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ABSTRACT

Continued observational characterization of transiting planets that reside in close proximity to their host stars has
shown that a substantial fraction of such objects possess orbits that are inclined with respect to the spin axes of
their stars. Mounting evidence for the wide-spread nature of this phenomenon has challenged the conventional
notion that large-scale orbital transport occurs during the early epochs of planet formation and is accomplished via
planet–disk interactions. However, recent work has shown that the excitation of spin–orbit misalignment between
protoplanetary nebulae and their host stars can naturally arise from gravitational perturbations in multi-stellar
systems as well as magnetic disk–star coupling. In this work, we examine these processes in tandem. We begin
with a thorough exploration of the gravitationally facilitated acquisition of spin–orbit misalignment and analytically
show that the entire possible range of misalignments can be trivially reproduced. Moreover, we demonstrate that the
observable spin–orbit misalignment only depends on the primordial disk–binary orbit inclination. Subsequently,
we augment our treatment by accounting for magnetic torques and show that more exotic dynamical evolution
is possible, provided favorable conditions for magnetic tilting. Cumulatively, our results suggest that observed
spin–orbit misalignments are fully consistent with disk-driven migration as a dominant mechanism for the origin
of close-in planets.
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1. INTRODUCTION

Nearly two decades after the celebrated radial velocity detec-
tion of a planet around 51 Peg (Mayor & Queloz 1995; Marcy &
Butler 1996), the orbital histories of hot Jupiters (giant planets
that reside within ∼0.1 AU of their host stars) remain poorly un-
derstood. Conventional planet formation theory (Pollack et al.
1996) suggests that in situ formation of hot Jupiters is unlikely,
implying that these objects formed beyond the ice-lines of their
natal disks (at orbital radii of the order of ∼a few AU) and sub-
sequently migrated to their present locations. The nature of the
dominant migration mechanism, however, remains somewhat
elusive.

Broadly speaking, the proposed theoretical mechanisms re-
sponsible for delivery of hot Jupiters to close-in radii fall into
two categories. The smooth migration category essentially ar-
gues that large-scale transport of giant planets is associated with
viscous evolution of the disk (Lin et al. 1996; Morbidelli & Crida
2007). More specifically, the envisioned scenario suggests that
newly formed giant planets clear out substantial gaps in their
protoplanetary disks (Goldreich & Tremaine 1980; Armitage
2011) and, having placed themselves at the gap center (where
torques from the inner and outer parts of the disk instantaneously
cancel), drift inward along with the gas.

A dramatically different story is foretold by the class of vi-
olent migration mechanisms. Within the context of this group
of descriptions, giant planets initially residing at large orbital
radii first attain near-unity eccentricities and eventually get
tidally captured onto tighter orbits. The necessary orbital ex-
citations are expected to stem from dynamical processes such
as planet–planet scattering (Ford & Rasio 2008; Nagasawa et al.
2008; Beaugé & Nesvorný 2012), Kozai resonance with a per-
turbing binary star (Wu & Murray 2001; Fabrycky & Tremaine

2007; Naoz et al. 2011), and secular chaotic excursions
(Lithwick & Wu 2012).

From a purely orbital stand point, there appears to be
observational evidence for both sets of processes. That is, the
existence of a substantial number of (near-) resonant giant
exoplanets (Wright et al. 2011) and direct observations of
gaps in protoplanetary disks (Andrews et al. 2011; Hashimoto
et al. 2012) imply that smooth disk-driven migration is an
active process. Simultaneously, the existence of highly eccentric
planets such as HD80606b (Laughlin 2009) hint at violent
migration as a viable option (see however Dawson et al.
2012).

In recent years, observations of the Rossiter–McLaughlin ef-
fect (Rossiter 1924; McLaughlin 1924), which inform the pro-
jected angle between the stellar spin axis and the planetary orbit
(Fabrycky & Winn 2009), have placed additional constraints on
the hot Jupiter delivery process. Particularly, the data shows that
spin–orbit misalignments are generally common within the hot
Jupiter population, and the individual angles effectively occupy
the entire possible range. Interpreted as relics of hot Jupiter
dynamical histories (see, however, Rogers et al. 2012 for an
alternative view), these observations seemed to strongly favor
the category of violent migration mechanisms over disk-driven
migration, as spin–orbit misalignments are a natural outcome of
the former.

However, a more thorough theoretical analysis shows that
spin–orbit alignment is not a necessary feature of disk-driven
migration, because a primordial correspondence between the
stellar spin axis and the disk angular momentum vector is not
in any way guaranteed. To this end, Bate et al. (2010) hypoth-
esized that stochastic external forces that act on newly formed
protoplanetary disks may give rise to spin–orbit misalignment,
while Lai et al. (2011) showed that a mismatch between the

1

http://dx.doi.org/10.1088/0004-637X/790/1/42
mailto:cspaldin@caltech.edu


The Astrophysical Journal, 790:42 (12pp), 2014 July 20 Spalding & Batygin

stellar magnetic axis and the disk orbital angular momentum
vector can be further amplified by magnetic torques.

In a separate effort, Batygin (2012) showed that owing to en-
hanced stellar multiplicity in star-formation environments (Ghez
et al. 1993; Kraus et al. 2011; Marks & Kroupa 2012), secu-
lar gravitational perturbations arising from binary companions
may torque protoplanetary disks out of alignment with their
host stars. This study was subsequently extended by Batygin
& Adams (2013), who also considered the dissipative effects
of accretion, magnetic modulation of stellar rotation as well as
the physical evolution of the star and the disk on the excita-
tion of spin–orbit misalignment. Importantly, the latter study
demonstrated that the acquisition of stellar obliquity occurs im-
pulsively, via a passage through a secular spin–orbit resonance.

A distinctive prediction made by the disk-torquing model
is the existence of coplanar planetary systems, whose orbital
angular momentum vectors differ from the spin axes of the host
stars. This prediction was recently confirmed observationally
by Huber et al. (2013) in the Kepler-56 system. Moreover, the
statistical analysis of Crida & Batygin (2014) has shown that
the expected spin–orbit misalignment distribution of the disk-
torquing model is fully consistent with the observed one.

