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ABSTRACT

Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops.
The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes
were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction,
compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the
causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these
waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging
Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a
quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis
method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear
wave theory and it was found that the waves observed in the polar regions show a different dependence from those
observed in the on-disk loop structures despite the similarity in their properties.
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1. INTRODUCTION

Polar plume/interplume regions and extended fan loop struc-
tures in active regions are often found to host outward propagat-
ing slow magneto-acoustic waves. Besides their contribution to
coronal heating and solar wind acceleration, they are important
for their seismological applications (King et al. 2003; Marsh
et al. 2009; Wang et al. 2009; Van Doorsselaere et al. 2011).
The observed periods of the slow waves are of the order of a
few minutes to a few tens of minutes. These waves cause peri-
odic disturbances in intensity and Doppler shift and are mostly
identified from the alternate slanted ridges in the time–distance
maps in intensity (Deforest & Gurman 1998; De Moortel et al.
2000). However, spectroscopic studies by some authors indi-
cate periodic asymmetries in the line profiles, suggesting the
presence of high-speed quasi-periodic upflows, which also pro-
duce similar signatures in time–distance maps (De Pontieu &
McIntosh 2010; Tian et al. 2011a, 2011b). This led to an ambigu-
ity in the interpretation of observed propagating features as slow
waves. However, later studies found that flow-like signatures are
dominantly observed close to the foot points (Nishizuka & Hara
2011; Tian et al. 2012) and no obvious blueward asymmetries
were observed in the line profiles higher in the loops (Krishna
Prasad et al. 2012a; Gupta et al. 2012). Results from the recent
three-dimensional magneto-hydrodynamic (MHD) simulations
by Ofman et al. (2012) and Wang et al. (2013), who report the
excitation of slow waves by impulsively generated periodic up-
flows at the base of the coronal loop, were in agreement with
this. Also, the propagation speeds were found to be temperature-
dependent for both sunspot (Kiddie et al. 2012) and non-sunspot
related structures (Uritsky et al. 2013), in agreement with the
slow mode behavior. So, the propagating disturbances observed
in the extended loop structures and polar regions can be inter-
preted as being due to slow waves.

One of the important observational characteristics of
these waves is that they tend to disappear after traveling
some distance along the supporting (guiding loop) structure.

Their amplitude rapidly decays as they propagate. Thermal con-
duction, compressive viscosity, optically thin radiation, area di-
vergence, and gravitational stratification were identified as be-
ing some of the physical mechanisms that can alter the slow
wave amplitude. The gravitational stratification leads to an in-
crease in the wave amplitude, whereas the other mechanisms
cause a decrease (see the review by De Moortel 2009 and
references therein). Using forward modeling to match the ob-
served damping, it was found that for a slow mode with shorter
(five minutes) periodicity, thermal conduction is the dominant
damping mechanism and when combined with area divergence
it can account for the observed damping even when the density
stratification is present (De Moortel & Hood 2004). They also
found that the contribution of the compressive viscosity and ra-
diative dissipation to this damping was minimal. Another study
on oscillations with longer periods (≈12 minutes) traveling
along sub-million-degree cool loops suggested that area diver-
gence has the dominant effect over thermal conduction (Marsh
et al. 2011). Recently, Krishna Prasad et al. (2012b) had shown
that this damping is dependent on frequency. These authors con-
structed power maps in three different period ranges from which
they conclude that longer period waves travel larger distances
along the supporting structure while the shorter period waves
are damped more heavily. Such frequency-dependent damping
was earlier reported by Wang et al. (2002) and Ofman & Wang
(2002) for standing slow waves observed in hot coronal loops. In
the present work, we aim to study the quantitative dependence
of the damping length of the wave on its frequency. Details
on the observations are presented in the next section followed
by the analysis method employed and the results obtained. Re-
lated theory and the physical implications of the results obtained
are discussed in the subsequent sections.

