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ABSTRACT

Several young supernova remnants, including SN 1006, emit synchrotron X-rays in narrow filaments, hereafter
thin rims, along their periphery. The widths of these rims imply 50–100 μG fields in the region immediately
behind the shock, far larger than expected for the interstellar medium compressed by unmodified shocks, assuming
electron radiative losses limit rim widths. However, magnetic field damping could also produce thin rims. Here we
review the literature on rim width calculations, summarizing the case for magnetic field amplification. We extend
these calculations to include an arbitrary power-law dependence of the diffusion coefficient on energy, D ∝ Eμ.
Loss-limited rim widths should shrink with increasing photon energy, while magnetic-damping models predict
widths almost independent of photon energy. We use these results to analyze Chandra observations of SN 1006, in
particular the southwest limb. We parameterize the FWHM in terms of energy as FWHM ∝ EmE

γ . Filament widths
in SN 1006 decrease with energy; mE ∼ −0.3 to −0.8, implying magnetic field amplification by factors of 10–50,
above the factor of four expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules out magnetic
damping models. It also favors short mean free paths (small diffusion coefficients) and strong dependence of D on
energy (μ � 1).
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1. INTRODUCTION

Cosmic synchrotron sources, such as jets in active galactic
nuclei, radio halos, and relics in clusters of galaxies, pulsar-wind
nebulae, and shell supernova remnants (SNRs), demonstrate
the ubiquity of power-law distributions of relativistic electrons.
Understanding the origins of these fast particles is necessary
to learn about these objects’ energy budgets and evolution.
The synchrotron flux density emitted by a source depends
roughly on the product of the energy density of relativistic
electrons ue and the magnetic field uB, but an independent
determination of magnetic field strengths in synchrotron sources
has proven elusive. The minimum energy of a synchrotron
source occurs when the two energy densities are roughly
equal (“equipartition”; actually, ue = (4/3)uB ; e.g., Pacholczyk
1970). However, it is not clear whether the unseen population of
relativistic protons should also be included, and if so, what
the proton-to-electron energy ratio should be. Furthermore,
there is no obvious physical reason to expect equipartition.
The argument for equipartition derives from attempts to explain
extragalactic radio sources in which the total energy budget is
so large that it was of interest to find a lower bound (Burbidge
1956). However, many other synchrotron sources, including
SNRs, release a relatively small fraction of their total energy
content as synchrotron emission, so could easily afford to be far
from equipartition (in either direction).

Although magnetic fields are not dynamically important in
SNRs (e.g., Jun & Jones 1999), their strength is critical in
determining the maximum energy to which particles can be
accelerated. For the diffusive shock acceleration (DSA) process

(e.g., Blandford & Eichler 1987), the time τ (E) to accelerate
particles to energy E depends on the diffusion coefficient D and
the shock velocity vshock by τ (E) ∼ D/v2

shock. For relativistic
particles, D = λc/3. Then in “Bohm-like” diffusion, where
the mean free path λ is assumed proportional to the particle
gyroradius (λ = ηrg = ηE/eB), τ (E) ∝ 1/B, and higher
magnetic fields result in more rapid acceleration and higher
maximum energies. This is independent of several competing
mechanisms and ultimately limits acceleration (finite time since
onset of acceleration, radiative losses, or escape). Note that for
the above description of the diffusion coefficient, taking η = 1
is called Bohm diffusion or the “Bohm limit.” It corresponds to
λ = rg , often assumed to be the shortest physically plausible
mean free path. However, in a turbulent wave field, it is not clear
whether this is a true limit, or even what kind of average value
for the magnetic field strength should be used to calculate rg
(e.g., Reville & Bell 2013).

Largely by exclusion of competing hypotheses, Galactic
cosmic ray acceleration is now widely attributed to SNR shocks.
The consensus is that SNRs can accelerate particles up to the
“knee,” the slight inflection and steepening around 3 PeV (3 ×
1015 eV). (No plausible version of SNR-based DSA produces the
maximum energies observed in cosmic rays of above 1019 eV,
e.g., Abraham et al. 2008, for which an extragalactic origin is
presumed.) However, since the work of Lagage & Cesarsky
(1983), it has been clear that typical estimates of magnetic
field strengths behind SNR shocks of a few μGauss (the mean
interstellar magnetic field multiplied by the shock compression
ratio, r, taken to be four for strong nonrelativistic shocks),
result in maximum energies that fall short of the “knee” by an
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order of magnitude or more. These estimates of B are based on
measurements of the interstellar magnetic field strength within
a few kiloparsecs of the Sun, which is about 2–3 μG (Lyne
& Smith 1989). Simple compression in a strong shock with
adiabatic index γ = 5/3 (i.e., unmodified by cosmic rays)
would produce downstream values larger by a factor of up to
four (no amplification if the shock velocity is parallel to the
field, a factor of four increase if perpendicular). Thus magnetic
fields larger than about 12 μG require an additional process of
amplification. Independent methods of estimating interstellar
magnetic field strengths, such as Zeeman splitting in molecular
lines, are not relevant to SNR environments.

Thus the plausibility of models in which SNR shocks produce
Galactic cosmic rays up to the “knee” may depend on observa-
tional determinations of the post-shock magnetic field strength.
Fortunately, the realization that young SNRs can produce syn-
chrotron emission into the X-ray band has made available a
new, potentially powerful method for such determinations. Sev-
eral young SNRs show thin (a very small fraction of their di-
ameter), synchrotron-emitting filaments along their edges. The
widths of these rims in the radial direction have been used to
infer estimates for the post-shock magnetic field strength and
presented as evidence for significant magnetic field amplifica-
tion by strong shocks, as we shall review in detail below. The
complexity of the calculations used to infer the magnetic field
magnitude varies significantly from simple analytic approxima-
tions to detailed numerical calculations, but the consensus from
these studies is that field amplification well beyond a factor of
four is required to explain the X-ray observations.

Thin synchrotron rims present a well-defined problem. While
synchrotron emissivity may suddenly turn on at the shock front
due to particle acceleration and magnetic field compression (or
amplification) there, turning it off again only about a tenth of a
parsec downstream is not so simple: one must either eliminate
the radiating particles or the magnetic field. Both possibilities
have been suggested. Radiative energy losses as particles advect
and diffuse downstream will eventually lower electron energies
below the level at which synchrotron X-rays can be produced.
More rapid synchrotron losses for higher electron energies then
predict that rims will become thinner at higher photon energies.
However, it is also possible that magnetic fields somehow decay
behind the shock, with a length scale (almost) independent of
electron energy, predicting rims whose thickness is relatively
constant with photon energy.

In the energy-loss scenario, the rate at which rims become
thinner as observing energy rises depends on electron transport.
If electrons are simply advected downstream, rim widths l de-
pend only on the magnetic field strength, and drop quite rapidly
with increasing photon energy, l ∝ (hν)−1/2 in the simplest ap-
proximation, as we describe below. However, diffusion allows
electrons of the same energy to spread out spatially, diluting
this effect somewhat and predicting slower drops in rim widths
with energy. Measuring the rim widths at several different pho-
ton energies is thus key to discriminating among models.

The remnant of the Type Ia supernova of AD 1006 is well
suited for this analysis, as its large angular size coupled with
Chandra’s high spatial resolution allows accurate measurements
of radial profiles of the filaments: the remnant radius of about 15′
corresponds to over 1800 Chandra ACIS pixels. Furthermore,
the shock speeds in the synchrotron-dominated northeast (NE)
and southwest (SW) edges are about 5000 km s−1, as measured
from their proper motion (Katsuda et al. 2009; Winkler et al.
2014), and the SNR has been detected as a TeV source (Acero

et al. 2010), suggesting that SN 1006 produces very high-energy
cosmic rays.

Our purpose here is to consider theories of particle diffu-
sion and magnetic field amplification in the light of new deep
observations of SN 1006 made with Chandra. In Section 2
(summarized in Table 1), we review earlier work on filament
calculations and the evidence for field amplification to establish
a firm background for the new work presented here. In Section 3,
we generalize previous work by allowing different energy de-
pendence of the diffusion coefficient from Bohm-like, includ-
ing Kolmogorov and Kraichnan-type diffusion, among others.
We first neglect any cutoff in the electron spectrum and calcu-
late model profiles and their energy dependence for the loss-
limited (Section 3.1) and magnetically damped (Section 3.2)
scenarios. We then add the effects of an electron cutoff energy
(Section 3.3), and examine the effects of making the δ function
approximation for the emissivity (Section 3.4). In Section 4, we
describe measurements of the widths of the non-thermal fila-
ments in SN 1006, including for the first time the SW region,
making use of new high-resolution Chandra measurements. We
find that rim widths decrease with increasing photon energy,
quite rapidly in some cases. We use these measurements to
constrain both the post-shock magnetic field and diffusion coef-
ficient. The general narrowing of rims eliminates the magnetic-
damping model for rim widths; quantitatively, we find values of
post-shock magnetic field of 70–200 μG, comparable to those
obtained in earlier work. However, the rapidity of rim shrinkage
suggests that diffusion mean free paths in some areas are quite
small, perhaps less than the gyroradius. We discuss these results
in Section 5, including reviewing theoretical and observational
work on sub-Bohm diffusion and implications for particle ac-
celeration to high energies. We summarize our conclusions in
Section 6. Finally, in the Appendix, we offer a list of the re-
sults of our experience in applying the various rim models to
observations as a guide for potential future investigations.

