
This is comparable to that of Joos et al. (2013; 0.4 AU), and
better than those of Seifried et al. (2012, 1.2 AU), Myers et al.
(2013, 10 AU), and Santos-Lima et al. (2012, 15.6 AU). The
higher resolution should reduce the level of numerical diffusion
of magnetic field and its associated reconnection, especially
compared to that in Santos-Lima et al. (2012), whose results we
seek to verify and understand physically. Our non-uniform grid
is shown in Figure 1. It was designed to provide good resolution
for the disk forming equatorial region. Half of our radial cells lie
within a radius of ∼200 AU, and half of our polar cells within
∼20◦ of the equatorial plane. For example, the relatively thick
disk shown in Figure 21 contains about 2.5 × 105 cells.

The boundary conditions in the azimuthal direction are
periodic. In the radial direction, we impose the standard outflow
boundary conditions for both the hydrodynamic quantities and
magnetic field, at both the inner and outer boundaries. The
boundary conditions are enforced using ghost zones. For the
density and three components of the velocity, we simply copy
their values in the active zone closest to the boundary into
the ghost zones, except when the radial component of the
velocity is pointing into the computation domain (i.e., vr > 0
near the inner boundary or vr < 0 near the outer boundary);
in such cases, the radial velocity is set to zero in the ghost
zones to prevent mass flowing into the computation domain
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Figure 1. Computational grid in the meridian plane, showing good resolution
in the disk-forming equatorial region.

from outside, where there is no self-consistently determined
flow information. These boundary conditions allow matter and
angular momentum to leave the outer radial boundary, as needed
for the magnetic-braking driven outflow, and to accrete through
the inner radial boundary. The boundary conditions on the
magnetic field are enforced through the electromotive force
(EMF), which is used to evolve the field everywhere, including
the ghost zones, using the method of constrained transport (CT).
The three components of the EMF are copied from the active
zone closest to the boundary into the ghost zones. In effect, we
are assuming continuity from the computation domain into the
ghost zones for both the hydrodynamic quantities and magnetic
field, which minimizes the risks of artificial wave reflection at
the boundary. The use of CT ensures that the divergence-free
condition ∇ ·B = 0 is preserved to machine accuracy in both the
active computation domain and the ghost zones. In particular,
the magnetic field lines dragged by the accretion flow across
the inner boundary stay on the boundary, forming essentially
a split magnetic monopole, as expected in ideal MHD (Galli
et al. 2006), until (numerical) reconnection is triggered by severe
pinching of the oppositely directed field lines (see Mellon & Li
2008 and discussion below). The radius of our inner boundary
is 1014 cm (or 6.7 AU). It is larger than the sink accretion radius
used by Seifried et al. (2013, 3 AU) but smaller than that of
Santos-Lima et al. (2012, 62.5 AU). Since our inner boundary
is covered by nearly 10,000 cells, it can resolve the angular
distributions of the magnetic field and flow quantities better
than the “sink accretion region” of Santos-Lima et al. (2012) and
Seifried et al. (2013). We note that there was formally no “sink
accretion region” in Joos et al. (2013). They adopted a stiffened
equation of state above a mass density of 10−13 g cm−3, which
produced an artificially thermally supported object of order
10 AU in size (comparable to that of our inner boundary), which
served as an effective “inner boundary” for their simulations.
Note that their “inner boundary” is quite different from the “sink
accretion region” of Santos-Lima et al. (2012) and Seifried et al.
(2013), and both treatments are very different from ours. How
these different treatments affect the numerical results remains
to be quantified.
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Figure 2. Density distribution and velocity field on the equatorial plane at a representative time (t = 8 × 1011 s) for models with different levels of turbulence
(Model A–F). The beneficial effect of turbulence on disk formation is evident. Each panel is 2 × 1016 cm on the side. The color bar is for the logarithm of the density
added to a floor value of 10−17.5 g cm−3. Equatorial values are taken at a latitude between 0 and 0.26◦.

(Animations and a color version of this figure are available in the online journal.)

On the polar axes, the boundary condition is chosen to be
reflective. Although this is not strictly valid, we expect its effect
to be limited to a small region near the axis. As in Krasnopolsky
et al. (2010) and Santos-Lima et al. (2012), the central point
mass is fixed at 0.5 M�.

Although it is desirable to carry out the simulations in ideal
MHD, so that they can be compared more directly with other
works, especially Santos-Lima et al. (2012), we found the
ideal MHD simulations difficult to perform in practice, because
they tend to produce numerical “hot zones” where the Courant
conditions demand such a small timestep that they force the
calculation to stop early, a tendency we noted in our previous
two-dimensional (2D; Mellon & Li 2008) and three-dimensional
(3D) simulations (Krasnopolsky et al. 2012 and Li et al. 2013).
To lengthen the simulation, we include a small, spatially uniform
resistivity η = 1017 cm2 s−1. We have verified that, in Model F
with M = 1 (which turns out to be one of the most interesting
cases and will be discussed in greatest detail), this resistivity
changes the flow structure little compared to either the ideal
MHD limit or a model where the resistivity is reduced by
a factor 10, to 1016 cm2 s−1, at early times (before the non-
resistive and low-resistivity runs stop). It is at least two orders
of magnitude smaller than the value needed to enable large-scale
disk formation by itself (Krasnopolsky et al. 2010).

There was no mention of the need for using explicit resistivity
to lengthen simulation of magnetized disk formation by other
groups. The exact reason for this difference is unclear, although

we suspect that it is related to the relatively low magnetic
diffusivity in our code from the use of (1) fixed non-uniform
grid, which avoids the numerical diffusion associated with
refinement and de-refinement, and (2) method of characteristics
in constrained transport, which makes the MHD algorithm more
accurate (Stone & Norman 1992). The results of the current
simulations from different groups appear to depend strongly
on the numerical code used in each study. In the future, it
will be desirable to benchmark all MHD codes used for disk
formation simulations against common test problems such as
the collapse of a non-rotating, uniformly magnetized sphere of
constant density, especially in the protostellar accretion phase,
when the magnetic field is severely pinched and its structure
is sensitive to the level of numerical diffusivity (see related
discussion in footnote 5).

3. NUMERICAL RESULTS AND ANALYSIS

3.1. Turbulence-enabled Disk Formation

To illustrate the effects of turbulence on disk formation in
magnetized dense cores, we carried out a set of six simulations
with identical initial conditions except for the level of turbu-
lence, which is characterized, respectively, by the rms turbulent
Mach number M = 0, 0.1, 0.3, 0.5, 0.7 and 1 (see Models
A–F in Table 1). The simulations were run to a common final
time t = 1.1 × 1012 s or about 3.5 × 104 yr. Figure 2 shows the
density distribution and velocity field on the equatorial plane
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Figure 3. Mass-weighted infall (lower two curves) and rotation (upper two
curves) speed as a function of radius for the non-turbulent (Model A, solid
curves) and sonic turbulence (Model F, dashed curves) cases. The averaging
is done within 20◦ of the equatorial plane. A Keplerian profile (dotted line) is
shown for comparison.

at a representative time t = 8 × 1011 s for all six cases. The
difference in morphology is striking.

In the non-turbulent (M = 0) model (Model A), there is
no hint of any rotationally supported disk (RSD), consistent
with previous work. The circumstellar region is dominated by a
highly magnetized, low-density expanding region (the so-called
“decoupling enabled magnetic structure” or DEMS that has been
discussed extensively in Zhao et al. 2011 and Krasnopolsky
et al. 2012; see Figure 7 and Section 3.3). This behavior is
not changed fundamentally by a modest amount of turbulence
in the M = 0.1 (Model B) or 0.3 (Model C) cases, where
the RSD remains suppressed and DEMS remains dynamically
important. Here, the turbulence does change the appearance of
the density distribution on the equatorial plane drastically. It
produces well-ordered dense spirals that are absent in the non-
turbulent case. The spirals mark the locations where a thin,
warped, pseudodisk (shown in Figures 9 and 10) intercepts the
equatorial plane.

