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ABSTRACT

Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams
generate radio emission at multiples of the electron plasma frequency fp to produce type III solar radio bursts.
Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal
advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a
chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density
turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this
work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam
direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in
the dynamic spectra of both fp and 2 fp radiation. Spectral and temporal fine structures in the predicted type III
emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the
locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader
half-power bandwidths in fp than 2 fp emission, possibly explaining the often observed type IIIb–III harmonic pairs
as being where intensifications in 2 fp radiation are not resolved observationally. Larger turbulence levels producing
trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 fp radiation,
which may account for the type IIIb–IIIb pairs that are sometimes observed.
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1. INTRODUCTION

The solar atmosphere is a highly variable environment, and
activity occurs on a wide range of spatial and temporal scales.
Shocks, flares, granular convection, wind shear instabilities,
and other transient in situ processes in the photosphere and
chromosphere generate MHD waves, which propagate upward
into the corona and solar wind (Coleman Jr 1968; Jokipii &
Davis Jr 1969; Tu & Marsch 1995; Horbury et al. 2005; De
Pontieu et al. 2011). These are predominantly low-frequency
Alfvén and fast-mode waves, which have been suggested to
contribute to the heating of the corona, through a turbulent
cascade that transports energy to scales small enough for
dissipative processes, such as proton cyclotron damping, to
convert the energy into heat (Matthaeus et al. 1999b; Cranmer
& van Ballegooijen 2003; Cranmer et al. 2007). The interaction
of counter-propagating Alfvén waves has been suggested as a
possible mechanism for generating this turbulence (Matthaeus
et al. 1999a).

Remote radio observations and in situ spacecraft measure-
ments reveal that turbulence in the corona and solar wind ex-
hibits a Kolmogorov power spectrum, whose inertial range spans
spatial scales over many orders of magnitude (Coles & Harmon
1989; Sakurai et al. 1992; Spangler & Sakurai 1995; Spangler
et al. 2002). The outer scale of the turbulence is of order 1 R�
(where R� = 695.5 Mm denotes the solar radius) near the sur-
face of the Sun, and increases with radial distance from the Sun
(Wohlmuth et al. 2001; Bird et al. 2002; Efimov et al. 2002).
The inner scale of the turbulence, where dissipative processes
become significant and the density fluctuation power spectrum
steepens, is observed to occur on length scales of a few kilo-
meters near the Sun, increasing to ∼100 km by about 30 R�
(Coles & Harmon 1989; Coles et al. 1991). Although most of

the turbulent energy is transported in kinetic and magnetic forms
(Goldstein & Roberts 1999), fluctuations in the plasma density
are expected to arise in response to fluctuations in the fluid
velocity and magnetic field, and share identical spectral charac-
teristics (Montgomery et al. 1987; Matthaeus et al. 1991; Zank
& Matthaeus 1993).

Magnetic reconnection events low in the corona accelerate
electrons to semi-relativistic speeds (0.1–0.6c), driving Lang-
muir waves as they travel outward along open field lines, some
of which are converted into transverse radio waves at the lo-
cal plasma frequency fp and/or its second harmonic 2 fp via
the plasma emission process (e.g., Melrose 1980, 1987). These
events, known as type III radio bursts, appear in dynamic spec-
tra as rapidly drifting features, sometimes in isolation but more
commonly in groups, and often exhibit harmonic structure (Wild
et al. 1963; Wild & Smerd 1972; Smith 1974). In general, no
type III burst is perfectly smooth: irregularities are often ob-
served in the form of temporal shifts of parts of the envelope,
or flux modulations with frequency. In extreme cases, a type III
burst may appear to be fragmented into a chain of narrowband
features called stria bursts, which are collectively referred to as
a type IIIb burst (e.g., de la Noë 1975), where individual striae
typically have bandwidths of Δf/f ∼ 0.1%–1% (Bazelyan et al.
1974a; Smith & de la Noë 1976; Bhonsle et al. 1979; Melnik
et al. 2009, 2010). Type IIIb bursts (see Figure 1) are observed
about as often as normal type III bursts in the decametric band,
and less frequently in the metric band (Takakura & Yousef 1975;
Bhonsle et al. 1979).

Many mechanisms have been proposed for the formation
of type IIIb bursts (e.g., reviews by Fomichev & Chertok
1977; Bhonsle et al. 1979; Li et al. 2012). Smith & de la
Noë (1976) suggested that modulational instability leads to
strong beam–plasma interaction and beam–particle trapping,
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Figure 1. Type IIIb burst (near 11:20:10 UT) amongst type III bursts, recorded by the UTR-2 radio telescope (Melnik et al. 2010).

amplifying Langmuir waves that then decay into transverse
radio waves to produce a chain of striae as the process repeats
itself over the path of the electron beam. However, Cairns &
Robinson (1998) argued that the predicted wavenumbers and
bandwidths of Langmuir waves over a wide range of heliocentric
distances are too large for modulational instability to occur
directly, and therefore that this process cannot explain the
fine structures in type IIIb bursts. Takakura & Yousef (1975)
postulated that locally overdense and/or underdense regions in
the plasma increase/decrease the interaction lengths of the beam
for different frequency ranges, resulting in striae; numerical
investigations (Li et al. 2012) into the proposed effects of density
irregularities support this idea. There is numerical evidence that
localized variations in the electron and/or ion temperatures can
also give rise to stria-like fine structures (Li et al. 2011a, 2011b),
and these, combined with density variations, are proposed to
account for the flux modulations observed in type III bursts
when their electron beams traverse coronal shocks (Lacombe &
Moller Pedersen 1971; Li & Cairns 2012).