Given the aforementioned successes of the disk-torquing
mechanism in resolving the discrepancy between disk-driven
migration and spin–orbit misalignments, a thorough exami-
nation of the physical process behind the excitation of incli-
nation is warranted. This is the primary aim of the study at
hand. Specifically, in this work, we analyze the passage of the
star–disk system through a secular spin–orbit resonance, under
steady external gravitational perturbations and magnetically fa-
cilitated tiling of the star. The paper is organized as follows. In
Section 2, we describe the construction of a perturbative model
that approximately captures the relevant physics. In Section 3,
we describe the characteristic behavior exhibited by the model.
We conclude and discuss our results in Section 4.

2. MODEL

In order to complete the specification of the problem, we must
delineate the various ingredients of the model we aim to con-
struct. In particular, these include formulations of the physical
evolution of the disk and the central star (Section 2.1), mag-
netically facilitated tilting of the stellar-spin axis (Section 2.2),
gravitational interactions between the disk and the binary com-
panion, as well as the gravitational interactions between the
central star and the disk (Section 2.3). In this work, we opt to
neglect the dissipative effects of accretion, as they have been
studied within the context of the same problem elsewhere (i.e.,
Batygin & Adams 2013) and have been found to be unimportant.

We describe our parameterization of the relevant processes
below. In the interest of minimizing confusion, we adopt the
following convention for identically named variables: quantities
referring to the disk are primed, those referring to the central star
are marked with a tilde, and those referring to the companion
star are labeled by an over-bar. Throughout the paper, an
emphasis is placed on simplicity inherent to (semi-)analytical
approximations, as opposed to precise yet perplexing numerical
calculations.

2.1. Physical Evolution of the Protoplanetary Disk
and the Stellar Interior

Typically quoted lifetimes of protoplanetary disks fall in the
range ∼1–10 Myr and almost certainly depend on various pa-
rameters such as the host stellar mass (Williams & Cieza 2011).

We adopt several approximations for the physical evolution of
the star and disk, which are specific to Sun-like stars, which
host the best observationally characterized hot Jupiters. While
generally difficult to accurately parameterize, the disk mass can
be taken to evolve as (Laughlin et al. 2004)

Mdisk = M0
disk

1 + t/τdisk
. (1)

Interpreting the time derivative of Mdisk to represent the
accretionary flow, following Batygin & Adams (2013) we find
that the initial disk mass, M0

disk = 5×10−2 M� and evaporation
timescale τdisk = 5 × 10−1 Myr provide an acceptable match
to the observations (Hartmann 2008; Herczeg & Hillenbrand
2008; Hillenbrand 2008).

For simplicity, we model the interior structure of the central
star with a polytrope of index ξ = 3/2 (appropriate for a fully
convective object; Chandrasekhar 1939). A polytropic body
of this index is characterized by a specific moment of inertia
I = 0.21 and a Love number (twice the apsidal motion constant)
of k2 = 0.14. Because T-Tauri stars derive a dominant fraction
of their luminosity from gravitational contraction, we adopt the
following expression for the radiative loss of binding energy
(Hansen & Kawaler 1994):

− 4πR2
�σT 4

eff =
(

3

5 − ξ

)
GM2

�

2R2
�

dR�

dt
. (2)

Equation (2) effectively dictates the process of Kelvin–
Helmholtz contraction, and is satisfied by the following solution:

R� = (R0
� )

[
1 +

(
5 − ξ

3

)
24πσT 4

eff

GM�(R0
� )3

t

]−1/3

. (3)

A good match to the numerical evolutionary track of Siess
et al. (2000) for a M� = 1 M� star can be obtained by assuming
an initial radius of R0

� � 4 R� and an effective temperature of
Teff = 4100 K.

2.2. Magnetic Torques

In order to model the magnetic disk–star interactions, we
consider a T-Tauri star possessing a pure dipole magnetic field,
whose north pole is aligned with the stellar spin axis. In the
region of interest (i.e., in the domain of the disk), the field
is current-free and can be expressed as a gradient of a scalar
potential:

Bdip = −∇V. (4)

To retain generality, we take the field to be tilted at an angle
βi with respect to the disk plane into a direction specified by an
azimuthal angle φ̃i :

V = B�R�

(
R�

r

)2[
P 1

0 (cos(θ̃)) cos(βi)

− sin(βi)(sin(φ̃i) sin(φ̃)

+ cos(φ̃i)cos(φ̃))P 1
1 (cos(θ̃))

]
, (5)

where B� is the stellar surface field and P m
l are associated

Legendre polynomials.
If we assume the disk to be circular and Keplerian, there ex-

ists a radius a′
co = (GM�/ω

2)1/3 at which the mean motion of
the disk material, n′, equals the spin rate of the stellar magnetic
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field, ω. At larger and smaller radii, Keplerian shear will give
rise to relative fluid velocity with respect to the stellar rota-
tion. Accordingly, as a result of the thermal ionization of alkali
metals in the disk (Draine et al. 1983), the magnetic field will
be dragged azimuthally by differential rotation, while slipping
backward diffusively (Livio & Pringle 1992). Following Ar-
mitage & Clarke (1996), we parameterize the magnitude of the
azimuthally induced field Bφ as a fraction, γ = Bφ/Bz, of the
vertical component of the dipole field Bz.

As shown by Agapitou & Papaloizou (2000) and Uzdensky
et al. (2002), beyond a critical value of γ � 1, field lines are
stretched to a sufficient degree to reconnect and transition from
a closed to an open topology. Thus, the condition |γ | � 1
defines a magnetically connected region within the disk with
â′

in < a′ < â′
out. Outside of this region, we assume there to be

no appreciable magnetic coupling to the disk.
The radial profile of γ is determined by the magnetic

diffusivity of the disk, which in turn may be represented by
the following dimensionless parameter (Matt & Pudritz 2004):

ζ = α

Pm

h

a′ , (6)

where α is the disk viscosity parameter introduced by Shakura
& Sunyaev (1973), Pm is the magnetic Prandtl number, and h is
the scale height of the disk. As argued by Matt & Pudritz (2004,
2005), any realistic choice of parameters yields ζ � 10−2,
which is the value we adopt throughout our work here. In terms
of ζ , a steady state magnetic twist angle may be expressed as
(Uzdensky et al. 2002)

γ = (a′/a′
co)3/2 − 1

ζ
. (7)

For our adopted value of ζ , this so-called magnetically
connected region does not diverge from the corotation radius
by more than ∼1%.