The apparent spirals persist as the level of turbulence in-
creases. At the time shown in Figure 2, they appear to merge
into a disk-like structure in Model D (M = 0.5), although the
central region of the structure is still filled with low-density
“holes.” This porous disk is highly dynamic. It forms around
∼6 × 1011 s, and becomes disrupted by ∼9 × 1011 s (a movie
illustrating the transient nature of the disk is available online
as auxiliary material). The situation is similar in the slightly
stronger turbulence case of M = 0.7 (Model E), where a tran-
sient disk is also formed. Compared to the M = 0.5 case, the
disk in the M = 0.7 case forms earlier (∼2 × 1011 s), and
lasts longer (until ∼9.5 × 1011 s). As the level of turbulence
increases to M = 1 (Model F), a well-defined disk forms earlier
still (∼1011 s), grows steadily with time, and persists to the end
of the simulation. As seen from Figure 3, the disk is rotationally
supported, with an average rotation speed close to the Keple-
rian speed and a much smaller infall speed inside a radius of
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Figure 4. Ratio of the initial angular momenta enclosed within a sphere as a
function of the mass enclosed within the same sphere for the sonic turbulence
(Model F) and non-turbulent (Model A) cases, showing that in these cases the
turbulence increases the initial angular momentum by about 10% or less over
most of the mass (and volume). The mass is normalized to 1 M�.

∼2 × 1015 cm at the time shown in Figure 2 (t = 8 × 1011 s).
This is in contrast with the non-turbulent case (Model A) where
the rotation on the same 100 AU scale is highly sub-Keplerian
and is dominated by infall. The rotationally supported disk in
Model F turns out to be rather thick and significantly magne-
tized. Its properties will be discussed in more detail in Section 4.
Here we focus on the unmistakable trend that a stronger turbu-
lence leads to the formation of a more robust disk. The question
is: why is the disk formation suppressed in the non-turbulent or
weakly turbulent cases but enabled by a stronger turbulence?

One possibility is that a stronger turbulence may increase
the initial angular momentum by a larger amount, making it
easier to form an RSD. However, even in the most turbulent
case of Model F, the increase is modest, by ∼10% or less over
most of the mass (and volume; see Figure 4). It is unlikely that
such a modest change alone can explain the drastically different
outcomes for our non-turbulent and sonic turbulence cases.

3.2. Obstacle to Disk Formation: Central Split
Magnetic Monopole

Disk suppression in ideal MHD is conceptually tied to
another fundamental problem in star formation—the so-called
“magnetic flux problem.” If the field lines in a dense core
magnetized to the observed level are dragged by collapse
into the central stellar object, they would produce a split
magnetic monopole near the center that is strong enough to
remove essentially all of the angular momentum of the accreted
material and prevent the formation of a rotationally supported
circumstellar disk (Galli et al. 2006). However, it is well known
that if the flux freezing holds strictly during the core collapse,
the stellar field strength would be orders of magnitude above the
observed values (Shu et al. 1987). This magnetic flux problem
must be resolved one way or another, and its resolution is a
prerequisite for disk formation.
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Figure 5. Total outgoing magnetic flux Φr threading a sphere (defined in
Equation (2), in units of G cm2) as a function of the radius of the sphere
for the non-turbulent case (Model A, M = 0, solid line) and sonic turbulence
case (Model F, M = 1, dashed) at time t = 8 × 1011 s (same as Figure 2).
Also plotted for comparison are an upper (top dotted line) and a lower (bottom
dotted) limit to the magnetic flux expected under the flux freezing condition,
given by Equations (4) and (3), respectively, for Model A.

The stellar magnetic flux problem can be resolved in principle
through non-ideal MHD effects (e.g., Li & McKee 1996;
Contopoulos et al. 1998; Kunz & Mouschovias 2010; Machida
et al. 2011; Dapp & Basu 2010; Dapp et al. 2012; Tomida
et al. 2013), which decouple the field lines from the matter
at high densities close to the central object. In ideal MHD
simulations, the decoupling can be mimicked by numerically
induced magnetic flux redistribution. To demonstrate that flux
redistribution has indeed occurred in our simulations, we plot in
Figure 5 the magnetic flux Φr that leaves the surface of a sphere
of radius r:

Φr (r) =
∫

Br (>0) dS (2)

where the integration is over the part of the surface with magnetic
field pointing outward, i.e., Br > 0 (we have verified that
the amount of flux entering the sphere is exactly the same
as that going out). Near the inner boundary ri = 1014 cm,
this flux provides a measure of the strength of the central split
magnetic monopole. Its value on any sphere is to be compared
with the magnetic flux expected to be dragged into the same
sphere by matter under the condition of flux freezing, Φr,ff . The
expected flux depends on the amount of mass that has already
accumulated inside the sphere (M(r), including the mass that
has passed through the inner boundary), and whether the mass is
accumulated along or across the field lines; mass accumulation
along field lines would not lead to any flux increase. In the limit
that all of the mass along the field lines that initially thread
a sphere has accumulated inside the sphere, the expected flux
would be

Φmin
r,ff (r) = πB0R

2
0

{
1 −

[
1 − M(r)

Mtot

]2/3
}

, (3)

where B0, R0 and Mtot = 4π
3 ρ0R

3
0 are the initial field strength,

radius, and total mass of the core. This flux is a (generous) lower
limit to Φr,ff at relatively small radii, where only a small fraction
of the mass along any given field line has collapsed close to the
central object at the relatively early times under consideration.
It is derived by relating the magnetic flux Φ enclosed within a
cylinder of radius � in the initially constant-density dense core
with a uniform magnetic field to the mass enclosed by the same
cylinder. An upper limit to Φr,ff is obtained by assuming that
the mass accumulation is isotropic, which yields

Φmax
r,ff (r) = πB0R

2
0

[
M(r)

Mtot

]2/3

. (4)

This is an upper limit because the core collapse proceeds
somewhat faster along field lines than across.

From Figure 5, it is clear that the actual magnetic flux
Φr is below the minimum value Φmin

r,ff expected from flux-
freezing at small radii (r � 4 × 1014 cm). This is evidence
for magnetic flux redistribution, which has reduced the flux
near the inner boundary (and hence the strength of the split
magnetic monopole) by at least a factor of four (more likely an
order of magnitude) in the non-turbulent case (Model A, solid
line in the figure). The flux redistribution is likely related to
a similar behavior that Mellon & Li (2008) observed in their
2D (axisymmetric) self-gravitating simulations. They found
episodic reconnection of the oppositely directed field lines above
and below the equatorial plane near the inner boundary (see their
Figure 16). We have carried out several 2D (axisymmetric) non-
self-gravitating simulations with different spatial resolutions
and different values of resistivity η (including η = 0), and found
episodic reconnection in all cases. Movies of two examples are
included as online auxiliary material, and their snapshots at a
representative time t = 8 × 1011 s (or frame 80) are shown
in Figure 6. They have the same initial mass and magnetic
field distributions as Models A–F but with η = 0 and without
any initial rotation, and have inner radius ri = 1014 and
1.5 × 1013 cm, respectively.5

In any case, the reconnected field lines in the 2D simulations
are driven outward by magnetic tension force, leaving behind
a strongly magnetized, low density region. This two-step flux
redistribution—field line reconnection near the inner boundary
followed by outward field advection—is likely operating in our
3D simulations as well. A difference is that, in 3D, mass accre-
tion can continuously drag field lines across the inner boundary
along some (azimuthal) directions, with the reconnected field
lines escaping outward along other directions. This more con-
tinuous reconnection makes individual events less powerful, and
thus harder to identify (Zhao et al. 2011; Krasnopolsky et al.
2012), especially in the presence of a turbulence. In the non-
turbulent (Model A), and weakly turbulent (Model B and C)
cases, the redistributed magnetic flux remains trapped close to
the central object, forming a strongly magnetized, low-density
region—the DEMS—that is known to be a formidable obstacle

5 Although episodic reconnection dominates the accretion dynamics close to
the central object in both cases, individual reconnection events can look rather
different (see Figure 6). This is perhaps not too surprising, since there is no
explicit resistivity in these simulations, so the reconnection of the sharply
pinched magnetic field must involve numerical diffusion. It can occur at
different locations (and with different intensities), depending on the inner
radius and spatial resolution. Such a dependence makes it difficult to obtain
numerically converged solutions, at least (perhaps especially) in the 2D case in
the ideal MHD limit. Whether non-ideal MHD effects can alleviate this
difficulty or not remains to be determined.
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Figure 6. Snapshots of two 2D (axisymmetric) simulations with different inner boundary radii (ri = 1014 cm for the left panel, and 1.5 × 1013 cm for the right),
showing the magnetic field lines (yellow lines), velocity vectors (white arrows), and the logarithm of density (color map) in the meridian plane. Note the severely
pinched field lines before (episodic) reconnection in the left panel, and the two high density equatorial “blobs” created by (episodic) reconnection in the right panel.