2. OBSERVATIONS

Data used in this study are comprised of images taken by
the Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
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Figure 1. Snapshots of the subfield regions chosen to cover a sunspot (left) and an on-disk plume-like structure (right) and the plume/interplume structures at the
south pole (bottom). Locations of the selected structures from these regions are also marked.

(A color version of this figure is available in the online journal.)

on board the Solar Dynamics Observatory (SDO; Pesnell et al.
2012) in two different Extreme Ultra-Violet (EUV) channels
centered at 171 Å and 193 Å. Full-disk images of 3 hr duration,
starting from 21:10 UT on 2011 October 8, were considered.
The cadence of the data is 12 s. The initial data at level 1.0 were
processed to correct the roll angles and the data from different
channels were brought to a common center and common plate
scale following the standard procedure using aia_prep.pro
routine (ver. 4.13). The final spatial extent of each pixel is ≈0.′′6.

Subfield regions were chosen to cover loop structures
over a sunspot, an on-disk plume-like structure, and the
plume/interplume structures at the south pole. The imaging
sequence in each of these regions was co-aligned using inten-
sity cross-correlation, taking the first image as the reference. A
snapshot for each of the selected on-disk regions and the polar
region are shown in Figure 1.

3. ANALYSIS AND RESULTS

Four loop structures, two from a sunspot region and another
two from an on-disk plume-like structure, were selected to

represent the on-disk region and several plume and interplume
regions at the south pole, were selected to represent the polar
region for this study. The selection of these structures was made
on the basis of cleanliness of the propagating oscillations by
looking at the time–distance maps. Figure 1 displays the selected
loop structures on-disk and the plume/interplume structures
at the south pole. The width of the selected loop structures
varied from 7 to 19 pixels and that of the plume/interplume
structures was fixed at 30 pixels. The enhanced time–distance
maps for the loop structure labeled “1” in the top panel of
Figure 1, are shown in Figure 2, for both the AIA channels. A
background constructed from the 300 point (60 minutes) running
average in time has been subtracted from the original and the
resultant is normalized with the same background to produce
these enhanced time–distance maps. These maps clearly show
alternate slanted ridges of varying intensity due to outward
propagating slow waves. Ridges are not visible throughout
the length of the chosen loop segment due to rapid decay in
the slow wave amplitude as it propagates along the structure.
However, they are present for the entire duration of the data
set. Another interesting feature visible in these maps is the
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Figure 2. Enhanced time–distance maps in 171 and 193 channels of AIA for the loop segment marked “1” in the top panel of Figure 1. The two panels in the bottom
row display the region outlined with a box in the top two panels to present a zoomed-in view.

(A color version of this figure is available in the online journal.)

presence of multiple periodicities. Two different periods, one
less frequent (longer period) and another more frequent (shorter
period), are apparent from these maps which can be more clearly
seen from the zoomed-in view presented in the bottom panels of
Figure 2. These shorter and longer periods roughly correspond
to a periodicity of 3 and 22 minutes. There can be additional
periods present in the signal which may not be not visually
evident from these maps.

Our main aim is to measure the damping lengths of these
waves at different periods and study the relation between them.
Ideally one would look for measuring the damping lengths
directly from the decaying wave amplitude along the loop, at
a particular instant. However, the damping in these waves is
so rapid that we are hardly able to observe more than a cycle.
This makes the direct measurements difficult. The simultaneous
presence of multiple periods is another obstacle. To overcome
these issues, we transformed the original time–distance maps
into period–distance maps by replacing the time series at each
spatial position with its power spectrum. These maps contain the
oscillation power at different periods for each spatial position.
In this way, we can not only isolate the power in different
periods, but can also trace the spatial decay in amplitude from
the corresponding variation in power. Figure 3 displays the
period–distance maps generated from the time–distance maps
for loop 1. A notable feature in these maps is the presence of
more power in longer periods up to larger distances as observed
by Krishna Prasad et al. (2012b).