The above discussion highlights a crucial aspect of the
magnetic star–disk interaction, which is discussed in detail
by Matt & Pudritz (2004, 2005). If the disk is truncated at
a′

in > â′
out, then there is no magnetically connected region

within the disk. The picture is slightly more complicated for the
case where a′

in < â′
in, as one may speculate that magnetic effects

arising from differential rotation outside a′
co may cancel those

associated with differential rotation inside a′
co to first order. In all

of the following work, we circumvent these issues by assuming
a disk-locked condition (Shu et al. 1994; Mohanty & Shu 2008)
where a′

in = a′
co, but add a cautionary note that this assumption

may lead to somewhat overly favorable results.
In order to derive the analytical form of the torques, we take

a similar approach to that of Lai et al. (2011), and assume the
disk to be razor thin. The disk current loops are envisioned to
follow the magnetic field lines in a force-free fashion (see, e.g.,
Krasnopolsky et al. 2009; Zanni & Ferreira 2013) and connect
onto the stellar surface. Accordingly, the induced azimuthal
magnetic field arises from a radial current within the disk (Lai
1999).

The magnitude of the radial current is calculated using
Ampère’s law (Jackson 1998) in the form∫

C

B · d l = μ0

∫ ∫
A

J · dS, (8)

where d l is a vector path length, dS is a vector area element,
and C is a loop encompassing the surface A. J is the (induced)

current density within the disk. Because the induced field is
entirely toroidal, we can integrate the left-hand side along an
azimuthal loop around the disk. This yields

4πa′Bφ = 2πμ0a
′Kr, (9)

where Kr = ∫
Jrdz = 2Bφ/μ0 is the inward radial surface

current.
Combining this expression with Equation (7), we obtain

Kr = 2Bz

μ0

[
(a′/a′

co)3/2 − 1

ζ

]
. (10)

With an expression for the induced current at hand, we
immediately arrive at an expression for the associated Lorentz
torque, considering the induced current to interact only with the
stellar dipole field:

τL = (a′ ρ̂ ) × (Kr ρ̂ × Bdip). (11)

In the above expression, ρ̂ is the radial unit vector in the plane
of the disk.

At this point, in order to cast the magnetic torques into a
usable form, we project τL onto each of the Cartesian axes
in the disk’s frame and subsequently integrate over the entire
magnetically connected region:

τi ′ =
∫ 2π

0

∫ â′
out

a′
co

τL · x̂i ′ ρ dρ dφ, (12)

where the subscript i ′ represents the Cartesian axes in the disk’s
frame. With the variables and parameters given above, these
torques evaluate to

τx ′ =
(

2πB2
� R6

� ζ sin(βi) cos(βi)

3μ0(1 + ζ )2(a′
co)3

)
cos(φ̃i) (13)

τy ′ =
(

2πB2
� R6

� ζ sin(βi) cos(βi)

3μ0(1 + ζ )2(a′
co)3

)
sin(φ̃i) (14)

τz′ =
(

4πB2
�R

6
� ζ cos2(βi)

3μ0(1 + ζ )2(a′
co)3

)
. (15)

Note that for βi > π/2, the star and disk spin in opposite
directions and so the concept of a corotation radius loses
meaning. Accordingly, under the assumptions of our model,
no magnetically connected region exists as presented above.
Indeed, it is unclear how the magnetic field would interact with
the disk in such a case and consequently, additional torques or
accretional processes may have been omitted. For the purposes
of our idealized model, we incorporate the loss of a magnetically
connected region by artificially forcing the torques to equal
zero for angles of βi > π/2. Mathematically, this is done by
multiplying the torques by an approximation to a step function
S(βi) given by

S(βi) = 1 −
⎛
⎝π/2 + arctan

(
βi−π/2

�

)
π

⎞
⎠ , (16)

where � = 10−4. The importance of such a term becomes
apparent once the torques are coupled to gravity and inclinations
above 90 deg are naturally attained.

3



The Astrophysical Journal, 790:42 (12pp), 2014 July 20 Spalding & Batygin

Angular momentum transport among neighboring annuli of
the disk is facilitated by propagation of bending waves (Foucart
& Lai 2011) as well as disk self-gravity (Batygin et al. 2011)
and generally occurs on a much shorter timescale than magnetic
tilting of the host star. Taking advantage of this, in our analyses,
we assume that the effective moment of inertia of the disk around
all axes is much greater than that of the star, allowing us to ignore
any torques from the star on the disk and to consider −τi ′ as a
back-reaction on the star’s dynamics.

As will become apparent below, it is beneficial to carry out
all calculations in the frame of a distant, binary companion
to the central star. As such, we follow the approach of Peale
et al. (2014) and define Euler angles within the binary frame
related to the nutation, precession and rotation of the rigid body
while assuming exclusively principal axis rotation (this is an
excellent approximation for a T-Tauri star, spinning at a period
of 1–10 days). Specifically, β̃ is the angle between the central
star’s spin axis and the binary orbit normal; Ω̃ is the longitude
of ascending node of the star in the binary frame where Ω̃ = 0
implies collinear disk and stellar lines of nodes; and the third
Euler angle ϕ is the angle through which the star rotates as it
spins (ϕ only enters the equations as a rate of change: ϕ̇ = ω).

The equations for the evolution of β̃ and Ω̃, adapted from
Peale et al. (2014) are

dβ̃

dt
= − 1

ω
[cos(β̃)(−Nx̄ sin(Ω̃) + Nȳ cos(Ω̃)) + Nz̄ sin(β̃))],

(17)

dΩ̃
dt

= − 1

ω sin(β̃)
[Nx̄ cos(Ω̃) + Nȳ sin(Ω̃)], (18)

where Nī are projected torques. Note that by fixing the disk’s
longitude of the ascending node at Ω′ = 0, we have implicitly
placed ourselves into a frame coprecessing with the disk’s
angular momentum vector. The effect of precession shall be
included within the gravitational part of the equations and we
need not retain it here.

Throughout the pre-main-sequence, we assume a constant
rotation rate of the host star. Although stellar rotation is almost
certainly modulated by the presence of the disk (Herbst et al.
2007; Affer et al. 2013; Bouvier 2013), the present lack
of detailed understanding of the physical processes behind
rotational breaking render this assumption reasonable (see
Gallet & Bouvier 2013).