When harmonic structure is identified in a type III event,
usually on the basis of a 2:1 frequency ratio and a correlation
between source locations, it is often the case that the fp compo-
nent of the radiation exhibits striae, while the 2 fp component is
smooth, i.e., it occurs as a type IIIb–III pair (Ellis & McCulloch
1967; Bazelyan et al. 1974b; Takakura & Yousef 1975; Abranin
et al. 1979, 1984; Melnik et al. 2011). An example of this,
identified by Stewart (1975), is shown in Figure 2. Takakura
& Yousef (1975) have reported as less common type IIIb–IIIb
pairs, where both components possess striae, but no cases of
type III–IIIb pairs. They qualitatively explained the occurrences
of type IIIb–III and IIIb–IIIb pairs in terms of the differing de-
pendences of brightness temperature on the interaction length
for fp and 2 fp radiation, and the fraction of the source region
containing density irregularities, which collectively determine
whether a type III or IIIb burst is observed. Recent simulations
by Li et al. (2011a) predict that localized variations in the ion
temperature produce fine structures that are more pronounced in
fp than 2 fp emission, which may also help to explain type IIIb–III
pairs.

In this work, we investigate the effects of macroscopic
density turbulence on the production of fine structures in
coronal type III bursts, by modeling the turbulence in the

Figure 2. Type IIIb-III inverted-U burst recorded by the Culgoora spectrograph
(Stewart 1975). The apparent striae in the harmonic component are attributed
to variations in instrumental gain.

source region as a power-law spectrum of macroscopic density
fluctuations superposed on a smooth background density profile.
We simulate the dynamics of the electron beam, Langmuir
waves, ion sound waves, and electromagnetic (EM) radiation,
accounting for the refraction of Langmuir waves, refraction and
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reflection of EM waves off macroscopic density variations,
and the scattering of fp radiation off microscopic density
fluctuations, to predict the radio emission observable at 1 AU.
We find that macroscopic density turbulence alone produces
flux modulations with frequency and advances/delays of the
burst envelope, giving rise to stria-like fine structures in both
fp and 2 fp dynamic spectra. We demonstrate that the emission
maxima for 2 fp radiation originate from locally flat regions of
the density profile, where source volumes are larger, whereas
for fp radiation flux modulations are predominantly caused by
variations in scattering losses, producing emission maxima in
locally steep regions where scattering losses are lower, despite
reduced source volumes in these regions. Enhancements in fp
emission have bandwidths that are much broader (by a factor of
∼102) than those of enhancements in 2 fp emission, which may
explain observations of type IIIb–III pairs as being cases where
enhancement features are only resolved in fp emission. However,
when turbulence levels are large enough to produce local
trough–peak regions in the density profile, the bandwidths of
enhancements in the 2 fp emission may become resolvable. This
occurs because of the presence of three disjoint regions of space
spanning the same range of plasma densities, roughly tripling
the flux in those frequency ranges if the structure is compact
enough to fit within the spatial extent of the beam (see discussion
in Section 4.1). Type IIIb–IIIb pairs may consequently result.
Local temporal shifts of 2 fp envelopes can largely be accounted
for by shifts in the locations of emitting volumes; e.g., for a
beam traveling at a constant speed, a density depletion causes
2 fp emission at a given frequency to be produced earlier than
for the smooth, unperturbed density profile. In principle this
allows the turbulent density profile to be reconstructed from the
time-varying frequency profile of harmonic radiation. Radiation
propagation effects appear to be negligible for 2 fp radiation,
but for fp radiation, temporal fine structures are significantly
influenced by propagation effects, such as spatially varying
group speeds and scattering-induced increases in path lengths.

This paper is structured as follows. In Section 2, we describe
the approach to modeling density turbulence, and the simulation
setup, physical processes, and assumptions incorporated into our
model. Section 3 presents our results and our explanations for
the production of the fine structures in fp and 2 fp radiation. In
Section 4, we discuss the observability of the predicted fine
structures in fp and 2 fp emission, the limitations of our work,
and a numerical technique for visualizing data output onto non-
monotonic grids. Finally, we conclude in Section 5.

2. SIMULATION SETUP

This section outlines our approach to modeling the plasma
density profile in the source region, and describes the simulation
setup and physical processes incorporated. Further details can
be found in our previous works (Li 2007; Li et al. 2008a, 2008b,
2011a).

2.1. Constructing the Density Profile

We model the plasma density profile and macroscopic turbu-
lence in one dimension (along the radial direction) as a superpo-
sition of sinusoidal fluctuations with intermediate scale lengths
on a smooth background. The functional form of the coronal
density profile is given by the 10-fold Baumbach–Allen model
(Allen 1947)

nbg(r) = 10nBA

(
2.99

r16
+

1.55

r6
+

0.036

r1.5

)
, (1)

where r is the heliocentric distance (in R�), and nBA =
1014 m−3. This empirical model is supported by radio data
(Maxwell & Thompson 1962; Stewart 1976; Benz et al. 1983).
At r = 1 R� (base of the corona), nbg = 4.5 × 1015 m−3 and
fp ≈ 600 MHz, whereas at r = 2 R� (within our simulation
domain), nbg = 3.7 × 1013 m−3 and fp ≈ 50 MHz. The density
perturbation function δn(r) is constructed as a superposition of
a finite number of sinusoids, each characterized by a wavenum-
ber ki and modulated by a ki-dependent fraction A(ki) of the
unperturbed background density:

δn(r) = nbg(r)
imax∑
i=1

A(ki) cos(kir + φi), (2)

A(ki) =
(

ki

kmin

)α/2

Δ, (3)

ki = 2πi

L
. (4)

Here ki and φi are the wavenumber and randomly generated
phase of the ith mode, respectively, L is the length of the source
region, α is the index of the power spectrum, and Δ is the
fractional amplitude of the mode with the lowest wavenumber,
kmin. The total density at any point in space is then

n(r) = nbg(r) + δn(r). (5)

The form of Equation (2) implies that the power spectrum of
fluctuations is

S(ki, r) = n2
bg(r)A2(ki) = n2

bg(r)

(
ki

kmin

)α

Δ2. (6)

Different density profiles can be generated by varying the
number of modes imax, the phases {φi}, the power-law index α,
and the value of Δ. The simulations presented in this work use
a fixed value of α = −5/3 (the one-dimensional Kolmogorov
index), imax of either 10 or 30, and Δ either 2% or 4%. The
effects of varying these parameters are discussed in Section 4.