(Animations and a color version of this figure are available in the online journal.)

Figure 7. Same as in Figure 2, except for the color map, which displays the vertical magnetic field strength Bz (in units of Gauss) on the equatorial plane. Note the
strong anti-correlation between the strongly magnetized region (DEMS, in Models A–C) and rotationally supported disk (in Models D–F). The weakening of DEMS
appears to be a prerequisite for disk formation.

(A color version of this figure is available in the online journal.)

to disk formation (Zhao et al. 2011; Krasnopolsky et al. 2012;
see Figure 7). In these cases, the decoupling-triggered reconnec-
tion has greatly weakened the central split magnetic monopole,
which lies at the heart of the magnetic braking catastrophe in
ideal MHD (Galli et al. 2006). However, it created another, per-
haps even more severe, problem—the DEMS—which has to be
overcome in order for rotationally supported disks to form.

3.3. Obstacle to Disk Formation: DEMS

In order for RSDs to form, both the central split magnetic
monopole and the DEMS must be weakened. Figure 5 shows

that the amount of magnetic flux Φr threading the inner
boundary is about the same for the non-turbulent (Model A) and
sonic turbulence (Model F) cases, indicating that the weakening
of the split magnetic monopole is not controlled by turbulence.
As discussed above, it is most likely caused by the decoupling-
triggered reconnection observed in the 2D axisymmetric case.
The magnetic flux Φr is somewhat lower in the turbulent case
between ∼1015 cm and ∼1016 cm (see the dashed line in
Figure 5). This could be due to additional, turbulence-enhanced,
magnetic reconnection during the core collapse, as advocated by
Santos-Lima et al. (2012, see also Santos-Lima et al. 2013 and
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Figure 8. Time evolution of the magnetic flux Φz passing vertically through a circle on the equatorial plane with cylindrical radius � = 1.055 × 1016 cm (left panel)
and 3.055 × 1015 cm (right panel) for Models A (M = 0, upper thin solid line), B (dashed), C (dash-dotted), D (long dashed), E (dotted), and F (M = 1, lower thick
solid line). The trend is clear that a stronger turbulence leads to a lower magnetic flux at late times.

Joos et al. 2013). Alternatively, it could be related to how the
field lines reconnected near the inner boundary escape to large
distances, as discussed in Section 4.2. In any case, the difference
in Φr between these models with and without turbulence is
relatively moderate.

A more striking difference lies in the DEMS. Figure 7, which
plots the vertical field strength Bz on the equatorial plane, shows
that the strongly magnetized DEMS dominates the circumstellar
region on the disk-forming, 102 AU scale for the non-turbulent
and weakly turbulent cases (Models A–C). It becomes much
less prominent for the stronger turbulence cases (Models D–F).
The turbulence has clearly reduced Bz on the equatorial plane
(and thus the magnetic flux threading vertically through the
plane) near the central object. This reduction may hold the
key to understanding the turbulence-enabled disk formation
observed in Figure 2, given the strong anti-correlation between
the highly magnetized DEMS and the rotationally supported
disk. To quantify the Bz reduction, we focus on the net magnetic
flux Φz that passes vertically through the equatorial plane inside
a circle of cylindrical radius � :

Φz(� ) = Φi +
∫ 2π

0

∫ �

�i

Bz(�, θ = π/2, φ)� d� dφ, (5)

where Φi is the contribution from the upper hemisphere of the
inner (spherical) boundary and �i = 1014 cm.

In Figure 8, we plot the time evolution of the vertical magnetic
flux Φz inside a circle of cylindrical radius � ≈ 1016 cm
(left panel) and 3 × 1015 cm (right panel) for Models A–F.6

For the larger circle, Φz increases more or less monotonically
with time in the absence of any turbulence (M = 0, the
upper solid line in the figure). This is to be expected, since
more and more field lines are dragged across the circle as the

6 We have verified that Φz is equal to the magnetic flux that enters the lower
hemisphere of a sphere of radius r = � and that leaves the upper hemisphere
of the same sphere to machine accuracy, as expected for the treatment of the
induction equation using constrained transport.

equatorial material collapses. The pause around tk ∼ 5 × 1011 s
is caused by the outer edge of the dense, equatorial pseudodisk
(Galli & Shu 1993; see Figure 14 for an example) expanding
across the circle under consideration; the pseudodisk expansion
temporarily lowers the flux Φz. A similar (although weaker)
kink is also visible for the smaller, � ≈ 3 × 1015 cm, circle
(see the right panel of Figure 8). It occurs at an earlier time
tk ∼ 1011 s, which is expected since the outer edge of the
pseudodisk crosses this smaller circle sooner. The most striking
feature for the non-turbulent case is that the magnetic flux inside
the smaller circle levels off after t ∼ 5 × 1011 s, and becomes
oscillatory. The oscillation is caused by the highly magnetized,
low-density structure (DEMS, see Figures 2 and 7) expanding
beyond the circle, advecting back out the magnetic flux dragged
across the circle by the collapsing flow in a highly time
variable manner.

In the presence of a turbulence, the time evolution of the
magnetic flux Φz changes significantly. For the larger circle
(� ≈ 1016 cm), as the level of turbulence increases, there is a
trend for the kink on the Φz(t) curve to start earlier, the turnover
to last longer, and the increase after the turnover to become
slower. The earlier kink occurs because the outer edge of the
pseudodisk is distorted by turbulence, causing it to reach the
circle earlier. In the strongest turbulence case (Model F with
M = 1), the magnetic flux stays more or less constant after
the kink, at a value well below that of the non-turbulent case
at the end of the simulation (by a factor of ∼2.4). Unlike the
non-turbulent case discussed in the last paragraph, this leveling
off cannot be due to magnetic flux redistribution through the
expansion of DEMS, which is apparently absent in Model F
(see Figure 7). For this model, the magnetic flux levels off after
the kink for the smaller (� ≈ 3 × 1015 cm) circle as well, at a
value lower than that of the non-turbulent case by an even larger
factor (∼5). The leveling off in the increase of magnetic flux is a
key to understanding the weakening of the DEMS by turbulence
and the appearance of the RSD. Since it starts around the kink
when the (perturbed) pseudodisk expands across a circle, it is

8
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Figure 9. Density distribution on a sphere of representative radius r = 4.756 × 1015 cm (or about 318 AU) at time t = 5 × 1011 s for Models A–F. The horizontal
axis is the polar angle θ from 0 to π , and the vertical axis is the azimuthal angle φ from 0 to 2π . The equator plane at θ = π/2 is marked by a dashed line. The
dense, equatorial, pseudodisk in the non-turbulent model becomes increasingly distorted as the level of turbulence increases. The color map shows the logarithm of
the density, added to a floor value of 10−18g cm−3. The black solid lines are constant density contours at 10−17 g cm−3 used to highlight the pseudodisk.

(A color version of this figure is available in the online journal.)

likely related to the structure of the pseudodisk, a possibility
that we will explore next.

3.4. Turbulence-warped Pseudodisk

In the absence of any turbulence, protostellar accretion in a
dynamically significant magnetic field is known to be controlled
to a large extent by the pseudodisk (Galli & Shu 1993).
To highlight the morphology of the pseudodisk and how it
is perturbed by turbulence, we plot in Figure 9 the density
distribution on the surface of a sphere at a representative radius
of r = 4.756 × 1015 cm for Models A–F. It is evident that
the mass in the non-turbulent case is highly concentrated near
the equatorial plane (θ = π/2), in the pseudodisk. The mass
concentration is due to matter settling gravitationally along field
lines toward the equatorial plane, amplified by the compression
by a severely pinched magnetic field (for a pictorial view of the
pseudodisk and associated magnetic field in the non-turbulent
case, see Figure 14). This pseudodisk is dynamically important
because it is where the majority of the core mass accretion
occurs. For example, in the non-turbulent case (Model A), if we
somewhat arbitrarily assign the region denser than 10−17 g cm−3

(bounded by the black solid lines in the figure) to the pseudodisk,
then 85% of the mass accretion at the radius shown in Figure 9
occurs through the pseudodisk, even though it covers only 2.7%
of the surface area of the sphere. The concentration of mass
accretion in the pseudodisk in the non-turbulent case is an
unavoidable consequence of the interplay between the gravity
and a dynamically significant, ordered, magnetic field, whose
opposition to the gravity is highly anisotropic (Galli & Shu
1993; Allen et al. 2003).