2. PREVIOUS WORK

Prior work bifurcates into two eras, an earlier one in which
it was assumed that the only influence on filament shapes was
synchrotron losses, followed by one beginning in 2005 when
additional effects such as magnetic field damping began to be
introduced. We consider first the former case; decay of magnetic
field is considered in Section 2.2.

2.1. Loss-limited Models

Before 2005, it was universally assumed that the shapes of
non-thermal X-ray filaments observed in SNRs were due to
synchrotron losses by high energy electrons (see the many
references described below and in Table 1). The idea was
that an electron could only travel a certain distance before
losing enough energy that its radiation dropped below the
X-ray band. This distance is determined by two competing
transport mechanisms: advection (bulk motion of plasma) and
diffusion (random motion of electrons on the scale of gyroradii).
Considered separately, one can obtain simple expressions for
the appropriate length scale for each in terms of the diffusion
coefficient, D, the downstream plasma speed in the shock frame,
vd, and the synchrotron cooling time, τsynch. We can estimate
τsynch = 1/(bB2E), where b = 1.57 × 10−3 in cgs, from
the relation Ė ∝ E2. Thus, for vd = vshock/4, given by the
Rankine–Hugoniot conditions for a strong adiabatic shock, we
have an advective length of lad ≈ vdτsynch = (vd)/(bB2E). For
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Table 1
Previous Magnetic Field Strength Estimates for SN 1006

Paper Technique SN 1006 B0 Estimate Amplification Factor
(for ISM Field of 3 μG)

Araya et al. (2010) Catastrophic Dump C–D equation · · · · · ·
Ballet (2006) Equated ldiff to rim sizes 87 μG 29
Bamba et al. (2003) Equated max(ldiff , lad) to rim sizes · · · · · ·
Berezhko et al. (2003) Time dependent continuous loss C–D equation ∼100 μG 33
Berezhko & Völk (2004) Time dependent continuous loss C–D equation · · · · · ·
Cassam-Chenaı̈ et al. (2007) CR modified numerical solution to C–D equation · · · · · ·
Morlino et al. (2010) Nonlinear DSA Model Fit 90 μG 30
Parizot et al. (2006) Catastrophic Dump C–D equation + δ function 91–110 μG 30–37
Rettig & Pohl (2012) Continuous loss C–D equation 130 μG (loss limited) 43

∼65 μG (B-limited) 22
Vink & Laming (2003) Equated max(ldiff , lad) to rim sizes · · · · · ·
Yamazaki et al. (2004) Equated max(ldiff , lad) to rim sizes 14–85 μG 5–28

Note. B0 ≡ B directly behind the shock.

Table 2
Symbol Glossary (Numerical Values in CGS)

Symbol Expression/Value Explanation

Diffusion Coefficient, D = ηDB(Eh)
(

E
Eh

)μ

DB
CdE
B

“Bohm-limit” of D
Cd 2.083 × 1019

η Scaling factor of D
μ Power index for D with E
Eh Arbitrary energy (keeps η dimensionless)
η2

D
DB

(2 keV) Relative D at hν = 2 keV

Synchrotron Parameters

τsynch
1

bB2E
Synchrotron lifetime

lad
vs
4 τsynch Advective length

ldiff
√

Dτsynch Diffusive length
νm cmE2B δ-function synchrotron frequency
cm 1.82 × 1018

c1 6.27 × 1018

b 1.57 × 10−3

Diffusion Model Parameters

B0 Immediate post-shock B-field
x1/2 FWHM of radial intensity profile

mE
∂ log(x1/2)
∂ log(Eγ ) Power index of x1/2 with Eγ

f(x,E) e− spatial and energy distribution
ab Length scale in B-damping model

SN 1006 Parameters

va
s 5 × 108 Shock velocity

rb
s 2.96 × 1019 Shock radius

s 2.2 e− spectral index

Notes.
a Katsuda et al. 2009.
b Calculated using the angular size in Green’s (2009) catalog and the distance
to the remnant given by Winkler et al. (2003).

a diffusion coefficient that is taken as a constant multiple, η,
of the Bohm value D = ηCdE/B, where Cd ≡ c/(3e), we
arrive at a diffusive length of ldiff ≈ √

Dτsynch =
√

D/(bB2E).
For the values of the constants b, Cd, cm, and c1 used here
and throughout, see Table 2. Now, an electron of energy E in a
magnetic field radiates primarily at the frequency νm = cmE2B
so that the advection and diffusion lengths as a function of

frequency are

lad = vd

√
cm

b
B−3/2ν−1/2

m (1)

and

ldiff =
√

ηCd

b
B−3/2. (2)

The approximation that the electron radiates all its energy
at νm is called the δ function approximation. The important
result here is that lad varies as ν−1/2 while ldiff is independent
of frequency. Thus above some critical energy, Ec, and an
associated photon frequency, νc, electrons will be able to diffuse
further in a loss time than they could advect, and electron
diffusion will become the dominant method of transport. Ec
is found simply by equating the expressions for lad and ldiff :

Ec = vd√
ηCdbB

≈ 69.12 erg

×
(

vd

1250 km s−1

)(
B

100 μG

)−1/2

η−1/2 (3)

hνc = cmv2
d

ηCdb
≈ 3.61 keV

(
vd

1250 km s−1

)2 1

η
. (4)

(We have taken vd = vshock/4 = 1250 km s−1, assuming
no shock modification by cosmic rays.) Near this photon
energy, both advection and diffusion are important. This simple
approach was taken by Ballet (2006), Bamba et al. (2003),
and Yamazaki et al. (2004) to infer magnetic field strengths
of 14–87 μG in SN 1006. Vink & Laming (2003) used a similar
technique for Cas A, and estimated B to be ∼100 μG.

Parizot et al. (2006) adopted a somewhat more sophisticated
approach, combining both processes in the steady state form of
the one-dimensional transport equation to solve for the post-
shock electron distribution f(p, x) (Völk et al. 1981):

v
∂f

∂x
− D

∂2f

∂x2
+

f

τsynch
= 0, (5)

where the loss term f/(τsynch) assumes that an electron maintains
constant energy as it travels away from the injection site until a
catastrophic dump at time τsynch. Here the shock is at x = 0 and
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x > 0 is the distance downstream. The solution to this equation
is f (p, x) ∝ e−|x|/a , with the scale length a given by

a = 2D/vd√
1 + 4D

v2
dτsynch

− 1
(6)

(Berezhko & Völk 2004; Parizot et al. 2006). More explicitly,
in terms of electron energy E the scale length is

a = 2ηCdE/Bvd√
1 + 4bηCdE2B

v2
d

− 1
. (7)

At a given observation frequency ν, E will depend on the
magnetic field B, by E = √

ν/(cmB), so

a = 2ηCdc
−1/2
m ν1/2B−3/2/vd√
1 + 4bηCdν

cmv2
d

− 1
. (8)

In order to estimate the strength of the magnetic field, we
invert this expression so that it is a function of observables:

B =

⎛
⎜⎝ac

1/2
m vd

(√
1 + 4bηCdν

cmv2
d

− 1
)

2ηCdν1/2

⎞
⎟⎠

−2/3

. (9)

In this equation a is the scale length of the electron dis-
tribution, whereas we observe the scale length of the emitted
synchrotron intensity, including line-of-sight projection effects.
In the δ function approximation of the synchrotron emissivity,
jν ∝ √

νBf (E, x) (E = pc for relativistic electrons), and the
radial intensity for a spherical shock is

Iν(r) = 2
∫ √

r2
s −r2

0
jν(rs −

√
s2 + r2)ds. (10)

Here r is the sky-plane radius (rs the shock radius), and s
is the line-of-sight coordinate. The resulting profile will have a
FWHM = βa, β a projection factor. Ballet (2006) showed that in
the case of a purely exponential (in space) electron distribution
and for a spherical source, the result of this integral will give
β = 4.6, that is, a filament with a FWHM of 4.6a. Thus in terms
of the observed filament width, wobs, we have

B =

⎛
⎜⎝wobsc

1/2
m vd

(√
1 + 4bηCdν

cmv2
d

− 1
)

2βηCdν1/2

⎞
⎟⎠

−2/3

. (11)

Using this result, the post-shock magnetic field strength in the
NE rim of SN 1006 was estimated to be around 91–110 μG for
wobs = 20′′, an amplification of roughly 30–37 for an ambient
3 μG field (Parizot et al. 2006). While those authors did not make
use of the fact, we note that the inferred value of B depends on
observing frequency.