The projected quantities Nī are directly related to the torques
calculated above, although the components of the torques in
the disk frame, −τi ′ , must first be projected onto the Cartesian
axes in the binary frame. Such a projection constitutes a
simple rotation of co-ordinates because, as discussed below,
the disk–binary inclination is a constant of motion. The rotation
angle is fixed at some prescribed angle, β ′, counterclockwise
about the x-axis. As such, the components, Nī are given in
terms of τi by

Nx̄ = −τx ′/(IM�R
2
� ), (19)

Nȳ = −(cos(β ′)τy ′ − τz′ sin(β ′))/(IM�R
2
� ), (20)

Nz̄ = −(cos(β ′)τx ′ + τy ′ sin(β ′))/(IM�R
2
� ). (21)

The above equations can be used to analyze the dynamics
of the central star owing to its magnetic field interacting with

its protoplanetary disk. It is noteworthy that we have made no
mathematical assumption of small angles, but physically we
have not taken into account the changes in the parameterized
geometry of the problem that arise when mutual disk–star
inclinations approach βi → π/2. Without a doubt, future
calculations should consider this effect, as we expect changes
in magnetic field geometry to affect the detailed nature of
the relevant torques. At the same time, it is plausible that
despite quantitative differences, the overall qualitative picture
envisioned within the context of more precise calculations will
not be in stark contrast to the parameterized model employed
here.

2.3. Gravitational Torques

2.3.1. Binary Star–Disk Interactions

In this section, we calculate the gravitational response of a
disk to a distant, binary companion, whose orbit is taken to
lie in the reference plane. We derive a Hamiltonian for the
disk subject to perturbations from the companion, working
under the secular approximation. In other words, we assume
that the disk’s outer radius a′

out is sufficiently small compared
to the binary orbit’s semi-major axis ā that no meaningful
commensurabilities between the orbital motions exist.

The Gaussian averaging method (see chapter 7 of Murray
& Dermott 2000) dictates that in the aforementioned regime,
the (orbit-averaged) treatment of the gravitational interactions
of the disk-companion system is mathematically equivalent to
considering the companion to be a circular ring with line density
λ = M̄/(2πā) and the disk as an infinite series of annular wires
at every radius between a′

in and a′
out (Murray & Dermott 2000;

Morbidelli et al. 2012).
It is well known that within the secular framework, the

semi-major axes are constants of motion (Morbidelli 2002).
Consequently, the Keplerian contribution to the Hamiltonian
can be dropped, rendering the Hamiltonian of this set up, simply
the total gravitational potential energy U possessed by the disk
in the field of the companion ring:

U = −
∫

disk

∫
ring

G

r
dMdisk dMring, (22)

where r is the separation between two mass elements dMring
(companion) and dMdisk (disk). The integral is carried out over
all angles (φ̄) within the ring and over all radii (a′) and angles (φ′)
in the disk. The evaluation of r(φ′, a′, φ̄) is a purely geometric
problem and can be simplified by approximating a′

out/ā � 1.
Under such an approximation, we expand r to second order in
Equation (22) (first-order terms are axisymmetric and therefore
cancel out).

In order to compute the integral (Equation (22)), we must
specify the disk surface density profile, Σ. For definitiveness,
in this work, we shall follow (Mestel 1963; Batygin 2012) and
adopt

Σ = Σ0

(
a′

0

a′

)
, (23)

where Σ0 is the surface density at semi-major axis a′
0. We note

that the passive disk model of Chiang & Goldreich (1997) is
characterized by a very similar power-law index: Σ ∝ (a′)−15/14

(Rafikov 2012).
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With this prescription, Equation (22) becomes

U = −
∫ a′

out

a′
in

∫ 2π

0

∫ 2π

0

G

r
Σ0 a′

0
M̄

2π
dφ̄ dφ′ da′. (24)

Noting that a′
in � a′

out, we arrive at the expression for the
Hamiltonian.

Switching to canonically conjugated variables, we introduce
the scaled Poincaré action-angle coordinates:

Z′ = 1 − cos(β ′) z′ = −Ω′. (25)

This definition of the coordinates differs from the standard
definition (see chapter 2 of Murray & Dermott 2000) in that
at each disk annulus, the standard definition multiplies Z′ by
dΛ = dm′√GM�a′, where dm′ = 2πΣ0a

′
0da′ is the mass

of the annulus. Thus, for the variables (Equation (25)) to
remain canonical, we must also scale the Hamiltonian itself
in a corresponding manner:

Ŭ = U
2π

∫ a′
out

a′
in

Σ0a
′
0

√
GM�a′da′

= 3n′
out

8

M̄

M�

(
a′

out

ā

)3 [
Z′ − Z′2

2

]
. (26)

This expression agrees with the fourth-order Lagrange–
Laplace expansion of the disturbing function (Murray &
Dermott 2000), where Laplace coefficients are replaced with
their leading order hypergeometric series approximations (Baty-
gin & Adams 2013).

The crucial result here is that Ŭ does not depend on z′,
meaning that the disk inclination is exactly preserved in the
binary frame:

dZ′

dt
= −∂Ŭ

∂z′ = 0 (27)

while the precession rate depends on both the companion semi-
major axis and mass. As shown by Batygin (2012) via a different
approach, the constancy of disk–star inclination holds even if
an eccentric companion is considered. In this case, however, the
precession rate is enhanced by a factor of (1 + 3ē/2).

2.3.2. Disk–Central Star Interactions

As already mentioned above, the spin rates of classical T-Tauri
stars fall within the characteristic range of 1–10 days (Herbst
et al. 2007; Bouvier 2013). This results in substantial rotational
deformation of young stars. To an excellent approximation, the
dynamical response of a spheroidal star to the gravitational
potential of the disk can be modeled by considering the inertially
equivalent configuration whereby a ring of mass

m̃ =
[

3M2
� ω2R3

�I
4

4Gk2

]1/3

(28)

orbits the star with semi-major axis

ã =
[

16ω2k2
2R

6
�

9I 2GM�

]1/3

. (29)

Within the context of this picture, the standard perturbation
techniques of celestial mechanics can be applied (Murray &
Dermott 2000; Morbidelli 2002).

In the exploratory study of Batygin & Adams (2013), the
gravitational torques were computed using a low mutual incli-
nation approximation to the true potential. This simplification
is limiting, especially on the quantitative level, as it forces the
topology of the dynamical portrait to be that of the second funda-
mental model for resonance (Henrard & Lamaitre 1983), for all
choices of parameters. In this work, we shall place no restric-
tions on the mutual inclination and adopt the series of Kaula
(1962) as a representation of the potential, which utilizes the
semi-major axis ratio (ã/a′) as an expansion parameter. Pro-
vided the smallness of the semi-major axis ratio inherent to
our problem (ã/a′ � O(10−1)), an octupole-order expansion
suffices our needs.