The spatial scales of the modeled fluctuations lie within the
inertial range of the turbulence observed in the corona (see
Section 1). They are intermediate in the sense that they are small
compared to the length of the simulation domain (280 Mm), but
greater than the spatial resolution of the simulation grid (490 km)
and the dissipation scales (Debye length �1 m, ion inertial
length �1 km, ion gyroradius �1 m). The simulations also
include the effects of density turbulence at microscales (scales
below the spatial grid resolution) as described in Section 2.2.

2.2. Simulation Model and Physics

The numerical model for simulating type III bursts (Li 2007;
Li et al. 2008a, 2008b, 2011a) incorporates source structure,
quasilinear dynamics of the electron beam and Langmuir waves,
nonlinear interactions of the Langmuir (L), ion sound (S) and
transverse radio (T) waves, and effects on the radiation propa-
gating between the source and observer. The model considers
the following emission processes (Melrose 1987; Cairns 1987;
Robinson & Cairns 1993): (1) production of beam-driven L
waves via the bump-in-tail instability; (2) electrostatic (ES) de-
cay L → L′ + S, which produces backscattered L′ waves and
forward-going S waves; (3) EM decay L → T (fp) + S ′ stimu-
lated by the products of ES decay, which produces fp radiation;
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and (4) coalescence of Langmuir waves L + L′ → T (2fp),
which produces 2 fp radiation. For EM waves, refraction due to
density variations and changes in radiation group speeds within
the source are incorporated. The loss mechanisms considered
(Robinson & Cairns 1998) are the scattering-induced damping
of fp emission via linear mode conversion (LMC) at density
gradients (Kruer 1988), and free–free absorption for both fp and
2 fp emission; other processes are neglected.

The coronal source region is approximated by a conical
frustum subtended at the Sun, between solar altitudes of x = 630
and 910 Mm (0.9–1.3 R�), where x ≡ r−R�. The source region
is isothermal, with electron and ion temperatures of 1.75 MK,
and has a 10-fold Baumbach–Allen density profile (Allen 1947)
in the unperturbed state. We model the impulsive acceleration
of electrons at time t = 50 ms in a small region centered at
x = 655 Mm by replacing a fraction (0.002%) of the Maxwellian
background electrons by Maxwellian electrons with a higher
temperature of 15 MK. Beam development, L wave growth,
and the production of S waves are simulated in one dimension
(radially; see Kontar 2001), while fp and 2 fp radiation are treated
in three dimensions. Radiation exiting the simulation domain is
assumed to propagate in straight lines to the observer at the speed
of light (differences from c are negligible for our purposes),
uniformly filling a cone subtended at the Sun with half-angles
of 30◦ and 90◦ for fp and 2 fp radiation, respectively, following
the assumption of isotropization by scattering off microscopic
density irregularities (Riddle 1974). The dynamic spectrum ΦT

(T = F for fp radiation, and T = H for 2 fp radiation) seen by
an observer positioned within the radiation cone is computed as
the integral of the radio flux produced within each source layer
over the length of the source region and the time span of the
simulation. Details are given by Li et al. (2008a, 2008b, 2011a).

We devote the remainder of this section to expounding upon
the physics of radiation scattering due to microscale turbu-
lence (density fluctuations on length scales smaller than the
spatial grid resolution), since this is central to our arguments in
Section 3 for the origins of frequency and temporal fine struc-
tures in fp radiation. Unlike the macroscopic density fluctuations,
which are explicitly constructed in Section 2.1, microscopic
fluctuations in our model are treated statistically. They are as-
sumed to follow a Gaussian probability distribution (Robinson
& Cairns 1998; Li et al. 2008a)

P (Δn, u) = e−u2

Δn
√

2π
(7)

with rms level Δn and mean length scale 〈l〉, where

u = n0 − n

Δn
√

2
= r − r0

L0
(8)

is the normalized position relative to a reference location r0
at which the local plasma density is n(r0) ≡ n0, and L0 is
a characteristic length scale that depends on the local plasma
density gradient. Adopting the first-order expansion about n0 to
obtain n(r) ≈ n0 + n′(r0)(r − r0) implies that

L0 = Δn
√

2

−n′
0

, (9)

where n′
0 ≡ n′(r0). In this work we assume a fixed value for

Δn/n0 = 1% (Thejappa & MacDowall 2008) and a mean length
scale (after Robinson & Cairns 1998; Li et al. 2012)

〈l〉 = 2.6 × 104
( x

1 AU

)1.61
m. (10)

Since transverse waves cannot propagate below the local
plasma frequency fp, radiation with frequency f will be scattered
if it encounters a region where fp = f . At these locations, the
radiation becomes evanescent and is partially mode converted
to Langmuir waves, which are then damped, while the rest is
reflected. The scattering results in a random walk that can be
modeled as a diffusion process (Robinson & Cairns 1998). This
scattering effect is far more severe for fp than 2 fp radiation
(Riddle 1974) since the former propagates very close to the
plasma frequency, and so we incorporate scattering effects for
fp emission only (e.g., Robinson & Cairns 1998; Li et al. 2008a).
Specifically, scattering causes losses and lengthens the overall
path traversed by fp emission; the latter introduces a time delay
for arrival at the observer, which we model as an exponential
decay.

Following Robinson & Cairns (1998) and Li et al. (2008a), the
time (t) evolution of the probability density p(u,t) of diffusing
fp radiation with a frequency f0 = fp(r0), where fp(r) is the
plasma frequency corresponding to n(r), is described by the
Fokker–Planck equation

∂p(u, t)

∂t
= −γ (u)p(u, t) +

1

2

∂2D(u)p(u, t)

∂u2
. (11)

The quantities γ (u) and D(u) are the LMC damping rate and
one-dimensional diffusion coefficient (diffusivity), respectively,
which are given in terms of the mean scattering length Δu(u)
and mean group speed vg(u) by (Li et al. 2008a)

γ (u) = 〈fmc〉vg(u)

Δu(u)
, (12)

D(u) = 1

3
Δu(u)vg(u), (13)

Δu(u) = 2〈l〉
L0erfc(u)

, (14)

vg(u) = c

(
− n′

0u

L0n0

)1/2

, (15)

where 〈fmc〉 is the fraction of energy absorbed per reflection
at a mode conversion site, averaged over incident angle and
polarization. Note that the radiation can only escape when
n′

0 � 0 and vg is real, since otherwise it is trapped and becomes
evanescent. Qualitatively, one can apply a scaling argument to
Equation (11), noting that u is already normalized (and therefore
the characteristic range in u is 1), to arrive at

1

τ
∼ D, (16)

where τ is a characteristic timescale. This relation indicates that
an decreased diffusivity D will lengthen the timescale of activity
(for constant 〈l〉 and n0), a dependence that will become relevant
later in Section 3.2.