The presence of a moderate level of turbulence does not
change the above picture fundamentally. For example, the
M = 0.1 turbulence in Model B warps the nearly flat pseudodisk
in the non-turbulent case only slightly, as seen in panel (b) of
Figure 9. As the level of turbulence increases, the amplitude
of pseudodisk warping grows. Nevertheless, the pseudodisk
retains its basic integrity even in the strongest turbulence case
of M = 1 (Model F); it is severely distorted, with some portions
folding onto themselves (see panel f of the figure), but not
completely destroyed.

The turbulence-induced distortion of the pseudodisk can be
viewed more vividly in Figure 10, where we plot two isodensity
surfaces at ρ = 10−17 and 10−16 g cm−3 in 3D for the M = 0.3
and 1 cases. At the time shown, the corrugation induced by
the subsonic, M = 0.3 turbulence remains relatively moderate.
When the turbulent Mach number increases to one, the pseu-
dodisk, as traced by the red isodensity surfaces, becomes more
severely warped and partially folded onto itself, but remains
relatively thin. In our simulations, the chaotic turbulent motion
is dominated by the fast, ordered, supersonic gravitational col-
lapse in the region where the pseudodisk is formed. This, we be-
lieve, is the reason why the pseudodisk is perturbed, rather than
completely destroyed, by a subsonic or transonic turbulence. In
Section 4.2, we will present general arguments for the pseu-
dodisk as a generic feature of magnetized core collapse.

The warped pseudodisk plays the same fundamental role
in the turbulent cases as the flat pseudodisk in the non-
turbulent case: it is the main conduit for core mass accretion.
For example, on the spherical surface shown in Figure 9, the
warped pseudodisk (bounded by the black density contours) is
responsible for 72%, 69%, 74%, 64%, and 68% of the mass

9
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Figure 10. 3D structure of the warped pseudodisk. Plotted are isodensity surfaces at ρ = 10−17 (red surfaces) and 10−16 g cm−3 (blue) for the M = 0.3 (Model C,
left panel) and 1 (Model F, right panel) case at time t = 8 × 1011 s (same as in Figures 2 and 7). Note the corrugation of the pseudodisk (as traced by the red surfaces)
induced by turbulence. The blue region roughly corresponds to the rotationally supported disk in the right panel (Model F). The low-density “hole” in the left panel
(Model C) corresponds to the strongly magnetized DEMS shown in the upper right panel of Figure 7. The box size is 1200 AU on each side.

(A color version of this figure is available in the online journal.)

flux for the M = 0.1, 0.3, 0.5, 0.7, and 1 case, respectively,
even though it covers only 3.3%, 5.9%, 7.1%, 8.2%, and
12.2% of the surface area. Since the collapsing pseudodisk is
mainly responsible for the mass accretion that drags the field
lines into the circumstellar region close to the central object,
it should not be too surprising that its distortion by turbulence
affects the magnetic flux accumulation there, as we show next.

3.5. Pseudodisk Warping and Magnetic Flux Reduction

As discussed in Section 3.2 and illustrated in Figure 8,
turbulence tends to lower the magnetic flux threading the
equatorial plane at small radii at late times. To understand
this trend quantitatively, we note that the evolution of the
magnetic flux Φz enclosed within a circle of fixed cylindrical
radius � on the equatorial plane is governed by the induction
equation, which can be cast into the following form using the
Stokes theorem

∂Φz

∂t
=

∫ 2π

0
Eφ � dφ

= −
∫ 2π

0
v�Bz � dφ +

∫ 2π

0
vzB� � dφ, (6)

in a cylindrical coordinate system (�,φ, z). The quantity
Eφ = −v� Bz + vzB� is the azimuthal component of the EMF
on the circle. On the equatorial plane, the relevant components
of the velocity and magnetic field in cylindrical and spherical
coordinates are related through v� = vr , B� = Br , vz = −vθ

and Bz = −Bθ . The first term on the right hand side of the above
equation, Tφ,r = ∫ 2π

0 vrBθ � dφ, has an obvious interpretation:
it is simply the rate of flux advection by radial infall, which tends
to increase the flux Φz (and thus be positive) by dragging vertical
field lines into the circle. The meaning of the second term
Tφ,z = − ∫ 2π

0 vθBr � dφ is less obvious; it is the rate of flux
advection by vertical motions (along the z-axis, perpendicular
to the equatorial plane) that can move radial field lines across
the circle on the equatorial plane.
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Figure 11. Rates of magnetic flux change, Tφ,r and Tφ,z (in cgs Gaussian units),
across a circle of radius � = 1.055 × 1016 cm on the equatorial plane due
to, respectively, radial advection of vertical field Bθ by infall (with vr ; upper
curves) and vertical advection of radial field Br by vertical motions (with vθ ;
lower curves), for Models A (M = 0, thin solid line), B (dashed), C (dash-
dotted), D (long dashed), E (dotted), and F (M = 1, thick solid line). Note that
turbulence increases the rate of outward (or negative) magnetic flux advection
by vertical motions.

It is easy to compute Tφ,r and Tφ,z for any radius � . As
an example, we plot in Figure 11 their values at � = 1.055 ×
1016 cm as a function of time for different models. At early times,
the radial flux advection term Tφ,r dominates the vertical flux
advection term Tφ,z for all cases. This is to be expected, because
the field lines near the equator remain predominantly vertical
outside the pseudodisk (see Figures 12 and 14). After the outer
edge of the pseudodisk passes through the circle, the magnetic
fluxes in the non-turbulent and weakly turbulent cases start to
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Figure 12. Density map and magnetic field unit vectors of the M = 1 model
on a meridian plane at a representative time t = 8 × 1011 s. It illustrates how
an out-of-the-equatorial-plane dense loop (the loop on the right side, part of
the warped pseudodisk) can bring matter through the upper hemisphere (dashed
line) but little magnetic flux. The two crosses mark where the hemisphere and
equatorial plane intersect. The length of the box is 5 × 1016 cm on each side.
The colorbar is the same as in Figure 2.

(A color version of this figure is available in the online journal.)

increase again (see the left panel of Figure 8). This is because
the vertical flux advection that tends to move field lines out
of the circle (i.e., Tφ,z tends to be negative7), starts to drop below
the radial flux advection that tends to move field lines into the
circle. An exception is the strongest turbulence case of M = 1,
where the vertical and radial advection terms stay comparable,
so that the magnetic flux changes relatively little at late times.
Figure 11 shows clearly that the more efficient outward transport
of magnetic flux by vertical motions is the main reason for
the slower flux increase for a stronger turbulence. In order
for the outward flux transport to be efficient, both vθ and Br
need to have a relatively large value, which can be achieved
when a pseudodisk with a highly pinched magnetic field (i.e.,
an appreciable Br) is strongly perturbed vertically (i.e., an
appreciable vθ ), by turbulence or some other means.

To illustrate how a strongly perturbed pseudodisk can slow
down the magnetic flux accumulation inside a circle more
pictorially, we plot in Figure 12 the density distribution and
magnetic field (unit) vectors on a representative meridian plane
for the M = 1 case. Note that the turbulence-driven warping
moves the pseudodisk above (see the loop to the right of the
disk) and below (see the loop to the left) the equatorial plane.
The above-the-equatorial-plane loop (on the right side) delivers

7 This is because in the pseudodisk region a highly pinched field
configuration tends to develop, with a generally positive Br above the
equatorial plane and negative Br below it (see Figures 14 and 12 for
illustration). A downward motion (with a positive vθ ) tends to push the field
lines in the upper hemisphere (which generally point radially outward, with a
positive Br) downward across the circle on the equatorial plane, and an upward
motion (with a negative vθ ) tends to push the field lines in the lower
hemisphere (which generally point radially inward, with a negative Br) upward
across the circle. In both cases, the product −vθBr tends to be negative,
indicating that vertical motions tend to move magnetic flux out of the circle.

a substantial amount of matter through the upper hemisphere
(marked by the dashed line in the figure) but little net magnetic
flux; the sharp kink of field lines across the loop allows most
of the field lines dragged into the hemisphere by the accreting
loop to return through the same hemisphere, without crossing
or touching the circle on the equatorial plane (marked by two
red crosses on the figure); a similar case can be made for the
lower hemisphere. This is in contrast with the mass accretion
through the unperturbed equatorial pseudodisk, which must
be accompanied by a flux increase (in the ideal MHD limit).
Since the net magnetic flux going through the upper (or lower)
hemisphere is the same as that through the equatorial plane that
bisects the sphere, the pseudodisk warping provides a natural
explanation for the lower magnetic flux accumulated close to
the central object on the equatorial plane (and thus a weaker
DEMS) that we found for a stronger turbulence.