Written in terms of scaled canonical Poincaré action-angle
coordinates (25), the Hamiltonian that governs the dynamics
of the stellar spin-axis3 under the gravitational influence of an
infinitesimal wire of mass dm′ reads

dH = 1

16

√
GM�

a′3
dm′

M�

(
ã

a′

)3/2 [
(2 − 6Z̃ + 3Z̃2)

× (2 − 6Z′ + 3Z′2) + 12

(√
Z̃(2 − Z̃) −

√
Z̃3(2 − Z̃)

)

×
(√

Z̃(2 − Z̃) −
√

Z̃3(2 − Z̃)

)
cos(z̃ − z′)

+ 3Z̃Z′(Z̃ − 2)(Z′ − 2) cos(2(z̃ − z′))
]
. (30)

As above, to obtain an expression for the Hamiltonian that
incorporates the effect of the entire disk, we imagine the disk
to be composed of a series of such aforementioned wires and
integrate:

H =
∫

dH. (31)

Recalling that the mass of each individual wire comprising
the disk is dm′ = 2πΣ0a

′
0da′, we note that the integral

(Equation (31)) runs with respect to the disk semi-major axis.
Because of the stiff dependence of Equation (30) on a′,

the integral (Equation (31)) is not explicitly sensitive to the
location of the outer edge of the disk. Rather, it depends upon
the disk’s total mass, provided that the former is substantial (i.e.,
10 s of AU; Anderson et al. 2013). In turn, the disk’s mass is
predominantly set by the disk’s size, a′

out:

Mdisk = 2π

∫ a′
out

a′
in

a′Σ0

(
a′

0

a′

)
da′ � 2πΣ0a

′
0a

′
out. (32)

In addition to the disk’s physical properties, we must also
prescribe its dynamical behavior to complete the specification
of the problem. As already mentioned above, because the
Hamiltonian (Equation (26)) is independent of the angles (i.e.,
is a Birkhoff normal form), the disk inclination with respect to
the binary orbital plane (and therefore Z′) is conserved, while
the disk’s nodal precession rate, ν = dz′/dt , is given by

ν = ∂Ŭ
∂Z′ = 3n′

out

8

M̄

M�

(
a′

out

ā

)3

[ 1 − Z′]. (33)

3 In agreement with the above treatment, the back-reaction of the star onto
the disk is ignored.
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Consequently, H represents a non-autonomous one degree of
freedom system.

Because the time-dependence inherent to the problem at hand
is particularly simple (z′ = νt), H can be made autonomous
by employing a canonical transformation arising from the
following generating function of the second kind (Goldstein
1950):

G2 = (z̃ − νt)Φ, (34)

where φ = (z̃ − νt) is the new angle and the new momentum is
related to the old one through

Z̃ = ∂G2

∂z̃
= Φ. (35)

Accordingly, the Hamiltonian itself is transformed as follows
(Lichtenberg & Lieberman 1983):

K = H − ∂G2

∂t
. (36)

Having removed explicit time dependence, we additionally scale
the Hamiltonian by ν, which introduces a single dimensionless
number; the “resonance proximity parameter,” which encom-
passes the physical properties of the system. An explicit expres-
sion for δ̃ reads

δ̃ = 3

8

(
n′2

in

ων

Mdisk

M�

a′
in

a′
out

)
. (37)

Following the transformations described above, the Hamilto-
nian takes on the following form:

K = −Φ +
δ̃

12
[3(Φ − 2)Φ − 3(2 + 3(Φ − 2))Φ cos2(β ′)

+ 6 sin(2β ′)(Φ − 1)
√

(2 − Φ)Φ cos(φ) + 3 sin2(β ′)
× (Φ − 2)Φ cos(2φ)]. (38)

3. RESULTS

With a theoretical model in place, let us begin our exploration
of the acquisition of spin–orbit misalignments in an idealized
limit. That is, we begin by neglecting magnetic torques and
assuming adiabaticity.

3.1. Purely Gravitational Excitation

Although the Hamiltonian (Equation (38)) does not ex-
hibit explicit time-dependence, it does possess implicit time-
dependence through the evolution of the resonance proximity
parameter, δ̃. As discussed in Batygin & Adams (2013), the
time-dependent variation in δ̃ is primarily brought about as a re-
sult of disk mass loss and the physical evolution of the host star
(via ñ). While both of these processes can be quite complex, for
our purposes, it suffices to note that for any reasonable choice
of parameters, δ̃ → 0 as the system approaches main sequence.

What are the consequences of the changes in the value of
δ̃? Preliminary progress toward understanding this question
can be made by studying the equilibria of the Hamiltonian
(Equation (38)). To do so, it is particularly convenient to switch
to Cartesian coordinates defined as

x =
√

2Φ cos(φ) y =
√

2Φ sin(φ). (39)

Figure 1. Equilibria of the Hamiltonian (Equation (38)) as a function of
the resonance proximity parameter δ̃ (see Equation (37)). The three panels
correspond to different choices of disk–binary inclination, namely, β ′ =
25 deg, β ′ = 50 deg, and β ′ = 75 deg. The equilibria depicted in black,
blue, and green lines are stable, while that shown as a red line is unstable. As
δ̃ → δ̃crit, two of the four solutions merge into a single unstable equilibrium. On
the contrary, as δ̃ → ∞, a stable equilibrium point approaches perfect alignment
with the disk (shown as a dashed line).

(A color version of this figure is available in the online journal.)

The angular dependence of K shows that all equilibria will have
φ = 0, also implying y = 0 (Murray & Dermott 2000). The
equilibrium values of x are shown as functions of δ̃ in Figure 1
for three choices of disk–binary orbit inclination.

Depending on the value of δ̃, the Hamiltonian K possesses
between two and four fixed points. Generally, for δ̃ < 1 two
stable (elliptic) fixed points exist (shown in black and green),
while four fixed points (one of which is stable (shown in blue)
and the other is unstable, i.e., hyperbolic (shown in red)) are
guaranteed for δ̃ > 2. There exists a critical bifurcation value
1 � δ̃crit � 2 where the number of fixed points is three and
the stable and unstable fixed points merge into a single unstable
equilibrium (Henrard & Lamaitre 1983; Peale 1986). As shown
in Figure 1, δ̃crit depends on the disk–binary orbit inclination:
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Figure 2. Phase-space portraits of the Hamiltonian (38) at different values of the resonance proximity parameter δ̃ and disk–binary inclination. The colors represent
the value of the Hamiltonian at each contour. In all panels, the equilibria of the Hamiltonian are shown as gray dots. The instantaneous disk aligned state is depicted
with a small × symbol. Note that for δ̃ well above δ̃crit, there exists an equilibrium point in close proximity to (but not exactly corresponding to) the disk aligned
state. The separatrix is shown as a black curve for δ̃ � δ̃crit. On panels corresponding to δ̃ = 0, a white circular orbit that occupies the same phase-space area as the
separatrix at δ̃ = δ̃crit is shown.

