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ABSTRACT

In the Jupiter–Io system, the moon’s motion produces currents along the field lines that connect it to Jupiter’s polar
regions. The currents generate and modulate radio emissions along their paths via the electron–cyclotron maser
instability. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the
presence of exomoons around giant planets in exoplanetary systems. A model explaining the modulation mechanism
in the Jupiter–Io system is extrapolated and used to define criteria for exomoon detectability. A cautiously optimistic
scenario of the possible detection of such exomoons around Epsilon Eridani b and Gliese 876 b is provided.
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1. INTRODUCTION

Since the discovery of the first confirmed extra-solar planet
(exoplanet) around the pulsar PSR1257 + 12 by Wolszczan &
Frail (1992), there has been great progress in detection tech-
niques and instrumentation, resulting in hundreds of confirmed
exoplanets1 and thousands of exoplanet candidates identified
by NASA’s Kepler2 space telescope. Nonetheless, the current
limits of observational techniques have not made it possible to
confirm any exomoon detection.

Based on our knowledge of the solar system, one might
expect exomoons to be present around some of the known
exoplanets and several potential candidates have already been
suggested. For example, the orbital stability criterion was used
by Quarles et al. (2012) and Cuntz et al. (2013) to suggest the
existence of exomoons in the Kepler 16 and HD 23079 planetary
systems, respectively. Moreover, Kipping et al. (2009) suggested
that exomoons may actually be discovered in the data already
collected by the Kepler mission. Among the moons of our
solar system, there is an interesting example of a planet–moon
interaction observed in the Jupiter–Io system, where Io’s motion
inside Jupiter’s magnetosphere induces radio emissions (Bigg
1964). The motion produces currents along the field lines
that connect Io to the Jupiter’s polar regions, where the radio
emissions are modulated by said currents (Acuna et al. 1981;
Mauk et al. 2001).

In this study, we use Io-controlled decametric (Io-DAM)
emissions as a basis to demonstrate how the presence of ex-
omoons around giant exoplanets may be revealed by the same
modulation mechanism. We determine the required physical
conditions for such interaction, then assess the feasibility of our
model by providing a cautiously optimistic scenario whereby ex-
omoons could be found. Then, we use the available information
on the proposed Square Kilometer Array (SKA)3 radio telescope
as an example of what kinds of exomoons could be detected
if such technologies were fully implemented. Furthermore,
we apply our results to the two nearby exoplanetary systems,

1 http://exoplanet.eu/catalog/
2 http://kepler.nasa.gov/Mission/discoveries/candidates/
3 http://www.skatelescope.org/

Epsilon Eridani and Gliese 876, to show that finding exomoons
using this system is not beyond the realm of possibility. Finally,
we discuss future improvements to our model and how those
improvements might change the results presented here.

There are several previous studies that are at least partially
based on the Jupiter–Io system and in which the authors sug-
gest detecting exoplanets by using exoplanetary radio emis-
sions (Lazio et al. 2004 and references therein). However,
those authors based their studies on the non-Io-controlled deca-
metric Jovian emissions instead of the Io-DAM, which orig-
inate directly from interactions between Io and the Jovian
magnetosphere. Moreover, Nichols (2011) studied the Jupiters
magnetosphere–ionosphere coupling mechanism and hypothe-
sized that this mechanism could produce enough radio power
to be detectable from Earth. Both his study and ours are based
on the unipolar inductor mechanism and the current source is
Io’s plasma torus. However, the circuit made by the current in
each case is fundamentally different. In our study, the circuit
directly couples Io to Jupiters poles, whereas in Nichols’s study,
the current bypasses Io and instead flows through magnetic field
lines well beyond the moon.

As with the other studies mentioned above, Nichols’s mecha-
nism requires a large stellar luminosity. Specifically, it requires
large X-ray and EUV stellar irradiation of the exoplanets iono-
sphere to produce a large enough output power to make it de-
tectable. Our detection method, as it is explained in this paper,
does not have such a requirement and in fact favors low stellar
irradiation scenarios. More importantly, even though Nichols
emphasizes active moons as the sources of plasma, this might
not be the case. Recent computational studies have shown that
stellar irradiation alone can ionize the hydrogen-rich atmosphere
of a Jovian exoplanet to levels that can match and even vastly
exceed the amount of plasma in Io’s plasma torus (Trammell
et al. 2014). In other words, Nichols’s mechanism cannot be
used to detect exomoons, only exoplanets.