3.6. Torque Analysis

Whether a rotationally supported disk can form or not de-
pends on the amount of angular momentum that is initially avail-
able on the core scale and that is removed by magnetic torque
and outflow as the rotating core material collapses toward the
central object. We follow Li et al. (2013) in evaluating
the z-components of the dominant magnetic torque due to the
magnetic tension force (as opposed to the magnetic pressure
gradient) and the advective torque:

Nt,z = 1

4π

∫
�BφBr dS, (7)

and

Na,z = −
∫

ρ�vφvr dS, (8)

where � is the cylindrical radius, and the integration is over the
surface S of a sphere of radius r. They measure, respectively, the
rate of angular momentum change in the volume enclosed by
the surface S due to magnetic braking and matter crossing the
surface S. The advective torque consists of two parts: the rates
of angular momentum advected into and out of the sphere by
infall and outflow respectively:

N in
a,z = −

∫
ρ�vφvr (<0) dS, (9)

and

Nout
a,z = −

∫
ρ�vφvr (>0) dS. (10)

We have examined the radial distributions of the magnetic
and advective torques for Models A–F and at different times.
The basic features of the distributions are well illustrated in
the examples shown in Figure 13. To avoid crowding, we have
shown only two extreme cases (with M = 0 and 1). The right
panel of the figure, which displays the net torque, shows that,
in the non-turbulent case, the magnetic torque is large enough
to remove essentially all of the angular momentum advected
inward at all radii inside ∼1016 cm; indeed, it is so strong as to
cause a net decrease in angular momentum between ∼3 × 1015

and ∼1016 cm. This latter feature is in striking contrast with
the M = 1 case, where the magnetic torque is not large
enough to remove all of the angular momentum brought in by
flows. The imbalance leaves a substantial net (positive) torque
between ∼3 × 1015 and ∼1016 cm, which increases the angular
momentum of the material in this region, enabling a rotationally
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Figure 13. Left panel: magnetic torques (solid lines, Nt,z) and advective torques (Na,z) by infall (N in
a,z, dotted) and outflow (Nout

a,z , dashed) acting on spheres of different
radii for models with M = 0 (thin black lines) and 1 (thick red lines), at a representative time t = 7 × 1011 s for Model F. Right panel: the net torque (Nt,z + Na,z) for
the same two cases. The torques are in units of 1040 dyn cm.

(A color version of this figure is available in the online journal.)

Figure 14. Density map and magnetic field unit vectors on a meridian plane
for the non-turbulent case at a representative time t = 7 × 1011 s, showing a
prominent equatorial pseudodisk and severe field pinching across it. The two
crosses mark the locations where the magnetic torque shown in Figure 13 peaks.
An axial dense spot is removed for clarity. The length of the box is 5 × 1016 cm
on each side. The colorbar is the same as in Figure 2.

(A color version of this figure is available in the online journal.)

supported disk to form in this case. Since the difference between
the two cases appears most prominent near r ∼ 1016 cm, we
will first focus on this region in our effort to understand why
the magnetic braking is so efficient in the non-turbulent case
and why the efficiency is significantly decreased by the M = 1
turbulence.

We first concentrate on the non-turbulent case. It turns out
that the r ∼ 1016 cm region is rather special; it includes the
outer part of the pseudodisk. This is illustrated in Figure 14,

where we display the density map on a meridian plane (which
shows the pseudodisk clearly) and unit vectors for the magnetic
field at the same representative time as in Figure 13. The two
crosses mark the locations where the magnetic torque peaks
(at r ≈ 1.3 × 1016 cm). It is clear that, as matter enters the
equatorial pseudodisk, it drags the field lines into a highly
pinched configuration (note the reversal of the radial field above
and below the pseudodisk). Associated with the pinch is a large
magnetic tension force in the radial direction, which acts against
the gravity and retards the collapse significantly. The retardation
can be seen in Figure 15, which shows that the azimuthally
averaged infall speed on the equator is suddenly reduced by
about a factor of two right outside r ∼ 1016 cm, precisely
where the rate of magnetic braking peaks. This region of sharp
deceleration of the magnetized collapsing flow is termed the
“magnetic barrier” by Mellon & Li (2008, see their Figure 4);
this barrier is analogous to the well-known “centrifugal barrier”
where the infall is quickly slowed down by rotation. The
slow-down allows both matter and magnetic field lines to pile
up, signaling the formation of a dense, strongly magnetized
pseudodisk. The pileup of field lines can be seen in the right
panel of Figure 15, which shows that the vertical component
of the magnetic field on the equator, Bz, increases sharply by
a factor of ∼3 at the magnetic barrier.8 The increased field
strength, coupled with severe field pinching (which increases
the lever arm for magnetic braking, see Figure 14), is the reason
behind the efficient braking at the magnetic barrier in the non-
turbulent case.

In the presence of a sonic turbulence (M = 1), the peak rate of
angular momentum removal by magnetic torque is substantially
reduced (by a factor of ∼2, see Figure 13). Our interpretation
is that the reduction is due to the distortion of the highly
coherent magnetic barrier of the M = 0 case by turbulence.
Figure 12 shows that the transition from the infall envelope to
the pseudodisk is less coherent and more gradual in the M = 1
case compared to the M = 0 case (Figure 14). As a result, the
rotation is braked more gently as the matter enters the (highly

8 Inside the barrier, Bz drops somewhat as the material inside the pseudodisk
reaccelerates inward. The region of strong magnetic field inside a radius of
∼4 × 1015 cm corresponds to the DEMS that is visible in Figures 2 and 7.
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Figure 15. Distributions of the azimuthally averaged infall speed (vr , left panel) and vertical field strength (Bz, right) on the equatorial plane for the non-turbulent
case shown in Figure 14. Note the sharp slow-down of infall and increase in field strength just outside r = 1016 cm, precisely where the magnetic torque peaks.

warped) pseudodisk. The weaker braking at the outer part of the
pseudodisk leaves the material inside the pseudodisk with more
angular momentum, making it more likely to form a rotationally
supported disk.

Another difference between the M = 0 and 1 case lies in the
outflow. In the non-turbulent case, the outflow is driven mostly
by the equatorial (rotating) pseudodisk, which winds up the field
lines, building up a magnetic pressure near the equatorial plane
that is released by (bipolar) expansion away from the plane. On
the scale of the pseudodisk (∼1016 cm) that is crucial for disk
formation, the outflow removes angular momentum at a rate
that is a substantial fraction (typically ∼1/3 to 1/2) of that by
magnetic torque (see the left panel of Figure 13 for an example).
This is in contrast with the M = 1 case, where the angular
momentum removal by outflow is much less efficient on the
same scale (see Figure 13). The lower efficiency is most likely
caused by the severe warping of the pseudodisk, which weakens
the ability of the rotating material in the warped pseudodisk to
generate a coherent toroidal field for outflow driving (a similar
point was also made in Seifried et al. 2012, 2013). Furthermore,
the outflow, if driven at all, will consist of strands coming
from different parts of the warped pseudodisk, which may have
different orientations; strands moving in different directions
may lead to cancellation that weakens the net efficiency of
the outward angular momentum transport by the outflow. We
should note that, at smaller radii (on the ∼1015 cm, rotationally
supported disk-scale), the outflow in the M = 1 case removes
angular momentum more efficiently than that in the M = 0 case.
This outflow is driven by the RSD, and is thus a consequence
of, rather than the cause for, the disk formation. Nevertheless, it
removes angular momentum from the RSD, and could threaten
its survival; it may have contributed to the destruction of the
transient disks in the M = 0.5 and 0.7 cases (Models D and E
in Table 1).