(A color version of this figure is available in the online journal.)

it changes smoothly from δ̃crit = 1 at β ′ = 0 deg to δ̃crit = 2 at
β ′ = 45 deg, and back to δ̃crit = 1 at β ′ = 90 deg.

Physically, δ̃ represents the ratio of the characteristic preces-
sion rates of the star’s and disk’s angular momentum vectors. It
is generally safe to assume that this ratio is well above unity at
the epoch when the system emerges from the embedded stage
(see, e.g., Williams & Cieza 2011). Moreover, it can be argued
that dissipative processes such as accretion will force the stellar
spin axis to evolve toward the equilibrium point closest to align-
ment with the disk’s angular momentum vector (see Batygin &
Morbidelli 2011 for a related discussion). Provided that the
changes in δ̃ are slow compared to the characteristic precession
period of the star, adiabatic theory dictates that the (null) phase-
space area (i.e., the adiabatic invariant J ) associated with the
orbit of the stellar spin axis must be approximately conserved
(Henrard 1982): Jeq = 0. Consequently, as δ̃ decreases in time
the stellar spin axis will reside on the equilibrium solution shown
in blue on Figure 1. However, once the evolutionary track of the

system reaches δ̃ = δ̃crit, the associated equilibrium becomes
unstable.

To understand the dynamical evolution of the stellar spin
axis beyond the aforementioned adiabatic trailing phase, it is
useful to consider the geometry of the Hamiltonian. For the
three choices of inclination, Figures 1 and 2 show a series of
phase-space portraits ofK in Cartesian coordinates. Specifically,
the panels of the Figure 2 depict snapshots of the Hamiltonian
flow at δ̃ = 5, δ̃ = δ̃crit, and δ̃ = 0. Here, the equilibrium
points of K are shown as gray dots, while the separatrix
(i.e., homoclinic orbit) associated with the secular spin–orbit
resonance is depicted as a black curve where it exists (i.e.,
δ̃ � δ̃crit).

Qualitatively, the following picture holds. As long as δ̃ > δ̃crit,
the system remains adiabatically frozen on the equilibrium
point contained in the inner circulation zone of the separatrix.
As δ̃ → δ̃crit, the phase space area associated with the inner
circulation zone shrinks and eventually the equilibrium point on

7
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Figure 3. Resonant excitation of spin–orbit misalignment. Post-resonant en-
counter stellar inclination of the star (measured in a frame coplanar with the
binary orbit) as a function of disk–binary inclination is shown as a purple curve.
Corresponding maximal and minimal spin–orbit misalignments between the
stellar and the disk’s angular momentum vectors, attained over precession cy-
cles are depicted as red curves. Note that the entire possible range of spin–orbit
misalignments is attainable with a disk–binary inclination β ′ � 65 deg .

(A color version of this figure is available in the online journal.)

which the stellar spin-axis resides is invaded by the separatrix.
Because the separatrix is characterized by an infinite period, the
adiabatic principle inevitably breaks down and the conservation
of J is momentarily violated. However, immediately after the
encounter, the separatrix turns into a regular circulatory orbit and
the system returns into the realm of adiabatic theory (Borderies
& Goldreich 1984; Henrard 1991; Batygin & Morbidelli 2013).
As such, for all subsequent evolution, the value of the adiabatic
invariant remains equivalent to that of the separatrix, evaluated
at the critical resonance proximity parameter (Peale 1986).

Ultimately, as the disk dissipates, δ̃ approaches zero and
the Hamiltonian (Equation (38)) becomes a trivial one, whose
flow is represented by concentric circles on the phase plane.
Accordingly, the post-encounter inclination can be calculated
from the definition of the adiabatic invariant:

J = 2π (1 − cos(β̃)) =
[∮

Φseparatrixdφ

]
δ̃crit

, (40)

where the separatrix equation at critical δ̃ can be obtained
by substituting the value of K corresponding to the unstable
equilibrium point into Equation (38). A noteworthy property
of solution (40) is that it depends exclusively on Z′. In other
words, in the adiabatic regime, the excitation of spin–orbit
misalignment is independent of all system parameters except
the primordial disk–binary plane inclination.

Using the approach delineated above, we have mapped out the
relationship between the primordial disk–binary inclination and
the final (post-encounter) stellar inclination (also with respect to
the binary orbital plane). This function is shown as a purple curve
on Figure 3. In the decoupled δ̃ = 0 regime, both the stellar and
the disk’s inclinations, measured with respect to the binary orbit,
are preserved. However, because of differential precession,
the mutual disk–star inclination undergoes cyclical variations
(Batygin 2012). The maximal and minimal mutual inclinations
are obtained when the stellar orbit crosses the y = 0 line with a
negative and a positive values of x respectively. The associated
range of mutual inclinations is depicted in Figure 3 with red
lines. As shown in the Figure, a broad array of spin–orbit angles,
ranging from perfectly disk-aligned states to perfectly disk-anti-

Figure 4. Gravitationally enforced misalignment between an equilibrium point
(i.e., initial condition) of the Hamiltonian (Equation (38)) and the disk-aligned
state as a function of the resonance proximity parameter δ̃ for three disk–binary
inclinations; 25, 50, and 75 deg. The fact that the gravitational equilibrium does
not lie directly on a disk-aligned state provides a seed inclination for magnetic
torques to operate.

(A color version of this figure is available in the online journal.)

aligned star states can be produced as a consequence of passage
through the secular spin–orbit resonance.