This paper is organized as follows. In Section 2, we present
the basic theory on the Io–Jupiter system, the intensity of radio
emissions, and the magnetic fields in giant planets. In Section 3,
we present our results on the detectability scenario of exomoons,
followed by discussion. In Section 4, we conclude with a brief
overview of our results.
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2. THEORY

2.1. The Io–Jupiter System

Io is an intensely volcanic moon orbiting inside Jupiter’s
magnetosphere. The volcanic activity creates a light atmosphere
of SO2 around Io, which ionizes to create an ionosphere (Lopes
& Spencer 2007). This ionosphere then injects ions into Jupiter’s
magnetosphere to create a plasma torus, which orbits Jupiter’s
magnetic equator at an angle of 9.◦6 from the rotational equator
and co-rotates with the magnetic field at a speed of 74 km s−1

(Su 2009). Io orbits Jupiter at a linear speed of 17 km s−1, so
Jupiter’s magnetic field passes Io at a speed of 57 km s−1. The
speed difference gives rise to a unipolar inductor (Grießmeier
et al. 2007), which induces a current across Io’s atmosphere of
a few million amps. The current then accelerates the electrons
that produce the characteristic radio emissions (Crary 1997). It
must be noted that while volcanism is essential to the formation
of a dense ionosphere around Io, such a process might not be
required for larger moons, since moons like Titan are already
large enough to sustain a thick atmosphere, which in turn can
give rise to an ionosphere.

Furthermore, the interaction between Io and the plasma
torus gives rise to Alfvén waves (Belcher 1987). The precise
mechanism by which Alfvén waves interact with the torus is
complex, and several analytical and numerical models have
been proposed. In these models, Alfvén waves produce electric
fields parallel to Jupiter’s magnetic field lines, which then
transport and accelerate electrons toward Jupiter’s magnetic
poles (Su 2009; Saur et al. 1999; Crary 1997; Neubauer 1980
and references therein). The electrons traveling through the
field lines create a cyclotron maser, which then emits radio
waves whose existence in the Jupiter–Io system has been
observationally verified (Crary 1997; Mauk et al. 2001).

Our studies of exoplanet–moon interactions are based on an
extrapolation of both Io’s plasma environment and Jupiter’s
magnetic field to different scenarios that could potentially be
encountered in newly discovered planetary systems. We begin
by finding an expression for the maximum intensity of the radio
emissions, then proceed to address the magnetic field and plasma
properties, and finally we analyze the dependence of the radio
emissions on these parameters.

2.2. Intensity of Radio Emissions

Assuming a simple current distribution around Io and that
the magnetic field lines are approximately perpendicular to the
plasma velocity, Neubauer (1980) found that the maximum Joule
dissipation of the system is given by

PT = πR2
IoV

2
0 B2

Io

μ0

√
V 2

A + V 2
0

, (1)

where RIo is Io’s radius, BIo is the magnetic field at Io’s position,
V0 is the plasma speed relative to Io, μ0 is the permeability of
free space, and VA is the Alfvén velocity. The Alfvén velocity
depends on the magnetic field, BIo, and the plasma density, ρIo,
through the relationship VA = BIo/

√
μ0ρIo.

Since only a small fraction of the maximum Joule dissipation,
PT , is converted to radio waves, we will introduce the efficiency
coefficient βIo, which, based on previous studies, is ≈1% for the
Jupiter–Io system (Zarka et al. 2001). There is little information
on the variability of this parameter, so we assume that other
exoplanet–moon systems have similar efficiency coefficients.

Hence, the maximum radio emission intensity, Prad, from these
systems is given as

Prad = πβSR
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, (2)

where the subscript “Io” was switched to “S” to denote that
these variables now belong to a generic exomoon or “satellite.”
The plasma speed, V0, is computed assuming it corotates with
the planet’s magnetic field, as in the Jupiter–Io case. Explicitly,
if the moon orbits at a distance of rS from the planet, then
V0 = ωP rS −√

GMP /rS , where G is the gravitational constant,
MP is the planet’s mass, and ωP is the planet’s angular velocity.
The other parameters in Equation (2) are explored in later
sections.