3.7. Varying Initial Turbulent Velocity Field

We have carried out several shorter duration simulations with
different turbulent velocity fields to explore their effects on

Figure 16. Density map and velocity field for Model U (p = 0.5, left panels)
and V (p = 2.0, right panels) on the equatorial (top panels) and a meridian
(bottom panels) plane at time t = 6 × 1011 s. A well developed disk is apparent
in both cases. The length of the box is 1016 cm on each side. The colorbar is the
same as in Figure 2.

(A color version of this figure is available in the online journal.)

disk formation. Two examples are shown in Figure 16. They
are identical to Model F (with M = 1 and an exponent for
the turbulent velocity spectrum p = 1), except for p = 0.5
(Model U) or 2.0 (Model V). In both cases, a rotationally sup-
ported disk is formed at the time shown (t = 6 × 1011 s), just as
in Model F. The disk is somewhat larger and better developed in
Model U than in Model V, indicating that the shallower turbu-
lent velocity spectrum (with more power at shorter wavelength)
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Figure 17. Distribution of the logarithm of density (in g cm−3) and velocity field (left panel) and the vertical component of the magnetic field Bz and velocity field
(right panel) on the equatorial plane at a representative time t = 8 × 1011 s for Model P where the magnetic field is perpendicular to the rotation axis. The two
prominent spirals in the left panel are part of the strongly warped pseudodisk that feeds the central rotationally supported disk. The central, white part has a density
above the maximum value for the color plot, which is set to a relatively low value in order to highlight the spirals. The right panel shows that the strongly magnetized
DEMS that prevented disk formation in the aligned, non-turbulent and weakly turbulent cases (see Figure 7) disappears almost completely, strengthening the case for
the elimination of DEMS as a prerequisite for disk formation. The length of the box is 2 × 1016 cm on each side for both panels.

(A color version of this figure is available in the online journal.)

is more conducive to disk formation. However, we refrain from
drawing more quantitative conclusions because the turbulent
velocity fields are distorted by our non-uniform grid due to the
under-sampling of the high-frequency part of the veloc-
ity spectrum at large radii, where the spatial resolution is
relatively coarse.

4. DISCUSSION

4.1. Unification of Turbulence- and Misalignment-enabled
Disk Formation

The warping of pseudodisk out of the disk-forming equatorial
plane by turbulence plays a central role in our interpretation
of the robust disk formation observed in our simulations.
Pseudodisk warping was also the key ingredient of another
proven mechanism for disk formation: misalignment between
the magnetic field and rotation axis (Hennebelle & Ciardi 2009;
Joos et al. 2012; Krumholz et al. 2013; Li et al. 2013). Since our
problem setup is somewhat different from those of previous
studies (they included self-gravity that is ignored here, see
Section 2), we have rerun the non-turbulent case (Model A)
but with the magnetic field perpendicular to the rotation axis
(Model P in Table 1). A robust rotationally supported disk is
easily formed in this case, as shown in the left panel of Figure 17.
As in the case with self-gravity, there are two prominent spiral
arms in the equatorial density map of Figure 17, which are part
of a pseudodisk that lies almost perpendicular to the equatorial
plane initially and is wrapped by rotation into a snail shell-like
structure9 in 3D (see Figure 2 of Li et al. 2013).

9 In this paper, we will call the snail shell-like structure a pseudodisk even
though it is not disk-like, because it is produced by magnetically channeled
gravitational collapse, just as the unperturbed (flat) pseudodisk.

Although the warping of the pseudodisk in Model P is more
extreme and less chaotic than that induced by the sonic turbu-
lence (M = 1) in Models F, U, and V, the underlying physical
reason for disk formation and survival appears broadly similar.
Specifically, the large field-rotation misalignment ensures that
the bulk of the pseudodisk material stays out of the equatorial
plane, which alleviates the problem of magnetic flux (Φz) ac-
cumulation on the equatorial plane. This in turn eliminates the
highly magnetized DEMS that is detrimental to disk formation
(Zhao et al. 2011; Krasnopolsky et al. 2012), as shown in the
right panel of Figure 17. In addition, the misalignment decreases
the rate of angular momentum removal from the pseudodisk by
outflow (Ciardi & Hennebelle 2010; Li et al. 2013) and weakens
the braking near the magnetic barrier, both of which leave more
angular momentum in the accretion flow to form RSDs. The
turbulence- and misalignment-enabled disk formation are thus
unified, in that both cause the pseudodisk to warp strongly out
of the equatorial plane (defined by rotation), which is conducive
to disk formation.

4.2. Origin of Rotationally Supported Disks

The pseudodisk that plays a central role in our scenario of
RSD formation is a generic feature of the protostellar collapse
channeled by a large-scale, dynamically significant magnetic
field. This is because the material distributed along any given
field line cannot all collapse toward the center at the same
rate; some part is bound to collapse in a runaway fashion, as
illustrated in the upper panel of Figure 18. If a piece of matter
on a field line is initially closer to the central object than the rest
of the material along the same field line, it would experience a
stronger gravitational acceleration, which would move it closer
to the center, which would in turn increase its gravitational

14



The Astrophysical Journal, 793:130 (19pp), 2014 October 1 Li et al.

Figure 18. Schematic illustrating pseudodisk formation and magnetic flux loss
from the equatorial, disk-forming region close to the central object. Top panel:
localized runaway gravitational collapse drags the field lines into a highly
pinched configuration, which enables matter to slide along field lines and
collect at the apex to form a dense pseudodisk, which is further compressed
magnetically. The out-of-the-equatorial-plane warping enables the pseudodisk
to deliver mass close to the center object without increasing the magnetic flux
in the circumstellar disk-forming region on the equatorial plane. Bottom panel:
the highly pinched field lines reconnect near the central object, triggered by
magnetic decoupling near the central object or by some other means. The
reconnected field lines are driven outward by the magnetic tension, escaping to
large distances.

(A color version of this figure is available in the online journal.)

acceleration further. This differential collapse of matter along a
field line drags the field line into a highly pinched configuration,
which would not only allow matter to slide along the field line
to the cusp but also compress the material collected there into
a flattened structure—the pseudodisk (Galli & Shu 1993; Allen
et al. 2003). It is the conduit for most of the core mass accretion
with or without a turbulence,10 as discussed in Section 3.4 and
illustrated in Figure 9. As such, it is largely responsible for
concentrating the magnetic flux at small radii that creates the
difficulty for RSD formation in the first place. Fortunately, it
also holds the key to overcoming the difficulty.

The key is the sharp field reversal across the pseudodisk
(see Figure 18). The highly pinched field lines are prone to
magnetic reconnection, numerical or otherwise. There is little
doubt that reconnection has occurred in all magnetized disk

10 In the most general case, the gravity-driven, magnetically channeled dense
thin accretion regions may appear as a network of dense, collapsing ribbons
rather than a single topologically connected structure. They are a generalized
form of the pseudodisk.

formation simulations to date that include turbulence (Santos-
Lima et al. 2012, 2013; Seifried et al. 2012, 2013; Joos et al.
2013; Myers et al. 2013). It is needed to explain the loss of
magnetic flux near the central protostar relative to that expected
under flux-freezing found in these simulations. Santos-Lima
et al. (2012) was the first to study the flux loss, and attributed
it to the turbulence-induced magnetic reconnection (Lazarian &
Vishniac 1999; Kowal et al. 2009), which in their scenario is
the key to disk formation (see also Santos-Lima et al. 2013).
Joos et al. (2013) found that the amount of flux loss increases
with the level of turbulence, as one would expect if the flux
loss is induced by turbulent reconnection. This is, however, not
definitive proof of Santos-Lima et al.’s scenario, because the
turbulence-induced reconnection events remain to be identified
in the simulations.