Introducing the separable solution p(u, t) = X(u) e−λt turns
Equation (11) into the eigenvalue problem (Li et al. 2008a)

γ (u)X(u) − 1

2

∂2D(u)X(u)

∂u2
= λX(u), (17)

whose solutions under absorbing boundary conditions
X(umin) = X(umax) = 0 are characterized by a set of posi-
tive eigenvalues {λi}. We choose the boundary locations umin
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Table 1
Parameters Used to Construct δn(r)

for Simulations A–C

Simulation imax Δ
(%)

A 10 2
B 10 4
C 30 2

and umax such that decreasing umin or increasing umax produces
no change in {λi}. To calculate the time constant td for the ex-
ponential decay of fp emission at the observer, we assume td to
be determined by the smallest eigenvalue, with

td =
(

min
i

{λi}
)−1

. (18)

To obtain an expression for the fraction η of fp emission, that is of
frequency f0 and able to escape from the source after scattering
and reach the observer, we define (Li et al. 2008a)

ψ(u) = P (Δn, u) exp

[
−〈fmc〉

∫ ∞

u

du

Δu

]
(19)

to describe the probability of emission being produced and
escaping from the location u, which then yields

η =
∫ ∞

0 ψ(u) du∫ ∞
0 P (Δn, u) du

. (20)

We show in the next section that the escape fraction η is vital
in determining the frequencies of flux maxima in the dynamic
spectra of fp emission.

3. RESULTS

Here we present the results for three simulations, denoted A,
B, and C, whose plasma frequency profiles are shown in blue
in Figures 3(a)–(c), respectively (see Table 1 for the parameters
used to construct δn(r) for each simulation). We discuss the
simulation results by comparing them with a fourth simulation,
U (for Unperturbed), whose density profile is simply the smooth
background without turbulence. For simulation U the plasma
frequency profile is plotted in green in Figure 3, and the fp
and 2 fp dynamic spectra are shown in the left column of
Figure 4. For simulations A–C, the predicted dynamic spectra
are shown in Figures 4–6 overplotted with the envelopes of the
corresponding fp or 2 fp burst for U (dashed contours). We will
refer to advancements/delays of any burst for A–C as being with
respect to these envelopes. Heating and acceleration conditions
are identical for all the simulations (see Section 2.2).

To briefly summarize the results of Figures 4–6, which
are analyzed in more detail in Sections 3.1 and 3.2, we find
that density turbulence alone is sufficient to produce stria-
like fine structures. While the fp and 2 fp bursts for U are
smooth and featureless, the bursts for simulations A, B, and
C exhibit flux intensifications/depletions with frequency and
also advancements/delays of the burst envelope. We observe
that the maxima in fp emission occur in locally steep regions
of the density profile, due primarily to severe scattering-
induced losses in locally flat regions dominating enlarged source
emission volumes therein. For 2 fp emission, intensifications
and depletions of flux with frequency are influenced mainly by
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Figure 3. Turbulent plasma frequency profiles (blue) for simulations (a) A,
(b) B, and (c) C, and the smooth 10-fold Baumbach–Allen profile for simulation
U (green). Dotted red and black horizontal lines indicate inflection and stationary
points in each blue profile, respectively.

(A color version of this figure is available in the online journal.)

variations in the sizes of source emission volumes, with larger
source sizes leading to stronger emission, so that maxima arise
in locally flat regions of the density profile. Advances and delays
in the arrival of radio emission at a given frequency are due to
shifts in the locations of the corresponding emitting volumes
for both fp and 2 fp emission, but for fp emission are also due
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Figure 4. Dynamic spectra for simulations U (left) and A (right). The first two rows are fp emission, with scattering losses neglected in (a) and (b) and included in (c)
and (d). The third row is 2 fp emission. The dashed contours on the right trace the outlines of the corresponding bursts for simulation U, and the horizontal dotted lines
correspond to those in Figure 3(a).

(A color version of this figure is available in the online journal.)

to the effects of variations in the scattering mean free path and
mean group speed. Our results for both fp and 2 fp emission
show that advances and delays correspond to steep and flat
regions, respectively, of the density profile, but that these
advances and delays are far more pronounced for fp emission.

3.1. Frequency Fine Structures

Figure 4 shows the dynamic spectra of fp and 2 fp radiation
for the smooth density profile of simulation U and the turbulent
profile of simulation A, with and without scattering losses for
fp emission. As expected, for the smooth background density

profile the dynamic spectra (Figures 4(a), (c), and (e)) are
smooth. However, flux modulations and advances/delays in the
dynamic spectra (Figures 4(b), (d), and (f)) arise naturally when
density turbulence is added.

When scattering-induced losses are neglected, we observe
that more emission is produced at frequencies corresponding
to flat regions of the density profile (i.e., r values for which
n′(r) ≈ 0), since emission is produced in large volumes over
small frequency ranges. Locally flat regions, defined to be where
either n′(r) = 0, or n′′(r) = 0 with n′(r)n′′′(r) > 0 (this last
relation is based on the realization that for a locally flat inflection
point, the sign of the concavity change matches the sign of the
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Figure 5. Dynamic spectra for simulation B, showing (a) fp and (b) 2 fp
radiation. The dashed contours trace the outlines of the corresponding bursts for
simulation U, and the horizontal dotted lines correspond to those in Figure 3(b).