It should be noted that the projection factor β = 4.6 is entirely
dependent on the exponential form of the synchrotron emissivity
given from the solution of Equation (5), which may not be
valid, as well as on the assumption of exact sphericity. This is
an important caveat, as the width of the rims scales as B−3/2

(from Equation (8)), so, since the width is inversely proportional

to the projection factor, β, the above estimates for the post-
shock magnetic field strength are proportional to β2/3. In our
later calculations, however, we do not assume a simple constant
projection factor and perform the full numerical line-of-sight
integration.

Finally, the most sophisticated synchrotron-loss based models
of Berezhko et al. (2003), Berezhko & Völk (2004), Cassam-
Chenaı̈ et al. (2007), Morlino et al. (2010) and Rettig & Pohl
(2012) use an electron distribution obtained by solving the
continuous energy loss convection–diffusion equation (properly,
the advection–diffusion equation):

v
∂f

∂x
− ∂

∂x

(
D

∂f

∂x

)
− ∂

∂E
(bB2E2f ) = K0E

−se−E/Ecutδ(x),

(12)
where it is assumed that electrons are injected at the shock and
follow a power-law energy distribution with an exponential cut-
off: (N (E) ∝ E−seE/Ecut , where s = 2.2—the value appropriate
for SN 1006). The electron distribution obtained from solving
this equation is convolved with the single-particle emissivity and
then integrated along lines of sight (see Equation (10)) to com-
pute radial intensity profiles. The magnetic field strength for SN
1006 predicted using this method is in the range of 90–130 μG,
an amplification of roughly 30–43 for an ambient field of 3 μG
(Berezhko et al. 2003; Morlino et al. 2010; Rettig & Pohl 2012).

2.2. Energy Dependence of the Filament Widths

In almost all previous calculations, the energy dependence
of the filament width was ignored and profiles were fit at a
single photon energy. One exception to this is the work of
Araya et al. (2010) in their analysis of the shapes of the rims
of Cas A. Interestingly, while Araya et al. found no significant
energy dependence in the rim widths between the energy ranges
3–6 keV and 6–10 keV, they did report a small but non-negligible
difference between widths at 0.3–2 and 3–6 keV. However, they
did not use this result as a parameter constraint. Here we show
that this dependence has important physical consequences for
parameter estimation.

In all the models we shall consider, the diffusion coefficient
rises with energy. This means that electrons with lower energies
will stay closer to their original fluid element while those with
higher energies move about more freely. Specifically, as can be
seen from Equation (6), for ν 	 νc, a ≈ ldiff , while for ν 
 νc,
a ≈ lad. This behavior shows up in how the width, a, varies with
energy, which we can parameterize as a ∝ EmE

γ for a photon
energy of Eγ ≡ hv. Written in this way, we have

mE = −1

2

⎛
⎝1 − 4D/

(
v2

dτ
)

1 + 4D/
(
v2

dτ
) −

√
1 + 4D/

(
v2

dτ
)
⎞
⎠ , (13)

where 4D/(v2
dτ ) ∝ E2B ∝ ν, with the last proportion

coming from the δ-function approximation, meaning that mE
is independent of magnetic field strength. It is also clear from
Equation (13) that mE will go from −1/2 → 0, or in other words
that the scale length, a, will go from a ∝ E

−1/2
γ → a ∝ E0

γ ,
as ν goes from 0 → ∞ (for D ∝ E, or in our later notation,
μ = 1).

2.3. Magnetic Field Damping

In 2005, Pohl, Yan, & Lazarian (Pohl et al. 2005) introduced
a more sophisticated approach, which suggested that claims of
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strong field amplification might be premature. They proposed
several processes that could lead to an exponentially decaying
magnetic field, as well as account for the narrow filamentation.
In this case, rim profiles would reflect the spatial distribution of
the magnetic field. Unfortunately, there are no simple predic-
tions for the magnetic field damping length (or detailed spatial
dependence). There are a variety of physically possible damp-
ing mechanisms, so the damping length is a free parameter in
models of this type (although its dependence on the immediate
post-shock value of B can be preserved).

Cassam-Chenaı̈ et al. (2007) used this idea to fit intensity
profiles of the filaments in Tycho’s SNR, employing a hydro-
dynamics code that included cosmic-ray shock modification
(increased compression ratios due to energetically important
particles becoming relativistic and/or escaping). They generated
model profiles assuming a magnetic field profile with exponen-
tial damping, similar to our expression in Section 3.4 below. By
incorporating radio observations, they concluded that the syn-
chrotron loss-limited model provides a slightly better fit than
the magnetically damped model, though neither completely re-
produces the radio profiles. More recently, Rettig & Pohl (2012)
followed up by probing the observational consequences of both
a magnetically damped model and a constant field model by
using differences in the spectral index between the emission at
the rim peak (i.e., the emission from the shock front to a FWHM
distance away) and in the “plateau” (i.e., the emission from re-
gions beyond the FWHM). Their magnetic field estimates for
both models still favor �60 μG for SN 1006.

Marcowith & Casse (2010) performed detailed calculations to
investigate the magnetic-damping model, studying the amplifi-
cation process due to linear and nonlinear cosmic-ray streaming
instabilities, and identifying processes to damp the turbulent
magnetic field. They report that a damping model could explain
rims in the younger remnants Cassiopeia A, Tycho, and Kepler,
but not in SN 1006 or G347.3–0.5 (RX J1713.7-3946). For the
objects which satisfy their conditions for magnetic damping,
they deduce quite high magnetic field strengths of 200–300 μG.

3. GENERALIZED DIFFUSION MODEL

Here, we will consider the case of diffusion coefficients of
the form D = ηDB(Eh)(E/Eh)μ, where DB(Eh) is the Bohm
diffusion coefficient at an arbitrary fiducial energy Eh and a
magnetic field B0, η is a constant scaling factor taken in con-
junction with DB(Eh) as a free parameter, and μ parameterizes
the energy dependence of D. (So for Bohm diffusion, η = 1
and μ = 1.) For μ < 1, Eh must be above the relevant energy
range for X-ray emitting electrons, so that D remains greater
than the minimum Bohm value at all energies. On the other
hand, for μ > 1, this energy is the lower threshold energy for
this exotic type of diffusion to occur. We expect μ to be re-
lated to the power-law index n of hydromagnetic turbulence,
I (k) ∝ k−n where I (k) is the wave power per unit wavenum-
ber. Then n = 5/3 corresponds to a Kolmogorov spectrum, and
n = 3/2 to a Kraichnan spectrum. In quasi-linear theory, parti-
cles have a mean free path inversely proportional to the energy
density of MHD waves with wavelength comparable to the par-
ticle gyroradius, resulting in μ = 2 − n (e.g., Reynolds 2004).
So Kolmogorov turbulence predicts μ = 1/3 and Kraichnan,
μ = 1/2.

In all of the ensuing discussion we will be concerning our-
selves with the consequences of these models observable in the
X-ray filaments of SN 1006, which we will characterize by their

FWHM, x1/2, and its energy dependence, again parameterized
by mE. This is explicitly written as x1/2 ∝ EmE .

For the case of μ = 1 the Eh independent case, we adopt
Rettig & Pohl’s solution to Equation (12) for the electron
spatial distribution, assuming the injected spectrum to be an
exponentially cut off power law with index s, integrated over
n ≡ E′/E:

f (x,E) = Q0E
−(s+1)

∫ ∞

1

n−s

√
ln (n)

× exp

[
− nE

Ecut
−

[
lad

(
1 − 1

n

) − z(x)
]2

4l2
diff ln (n)

]
dn, (14)

while for μ 
= 1, we adopt Lerche & Schlickeiser’s (1980)
solution to Equation (12),

f (x,E) = Q0√
(1 − μ)

E−(s+1/2+μ/2)
∫ 1

0

n(s+μ−2)/(1−μ)

√
1 − n

× exp

[
−n1/(1−μ)E

Ecut
− (1 − μ)[lad(1 − n1/(1−μ)) − z(x)]2

4l2
diff(1 − n)

]
dn

(15)

for μ < 1, and

f (x,E) = Q0√
(1 − μ)

E−(s+1/2+μ/2)
∫ ∞

1

n(s+μ−2)/(1−μ)

√
n − 1

× exp

[
−n1/(1−μ)E

Ecut
− (1 − μ)[lad(1 − n1/(1−μ)) − z(x)]2

4l2
diff(1 − n)

]
dn

(16)

for μ > 1. Here Q0 is a normalization constant that does not
factor into our calculations. In this formalism, all the information
about the spatial dependence of the magnetic field is contained
in the function z(x), defined as

z(x) = 1

B2
0

∫ x

0
B(u)2du, (17)

where B0 is the magnetic field immediately behind the shock,
not the far upstream value. It is presumably amplified from its
initial value to the extent demanded by the data.