We propose an alternative scenario for the reconnection that
is required to explain the flux reduction observed in simula-
tions, including our own: the magnetic decoupling-triggered
reconnection of sharply pinched field lines. This alternative is
motivated by the fact that gravitational collapse can naturally
produce, by itself, sharply pinched field lines close to the cen-
tral object that are prone to reconnection and that flux reduc-
tion is observed even in non-turbulent simulations, such as our
Models A and P (see also Zhao et al. 2011 and Krasnopolsky
et al. 2012), which indicates that efficient reconnection can be
achieved without any turbulence. This type of reconnection was
observed directly in 2D (axisymmetric) simulations of Mellon
& Li (2008; see also footnote 5, Figure 6, and auxiliary material
online), where oppositely directed field lines above and below
the pseudodisk reconnect episodically near the inner boundary,
where the matter is decoupled from the field lines as it accretes
onto the central object. As discussed in Section 3.2, the decou-
pling is required for solving the “magnetic flux problem” in star
formation, and may be achieved physically through non-ideal
MHD effects (e.g., Li & McKee 1996; Contopoulos et al. 1998;
Kunz & Mouschovias 2010; Machida et al. 2011; Dapp & Basu
2010; Dapp et al. 2012; Tomida et al. 2013). In our scenario,
it is responsible for preventing the field lines from piling up
near the center to form the strong split magnetic monopole that
lies at the heart of the “magnetic braking catastrophe” in ideal
MHD (Galli et al. 2006).11 The elimination of the split monopole
does not guarantee RSD formation, however. In the absence of
any turbulence (or field-rotation misalignment), the bulk of core
mass accretion is funneled through a dense, coherent, equato-
rial pseudodisk (see Figure 14). The accreting material drags
the field lines to the inner boundary, where they decouple from
the matter. After decoupling, the oppositely directing field lines
above and below the equator reconnect, and are driven out-
ward by the magnetic tension force along the equatorial plane.
However, their equatorial escape to large distances is blocked
by continuous mass infall in the dense, coherent, equatorial
pseudodisk. They remain trapped close to the central object, in
a highly magnetized circumstellar region—the DEMS. As dis-
cussed in Section 3.3 and illustrated in Figure 7, the DEMS must
be removed in order for a robust, rotationally supported disk to
form (Zhao et al. 2011; Krasnopolsky et al. 2012). This, in our
scenario, is where turbulence (and field-rotation misalignment)
comes in.

11 We note that, once an RSD has formed, its differential rotation can force
field lines of opposite polarity closer and closer together, which can also
trigger reconnection, as noted in Li et al. (2013; see the left panel of their
Figure 6). The rotation-induced reconnection may help the RSD survive by
decreasing the level of its magnetization.
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Figure 19. Disk comparison. Plotted are the distribution of logarithm of density and velocity field on a representative meridian plane for the magnetized, turbulent
case of Model F (M = 1, left panel) and its non-magnetic and non-turbulent counterpart (Model H, right panel) at the same time (t = 8 × 1011 s). Note that the disk
in the former appears thicker and more dynamically active than in the latter. The length of the box is 9 × 1015 cm (or 600 AU) on each side. The velocity vectors are
plotted with the maximum speed capped at 105 cm s−1 and an axial dense spot is removed for clarity. The colorbar is the same as in Figure 2.

(A color version of this figure is available in the online journal.)

In the presence of a strong turbulence, the pseudodisk can
become severely warped out of the equatorial plane and highly
variable in time. The beneficial effect of pseudodisk warping to
disk formation is illustrated in the top panel of the schematic in
Figure 18. Mass accretion through the warped pseudodisk will
still drag along the (highly pinched) field lines. However, unlike
the case of flat equatorial pseudodisk, such field lines do not
have to pass through the circumstellar, disk-forming region on
the equatorial plane; they can cross the equatorial plane at larger
distances. The situation is qualitatively similar in the presence
of a large field-rotation misalignment, which warps the plane
of pseudodisk away from the plane of disk formation. In both
cases, when the highly pinched field lines threading the warped
pseudodisk reconnect, they can escape directly to large distances
without having to cross the equatorial disk-forming region first
(see the lower panel of Figure 18). As a result, the amount
of magnetic flux trapped in the equatorial, disk-forming region
is much reduced compared to the non-turbulent, field-rotation
aligned case. The reduction greatly weakens the DEMS, making
the disk formation possible.

Our proposed scenario of RSD formation in turbulent magne-
tized dense cores thus involves two conceptually distinct steps:
(1) decoupling-triggered reconnection of sharply pinched field
lines close to the protostar, which removes the strong split mag-
netic monopole at the center, the first obstacle to disk formation,
and (2) warping of the pseudodisk out of the disk-forming plane,
which weakens the DEMS, the second obstacle to disk forma-
tion. Compared to Santos-Lima et al.’s scenario of turbulence-
induced reconnection, it has the advantage of being capable of
explaining the disk formation enabled by both turbulence and
field-rotation misalignment. Nevertheless, the two scenarios are
not mutually exclusive. Indeed, it is likely that both mechanisms
are operating in the current generation of simulations. For exam-
ple, field-matter decoupling must be present in any magnetized
disk formation simulations involving sink particles, including

those of Santos-Lima et al. (2012, 2013), because the matter
is accreted onto the sink particle but not the magnetic field.
On the other hand, turbulence has been shown to enhance the
reconnection rate of oppositely directed field lines, both analyt-
ically (Lazarian & Vishniac 1999) and numerically (e.g., Kowal
et al. 2009), so the turbulence-induced reconnection is likely
present in simulations, including our own, although its rate is
difficult to quantify. We should stress that, even in Santos-Lima
et al.’s scenario, the pseudodisk is expected to play a central
role: its sharply pinched field lines make it the most natural
location for the turbulence-induced reconnection. Furthermore,
the warping of the pseudodisk, a key ingredient of our sce-
nario, can help such reconnected field lines escape to large
distances without passing through (and being trapped in) the
equatorial, disk-forming region. One complication is that the
turbulent motions are expected to be strongly modified, indeed
dominated, by supersonic gravitational infall in the pseudodisk
region close to the central object. The potential effect of such fast
infall on the turbulence-induced magnetic reconnection remains
to be quantified. Another complication is that, in ideal MHD
simulations, both turbulence-induced and decoupling-triggered
reconnections involve numerical diffusion, which depends on
numerical resolution. As such, it would be difficult to obtain
numerically converged solutions.

4.3. Characteristics of Disks Fed by Warped,
Magnetized Pseudodisks

A key finding of our investigation is that the rotationally
supported disks formed in turbulent, magnetized cloud cores
are fed by highly variable, strongly warped pseudodisks. An
interesting characteristic of such disks is their thickness. It is
illustrated in the left panel of Figure 19 for Model F (with a
turbulent Mach number M = 1); the figure is a zoom-in of
Figure 12 (see also the lower panels of Figure 16 for Models U
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Figure 20. Time evolution of the ratios of the magnetic to thermal (lower
thicker lines) and rotational to thermal (upper thinner lines) energies for the
disk in Models F (p = 1, solid lines), U (p = 0.5, dashed), and V (p = 2.0,
dotted), showing that the disk remains strongly magnetized.

and V). For comparison, we also plotted side-by-side the disk
formed in a model that is neither magnetic nor turbulent, but
with other parameters identical to those of Model F (Model H
in Table 1). The disk in the magnetized Model F is smaller
in radius and thicker (relative to radius) than that in the hydro
Model H. The smaller radius is to be expected because of angular
momentum removal by magnetic braking and the associated
outflow. The larger thickness may be due, at least in part, to
the feeding of the disk by a strongly warped pseudodisk from
directions that are highly variable and often tilted significantly
away from the equatorial plane (see auxiliary material online
for a movie of mass accretion in a meridian plane); indeed,
the warped pseudodisk often feeds the rotationally support disk
from the top and bottom surfaces, rather than the outer edge
of the disk. As a result, the disk is dynamically “hotter” (with
faster motions) in the poloidal plane than that in the hydro case
(compare the disk velocity fields in Figure 19; see below for
another mechanism for puffing up the disk).

Another characteristic of the disks fed by warped pseudodisks
is that they are significantly magnetized. This is because
the pseudodisks are necessarily magnetized to a significant
level since they are the product of magnetically channeled
gravitational collapse. Significant magnetization is therefore
expected for the disks as well. The degree of disk magnetization
is shown in Figure 20, where we plot the time evolution of the
ratios of magnetic to thermal and rotational to thermal energies
for the disk (defined somewhat crudely as the region denser than
10−16 g cm−3, a density corresponding to the blue isodensity
surface in Figure 10) for the sonic turbulence cases (Models F,
U, and V). It is clear that the magnetic energy dominates the
thermal energy, by a factor of a few to several for all three cases.
The magnetic energy is less than the rotational energy, however,
by about one order of magnitude. The magnetic field is therefore
expected to be wrapped by rotation into a predominantly toroidal
configuration. This is indeed the case, as illustrated in Figure 21,
where representative magnetic field lines are plotted for the disk
of Model F shown in the left panel of Figure 19. The toroidal

Figure 21. 3D magnetic field structure of the disk shown in the left panel of
Figure 19. Plotted are representative magnetic field lines and isodensity surface
at 10−16 g cm−3 (blue). The box size is 600 × 300 AU.