(A color version of this figure is available in the online journal.)

gradient), and referred to below as where n′(r) ≈ 0, are indicated
by horizontal lines at corresponding frequencies in Figures 3–6.
This is true of both fp and 2 fp emission, as can be seen from
the dynamic spectra in Figures 4(b) and (f). However, once fp
scattering losses are incorporated, there is a dramatic difference
in the qualitative nature of the flux modulations for fp radiation:
maxima now tend to occur at frequencies corresponding to steep
regions of the density profile (Figures 4(d), 5(a), and 6(a)).

Physically, a photon of frequency f produced near or in a
region where the density profile is relatively flat (n′(r) ≈ 0)
must traverse a greater distance where f is close to fp(r)
than when |n′(r)| is large. This increases the likelihood of the
photon encountering a mode conversion region, which decreases
its chances of escaping. Quantitatively, these effects can be
reasoned in the context of the fp scattering model (outlined
in Section 2.2) as follows. Let us define uc to be the value
of u at which ψ(u) is maximized. To a first approximation
we expect scattering to be significant for u � uc, such that
ψ(u < uc) ≈ 0, and to be negligible for u � uc, such that
ψ(u > uc) ≈ P (Δn, u) (Robinson & Cairns 1998). With these
assumptions one can simplify Equation (20) to obtain

η ≈ erfc (uc), (21)

which in our simulations is observed to be within 15% of the
true value given by Equation (20). Since 〈fmc〉 is independent of
u, we can solve for uc using Equations (14) and (19) by setting

ψ ′(u) = 0 to obtain the following implicit relation:

uc = 〈fmc〉
4〈l〉 L0 erfc(uc). (22)

Substituting Equation (9) into (22) then yields

uc ∝ erfc(uc)

−n′
0

. (23)

We see from Equation (23) that uc increases with decreasing |n′
0|,

and in particular approaches infinity as |n′
0| → 0. Consequently,

by Equation (21), it follows that

lim
|n′

0|→0
η ≈ 0, (24)

which indicates that scattering losses are most severe for
radiation having frequencies corresponding to flat regions of
the density profile. This is explicitly shown in Figure 7, which
reveals dramatic variations in η (by up to two orders of
magnitude) between locally steep and flat regions. As mentioned
earlier, we observe that maxima in fp emission occur in locally
steep regions, where |n′(r)| (and therefore η) is relatively large.
The effects of minimal scattering loss are partially opposed by
the decrease in source volumes in these regions, since volume
is inversely proportional to |n′(r)|, which tends to reduce the
flux at frequencies where |n′(r)| is relatively large. However,
|n′(r)| only varies by factors of 2–5 for the amplitudes of the
perturbations used in our simulations, and so correspondingly,
flux modulations due to variations in source volumes occur by
factors of 2–5, which are very modest compared to the variations
by factors of 10–100 induced by scattering effects. The latter
is therefore the dominant factor in determining the locations of
flux maxima/minima in fp emission.

Scattering losses are assumed to be negligible for 2 fp emis-
sion (Li et al. 2008a), and so in the dynamic spectra the emission
maxima simply occur at regions where n′(r) ≈ 0. This occurs
because of the larger emission volume for radiation at frequen-
cies f ≈ 2fp(r) when n′(r) ≈ 0, compared to when |n′(r)| is
significant.

3.2. Temporal Fine Structures

Assuming no other radiation propagation effects, the temporal
shifts of 2 fp emission can be understood simply in terms of an
electron beam traveling with constant speed through the corona
with the given density profile. Let f1(x) be the local plasma
frequency as a function of altitude x, and suppose that the trace of
the burst in the dynamic spectrum is described by some function
f2(t) representing the plasma frequency inferred (approximately
half the measured 2 fp frequency) from the emission recorded at
time t. Re-parameterizing f2 as f̃2 using

x(t) = vb t + x0 (25)

so that f̃2(x(t)) ≡ f2(t), where vb is the beam speed and
x0 ≡ x(0) is some reference point. We propose that

f̃2(x) ≈ f1(x). (26)

To test the validity of Equation (26) for our simulations with
turbulent density profiles, it is first necessary to derive the value
of vb. It has been established from previous numerical work (Li
et al. 2008a, 2008b, 2009) complementing earlier interpretations
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Figure 6. Dynamic spectra for simulation C, showing (a) fp and (b) 2 fp radiation. The dashed contours trace the outlines of the corresponding bursts for simulation
U, and the horizontal dotted lines correspond to those in Figure 3(c).

(A color version of this figure is available in the online journal.)
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Figure 7. Variations in the fraction η of escaping fp emission (top) and the time constant td for the decay of fp emission (bottom) as a function of source position for
simulations A (left), B (center), and C (right), with blue curves, and simulation U (green curves). Vertical red and black dotted lines indicate the positions of inflection
and stationary points, respectively, in the corresponding density profiles in Figure 3. Gaps in the blue lines correspond to locations where n′(r) > 0 and the fp emission
becomes evanescent.

(A color version of this figure is available in the online journal.)

of data (e.g., Wild et al. 1963), that for smooth coronal profiles
the following relation holds for 2 fp emission:

df2

dt
= df1(x(t))

dt
= vb

df1

dx
= vb

2n

dn

dr
f1. (27)

In fact, Equation (27) is an equivalent statement of (26), and so
we now choose to extract vb from the 2 fp burst of simulation
U (Figure 4(e)). For each frequency value f2 we obtain the time
tmax(f2) at which the flux ΦH is a maximum, then calculate
dtmax/df2 by fitting a quadratic to tmax(f2) and taking the

8



The Astrophysical Journal, 790:67 (12pp), 2014 July 20 Loi, Cairns, & Li

derivative of the fit with respect to f2. (This is done to remove
the noise associated with the raw data.) Since f1(x) is a known
function, it is straightforward to compute dx/df1, and so we
obtain

vb ≈
〈

dx

df1

(
dtmax

df2

)−1 〉
, (28)

where x(f1) and tmax(f2) are interpolated to identical f values
and vb is obtained by averaging the fitted beam speed for every
f over the whole frequency range. For the parameters used in
this work we find that vb = 0.15c. This value agrees with the
phase-space distributions of electrons and L waves in the source
(not shown), which is consistent with our previous work (Li
et al. 2008b, 2009, 2011a).