3.2. Magnetic and Gravitational Excitation

As pointed out by Lai et al. (2011; see also Lai 1999)
and reviewed in Section 2.2 of this paper, a finite disk–star
misalignment can be amplified by magnetic disk–star inter-
actions. Within the context of the picture outlined above,
it is tempting to assume that magnetic torques will be of
no consequence prior to the encounter with the separa-
trix, since adiabatic invariance ensures alignment between
the disk and the star. However, a more thorough examina-
tion shows that the equilibrium on which the star is envi-
sioned to reside at δ̃ > δ̃crit deviates away from the exact
disk-aligned state by a small amount.4 Consequently, the seed
misalignment, needed for the magnetic tilting process to become
active is ensured to exist from purely gravitational considera-
tions. The amplitude of this equilibrium misalignment is shown
as a function of δ̃ in Figure 4 for the three choices of inclina-
tion considered above. Note that even for high values of δ̃, the
misalignment can be consequential (e.g., ∼0.5–5 deg).

The extent to which the purely gravitational picture outlined
above will be altered by the incorporation of magnetic fields
depends on the assumed parameters inherent to the system. This
can be gathered immediately by considering the characteristic
magnetic tilting timescale:

τB =
[
ζ

3

B2
�

μ0

R4
�

IM�Ω�a′3
in

]−1

. (41)

Evaluated using the physical parameters quoted in Section 2,
a stellar rotation period of ∼5 days (Affer et al. 2013; Bouvier
2013), and a surface field of B� � 1.5 kG (Johns-Krull 2007;
Gregory et al. 2012), this timescale (either assuming a constant
surface field or a constant magnetic dipole moment in time),
along with the characteristic stellar precession timescale, and
a typical disk precession timescale are plotted over a maximal
disk lifetime in Figure 5.

4 This misalignment refers to the forced component of the inclination vector
(see chapter 7 of Murray & Dermott 2000).
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Figure 5. Characteristic timescales as functions of disk age. Taking into account
the physical evolution of the star and the disk, the stellar precession timescale
is shown as a blue line, while magnetic tilting timescales assuming a constant
surface field and a constant dipole moment are shown as green and red curves,
respectively. The disk precession timescale is nominally chosen to be 1 Myr, as
in the numerical simulations discussed in the text. The time interval at which
the resonant encounter will take place (depending on β ′) is highlighted in blue.

(A color version of this figure is available in the online journal.)

Owing to gravitational contraction, if an evolutionary track
with a constant surface field is assumed, the cumulative effect
of the magnetic torque is smaller than that if a constant dipole
moment is assumed. The former situation is easily tractable
within the context of the picture outlined above. First, let
us imagine that system parameters are such that the secular
resonance is encountered later than ∼0.5 Myr after the birth of
the star (i.e., after the characteristic magnetic tilting timescale
becomes considerably longer than the disk lifetime). Under
this assumption, the magnetic and gravitational acquisitions of
disk–star misalignment occur on separate timescales and can be
treated sequentially.

It is worth recalling that the neighborhood of the (nearly)
disk-aligned equilibrium of K (shown on Figure 2) is foliated in
elliptical circulatory trajectories. This means that the system can
acquire a non-zero value of J well before resonance crossing.
Consequently, as δ̃ approaches δ̃crit, the trajectory will encounter
the separatrix at a moment when the phase-space area occupied
by the inner branch of the critical curve matches that of the
orbit. In other words, the resonant encounter will take place at
δ̃ > δ̃crit. As a consequence, the resonant excitation of spin–orbit
misalignment will occur earlier in the disk’s evolution and the
acquired misalignment will be somewhat different. However,
blunt evaluation shows that barring unreasonable estimates, the
quantitative correction is essentially negligible and is of little
interest (especially given the substantial uncertainties in other,
more essential parameters such as ν).

Considerably more interesting dynamical behavior can be
observed if a constant magnetic moment is assumed. As shown
in Figure 5, in this case the magnetic tilting timescale is com-
parable to the disk torquing time. Thus, rather than reasoning
through the evolution within the framework of adiabatic theory,
we resort to direct numerical integration of equations of mo-
tion, accounting for both, magnetic torques (Equation (17)) and
gravitational torques arising from Hamiltonian (Equation (38)).

We initialize the system at the gravitational equilibrium point
discussed above. The orbit is evolved for 10 Myr, adopting the
same choices of disk–binary inclination as before, in addition to
an almost orthogonal configuration with β ′ = 85 deg. Finally,
for a more candid comparison, we ignore the dependence of ν
on β ′ and assume a disk precession period of 2π/ν = 1 Myr for

all simulations. The physical evolutions of the star and the disk
are assumed to proceed as described in Section 2.1.

The results of the integrations are shown in Figure 6, where the
full integrations are plotted in red and solutions that only account
for gravitational torques are plotted in gray for comparison.
Immediately, a number of interesting features can be observed.
First, in all simulations, the magnetically facilitated growth
of J is evident, and the impulsive excitation of spin–orbit
misalignment occurs substantially earlier when magnetic tilting
is taken into account.

For lower inclinations (i.e., β ′ = 25 deg and β ′ = 50 deg), it
is clear that magnetic tilting complicates the trajectory, although
the qualitative behavior of the dynamical evolution is similar to
that of the purely gravitational calculation. That is to say that
the orbit evolves toward a quasi-circular state (in phase-space)
as the disk dissipates. However, unlike the purely gravitational
case, here the value of J continues to grow, even after separatrix
crossing. This is largely due to magnetic torques and arises from
the fact that a fraction of the orbit resides at β < 90 deg. The
plots of stellar inclination relative to the disk give a physical
picture of the above process.

When star–disk inclinations reach values of βi � 90 deg,
the magnetic contribution in our model becomes null and the
only effect is that of secular gravitational interactions. This
remains true until the oscillatory trajectory brings the star–disk
inclination to βi � 90 deg. At this point, the magnetic influence
returns and repels the stellar inclination back to values of
βi � 90 deg. This causes the inclination to oscillate in a similar
fashion to the purely gravitational case, but with its trajectory is
eventually excluded from βi � 90 deg. It is worth noting that
a quantitative description of this effect would be significantly
altered if there is in fact some magnetic influence (not considered
here) for βi � 90 deg.

The evolution at higher inclinations is qualitatively different,
as the orbit evolves toward a fixed point (characterized by
a balance between gravitational and magnetic torques) after
crossing the separatrix. The β ′ = 85 deg case is particularly
striking, as the phase-space plot depicts an initial condition that
behaves as a repeller of the trajectory and the binary aligned
equilibrium point serves as an attractor. It is interesting to
note that similar behavior can be obtained by augmenting the
Hamiltonian evolution with dissipative effects of accretion (see
Batygin & Adams 2013 for an in-depth discussion).