(A color version of this figure is available in the online journal.)

field configuration is consistent with the recent dust polarization
observations of the young disk in IRAS 16293B (Rao et al.
2014), HL Tau (Stephens et al. 2014) and L1527 (Segura-Cox
et al. 2014).

The two characteristics of the disks discussed above (large
thickness and significant magnetization) may be related. The
rather strong toroidal field inside the disk provides an additional
support (on top of the thermal pressure) to the gas in the
vertical direction, which tends to puff up the disk. Observational
evidence for a puffed-up disk may already exist. Tobin et al.
(2013) inferred, through detailed modeling of the L′-band
image, that the young disk in L1527 is thicker than those in
more evolved sources on the 100 AU scale; it is about twice the
disk scale-height estimated based on the thermal support alone.
To puff up a disk by a factor of two, an additional (non-thermal)
energy density of ∼3 times the thermal energy density is needed,
since the scale-height is proportional to the square root of the
total (thermal and non-thermal) energy density. From Figure 20,
it is clear that the required non-thermal energy is comparable
to the magnetic energy in the disk. It is therefore plausible
that the puffed-up disk in L1527 is an example of the kind of
thick, dynamically active disks fed anisotropically by highly
variable, strongly warped, magnetized pseudodisks that we find
in our simulations (and possibly in the simulations of Santos-
Lima et al. 2012, 2013; Seifried et al. 2012, 2013; Myers et al.
2013 and Joos et al. 2013 as well). High resolution observations
of polarized dust emission from the disks of L1527 and other
deeply embedded sources using sub/millimeter interferometers
(especially ALMA) can help firm up or refute this interpretation.
In any case, the disk thickness compared to the thermal scale-
height can put an upper limit on the disk toroidal field strength,
which is difficult to constrain through other means.

4.4. Implications, Uncertainties, and Future Directions

The picture of disk-feeding by a variable, warped magnetized
pseudodisk, if true in general, may have strong implications for
the chemical connection between the collapsing core and the
disk; the connection is an important step toward understanding
the chemical heritage of the solar system (e.g., Caselli & Cecca-
relli 2012; Hincelin et al. 2013). First, if most of the disk-forming
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material comes from the magnetically compressed pseudodisk,
its density before entering the RSD should be higher than that in
the non-magnetic (hydro) case. The higher density could affect
the rates of chemical reactions and ice formation (for example,
through shorter adsorption timescales, or perhaps three-body
reactions if the density is high enough), and thus the gas and
ice composition. Second, disk-feeding through a highly variable
pseudodisk means that any accretion shock, if exists at all, is
strongly time dependent and spatially localized, unlike the sim-
plest hydro case where a well-defined accretion shock encases
the whole disk (see, e.g., Yorke et al. 1993, and the right panel of
Figure 19). The shock structure is expected to be further mod-
ified by the magnetic field embedded in the pseudodisk. As a
result, the disk material may experience a rather different ther-
mal history, which could affect both its gas and ice content (e.g.,
Visser et al. 2009). Third, if the disk is puffed up and dynami-
cally active in the poloidal plane (see the left panel of Figure 19),
its rates of chemical reactions and vertical mixing would be af-
fected. Furthermore, the long-term evolution of the disk is ex-
pected to be strongly modified, perhaps dominated, by the rather
strong (toroidal) magnetic field in the disk. A caveat is that the
disk magnetic energy may be strongly affected by non-ideal
MHD effects, which are expected to be important since the bulk
of protostellar disks is lightly ionized (Armitage 2011; Turner
et al. 2014). The modifications need to be quantified in the future.

Another caveat is that, in our simulations, we included the
gravity from a central object (of 0.5 M�) but not the self-
gravity of the gas. One consequence of this idealization is
that the gravity is stronger at small radii compared to the more
self-consistent case with self-gravity before the central object
accretes 0.5 M�. The stronger gravity is expected to accelerate
the material in the pseudodisk to a higher infall speed relative
to the more slowly collapsing material at larger distances that
is magnetically connected to it. The higher relative speed is
expected to stretch the field lines across the pseudodisk into
a more severely pinched configuration, which should in turn
compress the pseudodisk to a smaller thickness. This has the
benefit of bringing the role of pseudodisk on disk formation
into a sharper focus, but it may have exaggerated that role
somewhat. Nevertheless, the presence of a pseudodisk in self-
gravitating magnetized protostellar collapse is well established.
The fact that we are able to reproduce the known results that
disk formation in non-turbulent cores is suppressed when the
magnetic field and rotation axis are aligned (Model A) and
enabled when they are orthogonal (Model P) gives us confidence
that, despite the idealized setup, our results are qualitatively
correct. It remains to be determined whether our quantitative
results, such as the RSD formation enabled by a sonic (M = 1)
turbulence in a λ = 2.92 core (e.g., Model F), hold up or not
when the self-gravity is included.

We should note that the turbulence adopted in our simulations
is somewhat ad hoc. It serves well the purposes of perturbing
the pseudodisk and enabling disk formation, but how closely
it resembles the real turbulence in dense cores of molecular
clouds is unclear. This drawback will be harder to remedy,
because the detailed properties of the turbulence, such as its
energy spectrum, are not well quantified observationally on the
core scale, although the situation should improve with high-
resolution ALMA observations.

5. SUMMARY

We have carried out idealized numerical experiments of the
accretion of a rotating, turbulent, but non-self-gravitating, dense

core onto a pre-existing central stellar object in the presence of
a moderately strong magnetic field. We found that, in agreement
with previous work, the formation of an RSD is suppressed by
the magnetic field in the absence of any turbulence (or field-
rotation misalignment) and that an initial turbulence, if strong
enough, can enable RSD formation. We identified the physi-
cally motivated magnetic decoupling-triggered reconnection of
severely pinched field lines close to the central object and the
warping of the pseudodisk out of the disk-forming, equatorial
plane as two key ingredients of the turbulence-enabled disk for-
mation, in contrast to the previously suggested scenario that
relies exclusively on turbulence-induced reconnection; in our
picture, the field pinching that facilitates the reconnection arises
primarily from (anisotropic) gravitational collapse rather than
turbulence (see Figure 18). The decoupling-triggered recon-
nection weakens the split magnetic monopole near the proto-
star, which is the first obstacle to disk formation in a magne-
tized cloud core. The turbulence-induced pseudodisk warping
weakens the so-called “magnetic decoupling enabled structure”
(DEMS), the second obstacle to disk formation, by reducing
the amount of the magnetic flux trapped in the equatorial, disk-
forming region. We also showed that the warping decreases the
rates of angular momentum removal from the infalling material
in the pseudodisk region by both magnetic torque (especially
near the so-called “magnetic barrier,” see Figure 14) and out-
flow, leaving more angular momentum to form a rotationally
supported disk. The beneficial effects of warping the pseudodisk
out of the disk-forming (equatorial) plane can also be achieved
by a misalignment between the magnetic field and rotation axis.
In this sense, the turbulence- and misalignment-enabled disk
formation mechanisms are unified.

We emphasized that the pseudodisk is an unavoidable prod-
uct of the highly anisotropic, magnetically channeled gravita-
tional collapse, even in the presence of turbulence. It is the main
conduit for core mass accretion and its severely pinched field
configuration makes it a natural place for the magnetic recon-
nection triggered by decoupling of both physical and numerical
origin and possibly enhanced by turbulence. It feeds the rota-
tionally supported disks formed in our turbulent, magnetized
dense cores. These disks differ significantly from those formed
in the non-turbulent, non-magnetic cores. They are thicker, more
dynamically active in the poloidal plane, fairly strongly magne-
tized, and are not completely encased by an accretion shock. It
will be interesting to determine whether these differences per-
sist when the self-gravity of the material surrounding the stellar
object is included and, if yes, to explore their implications, espe-
cially on the disk chemistry (including ice) and their long-term
dynamical evolution (including possible fragmentation and sub-
stellar object formation).

We thank Ugo Hincelin for useful discussion. The work
is supported in part by NNX10AH30G, NNX14AB38G, and
AST1313083.
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