Using the value of vb computed from simulation U, we apply
the transformation (25) to tmax derived from the dynamic spectra
of simulations A, B, and C to obtain f̃2(x). It can be seen from
the comparison between f̃2(x) and f1(x) in Figure 8 that the
prediction (26) holds remarkably well for 2 fp emission, but
not for fp emission, although we can still attribute the gross
negative drift of fp emission to the overall decrease in plasma
density with altitude. Since the radial falloff of the background
density profile can be measured (as shown by Cairns et al. 2009
and Lobzin et al. 2010), Figure 8 demonstrates that it should be
possible to directly measure the properties of intermediate-scale
turbulence in the corona (and solar wind), including the levels
and characteristic spatial scales as functions of heliocentric
distance, using the harmonic radiation of type III bursts.

The details of temporal fine structures in fp emission appear
to be influenced far more heavily by factors other than the
displacement of emitting volumes associated with the density
turbulence. For instance, Figure 5(a) shows an advancement
of the envelope of the fp emission in simulation B in the
frequency range 43–46 MHz, which is the opposite of what
would be expected from the sign of the density perturbation
alone: the density there is locally enhanced, and so we might
expect a time delay in that frequency range. There are also tails
of fp emission in A–C at frequencies corresponding to where
n′(r) ≈ 0, reflecting an increase in the characteristic timescale
for the decay of fp emission produced in those locations. These
can be seen clearly in Figure 4(b), for which the fp flux ΦF

at these locations is above the plotting cutoff, and in Figure 8.
These fine structures result from the proportional dependence
of both Δu(u) and vg(u) on the local density gradient n′

0, which
leads to a quadratic dependence of the diffusivity D(u) on n′

0:
from Equations (13), (14), and (15), we have

D(u) = 2〈l〉
3 erfc(u)

c

Δn
√

2

(
u

n0Δn
√

2

)1/2

n′
0

2. (29)

Based on the dependence in Equation (16), a locally decreased
value of |n′

0| decreases D and so lengthens the timescale τ on
which fp radiation decays, whereas an increase in |n′

0| gives rise
to an increased D and a decreased τ . Figures 7(b), (d), and (f)
show the variation of the time constant td for simulations A,
B, and C, respectively. It is apparent that td peaks abruptly at
positions where n′(r) ≈ 0, and dips below the value for U where
n′(r) steepens locally. These quantitative results agree with our
prediction. There is no dependence of the LMC damping rate
γ on n′(r), and so we conclude that variations in td are due
primarily to variations in D arising from the dependence of the
mean scattering length Δu and mean group speed vg on n′(r).
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Figure 8. Plasma frequency profiles predicted using the fp (blue) and 2 fp (black)
peak fluxes for simulations (a) A, (b) B, and (c) C. These predictions assume a
constant beam speed of 0.15c and the absence of radiation propagation effects.
The actual plasma frequency profiles are shown in red.

(A color version of this figure is available in the online journal.)

4. DISCUSSION

Although the construction of density turbulence via
Equation (2) assumes radial independence of the fractional am-
plitude A(ki) for each mode, and the value of α is fixed at −5/3,
these choices can be changed. The mechanisms suggested in
Section 3 for the formation of fine structures operate wherever
large-scale irregularities are present; they and the qualitative
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details of these structures do not depend on the detailed density
profile. Therefore, our predictions are also qualitatively applica-
ble to coronal type III bursts with different background density
profiles, density turbulence with non-Kolmogorov power spec-
tra, and interplanetary type III bursts.

The tails that appear in fp radiation at locations where
n′(r) ≈ 0 (Figure 4(b)) are not visible in the dynamic spectra
when scattering losses of fp radiation are accounted for (Fig-
ure 4(d)). This is due to the severe depletions in fp flux (greatly
reduced η) where n′(r) ≈ 0, and thus in practice such tails may
be difficult to detect without sufficiently sensitive instruments.

In the following subsections, we discuss the feasibility of
observing the predicted fine structures in practice, limitations of
our work, and resolved issues pertaining to the visualization of
data written to non-monotonic grids.

4.1. Observational Implications of Fine Structure Bandwidths

As shown in Section 3.1, 2 fp emission maxima occur in the
vicinity of flat regions in the density profile (e.g., at 710 and
825 Mm for simulation A). Our simulations predict half-power
bandwidths Δf for the 2 fp maxima that are very narrow, of
order 10 kHz or less at f ≈ 100 MHz (Δf/f ∼ 0.01%). For
fp emission maxima, which occur at relatively steep sections
of the density profile, the Δf values are much larger and
are determined by the spacings between locally flat regions.
These spacings decrease when higher modes are added. For
simulations A and B, in which the highest-frequency modes
have wavelengths of 28 Mm, the Δf values are quite large,
of order 1–2 MHz for f ≈ 50 MHz (Δf/f ∼ 2%–4%),
which is somewhat larger than the typically observed values
of 0.1%–1% for stria bursts (Bhonsle et al. 1979; Melnik et al.
2010). Simulation C is constructed using three times the number
of modes for A and B, and the highest-frequency mode has a
wavelength of 9 Mm. The qualitative features present in the
dynamic spectra of fp and 2 fp emission for A and B are also
present in C, but C exhibits a larger number of irregularities
due to the presence of shorter-wavelength modes. Furthermore,
the bandwidths of enhancements in fp emission are smaller
in C (Figure 6(a)) than A or B, ranging between 0.5–1 MHz
(Δf/f ∼ 1%–2%). Observations suggest (Coles & Harmon
1989; Spangler et al. 2002) that turbulence continues to occur
down to length scales several orders of magnitude below that of
our simulations, and so we expect the bandwidths of maxima in
fp emission to be smaller in reality than those predicted by the
simulations for A–C. However, the distances between locally flat
regions (and therefore the values of Δf for fp radiation) should
not decrease dramatically with the addition of modes having
much shorter wavelengths (larger wavenumbers), because for
turbulence with a negative spectral slope, the amplitudes of
these additional modes are also smaller.