Furthermore, the cutoff energy, Ecut, is found by equating
loss times and acceleration times, which gives, in the Bohm
limit (Rettig & Pohl 2012):

Ecut = 8.3 TeV

(
B0

100 μG

)−1/2 (
vs

1000 km s−1

)
. (18)

For arbitrary diffusion coefficients, it is a straightforward
generalization to show:

Ecut ∝
(

B0

100 μG

)− 1
1+μ

(
vs

1000 km s−1

) 2
1+μ

(
Eh

η

) 1
1+μ

. (19)

These analytic solutions were derived under the assumption
that B(x)2D(x) is a constant with respect to x, the distance
from the shock. This condition is somewhat peculiar in that
it is only naturally satisfied if B is constant, since the spatial
dependence of D(x) is contained in its dependence on B. For a
field that evolves due to flux conservation, we expect this to be a

5
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Figure 1. Energy dependence of filament widths for different diffusion co-
efficients, for pure power-law electron spectra without a cutoff. Solid line
is Kolmogorov-like (D ∝ E1/3), dashed line is Bohm-like (D ∝ E), and
dot–dashed line is for μ = 2 (D ∝ E2).

(A color version of this figure is available in the online journal.)

reasonable approximation within a thin rim. On the other hand,
for a rapidly varying magnetic field (e.g., one that exponentially
decays in space), this imposes a rapid variation in D(x) with
x, which may or may not be realistic. However, we do not
expect this to affect our results at the qualitative level, and some
justification for this assumption can be found in Rettig & Pohl
(2012).

Using this spectrum of electrons, intensity profiles are then
obtained by first evaluating the synchrotron emissivity

jν = c3B

∫ ∞

0
G(y)f (x,E)dE (20)

with y ≡ ν/c1E
2B, and G(y) ≡ y

∫ ∞
y

K5/3(z)dz, in a slightly
different notation from Pacholczyk (1970); here K5/3(z) is a
Bessel function of the second kind with imaginary argument.
Then, integrating along lines of sight:

Iν(r) = 2
∫ √

r2
s −r2

0
jν(rs −

√
s2 + r2)ds. (21)

To characterize the size of the filaments, we use the FWHM of
this radial intensity, denoted x1/2. Then, we write x1/2 ∝ EmE

γ

to characterize the energy dependence of the FWHM at each
photon energy by

mE = log(x1/2/x
′
1/2)

log(Eγ /E′
γ )

. (22)

In a brief aside, we note that one can get qualitative re-
sults for the behavior of mE when μ 
= 1 by noting that
ldiff = √

Dτsynch ∝ E(μ−1)/2 ∝ ν(μ−1)/4 in the delta function
approximation. Furthermore, we can generalize Equation (13)
by using the new diffusion coefficient in Equation (6). This gives

mE = −1

2

⎛
⎝μ − 4(μ + 1)D/

(
v2

dτ
)

2 + 8D/
(
v2

dτ
) − 2

√
1 + 4D/

(
v2

dτ
)
⎞
⎠ . (23)

Now at a photon energy of 2 keV, we can write D(2 keV) =
η2DB(2 keV), and coupled with a modified Equation (9), we

Figure 2. Calculated profiles in the loss-limited model for B0 = 100 μG,
μ = 1/3. The solid line represents a photon energy of 1 keV, the dashed line
represents a photon energy of 2 keV, and the dot–dashed line represents a photon
energy of 8 keV.

(A color version of this figure is available in the online journal.)

can solve uniquely for η2 and the maximum field strength B0
by measuring wobs and mE at 2 keV. The results of using this
approximate result are shown in Table 7.

When performing the full numerical calculation of FWHMs,
we distinguish between two parameterizations of the magnetic
field, called the “loss-limited model” and the “magnetically
damped model.” That is, we can use the appropriate elec-
tron distribution (14), (15), or (16) for both cases, varying the
spatial dependence of B to select either loss-limited or magnet-
ically damped situations. We will initially neglect the cutoff in
the injected electron spectrum in order to more clearly highlight
the energy dependence of each model; we include the effects of
cutoffs in Section 3.4.

3.1. Loss-limited Model

In the loss-limited model, we assume the magnetic field is
spatially uniform, a good approximation if we expect it to evolve
by flux conservation in the narrow region behind the shock.
Then the function z(x) as defined in Equation (17) reduces to
just x. With only two free parameters, the scaling factor for
the diffusion coefficient at 2 keV, η2 and the maximum field
strength B0, we can fit the observed filaments and their energy
dependence uniquely for any value of μ. For the case of Bohm
diffusion (μ = 1), the simple estimate of Section 2.1 resulted
in an Equation (13) for mE which is independent of B0. This
behavior is preserved in the full calculation, and even for values
of μ differing from one the energy dependence only weakly
depends on the magnetic field strength.

3.1.1. Energy Dependence of the Loss-limited Model

In the loss limited model, we still see the same general
behavior of the FWHM with energy as the calculation of Section
2.2. There is a clear transition between energies where advection
is dominant to those where diffusion is dominant, with mE
dropping from –1/2 to (μ − 1)/4. A plot of this behavior for
several values of μ is shown in Figure 1 and an example of
calculated profiles is shown in Figure 2. A crucial point to
make is that the magnitude of the diffusion coefficient is by far
the most important factor in determining mE. For Bohm-type
diffusion (i.e., μ = 1) this mapping is 1–1, while for μ 
= 1

6



The Astrophysical Journal, 790:85 (16pp), 2014 August 1 Ressler et al.

Figure 3. Dependence of the parameter mE on the magnitude of the diffusion
coefficient, D, measured in units of the Bohm value at a photon energy of 2 keV.
Recall that mE is defined such that the FWHM of the rim is ∝ EmE . The lines
are, from bottom to top: μ = 0, 1/3, 1/2, 1 (Bohm), 1.5, and 2. The calculations
were done with B0 = 100 μG. For small values of D we find that all models
converge to just below mE = −0.5, while for larger values of D clear limits can
be placed on the range of mE, an observable quantity, for each value of μ (where
D ∝ Eμ).

(A color version of this figure is available in the online journal.)

there exists only a weak dependence of mE on the magnitude
of the post-shock magnetic field. Thus, the observation of mE
is a direct probe of the properties of the diffusion coefficient,
including both its magnitude and behavior with energy, as can
be clearly seen in Figure 3.

3.2. Magnetically Damped Model

In this model, we assume that the magnetic field amplifi-
cation decays exponentially behind the shock, in the form of
B(x) = Bmin + (B0 + Bmin) e−x/ab , with Bmin taken to be 5 μG
(conservatively taken to be slightly higher with the above quoted
value of 3 μG in the interstellar medium (ISM)). For this damped
form of the magnetic field,

z(x) =
(

Bmin

B0

)2

x + 2ab

Bmin(B0 − Bmin)

B2
0

(1 − e−x/ab )

+
ab

2

(
B0 − Bmin

B0

)2

(1 − e−2x/ab ). (24)

In order to both produce the observed filament profiles and
to be distinguishable from the loss-limited model, B0 must be
roughly at least four times Bmin. There are three free parameters,
η, B0, and ab, so with only two observational constraints the fits
are not unique.

3.2.1. Energy Dependence in the Magnetically Damped Model

Again, neglecting the energy cutoff for a moment, we see
key features develop in the energy dependence of the FWHM.
At low photon energies, where losses are negligible over the
small region ab, rim sizes are energy-independent. Radial
profiles at these energies reflect the spatial dependence of the
magnetic field, and so, if this model is correct, we would expect
thin filaments to be observed in high-resolution radio images.
At higher energies, the maximum value that mE reaches is
determined by the competition between ab, ldiff , and lad. This
can be roughly expressed by the equation

leff = min [max (lad, ldiff) , ab] . (25)

Thus there are three possibilities. If ldiff is small enough, then
as energy increases, synchrotron losses will “catch up” to ab
and there will be a clear transition between loss-limited rims
and magnetically limited rims. If ldiff is large enough, the rims
will be damping limited at all photon energies. Finally, if ab is
large enough, the rims will be loss-limited at all photon energies.
It is worth noting that low-energy (i.e., radio) thin synchrotron
filaments would be a clear signature of field damping. Examples
of how the calculated profiles can vary with energy in “strong”
and “weak” damping are plotted in Figure 4.