Now to identify all the periods present, we constructed an
average light curve from the bottom five pixels of the structure
and used it to generate a template power spectrum (see Figure 4).
The peak periods and their respective widths were then estimated
using a simple routine (gt_peaks.pro) available with the solar
software. At each peak identified, we constructed a bin of width
determined by the width of the peak and computed the spatial
variation of the total power in that bin from period–distance
maps. Taking the square root of the power as amplitude of the
oscillation, the amplitude decay at a particular period is fitted
with a function of the form A(y) = A0e

−y/Ld +C to compute the
damping length Ld at that period. The template power spectrum

constructed for loop 1 in the 171 channel is shown in the left
panel of Figure 4. All the identified peaks and their respective
widths are marked with solid and dashed lines in this plot. Note
that the routine we used to estimate the widths of peaks gives
very rough estimates which can be significantly different from
the actual widths. However, this is good enough to isolate the
power in individual periods and is far better than the regular
way of summing the power in predefined period ranges without
having the knowledge of the peak frequencies present in the
data. The amplitude decay and the fitted function corresponding
to all the identified periods are shown in the right panel of the
figure. Different symbols (colors) are used to show the data
for different periods. Corresponding plots for 193 channel are
shown in the bottom panel. In the plots depicting the amplitude
decay, the data for each period are offset by a constant value
(50 for 171 and 5 for 193 channels) from the preceding period
to avoid cluttering. The computed damping lengths from each
period are listed in the plot legend along with the respective
errors obtained from the fit. The exact fit parameters (A0, Ld,
and C) estimated for all the periods obtained from the data are
listed in Tables 2 and 3 of the Appendix. The exponential fits
are quite good for the amplitude decay in most of the cases,
but occasionally we find some random variations (bumps) in the
amplitude leading to very high damping lengths. We found that
this is caused by the contamination from background structures.
To eliminate such data, we considered the damping lengths
larger than the length of the supporting structure as unreliable.
Thus, we measured the damping lengths at different periods.
Only those periods between 2 minutes and 30 minutes were
considered, keeping the total duration (3 hr) and cadence (12 s)
of the data set in mind.

We combined the results from all the four loop structures
on-disk and plotted the measured damping lengths against the
period. This allows us to evenly populate the frequency spectrum
since the loops with different physical conditions support
different frequencies. A similar procedure had been followed
for the plume/interplume regions at the south pole except that
the time–distance maps in the polar region are constructed by
making artificial slits of 30 pixels (fixed) width to avoid the
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Figure 3. Period–distance maps in 171 Å and 193 Å channels of AIA generated from the time–distance maps for loop 1. Dotted lines enclose the power at the 3 minute
period.

(A color version of this figure is available in the online journal.)

Figure 4. Left: template power spectra constructed for loop 1. The solid vertical lines mark the identified peaks and the dashed lines mark their respective widths.
Periodicities of individual peaks are listed above them in minutes. Right: amplitude decay and the fitted model (solid line) for all the identified periods. Different
symbols/colors were used to distinguish the different periods. A constant offset was added to the amplitudes to avoid cluttering between different periods. Damping
lengths (in arcseconds) obtained from the fit and the corresponding reduced χ2 values are listed for each period in the plot legend. Top and bottom panels correspond
to the data from 171 and 193 channels, respectively.

(A color version of this figure is available in the online journal.)
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Figure 5. Enhanced time–distance maps (top) and period–distance maps (bottom) in 171 and 193 channels of AIA, generated from the interplume region marked by
slit 10 in Figure 1.