Equation (2) does not depend on the properties of the host
star and therefore the exoplanet–moon system does not have to
be close to its star (or even have a host star) to be detectable.
In fact, exomoons around exoplanets with small orbits might
be undetectable because stellar winds can also induce radio
emissions, which increase with decreasing planetary semi-major
axis (Zarka 1998). Furthermore, moon-induced radio emissions
do not solely occur along the orbital plane, which means the
system’s bodies do not have to orbit parallel to our line of sight.

The dependence of Equation (2) on R2
S clearly favors large

exomoons. Although there has been no observational evidence,
the possibility of detecting such exomoons is still plausible.
Nevertheless, given that mass grows as the cube of the radius,
the long-term stability of such systems can also be called into
question; however, orbital stability analysis is beyond the scope
of this study and it will not be discussed any further.

2.3. Magnetic Fields in Giant Planets

All the giant planets and several rocky bodies in the solar
system have magnetic fields and extended magnetospheres, of
which Jupiter’s is the largest. Consequently, one can expect
exoplanets to have similar magnetic fields and extended mag-
netospheres. To model an exoplanet’s magnetic field, we begin
by assuming that the field is mostly dipolar, as is the case for all
magnetized bodies in the solar system, and that its angle of in-
clination with respect to the exoplanet’s axis of rotation is small
enough to be neglected. If the exomoon orbits close to the rota-
tional equator of the exoplanet, then the magnetic field affecting
the exomoon at its location is given by BS = (μ0/4π )(m/r3

S ),
where m is the exoplanet’s magnetic dipole moment.

To approximate the magnetic moment of an exoplanet,
we adopt the approximation introduced by Durand-Manterola
(2009) who found that the magnetic moment of a planetary
body can be expressed as m = 10−5(σMP /TP )K , where the
exponent K is experimentally determined to be 1.10 ± 0.13 (we
use 1.15 to better fit the giant planets), TP is the planet’s rotation
period, and σ is the conductivity of the liquid at its core, which
is responsible for creating the magnetic field. In the case of giant
planets, the liquid that creates their magnetic field is metallic
hydrogen, which is estimated to have a conductivity of about 2 ±
0.5×105 S m−1 (Shvets 2007). The expression for the magnetic
field affecting the exomoon is thus

BS = 10−12

r3
S

(
MP σ

TP

)K

. (3)

It must be mentioned that there are other approximations
that we could have chosen to calculate m, but we chose
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Durand–Manterola’s formula because of its simplicity and
because it can be at least partially justified using standard
electrodynamics. If the exomoon is sufficiently large, it could
also have its own magnetic field, but here we assume its effects to
be negligible. However, based on the interaction between planets
and the solar wind, we hypothesize that the exomoon’s magnetic
field creates a bow shock where the exomoon’s magnetic field
pressure equals the plasma torus pressure and its net effect is
to increase the apparent cross-sectional area of the exomoon,
thereby increasing the power of its radio emissions. This effect
will be quantitatively discussed in later publications.

2.4. Other Parameters and Assumptions

The intensity of exomoon-induced radio emissions depends
on many parameters, thus a thorough clarification of how each
of these parameters are treated is crucial. A very important
parameter in our calculation of a radio signal’s flux is TP, but
it is also very difficult to measure or predict. Therefore, it is
typically assumed to be equal to Jupiter’s rotational period, TJ ,
or that the planet is tidally locked if it is closer than 0.1 AU
to its host star (Lazio et al. 2004 and references therein). Since
we mostly consider exoplanets with large orbits, we assume
TP = TJ throughout the calculations.

The atmospheric plasma density of an exomoon (or exo-
planet) is difficult to determine if the environmental properties
of the body are not already known. Even though we cannot pre-
dict the plasma density of a hypothetical exomoon, we can find a
reasonable estimate based on what we know about the solar sys-
tem. The plasma density depends not only on the number of ions
present, but also on the molecular weight of the ions that consti-
tute it. For example, on Io, one can find O+, S+, SO+, etc., because
Io’s atmosphere is made from the SO2 emitted by its volcanoes
(Su 2009). Io’s mean plasma density is ∼4.2×104 amu cm−3, or
∼7×10−17 kg m−3 (Kivelson 2004). Earth’s ion number density
is typically on the order of 105 cm−3, and the dominant ion is
O+, which gives us a plasma density of ∼1.7 × 106 amu cm−3,
or ∼2.7 × 10−15 kg m−3 (Schunk & Nagy 2009). Venus and
Mars also have similar plasma densities to Earth, with O+