3.3. Electron Cutoff Energy and the Energy
Dependence of Rim Widths

The fact that the injected spectrum of electrons has a cutoff
above some energy Ecut has an impact on the energy dependence
of the FWHMs of the observed intensity profiles. This is most
easily seen in the δ function approximation to the synchrotron
emissivity for the case of a constant magnetic field B0 in the
absence of a cutoff in the electron distribution. Here z(x) is just
x, E = √

ν/(cmB0) ≡ Eν,0 and, using

f (E) = K(E0(E))−s dE0

dE
(26)

Figure 4. Calculated profiles in the magnetically damped model for B0 = 70 μG, ab = .005rs (left) and ab = .05rs (right). The solid line represents a photon energy
of 1 keV, the dashed line represents a photon energy of 2 keV, and the dot–dashed line represents a photon energy of 8 keV.

(A color version of this figure is available in the online journal.)

7



The Astrophysical Journal, 790:85 (16pp), 2014 August 1 Ressler et al.

Figure 5. Demonstration of the effect of including a cutoff in the injected electron spectrum on the energy dependence of the filament widths for η2 = 2.6, B0 = 100 μG,
and for μ = 1(left) and μ = 2(right). Solid lines represent calculations with a cutoff in the electron spectrum and dashed lines represent calculations without a cutoff
in the electron spectrum.

(A color version of this figure is available in the online journal.)

and

E0 = E

1 − EbB2
0 t

= Ev

v − EbB2
0x

≡ Eν,0

1 − x/lad
(27)

from Reynolds (2009), we get for the spatial dependence of the
emissivity (recalling that jν ∝ √

νBf (ν, x) in this case)

jν = Cj

(
1 − x

lad

)s−2

e

−Eν,0

Ecut

(
1− x

lad

)
. (28)

When E � Ecut, the exponential term dominates the spatial
behavior, resulting in an emissivity that will decay to half its
peak at a distance x1/2 given by

x1/2 = lad

1 + Eν,0

Ecut ln(2)

, (29)

with an energy index of

mE = ∂ log (x1/2)

∂ log (ν)
= −1

2

(
1 +

ν1/2

Ecut
√

cmB0 + ν1/2

)

= − 1

2

(
1 +

E
1/2
γ

E
1/2
rolloff + E

1/2
γ

)
. (30)

So near the rolloff photon energy Erolloff ≡ hνm(Ecut), |mE| is
higher that the value of one half expected from pure advection.
In the full numerical calculation, this arises as a shift in the
expected mE by some negative constant above some energy,
even when diffusion is the dominant method of transport (see
Figure 5).

3.4. Shifts in Intensity Peak Location

In Figures 2 and 4, we see that in the presence of filament
widths that shrink with energy there is an associated outward
motion of the location of peak emission. Regardless of the
underlying mechanism responsible for reducing the widths,
that same mechanism explains this peak shift as it focuses the
emission to increasingly narrow regions at higher energies. Thus
this effect is a model-independent prediction.

Figure 6. Comparison of the energy dependence of the FHWM for Bohm
diffusion at B0 = 100 μG and η = 2.6 in different possible approximations
without an electron cutoff. Similar differences were seen for other input
parameters. Solid line represents a full convolution without a cutoff in the
electron spectrum, dashed line represents the δ function approximation used
with the catastrophic dump convection–diffusion equation, and dot–dashed line
represents the δ function approximation used with the continuous energy loss
convection–diffusion equation.

(A color version of this figure is available in the online journal.)

However, determining the location of the peak emission from
observations is a task much more uncertain than determining
the FWHM of radial profiles. Furthermore, the predicted shift
in location can be quite small (�1′) for the best-fit parameters
found in Section 4. The combination of these two limitations
leads us to ignore this effect in the rest of our analysis.

3.5. Comparison to the δ Function Approximation

We first considered using the delta function approximation of
the emissivity, namely

jν ∝
√

Bνf

(
x,E =

√
ν

cmB

)
. (31)

However, when compared with the full convolution of the par-
ticle distribution with the single electron emissivity, the results

8
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Figure 7. Chandra image at 2–7 keV showing the regions where radial profiles were extracted. Filament 1: Regions 1–4 and 6; Filament 2: Regions 5, 7, and 9–11;
Filament 3: Regions 12–16; Filament 4: Regions 17–22; Filament 5: Regions 6 and 8.

(A color version of this figure is available in the online journal.)

for the FWHMs disagree considerably (see Figure 6). What
is worse, the difference is dependent on the electron energy
so that a simple constant correction factor could not be em-
ployed. The combination of the δ function approximation with
the catastrophic dump form of the convection–diffusion equa-
tion seems to provide a much better approximation, but it does
not account for the cutoff in the injected spectrum of elec-
trons. Thus, we were compelled to use the full synchrotron
emissivity in our numerical calculations coupled with the inte-
gral solution to the continuous energy loss convection–diffusion
equation.

4. RESULTS

In this section we first summarize our observational method-
ology in measuring the filament widths and spectra. Then we
detail our fitting procedure for applying our model to the data
and describe our findings.

To extract radial profiles of the NE and SW limbs of SN 1006,
we use six Chandra observations, the parameters of which are
summarized in Table 3. The observations of the SW and some
of the NE were performed as part of a Chandra Large Program
(Winkler et al. 2014). These new observations provide the first
high quality image of the SW quadrant, comparable in quality
with previous images of the NE. We reprocessed the level-1
event files with CIAO version 4.4 and CALDB version 4.5.1.
After correcting for vignetting effects and exposure times for
all of the data sets, we extract radial profiles in three energy

bands: 0.7–1 keV, 1–2 keV, and 2–7 keV from 22 regions shown
in Figure 7. Each profile is binned by 1′′. When combining
the NE profiles from different epochs, we take into account
the expansion of the remnant by 4′′ according to the literature
(Katsuda et al. 2009; Winkler et al. 2014). Region 8 was
excluded from this analysis because in the lowest energy bin
there was spatial overlap between two filaments.

4.1. Profile Modeling

To estimate rim widths, we fit each profile with an empirical
model defined as

h(x) =
⎧⎨
⎩

Au exp
(

x0−x

wu

)
+ Cu(upstream)

Ad exp
(

x−x0
wd

)
+ B exp

(
−(x−x1)2

2πσ 2

)
+ Cd (downstream),

(32)
where Au, x0, wu, Cu, Ad, wd , B, x1, σ , and Cd are all free
parameters. We note that either x0 or x1 can correspond to
the peak of the X-ray profile, and that Cu represents the
background level. The best-fit models are plotted as solid
lines in Figure 8. Based on the best-fit model, we calculate
a FWHM for each profile. The model accounts for plateaus of
emission upstream and downstream of the peak; the Gaussian
component describes possible downstream features due to
projection effects. Since our primary interest is in the energy-
dependence of widths, the most important consideration is the
consistency of a filament model among the three energy bins.
To estimate the uncertainties of FWHMs, the best-fit profiles

9
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Figure 8. Left: filament radial intensity profiles at 2–7 keV. The dashed, black vertical lines occur at a length of one FWHM on each side of the emission’s peak, while
the dashed, red vertical lines enclose the region extending toward the center of the remnant that starts at the edge of the black region to a distance of 2×FWHM away
from the peak. Right: energy spectra of the filaments separated into the same two regions.

(A color version of this figure is available in the online journal.)
Table 3

Chandra Observations of SN 1006

ObsID Array R.A. (J2000) Decl. (J2000) Roll Obs. Date Exposure (ks) PI

732 ACIS-S 15:03:51.7 −41:51:16 280.◦2 2000 Jul 10 55.3 K.S. Long
9107 ACIS-S 15:03:51.5 −41:51:19 280.◦4 2008 Jun 24 68.9 R. Petre
13738 ACIS-I 15:01:43.7 −41:57:55 25.◦3 2012 Apr 23 73.5 P.F. Winkler
13739 ACIS-I 15:02:14.9 −42:06:49 9.◦1 2012 May 4 100.1 P.F. Winkler
13743 ACIS-I 15:03:01.8 −41:43:05 19.◦9 2012 Apr 25 92.6 P.F. Winkler
14424 ACIS-I 15:01:43.7 −41:57:55 253.◦1 2012 Apr 27 25.4 P.F. Winkler
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Figure 8. (Continued)

are artificially re-scaled (stretched or shrunk) along the x-axis,
so that a new x-position of the model profile (x ′) becomes
x(1+ξ × (x − x0/200′′ − x0)), where x is the original x-position
of the model profile and ξ is a variable stretch factor. For various
ξ values, χ2 values between the re-scaled model profile and the
data are calculated, resulting in statistical uncertainties on a (and
FWHM).