(A color version of this figure is available in the online journal.)

effect of jets (Krishna Prasad et al. 2011). The time–distance
maps and the corresponding period–distance maps constructed
from the interplume region denoted by slit 10 (see Figure 1)
are shown in Figure 5 for both the channels. The propagating
intensity disturbances are clearly seen in these images, but for
some of the slit locations in 193 (slits 1, 2, 6, 7, and 8 in Figure 1)
the signal is very poor and we do not see any clear signature
of these disturbances. This is possible because the 193 channel
looks at relatively hotter plasma (1.25 MK) compared to the
typical temperatures of plume/interplume regions (<1 MK). So
the data from these locations are discarded in our final analysis.
None of the data are discarded from the 171 channel. Figure 6
displays the plots for damping length versus period in log–log
scale. The top two panels correspond to the results from on-
disk structures and the bottom two from polar regions. Different
symbols (colors) are used to separate the data from sunspot and
plume-like structure and plume interplume regions. Damping
lengths are measured in arcseconds and periods are measured in
seconds. In all the panels, the overplotted solid lines represent
a linear fit to the data. The slope of the line and the uncertainty
in estimating it are written in the respective panels. There are
fewer data points for the on-disk region because of the limited
data. Clearly, the on-disk and polar regions show a different
dependence of damping length on frequency.

4. THEORY

In this section, we study the theoretical dependence of the
damping length on the frequency of the slow wave by con-
sidering different damping mechanisms separately. To perform
this, we follow the one-dimensional linear MHD model of
De Moortel & Hood (2003, 2004) and extend it to discuss the
frequency dependence. This model is applicable under the as-
sumptions that the magnetic field lines are straight, plasma-β is

much less than unity, and the amplitude of the oscillations are
small. The one-dimensional form of the basic MHD equations
for the slow waves can be written as

∂ρ

∂t
= − ∂

∂z
(ρv) (1)

ρ
∂v

∂t
+ ρv

∂v

∂z
= −∂p

∂z
− ρg +

4

3
η0

∂2v

∂z2
(2)

∂p
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+ v

∂p

∂z
= − γp

∂v

∂z
+ (γ − 1)

∂

∂z

(
k‖

∂T

∂z

)
− (γ − 1)[ρ2χT α − H0] (3)

p = 1

μ̃
ρRT , (4)

where p, ρ, v, and T are pressure, density, velocity, and temper-
ature, respectively. R is the gas constant and μ̃ is the mean molec-
ular weight. The second and third terms on the right hand side
of Equation (2) represent the gravitational and viscous forces
and those of Equation (3) represent the energy losses due to
thermal conduction and optically thin radiation. In these terms,
g is acceleration due to gravity, η0 is coefficient of compressive
viscosity, k‖ is thermal conductivity parallel to the magnetic
field, χ and α are constants under the approximation of a piece-
wise continuous function for optically thin radiation, and H0 is
the coronal heating function. In the following subsections, we
use appropriate forms of these equations to study the effect of
individual damping mechanisms on slow waves and investigate
the frequency dependence of damping length.
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Figure 6. Frequency dependence of damping length for slow waves observed in loop structures on-disk (top) and in polar plume/interplume regions (bottom).
Overplotted straight lines represent the linear fit. The slope of the line and the uncertainty in its estimate are written in the respective panels. Different symbols/colors
correspond to different data as denoted in the respective legends.

(A color version of this figure is available in the online journal.)

4.1. Thermal Conduction

As the slow wave propagates, energy is lost due to thermal
conduction which results in a decay of its amplitude. By consid-
ering the thermal conduction as the only damping mechanism,
we linearized the basic MHD equations and assumed the per-
turbations in the form exp[i(ωt − kz)], to obtain the following
dispersion relation for the slow waves