The large differences in the bandwidths of fp and 2 fp en-
hancements (by a factor of ∼102) suggest that fp enhancements
should be observationally easier to resolve than 2 fp enhance-
ments. Instruments that have been used to study type III bursts
over the past decades have had frequency resolutions of Δf/f ∼
0.05%–0.4% (Bhonsle et al. 1979; Stewart et al. 1981; Rosolen
et al. 2001; Lobzin et al. 2009), which are insufficient to resolve
2 fp enhancements that are as narrow as predicted in our sim-
ulations. This may offer an explanation for the often-observed
harmonic type IIIb–III pairs (Bazelyan et al. 1974b; Takakura
& Yousef 1975; Abranin et al. 1984): flux enhancements are
resolved in fp emission, but not in 2 fp emission. Among the
radio instruments currently in operation, only the Murchison

Widefield Array (MWA)—with its excellent frequency reso-
lution of 10–40 kHz over the range 80–300 MHz, implying
Δf/f ∼ 0.003%–0.05% (Tingay et al. 2013)—may have the
capability to resolve the enhancements in 2 fp emission. At the
time of writing, however, the full MWA has only recently come
into operation, and we have yet to see its application to solar
observations.

Although the bandwidths of 2 fp enhancements produced at
regions where n′(r) ≈ 0 may be difficult to resolve with typical
instruments, broader enhancements in 2 fp emission may result
from turbulence levels that are sufficient to produce trough-peak
structures in the density profile. These broader emission features
can be seen in Figure 5(b) at f ≈ 92–93 and 98–99 MHz, where
the density profile (see Figure 3(b)) is constructed from the same
combination of modes as A, but with Δ twice as large. Unlike A,
the density profile in B contains several non-monotonic sections.
Now a trough-peak region comprises three disjoint regions of
space (a downhill→uphill→downhill sequence) spanning the
same range of frequency values, e.g., the 700–730 Mm and
810–840 Mm sections of the density profile for simulation B
(Figure 3(b)). If the size of this region is comparable to or
smaller than the radial extent of the electron beam (≈50 Mm in
our simulations), then the beam at some point will encompass the
whole structure, resulting in a total 2 fp flux ΦH in that frequency
range, that is about three times higher than ΦH at adjacent
frequencies, e.g., see the 92–93 MHz and 98–99 MHz ranges
in Figure 5(b). The full-power bandwidth of an enhancement
produced in this manner is equal to the difference in the local
plasma frequencies of the stationary points of the structure.
This difference depends on the turbulence levels and can be
arbitrarily large. In such cases, both fp and 2 fp emission will
exhibit observable flux irregularities, which may explain the
observed type IIIb–IIIb events (Takakura & Yousef 1975). Note
that 2 fp radiation is generally well above the local plasma
frequency and therefore, unlike fp emission, can travel through
regions where peaks exist in the density profile. This mechanism
for generating flux irregularities in 2 fp radiation naturally rules
out the possibility of type III–IIIb pairs, since turbulence levels
that are sufficient to produce resolvable flux modulations in 2 fp
emission will always produce resolvable flux modulations in fp
emission as well.

4.2. Limitations

In this work, we have treated turbulence in the radial direction
only (along the magnetic field), under the assumption that the
plasma density in the source region is stratified, i.e., does not
vary laterally over the width (≈240 Mm) of the simulation
region. Observations and models indicate that turbulence in the
corona is anisotropic, and may in fact occur to a greater extent
in the plane perpendicular to the magnetic field rather than in
the direction along it (Tu & Marsch 1995; Matthaeus et al.
1999a), which is at odds with this assumption. For type IIIb
bursts to be formed by density turbulence, the cross sectional
area of the electron beam must be small enough for density
fluctuations along its path to dominate over those across its
width, otherwise flux modulations might be smoothed out (see
Li et al. 2012; Li & Cairns 2012). Indeed, we expect flux
modulations to be less pronounced when turbulence is present in
three dimensions, due to this averaging effect. Future work may
therefore involve quantifying the effects of three-dimensional
and possibly anisotropic turbulence on type III bursts, and
assessing the likelihood of observing stria-like fine structures
under these turbulence conditions.
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The simulations presented in this paper that include scattering
losses for fp emission predict ΦF � 0.1 sfu, which is below
the sensitivity limit of typical instruments (∼1 sfu), while for
2fp emission, ΦH � 2 sfu. These results suggest that only
the 2 fp emission will be observable. However, we assumed a
Maxwellian distribution for both the thermal and accelerated
electrons, whereas observations show that electron distributions
in the corona have a power-law tail extending to high energies
in addition to a Maxwellian component (e.g., Lin 2011). Recent
work by Li & Cairns (2013) has demonstrated that the fp
emission of type III bursts generated in coronal source regions
with non-Maxwellian background electron populations reaches
observable levels more easily than for purely Maxwellian
plasmas, and also drifts faster due to greater beam speeds.
Since the physical mechanisms described in Section 3 do not
depend on the background electron distribution or the beam
velocity, the inclusion of a high energy tail in the background
electron distribution should resolve the problem of low ΦF here
without altering the qualitative features of the fine structures
resulting from the density turbulence. However, this has yet to
be explicitly demonstrated.

We have neglected the possible coupling of turbulence in
temperature and density (e.g., via thermal pressure balance)
even though it has been established that variations in electron
and ion temperatures can also produce fine structures in type III
bursts (Li et al. 2011a, 2011b). Our model also neglects a number
of physical processes, such as the emission contribution of LMC
(we have only invoked it as an absorption process for fp emission
scattered by microscale density fluctuations), and the reflection
and scattering of 2 fp radiation, which is expected to be weak
but may alter the time profile of 2 fp flux (e.g., by introducing
an exponential tail; Riddle 1974).