The best-fit FWHMs and their statistical uncertainties (ranges
corresponding to Δχ2 = 2.7) are listed in Tables 4–6. The results
are categorized into four groups that appear to be along the

same filaments. Also listed in Tables 4–6 is the average value of
mE ≡ log(FWHM/FWHM′)/log(ν/ν ′) = either log(FWHM/
FWHM′)/log(2/1) or log(FWHM/FWHM′)/log(1/0.7) for our
purposes, taking the FWHM for each energy range as that of
the lower limit and using the lower adjacent energy bin for
the primed variables. This quantity characterizes the energy
dependence of the FWHMs by writing them as ∝ EmE . To get
the uncertainties on the calculation of mE and the averages,
we took the uncertainty on each data point as approximately
symmetric with σ = (σ+ + σ−)/2.
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Table 4
Measured Filament FWHM (arcseconds) versus Energy Band: Northeast Limb

Filament 1 Filament 2

Region 0.7–1 keV 1–2 keV 2–7 keV Region 0.7–1 keV 1–2 keV 2–7 keV

1 36+2.3
−2.1 33.4+1.5

−1.0 33.3+2.3
−2.8 5 25.8+.9

−1 19.5+0.3
−0.6 17.5+0.7

−0.7

2 9.4+0.8
−0.7 6.0+0.2

−0.3 4.9+0.5
−0.3 7 13.8+0.4

−0.3 9.7+0.1
−0.2 10.2+0.1

−0

3 10.3+0.6
−0.6 10.1+0.4

−0.4 6.5+0.3
−0.2 9 26.9+0.3

−0.6 16.2+0.1
−0 11.1+0.1

−0.1

4 78.1+7.3
−6.8 76.7+4.6

−4.6 48.4+2.4
−2.2 10 33.4+1.5

−1.3 30.7+0.5
−0.5 26.8+0.7

−0.6

6 43.7+5.5
−3.3 33.5+0.8

−0.9 33.6+1.6
−1.6 11 15.2+0.3

−0.2 11.2+0.1
0 10.9+0.9

−0.7

Average 36 ± 1.7 32 ± 1.0 25 ± 1.7 Average 23.0 ± 0.4 17.5 ± 0.14 15.3 ± 0.6

Average mE −0.30 ± 0.16 −0.3 ± 0.11 Average mE −0.78 ± 0.05 −0.19 ± 0.05

Note. When calculating the uncertainties on the average FWHM and the average mE , the uncertainties on each individual FWHM were
treated as symmetric with uncertainty (σ+ + σ−)/2. The average mE is defined as the mE calculated from the average FWHMs.

Table 5
Measured Filament FWHM (arcseconds) versus Energy Band: Southwest Limb

Filament 3 Filament 4

Region 0.7–1 keV 1–2 keV 2–7 keV Region 0.7–1 keV 1–2 keV 2–7 keV

12 12.4+1.7
−1.6 14.2+1.0

−1.0 11.0+0.9
−0.9 17 35.2+2.8

−3 27.1+1.2
−1.1 20.5+1.6

−1.5

13 50.8+2.6
−1.9 54.9+2.3

−1.7 38.0+2.9
−0.8 18 24.2+1.5

−2.0 29.9+0.9
−0.9 19.0+1.2

−1.1

14 38.6+2.2
−1.9 33.6+1.3

−1.1 27.7+3.2
−0.6 19 13.7+1.1

−1.1 15.1+0.6
−0.6 6.9+0.6

−0.5

15 69.9+3.8
−4.5 47.5+1.1

−1.9 23.7+1.5
−1.0 20 34.2+3.0

−2.9 39.8+1.5
−1.6 27.0+0.1.6

−1.3

16 74.0+5.2
−5.1 63.6+2.1

−2.0 46.3+2.3
−2.3 21 35.0+1.7

−2.1 14.0+0.9
−0.1 12.3+0.1

−0.5

22 31.7+2.2
−1.9 17.5+0.5

−0.8 13.9+0.9
−1.2

Average 49 ± 1.5 42.8 ± 0.7 29.3 ± 0.8 Average 29.0 ± 0.9 23.9 ± 0.4 16.6 ± 0.5

Average mE −0.4 ± 0.10 −0.54 ± 0.04 Average mE −0.5 ± 0.10 −0.53 ± 0.05

Note. See note on Table 4.

Table 6
Measured Filament FWHM (arcseconds) versus

Energy Band: Southwest Limb

Filament 5

Region 0.7–1 keV 1–2 keV 2–7 keV

8 23.8+2.0
−1.5 20.9+1.0

−0.8 15.9+0.8
−0.9

10 33.4+2.5
−1.3 30.7+5

−0.5 26.8+0.7
−0.6

Average 24 ± 2 27.2 ± 0.6 24.8 ± 0.6

Average mE −0.6 ± 0.2 −0.14 ± 0.05

Note. See note on Table 4.

To check the energy-dependence of rim widths, we extract
two X-ray spectra from each region: one is taken from a
filament region (covering from a shock front to a FWHM
position downstream) and the other is taken from a plateau
region next to the filament region up to a 2×FWHM position
downstream. These spectra together with the best-fit models
(srcut in XSPEC: Reynolds 1998) are presented in Figure 8,
where black and red are responsible for the filament and the
plateau regions, respectively. In some regions (e.g., region 3),
spectral softening downstream is clearly seen. This is consistent
with the fact that the higher the energy band, the narrower the
rim widths become, which is explicitly shown in Figure 9.

4.2. Fitting Procedure

For each choice of spectral index for the power law de-
pendence of the diffusion coefficient, μ, we constructed a two
dimensional grid in the parameter space of (B0, ηE

1−μ

h ) for
which we calculated radial profiles at 0.7, 1, and 2 keV for each

0 5 10 15 20
0

1

2

3

N
or

m
al

iz
ed

 F
W

H
M

Region Number

Figure 9. Observed energy dependence of the FHWMs of SN 1006, plotted vs.
region number and normalized to the middle (1–2 keV) energy band. Circles
represent 0.7–1 keV while squares represent 2–7 keV.

(A color version of this figure is available in the online journal.)

point in the grid (recall that ηE
1−μ

h is the constant scaling factor
of the diffusion coefficient, D). From this, we obtained both the
FWHM at 2 keV and the specific value of mE at 2 keV from
log(FWHM(2 keV)/FWHM(1 keV))/log(2). Thus we had nu-
merical results for a large number of discrete points over this
parameter space and manually found the point that simultane-
ously reproduced the values of both B0 and η obtained from our
observations.

We obtained the stated uncertainties by varying the param-
eters η and B0 around this best-fit value to find the domain in
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Table 7
Best Fit Parameters for the Filaments in Varying Values of μ (Analytic Results)

Filament 1 Filament 2 Filament 3

μ η2 B0 η2 B0 η2 B0

0 7 ± 4 165 ± 21 0 ± 0.04 143 ± 52 0 ± 0.007 81 ± 3
1/3 2.4 ± 0.9 130 ± 8 0 ± 1.2 143 ± 39 0 ± 0.008 80.7 ± 0.9
1/2 1.8 ± 0.6 123 ± 7 0 ± 1.2 144 ± 35 0 ± 0.007 80.7 ± 1.2
1 1.1 ± 0.4 113 ± 4 0 ± 1.1 145 ± 26 0 ± 0.018 80.7 ± 2
1.5 .8 ± 0.3 108 ± 3 0 ± 1.0 145 ± 21 0 ± 0.03 80.7 ± 1
2 .7 ± 0.3 105 ± 3 .2 ± 0.9 150 ± 21 0 ± 3 × 10−7 80.7 ± 1.1

Filament 4 Filament 5

μ η2 B0 η2 B0

0 0 ± 0.001 118 ± 1.1 0 ± 1.3 × 105 1000 ± 500
1/3 0 ± 2 × 10−5 117.9 ± 0.8 0 ± 2 × 104 0 ± 60000
1/2 0 ± 0.0003 117.9 ± 1.4 0 ± 120 300 ± 300
1 0 ± 0.016 117.9 ± 0.8 5 ± 5 160 ± 40
1.5 0 ± 0.0012 117.9 ± 0.8 2.5 ± 1.7 140 ± 20
2 0 ± 1 × 10−8 117.9 ± 1.5 1.7 ± 0.9 125 ± 9

Notes. Results of fitting Equation (6) to the data using a Levenberg–Marquardt least-squares algorithm. The stated
uncertainties are estimated as 1σ . B0 is in units of μG while η2 is a dimensionless quantity representing the ratio
of the fitted diffusion coefficient to the Bohm-limit diffusion coefficient at a photon energy of 2 keV.

which the observations were still satisfied within their respective
uncertainties. While not a formal error-analysis, this procedure
is adequate to put approximate lower and upper bounds on our
estimates.

4.3. Loss-limited Model

The best-fit parameters are shown in Table 8, where η2 is
the strength of the diffusion coefficient divided by the Bohm
diffusion coefficient at an energy of

√
ν/cmB0, which depends

also on the fitted value for B0. Note that this calculation included
the convolution of the single particle emissivity with the solution
of the continuous energy loss convection–diffusion equation for
a spectrum of electrons exponentially cut off at the shock.