ω3 − iγ dk2ω2c2
s − ωk2c2

s + idk4c4
s = 0, (5)

where cs is the adiabatic sound speed given by c2
s = γp0/ρ0

and d is the thermal conduction parameter defined as d =
(((γ − 1)k‖T0)/(γ c2

s p0)). p0, ρ0, and T0 are the equilibrium
values of pressure, density, and temperature. The damping
length of a propagating velocity perturbation of the form
exp[i(ωt − kz)] is given by the reciprocal of the imaginary part
of k. So, to solve for k, we simplify the dispersion relation
by approximating the thermal conduction at its lower and
upper limits. In the lower thermal conduction limit (dω � 1),
Equation (5) reduces to

k = ω

cs

− i
dω2

2cs

(γ − 1) (6)

which gives the damping length Ld ∝ 1/ω2. This implies that
the damping length of slow waves increases with the square of

the wave period in the lower thermal conduction limit. Similarly,
if we consider the higher thermal conduction limit (dω � 1),
the solution becomes

k = γ 1/2 ω

cs

− i
γ − 1

2dγ 3/2cs

, (7)

which gives the imaginary part of k independent of ω. Thus,
in the limit of higher thermal conduction, the damping in slow
waves is frequency-independent.

4.2. Compressive Viscosity

The viscous forces lead to the dissipation of energy and there-
fore reduce the slow wave amplitude. To understand the effect
of compressive viscosity quantitatively, we solved the relevant
linearized MHD equations assuming all the perturbations are
in the form exp[i(ωt − kz)], which resulted in the following
expression for wave number k

k = ω

cs

− i
2

3

η0ω
2

ρ0c3
s

. (8)

The imaginary part of this expression indicates that the ampli-
tude of the slow wave decreases due to compressive viscosity
and the decay lengths are proportional to the square of the wave
period. A similar dependence was earlier reported by Ofman
et al. (2000).
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4.3. Optically Thin Radiation

Energy dissipation due to radiation also causes a decay in
wave amplitude. By retaining the radiation term and removing
other dissipative terms in the basic MHD equations, one can
obtain the dispersion relation for slow waves as

k = ω

cs

− i
rp

cs

(9)

under the linear regime for perturbations of the form exp[i(ωt −
kz)]. Here rp is the radiation parameter defined as rp =
(((γ − 1)ρ2

0χT α
0 )/(γp0)). The reciprocal of this parameter has

the dimension of time and gives the radiation timescale. Accord-
ing to Equation (9), the damping in slow waves due to optically
thin radiation is frequency-independent.

4.4. Gravitational Stratification

In contrast to the other mechanisms discussed so far, the
gravitational force stratifies the atmosphere which leads to an
increase in the slow wave amplitude as it propagates outward.
Assuming the initial perturbations of the form exp[i(ωt − kz)],
we solved the linearized MHD equations to obtain

k = i
1

2H
± 1

cs

√
ω2 − ω2

c . (10)

Here H is the gravitational scale height given by H = p0/ρ0g
and ωc is the cut-off frequency defined as ωc = gγ /2cs . This
relation indicates that for slow waves with frequencies above the
cut-off value ωc, the velocity amplitude grows exponentially as
ez/2H and the growth rate is independent of frequency. The
corresponding amplitude of density perturbations, however,
varies as e−z/2H considering the equilibrium density fall ∝
e−z/H due to stratification. Note that this variation still represents
a growth in relative amplitude as ez/2H , similar to that of velocity
perturbations and is independent of frequency.

4.5. Magnetic Field Divergence

De Moortel & Hood (2004) studied the effect of the radial
divergence and area divergence of the magnetic field on slow
waves. The amplitude of slow waves was found to decrease in
both cases as they propagate outward. However, it is important
to note that it is purely a geometric effect and there is no real
dissipation mechanism involved. We solved the linearized MHD
equations in the presence of radial divergence and obtained the
following expression for the evolution of velocity perturbations

v(r, t) = sin(ωt)

[
C1j1

(
rω

cs

)
+ C2y1

(
rω

cs

)]
, (11)

(a similar expression was obtained by De Moortel & Hood
2004). Here r is the radial coordinate in the spherical coor-
dinate notation with the Sun at the center, and j1(rω/cs) and
y1(rω/cs) are first order spherical Bessel functions. Substitut-
ing the spherical Bessel functions with their standard definition,
Equation (11) can be written as

v(r, t) = sin(ωt)