These results imply that provided an advantageous prescrip-
tion for the ingredients inherent to the magnetic torquing part
of the calculation, the dynamical evolution of the system can
be qualitatively altered. However, it is important to note that
magnetic effects do not obstruct the acquisition of spin–orbit
misalignment within the framework of the disk-torquing model
but instead act to accelerate it. In turn, gravitational effects pro-
vide the root inclination needed for the magnetic torques to
operate. Consequently, it seems reasonable to conclude that the
magnetic torquing mechanism proposed by Lai et al. (2011) may
play an important but nevertheless secondary role in explaining
observed hot Jupiter spin–orbit misalignments.

4. DISCUSSION

In this work, we have considered the excitation of spin–orbit
misalignment within the context of disk-torquing theory
(Batygin 2012), taking into account magnetically facilitated tilt-
ing of the star (Lai et al. 2011). While this study builds on the pre-
vious work of Batygin & Adams (2013), it differs in two impor-
tant ways. First, the treatment of gravitational torques employed
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Figure 6. Results of numerical integration of equations of motion. The right panels show mutual disk–star inclination as functions of time, while the left panels show
the phase-space trajectories of the stellar spin axis. The red curves denote solutions that account for gravitational and magnetic torques, assuming a constant dipole
moment. Meanwhile, the gray curves show solutions where only gravitational torques have been retained. While the latter adhere to the analytic solutions obtained
within the framework of adiabatic theory, the former show qualitative deviations from purely conservative behavior.

(A color version of this figure is available in the online journal.)

in this work does not assume small inclinations and allows us to
self-consistently explore the process of secular spin–orbit reso-
nant encounters. Second, this work includes additional physics
stemming from magnetic disk–star interactions (Lai 1999).
Cumulatively, the results of our work can be summarized as
follows.

Taking advantage of the separation of dynamical and phys-
ical evolution timescales inherent to the problem, we utilized
adiabatic theory (Henrard 1991) to analytically compute the
impulsive excitation of spin–orbit misalignment during reso-
nant encounters. The attained results suggest that the entire
possible range of spin–orbit misalignments can be produced ex-
clusively by the disk-torquing mechanism given a disk–binary
orbit inclination β ′ � 65 deg. Moreover, as long as the reso-
nant encounter takes place in an adiabatic regime, the attained
inclination depends only on β ′.

The inclusion of magnetic effects complicates the purely
gravitational picture on a quantitative level. Primarily, magnetic

perturbations drive the system through secular spin–orbit reso-
nance at an earlier epoch, thereby leading to somewhat enhanced
disk–star inclinations. At high disk–binary orbit inclinations,
magnetic torques may also drive the system toward an equilib-
rium that corresponds to a near-alignment between the stellar
spin-axis and the binary orbit angular momentum vector. How-
ever, we note that in order to obtain significant deviations away
from a purely gravitational solution, we made favorable (and
perhaps unrealistic) assumptions about the strength of the field
(Donati et al. 2010; Gregory et al. 2010) and the disk truncation
radius (Matt & Pudritz 2004). Consequently, it may be true that
the aforementioned corrections are not too relevant in reality.
Either way, the capacity of the disk-torquing model to explain
the origins of spin–orbit misalignments of hot Jupiters, within
the context of smooth disk-driven transport is not hindered
by the inclusion of additional physics.

An obligatory property of the disk-torquing model considered
in this work is the prevalence of stellar companions during the
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early epochs of planet formation (Batygin 2012). This constraint
is not as stringent as that inherent to (for example) the Kozai
migration model (Wu & Murray 2001; Fabrycky & Tremaine
2007; Naoz et al. 2011), which requires longer-lived binaries
than the model presented here. As such, we would expect the
disk-torquing scenario to play out more frequently across a
given sample of planetary systems than Kozai migration simply
owing to the greater frequency of short-lived relative to long-
lived binary systems. Although a significantly elevated fraction
of multi-stellar systems in young star clusters is observationally
established (Ghez et al. 1993; Kraus et al. 2011), it seems natural
additionally to expect a corresponding correlation between hot
Jupiter spin–orbit misalignments and the existence of present-
day wide-orbit companions.

To this end, the observational survey of Knutson et al. (2014)
has not found a statistically significant parallel between the
two measurements. However, in interpreting these results, it is
important to keep in mind that the dynamics of stellar clus-
ters can be extremely complex (see, e.g., Malmberg et al.
2007; Adams 2010), and dissolution of multi-stellar systems
as well as binary exchange reactions will act to obscure a di-
rect relationship between primordial and present (i.e., cluster-
processed) field stellar multiplicity. However, such interac-
tions may well be specific to high-density clusters (Duchêne
& Kraus 2013) and so additional computational effort is re-
quired to determine whether the theory presented here is con-
sistent with observations of stellar multiplicity. This issue
should be examined in detail as an integral component of a
future study.

An observational trend that our model does not explicitly ac-
count for is the dependence of hot Jupiter misalignments on the
effective temperature of their host stars (Winn et al. 2010). How-
ever, an explanation that invokes the mass-dependence of tidal
dissipation for why predominantly hotter stars (Teff � 6250 K)
are characterized by large obliquities has been presented (Winn
et al. 2011; Lai 2012; Albrecht et al. 2012). Within the context of
the envisioned scenario, all hot Jupiters originate with high or-
bital obliquities, and spin–orbit misalignments are subsequently
erased by tidal dissipation preferentially in low-mass stars.

Generally, the disk torquing model discussed in this work does
not preclude subsequent, additional effects owing to tidal dissi-
pation. However, in light of the recent criticism of this narrative
by Rogers & Lin (2013), it may be worthwhile to speculate about
an alternative scenario. As already mentioned above, if disk-
driven migration is the dominant mode of early orbital transport,
the generation of spin–orbit misalignments requires a wide-
spread existence of binaries in birth clusters. It has been noted
observationally that stellar binarity (and the stellar orbital dis-
tribution) are both strong functions of stellar mass (Kraus et al.
2011) with the trend being to increase binarity with higher Teff
systems, mirroring the observed Teff–misalignment trend. Con-
sequently, a handle on the observed misalignment–Teff correla-
tion may conceivably be obtained by further examining the tally
and the longevity of multi-stellar systems in star-formation envi-
ronments as a function of their mass. While a potentially fruitful
avenue of reasoning, additional observational and modeling ef-
forts will be required to definitively evaluate this possibility.
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