4.4. Magnetically Damped Model

The magnetically damped model predicts that the data should
show FHWMs that are only weakly dependent on energy, caused
by the electron distribution’s cutoff, with values of mE on the
order of −0.1. This is decidedly not what we observe, (see
Figure 9 and Tables 3–5) as the averaged filaments all display
values of |mE| � 0.14 at 2 keV and �0.3 at 1 keV. This does
not demonstrate that post-shock magnetic field damping cannot
occur, or that rims might not be magnetically damped at much
lower observation energies, but it provides sufficient evidence
that the damping length must at least be large enough to be
unimportant, i.e., larger than the synchrotron-loss length, for
electrons radiating at keV energies. Therefore, we confidently
conclude that the X-ray rims of SN 1006 are not well described
by the magnetically damped model.

5. DISCUSSION

In this section we will analyze the results of applying our
model of Section 3 to the SN 1006 data presented in Section 4.

In fitting the data for various values of μ, we were able to
acquire the best fit diffusion coefficient energy relation in the
region in which electron energies are relevant for keV emission.

Fitting the data allowed us to constrain both the magnitude
and the energy-dependence of the diffusion coefficient D, where

the latter is reflected in the values of μ for which we could
obtain fits. However, fixing the magnitude of D at some energy
only fixes the combination ηE

1−μ

h , so there is a degeneracy in
the choice of η and Eh. There are two restricting conditions.
The first is that D(E) > DB(E) at all energies, as the Bohm
coefficient is the minimum allowable. In other words,

η

(
E

Eh

)μ−1

> 1. (33)

For μ > 1, this restricts Eμ diffusion to above some threshold
energy Eh, while for μ < 1, this restricts Eμ diffusion to below
some maximum energy Eh. It also means that the constant η must
always be greater than one as D(Eh)/Db(Eh) = η. The second
restriction is that Eh should be outside the relevant energy range
for electrons emitting keV X-rays, as all of our calculations had
a fixed value for μ. What we can find, however, is the minimum
(for μ < 1) or maximum (for μ > 1) value of this energy bound
by fixing η at 1. For our successful fits that have non-negligible
diffusion coefficients, the results of doing this give values of Eh
that are so far outside the 0.7–7 keV photon range that we can
easily find an appropriate Eh to satisfy the above conditions.

From Tables 7 and 8, we see that several of our averaged
filaments require very small diffusion coefficients, well below
the Bohm value, even using the amplified magnetic field. This
obviously implies that varying the parameter μ will have no
effect on the fits, as is evident in the fitted values for B0.
Qualitatively, this means that the transport of electrons is being
carried out dominantly by the convection of plasma away from
the shock, and that each electron will stay attached to its
particular fluid element. This result is required by the strong
energy dependence (mE ∼ −0.5) of the filament widths, as
the presence of diffusion will always drive mE toward 0 (or
beyond to positive numbers in the case of μ > 1. On the other
hand, filaments with non-negligible diffusion coefficients are
all consistent with the condition that D > DBohm, within their
respective uncertainties. This may suggest that some mechanism
is severely limiting electron diffusion in various regions of the
remnant, primarily the SW.
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Table 8
Best Fit Parameters for the Filaments in Varying Values

of μ (Numerical Results)

Filament 1 Filament 2 Filament 3

μ η2 B0 η2 B0 η2 B0

0 7.5 ± 2 142 ± 5 · · · · · · �0.1 77 ± .8
1/3 4 ± 1.3 120 ± 5 · · · · · · �0.1 76 ± 1.4
1/2 3 ± 1.1 112 ± 4 · · · · · · �0.1 75 ± 1.0
1 2 ± 1.0 100 ± 3 22 ± 3 214 ± 4 �0.1 74 ± 1.1
1.5 1.9 ± 1.2 95 ± 3 9 ± 1.2 167 ± 4 �0.1 74 ± 1.2
2 2 ± 1.0 92 ± 4 7 ± 1.1 152 ± 4 �0.1 73 ± 1.2

Filament 4 Filament 5

μ η2 B0 η2 B0

0 �0.2 113 ± 2 · · · · · ·
1/3 �0.2 112 ± 2 · · · · · ·
1/2 �0.2 111 ± 2 · · · · · ·
1 �0.2 109 ± 2 80+∞

−4 206 ± 3
1.5 �0.2 108 ± 2 19 ± 2 140 ± 2
2 �0.2 107 ± 2 12 ± 1.0 120 ± 2

Notes. Results of fitting the data using our generalized diffusion model for the
loss-limited case outlined in Section 3. Dashes denote places where fits were
unobtainable. See note on Table 7 for B0 and η2.

One shortcoming of the magnetically damped model is the
requirement that B(x)2D is constant. This implies that the
diffusion coefficient varies as 1/B(x)2, when we have explicitly
written the diffusion coefficient as proportional to 1/B(x) in
our formalism. However, this does not affect our conclusion
that the magnetically limited model is a poor fit to the data, as
the qualitative behavior of the FWHMs as a function of energy
would be the same. This requirement presents no issues in the
case of the loss-limited model, as both D and B are spatially
uniform in the narrow region behind the shock.

Our finding that rim widths drop too rapidly with energy
to allow significant diffusion suggests the possibility of “sub-
Bohm diffusion” (λ < rg , or η < 1) in astrophysical sources.
This possibility has important implications for acceleration
times, since much smaller diffusion coefficients D would result
in much shorter acceleration times to a given energy. There has
been considerable discussion of the possibility of sub-Bohm
diffusion in the literature. For instance, Zank et al. (2006) find
that in perpendicular shocks in the solar wind, effective mean
free paths can be an order of magnitude or more less than the
gyroradius. They find some supporting evidence in heliospheric
observations. Using a three-dimensional hybrid MHD–kinetic
code, Reville & Bell (2013) studied the development of shock
precursors generated by accelerated particles, finding sub-
Bohm behavior for both parallel and oblique shocks, but
more pronounced for parallel shocks. However, some of their
simulations find that the Bohm limit is still respected using the
amplified magnetic field. Reville & Bell discuss other possible
ambiguities in the definition of the Bohm limit, including the
possibility of highly inhomogeneous magnetic fields on small
scales. At any rate, it seems clear that the complexities of
the propagation of particles in the presence of dynamic self-
generated magnetic turbulence are such that the suppression
of diffusion to levels considerably below those implied by
the Bohm limit is not ruled out by theoretical considerations.
We emphasize that in spite of the elaborate theoretical structure
we have presented, our limits on the diffusion coefficient are
closely related to the rapid drop in filament widths with photon

energy that we see in Figure 9. The rate of shrinkage is
too large to tolerate much particle diffusion, independently of
detailed modeling. However, detailed quantitative statements are
dependent on the details of our mechanism for fitting filament
widths, and on inevitable projection and curvature effects. Our
models do predict considerably thinner filaments at 4 keV than
at 2 keV; while our current observations do not have adequate
photon statistics to test this prediction, future studies should be
performed to clarify this important issue.

Finally, we call attention to the μ dependence in the
electron cutoff energy used in our model as described in
Equation (19). For a synchrotron emitting source, this cutoff
energy corresponds to a rolloff frequency of νroll ∝ E2

cutB0 ∝
B

(μ−1)/(μ+1)
0 v

4/(μ+1)
s . If μ = 1 as in the standard Bohm assump-

tion, we find a rolloff frequency that is independent of the mag-
netic field and solely a function of the shock speed. In that
case, we would expect constant rolloff frequencies along the
same filaments and only a relatively weak azimuthal depen-
dence, predictable from observed proper motions. On the other
hand, if μ 
= 1, then we recover a B0 dependence, which could
account for the some of the systematic order-of-magnitude az-
imuthal variation of the measured rolloff frequencies seen in
both SN 1006 (Katsuda et al. 2010; Miceli et al. 2009; Reynolds
et al. 2012) and G1.9+0.3 (Reynolds et al. 2009). For μ = 2,
one would require a very large variation in B0, largest at the
brightness maxima, to explain the observed factor of 10 range
in rolloff frequency, however.

5.1. Comparisons to Cas A

A detailed application of our results to other SNRs such as
Cas A will require much more extensive analysis, but we can use
the published filament widths of Araya et al. (2010) for Cas A
to get preliminary estimates of the magnetic field strength and
diffusion coefficient by applying our model. In their data, it
appears that the filaments in Cas A shrink by a factor of ∼0.8
between 0.3 and 3 keV, while the filament widths appear to be
energy-independent between 3 and 6 keV. Qualitatively, this is
consistent with the loss-limited model, as our parameter mE is
predicted to decrease with energy. For the lower energy range
of 0.3–3 keV, reproducing mE ∼ −0.1 (equivalent to the factor
of 0.8 drop in size) requires magnetic fields on the order of
200–500 μG and diffusion coefficients about 5×DBohm(3 keV),
about an order of magnitude higher than the values one obtains
by neglecting the energy dependence. One can also see directly
from Figure 3 that μ < 1 models of the diffusion coefficient are
excluded for mE ∼ −0.1.