[
C1

(
sin

(
rω
cs

)
− rω

cs
cos

(
rω
cs

)
(

rω
cs

)2

)

− C2

(
cos

(
rω
cs

)
+ rω

cs
sin

(
rω
cs

)
(

rω
cs

)2

)]
. (12)

Table 1
Dependence of Damping Length on Period of Slow Waves

Physical Mechanism Amplitude Growth of Period Dependence of
Density Perturbations Damping Length (Ld ∝)

Thermal conduction

Lower limit e
− dω2

2cs
(γ−1)z P2

Upper limit e
− (γ−1)z

2dγ 3/2cs P0

Compressive viscosity e
− 2

3
η0ω2z

ρ0c3
s P2

Optically thin radiation e
− rpz

cs P0

Gravitational stratificationa e
−z
2H P0

Magnetic field divergence R	/r P0

Notes. P is the time period of the oscillation.
a Note the relative amplitude still grows. See Section 4.4 for details.

The constants C1 and C2 can be determined from the boundary
conditions. We chose these constants such that the amplitude of
oscillations at the surface (r = R	) is independent of frequency
similar to that we assumed for other cases. Substituting C1 =
1/j1(R	ω/cs) and C2 = 1/y1(R	ω/cs), the velocity v(r, t)
becomes

v(r, t) = sin(ωt)

[
R2

	
r2

(
sin

(
rω
cs

)
− rω

cs
cos

(
rω
cs

)
sin

(
R	ω

cs

)
− R	ω

cs
cos

(
R	ω

cs

)
)

− R2
	

r2

(
cos

(
rω
cs

)
+ rω

cs
sin

(
rω
cs

)
cos

(
R	ω

cs

)
+ R	ω

cs
sin

(
R	ω

cs

)
)]

. (13)

It can be shown that the amplitudes of expressions in the
numerator varies as rω/cs and that in denominator varies as
R	ω/cs . This gives the overall amplitude variation as 1/r which
is frequency-independent. Following the same treatment, area
divergence can be shown to behave similarly. Therefore, we can
conclude that the damping in slow waves due to magnetic field
divergence is frequency-independent.

A summary on the derived frequency dependence of damping
length in slow waves is presented in Table 1 for different
physical mechanisms. The table also lists the amplitude growth
of density perturbations. It may be noted that although the
derivations were primarily done for the velocity perturbations,
the density (intensity) perturbations due to slow waves are
proportional to the velocity perturbations (as can be derived
from Equation (1)), and hence the same growth is expected
except for the case of gravitational stratification as mentioned
in Section 4.4. We did not explore the frequency dependence
due to other geometrical effects like loop curvature, offset,
and inclination, and other damping mechanisms like phase
mixing and resonant absorption, as we believe the damping
in slow waves due to these effects is secondary. For instance, De
Moortel et al. (2004) studied the damping of slow waves due to
phase mixing and mode coupling to the fast wave using a two-
dimensional model and found that their contributions are not
significant enough to explain the observed damping. However,
it may be interesting to note that the amplitude decay for some
of the periods can be better fitted with a Gaussian decay function
(A(y) = A0e

−y2/L2
d +C) rather than an exponential function (see

Figure 7). A similar behavior was found by Pascoe et al. (2012)
in their numerical simulations for propagating kink waves. It
was found analytically that the Gaussian damping for kink
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Figure 7. Amplitude decay for the periods shown in Figure 4 fitted with a Gaussian decay model. The damping lengths (in arcseconds) and the corresponding reduced
χ2 values are listed in the plot legend. The left and right panels show the results for 171 and 193 channels respectively.