2, and
O+ ions from CO2 being the dominant species in their iono-
spheres (Schunk & Nagy 2009). Given the large variability of
this parameter, we chose to work with three different values:
104 amu cm−3, 105 amu cm−3, and 106 amu cm−3, which cover
most of the range of plasma densities that can lead to a detectable
exomoon with reasonable size (as explained in the next section).
We can see the dependence of Prad on the plasma density, ρS ,
by rearranging Equation (2) to get

Prad = πβSR
2
SB

2
SV0

μ0
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μ0

(
BS

V0

)2 . (4)

Equation (4) allows us to define a critical density ρC =
μ−1

0 (BS/V0)2, which in turn allows us to characterize the three
limiting cases:

P− ≡ Prad(ρS � ρC) = πβSR
2
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, (5)

PC ≡ Prad(ρS = ρC) = 1√
2
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0 βSR
2
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2
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P+ ≡ Prad(ρS 	 ρC) = πμ−1
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2
SB

2
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(c)
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Figure 1. Prad as a function of rS, starting with values from the Jupiter–Io
system and changing one parameter at a time. (a) RS = 2 RIo, (b) MP = 2 MJ ,
(c) ρS = 2ρIo, (d) all Jupiter–Io values, (e) TP = 2 TJ . The node seen at the
synchronous orbit occurs because V0 = 0 at this orbital distance.

(A color version of this figure is available in the online journal.)

The fact that PC = (1/
√

2)P+ ∼ 71%P+ tells us that the
emitted radio power is much less dependent on ρS for plasma
densities larger than ρC . Furthermore, since P− decreases with
decreasing ρS , then systems with higher plasma densities are
more likely to be observable.

Regarding the orbital radius rS, the only real physical con-
straint on the exomoon’s orbit is that it must be close enough to
the exoplanet to be well inside the magnetosphere and gravita-
tionally stable, but farther than the Roche limit to avoid structural
instability. However, we can also make use of Equation (2) to
find orbits that might favor radio emissions, since exomoons in
these orbits are the most likely to be detected.

The function Prad(rS) is plotted in Figure 1 for various param-
eter combinations. The purpose of Figure 1 is to demonstrate
how changing a single parameter in Prad affects its properties.
Clearly, Prad always has a single maximum in the orbits larger
than the synchronous orbit. The only parameter that does not
affect the orbital distance at which this maximum occurs is RS;
however, ρS only affects the point’s position weakly and TP is
always held constant, so MP is the dominant parameter when
finding Prad’s maximum. The region around the maximum is
also relatively flat; therefore, it seems reasonable to assume that
an exomoon could be close to this maximum. In fact, Io and four
Saturnian moons (including the large moon Enceladus) have or-
bits well within an area that would allow the moons to output
at least 95% of the maximum predicted radio power. Therefore,
we set rS to be the value that gives the maximum radio power
and rename it rOpt from this point forward to avoid confusion.
We avoid the treatment of orbits smaller than the synchronous
orbit due to their proximity to the Roche limit.

It is noteworthy that the optimal orbital radius for each plan-
etary mass needs to be found numerically, but it approximately
follows a power law. For example, using ρS = ρIo we get
rOpt = 5.4 M0.32

P , where MP and rOpt are given in units of
Jupiter’s mass and radius.

3. DETECTABILITY OF EXOMOONS

For a power source a distance d away from an observer, the
incident flux is given by S = P/(Δf Ωd2), where P is the
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Figure 2. Curves of output flux, S, plotted in the RS–fC plane for several plasma densities. The radii of detectable exomoons that are 15 light years away are plotted
as a function of the host exoplanet’s cyclotron frequency for several flux sensitivity values. From left to right, the panels show results for plasma densities of 104, 105,

and 106 amu cm−3. The shaded area corresponds to the potential detection capabilities of a fully implemented SKA telescope. 1 Jy = 10−26 W m−2 Hz.

source’s output power, Δf is its bandwidth (usually taken to be
half of the cyclotron frequency), and Ω is the solid angle through
which the power is emitted by the source. In the case of the
Io-DAM, the emission cone half angle ranges from 60◦ to 90◦,
with a wall thickness of 1.◦5 (Lopes & Spencer 2007; Queinnec
et al. 2001), which gives a solid angle of ∼0.14–0.16 sr.
Assuming a system also emitting with a wide half angle and
wall thickness of up to 2◦ gives Ω ∼ 0.2 sr. Taking Prad to be
source’s power, the incident flux becomes