6. SUMMARY AND CONCLUSIONS

We have outlined a generalized diffusion model that solves
the continuous energy-loss convection–diffusion equation for
electrons subject to both convection and diffusion as they travel
away from the shock. This model is able to incorporate arbitrary
power-law energy dependence of the diffusion coefficient D, in
the form of D ∝ Eμ, as well as arbitrary spatial dependence of
the magnetic field strength. Assuming spherical symmetry, we
then convolved this electron distribution with the single electron
power spectrum to obtain a non-thermal emissivity, which we
integrated along lines of sight to obtain the specific intensity
of the source as a function of radial distance from its center.
We specialized this model into two general categories: a “Mag-
netically Damped Model,” which assumes B ∝ exp−x/ab for x
defined as the distance behind the shock, and a “Loss-limited
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Model” which assumes a constant post-shock magnetic field
strength. Furthermore, we selected specific values of the param-
eter μ (namely 0, 1/3, 1/2, 1, 1.5, and 2) to analyze. We found
that independent of model details, magnetically damped models
predict rim widths almost independent of photon energy, while
loss-limited models predict rim widths to shrink with increasing
photon energy at a rate dependent on the diffusion coefficient.
Our quantitative results are summarized in Figure 3.

With this model as our guide, we used Chandra observations
of SN 1006 to measure the energy dependence of the thin,
non-thermal rims in the NE and SW quadrants. For the SW,
these are the first such measurements, utilizing data from a
recent Large Chandra Project. The SW filament profiles are
of similar width to those in the NE. This is consistent with
the results of Winkler et al. (2014), who find the conditions
in both regions to be similar. Furthermore, the filament widths
of SN 1006 show a decrease with photon energy, which we
have shown has important physical consequences for both the
diffusion coefficient and the post-shock magnetic field, and is
incompatible with a magnetic damping model. In the other
SNRs for which magnetic fields have been inferred from rim
thicknesses, the energy dependence of the widths should be
examined similarly, as evidenced by our quick comparison with
the results of Araya et al. (2010) for Cas A.

Using our generalized diffusion model and its subsets outlined
above, we find the measured widths of the SW filaments of SN
1006, like those previously reported for the NE, favor magnetic
fields on the order of 100 μG, significantly amplified above the
typical ISM value of about 3 μG. The strength of our model is
that it encompasses all effects included by previous authors in
this type of investigation.

We also conclude that for the filaments of SN 1006, and
even the filaments of Cas A, values of μ < 1 are, for the most
part, less able to reproduce the data. This is due to the result
that the lowest possible mE for a given diffusion coefficient is
(μ − 1)/4, which requires μ � 1 in Filaments 2 and 5 for
SN 1006 and the majority of filaments in Cas A (Araya et al.
2010). While not conclusive, this result is in agreement with
the calculations of Reynolds (2004), which predict SNR images
that do not resemble observed SNRs for μ < 1. Thus both
Kolmogorov turbulence (μ = 1/3) and Kraichnan (μ = 1/2)
are disfavored. In an application to other SNRs, values of μ > 1
allow completely energy-independent filament widths even with
a cutoff in the injected spectrum of electrons. Thus, the results
of Araya et al. (2010), who found energy independent FWHMs
in Cas A between 3 and 6 keV, could result from strong diffusion
and a very high electron cutoff energy, or from non-Bohm-like
diffusion with μ > 1. In the latter case, our model also predicts
that the rolloff frequency should depend on magnetic field
strength and thus could have significant azimuthal dependence.

We also find that that the magnitudes of the diffusion
coefficients in the filaments of SN 1006 are split into two distinct
categories. One group, due to the strong energy dependence of
their filament widths, requires negligible amounts of diffusion
(i.e., less than the Bohm limit) in order to reproduce the
observations. The occurrence of sub-Bohm diffusion is thus far
undocumented and would be a groundbreaking result. However,
there are inherent uncertainties in our measurements of the
FWHMs due to projection, overlap, and averaging effects which
may have influenced our numerical calculations. Thus, we do
not claim strong evidence of this theoretically hard to explain
phenomenon and note that further study is needed. On the
other hand, we are much more confident in the rest of our

conclusions, which are fairly robust and do not depend on sub-
Bohm diffusion. The second group, with less energy-dependent
filament widths, is consistent with diffusion coefficients close
to but above the Bohm limit. This result is of interest because
the strength of diffusion is directly tied to the maximum energy
attainable by electrons being accelerated at the shock front.
Diffusion coefficients much larger than the Bohm value would
have suggested weaker scattering, which in turn would reduce
the maximum energy (Reynolds 1998). However, in our model
of the filaments, the radial profiles are produced by electrons
in the post-shock region, so pre-shock electrons could have
much different diffusive properties. Our fits predict continuing
shrinkage of filament widths at higher energies than 2 keV,
though photon statistics in our current observations are not
adequate to test this. (Our 2–7 keV band is dominated by
photons near 2 keV.) A longer observation of the SW region
of SN 1006 with Chandra could allow division of that band
into 2–4 and 4–7 keV bands, permitting this important test. Our
surprising result of rapid shrinkage of some filaments requiring
sub-Bohm diffusion coefficients can be searched for in other
thin-rim remnants such as Tycho.

Finally, we find that the results of applying our generalized
diffusion model are remarkably consistent with the results
obtained by simply fitting Equation (6) to the data (recall
that Equation (6) was the result of applying the δ function
approximation for the electron spectra to the catastrophic dump
version of the convection–diffusion equation). This is in spite
of the fact that our model solves the continuous energy loss
convection–diffusion equation for the electron distribution, uses
the full synchrotron emissivity, and includes a cutoff in the
injected spectrum of electrons, all of which we have shown
to have important effects on the FWHMs and their energy
dependence. This may simply be a unique result for the
observational data from SN 1006, or it could suggest that the
effects of adding each of these more detailed considerations
cancel each other out when combined. On the other hand,
Equation (6) is incapable of describing magnetically damped
filaments, which may occur in other remnants (e.g., Marcowith
& Casse 2010), though we have ruled this out for SN 1006.

The general formalism presented here is applicable to the
thin, non-thermal filaments observed in nearly all historical
SNRs, and has the potential to provide a consistent estimate
of magnetic field amplification across the variety of ambient
environments into which these remnants are expanding.

Support for this work was provided by the National Aeronau-
tics and Space Administration through Chandra grant Number
GO2-13066, issued by the Chandra X-Ray Observatory Center,
which is operated by the Smithsonian Astrophysical Observa-
tory for and on behalf of NASA under contract NAS8-03060.

We thank the anonymous referee for an extremely careful
reading of this paper, and for suggestions that have led to
substantial improvements.

APPENDIX

We summarize here some details of the relation of our models
to observations. Our basic conclusion is that the variation
of filament widths with energy contains essential information
required to compare models, and to obtain quantitative estimates
of the magnetic field and diffusion coefficient. Without this
information, there are several competing models that can allow
for a wide range of magnetic field strengths and diffusion
coefficients for the same filament width.
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We assume throughout a spherical shock surface, in which the
peak of synchrotron emission occurs at a radius slightly behind
the shock due to the geometry of the line of sight integration.
If instead a plane shock with velocity exactly in the plane of
the sky is assumed, derived quantities will vary somewhat. In
addition, we find that the δ function approximation gives a
poor representation of the spatial distribution of high-energy
electrons, resulting in an underestimate of filament widths. It
is also essential to consider the cutoff in the electron spectrum
above some maximum energy as it causes filament widths to
shrink with photon energy in a model-independent way. At
photon energies close to the rolloff frequency, the only way
to have truly energy-independent rim sizes is with μ > 1. In
energy-loss models with μ � 1, or damping models, |mE| will
always be at least ∼0.1 if the cutoff is not exceptionally high
(well above the keV band).

Then the strength of the energy-dependence of filament
widths serves as the essential discriminant among models. If
a weak energy dependence (0.1 � |mE| � 0.2) is observed
for photon energies near the synchrotron rolloff frequency, the
behavior at lower photon energies should be inspected as it
will have greater discriminatory power. Here “lower energies”
means energies lower than those where diffusion and the
electron cutoff start to become important, which depend on the
source parameters. Near the rolloff frequency, many effects can
combine to cause weak energy-dependence of filament widths.

If moderately strong energy-dependence of filament widths
is observed (0.2 � |mE| � 0.5) at a specific energy, then a
magnetic field damping model can be ruled out at that energy
and above. This is the region in which it can be assumed
that diffusion is important in competing with advection. The
details of this then depend on the assumed model of diffusion.
And if very strong energy-dependence of filament widths is
observed (|mE| � .5) then the only explanation is weak diffusion
and the predominance of advection as the electron transport
mechanism.

Finally, if filaments widths are ever observed to be growing
with energy then the only known explanation would be μ > 1

diffusion. Higher values of μ allow for more rapid changes in
mE as a function of energy.
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