4.3. Treatment of Remote Radiation Produced in
Non-monotonic Sections of the Density Profile

One raw output of our simulations is the radio flux ΦT (f, t)
(T = F or H) produced at each point along the spatial grid
as measured at a particular time t by a remote observer, where
the frequency f associated with each value ΦT (f, t) is the lo-
cal plasma frequency at that location. The background den-
sity profile nbg(r) monotonically decreases with increasing r,
but when the imposed turbulent fluctuations δn(r) are suffi-
ciently large, as in simulation B, local trough-peak regions in
n(r) are produced (e.g., Figure 3(b), between 700–720 Mm)
and the vector containing the frequency values at uniformly
sampled positions xj (for j = 1, 2, · · · , jmax), which we will
denote f = (f (x1), f (x2), · · · , f (xjmax )), ceases to be mono-
tonic. We identified two main complications associated with
non-monotonic density profiles, namely that (1) there are occa-
sionally duplicate (f, t) pairs in the array (identical in all digits
for the numerical precision used) that are associated with differ-
ent ΦT ; and (2) there are disjoint, contiguous sections of f that
share no array element values in common, but span the same
range of frequencies.

Problem (1) was easily dealt with by excluding all successive
duplicates of f in f, which affected the resultant plots very little
since this occurred at the low rate of three to four duplicate
values per jmax = 576 elements of f. However, problem (2),
which is a consequence of discretization, proved to be a potential
source of false structure if the data were not handled carefully.
The naı̈ve approach of displaying ΦT (f, t) on a frequency–time
plot by first re-ordering f to obtain an ordered vector f̃ (which is
monotonic) produces jagged features in the dynamic spectra due

to an interleaving of ΦT values from disjoint regions of space
when it is plotted using f̃. For instance, fp radiation produced
on the Sunward side of a density peak cannot escape to the
observer and so ΦF associated with this region is zero, but fp
radiation produced over the same frequency range on the anti-
Sunward side of the peak can propagate outward and thus ΦF

from this region is non-zero. If the data from these two regions
are combined and plotted using f̃, alternating zero and non-zero
flux values will result, due to an interleaving of the discrete
frequency values associated with the two regions.

We dealt with problem (2) by first dividing ΦT (f, t) for fixed
t into piecewise-monotonic sections in frequency and interpo-
lating each to the appropriate subrange of a uniformly spaced
frequency grid, f∗, that spans the full range of frequencies. We
then formed the dynamic spectrum by arranging the individual
sections onto a single frequency–time plot (with f∗ as the fre-
quency axis) and adding the flux values together where sections
overlapped in frequency range, to arrive at a final value for the
total flux at each point in time and frequency. This approach is
justified by the fact that the radio flux observed remotely at a
given frequency is the integral over the source region, meaning
that if radiation emitted from two or more locations with the
same local plasma frequency reaches the observer at the same
time, the total flux measured at that frequency should be the sum
of the fluxes arriving from those locations.

5. CONCLUSION

We have simulated the effects of one-dimensional density
turbulence in the source region of a coronal type III burst and
found that the turbulence produces stria-like fine structures in the
dynamic spectra of both fp and 2 fp radiation, which otherwise
are smooth when the turbulence is negligible. For fp radiation,
flux modulations with frequency are governed by the effects
of scattering losses, which are most severe where the density
profile is flat, and so emission maxima occur in relatively steep
regions of the density profile. Temporal shifts of fp radiation
are caused by a combination of variations in the scattering path
length and mean group speed, both of which depend on n′(r),
producing delayed emission where n′(r) ≈ 0 and advancements
where |n′(r)| is large. For 2 fp radiation, flux modulations with
frequency result from variations in the sizes of emitting volumes,
giving rise to emission maxima where n′(r) ≈ 0 (large emitting
volume for a small frequency range), and depletions where
|n′(r)| is large (small emitting volume for a given frequency
range). Temporal advances/delays of 2 fp radiation are well
explained in terms of an electron beam traveling radially with a
constant speed.

We demonstrated that the turbulent density profile along the
beam path can be reconstructed accurately from the observed
time-varying frequency of maximum flux of harmonic type III
emission, since radiation propagation effects for harmonic
emission are relatively minor. This result opens a new technique
for probing density turbulence in the solar corona and solar wind,
complementing a similar technique for the underlying smooth
density profile (Cairns et al. 2009; Lobzin et al. 2010). However,
due to the influence of scattering-induced time delays, a similar
technique using fundamental emission does not appear viable.

Our simulations predict that the half-power bandwidths for
stria-like enhancements in 2 fp radiation are of order Δf/f ∼
0.01%, too narrow to be resolved by most current instruments,
with the exception of perhaps the MWA, which has a frequency
resolution of Δf/f ∼ 0.003%–0.05%. On the other hand,
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the bandwidths of the enhancements in fp emission are much
larger, with Δf/f ∼ 1%–2% for simulation C, similar to
observed bandwidths of the striae. These results suggest a
possible explanation for the commonly reported observations of
type IIIb–III harmonic pairs (Bazelyan et al. 1974b; Takakura
& Yousef 1975; Abranin et al. 1984) as being where emission
enhancements are resolved in fp but not 2 fp radiation. When
turbulence levels are large and trough–peak regions appear in
the density profile having spatial extents smaller than that of the
electron beam, enhancements in 2 fp emission with resolvable
bandwidths may appear, due to the simultaneous contributions
from three regions of space spanning the same range of plasma
frequencies. In such cases, flux modulations with frequency are
predicted for both fp and 2 fp radiation, and this may explain the
observed type IIIb–IIIb pairs (Takakura & Yousef 1975).

Future work could involve quantifying the effects of realistic
three-dimensional turbulence on the behavior of type III bursts,
since the assumption of radial stratification invoked here may
not be fully realistic. In addition, the effects on the flux
levels of fp emission caused by a turbulent, non-Maxwellian
background corona (Lin 2011) should be examined. The effects
of combining temperature fluctuations and density turbulence,
and the contribution of other emission processes (such as LMC),
also remain to be investigated.
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