S = 2πβSR
2
SB

2
SV0

μ0fCΩd2

√
ρS

ρS + μ−1
0 (BS/V0)2

, (8)

where fC is the cyclotron frequency of the system.
The cyclotron frequency is calculated using fC =

eBpole/(2πme), where e is the electron charge, me is the elec-
tron mass, and we use the magnetic field strength at the poles
of the exoplanet, Bpole, because that is where most of the radio
emissions occur. At the poles of the planet, the magnetic field
is twice as strong as it is at the equator. Hence, we can use
Equation (3) to express the strength of the magnetic field at the
poles as Bpole = 2(rOpt/RP )3BS , where RP is the radius of the
exoplanet. Under this assumption, the cyclotron frequency in-
creases as MK

P , thereby limiting the number of exoplanets that
a telescope could successfully scan for exomoons. Nonethe-
less, there is still a wide range of frequencies within which an
exomoon with radius �1RE could be detected up to 15 light
years away, if the plasma density ρS of the system is at least
104 amu cm−3 and if the telescope’s sensitivity is at least tens
of μJy (see Figure 2). The proposed SKA telescope, if fully im-
plemented, could even detect Mars-size moons (∼0.532 RE)4 in
this case, if present. The range of detection of SKA is shown as
the shaded areas in Figure 2. Also, it must be noted that in reality
these systems emit over a range of frequencies instead a single
one, so the range of detectable systems is effectively larger than
shown here. The calculation of the whole frequency band will
be treated in future studies. Regarding RP, a survey of currently
known gas giants shows great variability in the value of this
parameter. Nonetheless, for large planetary masses, RP seems to
converge to a value close to Jupiter’s radius, RJ . Furthermore,
many authors (e.g., Zarka et al. (2001)) assume that RP = RJ

unless the exoplanet’s radius is explicitly known. Thus we will
also assume RP = RJ to be the general case.

Applying our results to the exoplanet Epsilon Eridani b
(1.55 MJ , 10.5 light years away), we find that a telescope

4 Assuming 2 pol., 1 hr integration, and 16 MHz bandwidth.

with a flux sensitivity of S � 50 μJy around 49 MHz
could detect exomoons with radius between 0.24 RE for high
ρS(∼106 amu cm−3) and 0.73 RE for low ρS(∼104 amu cm−3).
For comparison, the Moon is ∼0.273 RE. On another nearby
exoplanet, Gliese 876 b (2.28 MJ , 15.29 light years away), a
telescope with similar sensitivity around 93 MHz could detect
an exomoon with a radius between 0.28 and 0.86 RE , depend-
ing on ρS . In both cases, a fairly large minimum radius is re-
quired for exomoons to be detectable unless there is a large
amount of plasma present. In fact, Equation (8) tells us that
to find an exomoon of radius 2500 km (similar to Mercury
or Titan) orbiting Epsilon Eridani b, we would need a tele-
scope with a flux sensitivity of 14 μJy if ρS is low. Neverthe-
less, improvements to radio telescope technology and observa-
tional techniques could one day make it possible to reach these
sensitivities.

4. CONCLUSIONS

The primary goal of this study was to find a set of condi-
tions that would allow detection of an exomoon through the
radio emissions it induces on its host exoplanet and to assess
whether these conditions are attainable. The results presented in
Section 3 show that such conditions can exist, hence confirming
the possibility of exomoon detection using this method, and we
showed what sensitivities observational facilities need have to
detect said exomoons. An exomoon orbiting Epsilon Eridani b,
with a radius as low as 0.24 RE, lies in the detectable range
of telescopes with a sensitivity of S � 50 μJy. However, de-
tection of a Titan- or Mercury-size exomoon under low plasma
conditions would require a telescope with a flux sensitivity of
∼14 μJy or better.

The model presented here still requires several refinements,
such as including the effects of magnetic exomoons, finding bet-
ter constraints on TP and ρS , and calculating a complete emis-
sion spectrum rather than a single cyclotron frequency. These
improvements will be treated in later studies. Nonetheless, it
is still our hope that the results presented here will give new
insight to the observational community and stimulate searches
for the modulation of exoplanetary radio emissions caused by
the presence of exomoons.
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