(A color version of this figure is available in the online journal.)

modes is a result of the excitation phase (Hood et al. 2013).
In this phase, other modes (besides than the kink mode) are
excited and they gradually leak away before the system evolves
to the “eigenvalue” state (when it oscillates with the pure kink
mode). A consequence of this is that longer wavelengths show
the Gaussian damping to greater heights. This also fits with some
of our observations where we find that the amplitude decay for
the longer periods (and wavelengths) is quite well explained
with Gaussian damping. It is unclear, however, if the theory of
Hood et al. (2013) for kink modes also holds for slow waves
and what physical ingredients are essential for showing this
behavior.

5. DISCUSSION AND CONCLUSIONS

Damping in slow waves has been studied extensively in
polar plumes and active region loops both theoretically and
observationally since their first detection. However, studies on
the frequency dependence of their damping are limited. Wang
et al. (2002) and Ofman & Wang (2002) studied the frequency-
dependent damping in standing slow magneto-acoustic waves
observed in hot (T > 6 MK) coronal loops and found a good
agreement between the observed scaling of the dissipation
time with the period using their model. They concluded that
thermal conduction is the dominant damping mechanism for
these waves and the contribution of compressive viscosity is less
significant. Theoretical investigations on frequency-dependent
damping in propagating slow waves were made by a few
authors (Ofman et al. 2000; Nakariakov et al. 2000; Tsiklauri
& Nakariakov 2001). Recently, Krishna Prasad et al. (2012b)
report an observational evidence of this using powermaps
constructed in three different period ranges. As a follow-up of
that work, in this article we studied the quantitative dependence
of damping lengths on frequency of the slow waves using
period–distance maps.

We selected four loop structures on-disk and about
10 plume/interplume structures in the south polar region that
show clear signatures of propagating slow waves. Damping
lengths were measured and plotted against the period of the
slow wave to find the relation between them. Figure 6 displays
the observed dependence of damping lengths on periodicity
for the on-disk loop structures and the polar plume/interplume
regions in two AIA channels. The slopes estimated from the lin-
ear fits are 0.7 ± 0.2 (171 channel) and 1.7 ± 0.5 (193 channel)
for the on-disk regions and are −0.3 ± 0.1 (171 channel) and
−0.4 ± 0.1 (193 channel) for the polar regions. The negative
slopes obtained for the polar region means the damping lengths
for the longer period waves observed in this region are shorter
than those for the shorter period waves. Note, however, that in
both regions the longer period waves are visible up to relatively
larger distances due to the greater availability of power. Consid-
ering thermal conduction, magnetic field divergence, and den-
sity stratification as the dominant mechanisms that alter the slow
wave amplitude, linear theory (see Table 1) predicts the varia-
tion of damping length as square of the time period. In a log–log
scale, used in Figure 6, this would mean a slope of two. However,
as we find here, the slopes estimated from the observations are
positive but less than two for the on-disk region and are negative
for the polar region. It may be noted that similar negative slopes
were found for the polar region, even when the data from plume
and interplume regions were plotted separately. This mismatch
between the observed values and those expected from the linear
theory suggests some missing element in the current theory of
damping in slow waves. Perhaps the linear description does not
hold well and the slow waves undergo non-linear steepening that
causes enhanced viscous dissipation (Ofman et al. 2000). This
can be effective for the long-period waves whose amplitudes
are relatively larger and possibly can even explain the negative
slopes observed in the polar regions. Further studies are re-
quired to explore such possibilities and understand the observed
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Table 2
Periodicity, Exponential Fit Parameters, and the Reduced

χ2 Values for all the Data from AIA 171 channel

Structure Period A0 Ld C χ2
red

(minutes) (Arbitrary Units) (arcsec) (Arbitrary Units)

Loop 1 3.0 195.32 ± 1.99 3.77 ± 0.07 11.95 ± 0.53 8.32
Loop 1 12.1 373.84 ± 13.66 14.14 ± 1.57 −30.07 ± 15.95 437.93
Loop 1 17.1 573.04 ± 46.96 21.71 ± 4.01 −128.19 ± 54.29 1071.35
Loop 1 22.2 549.66 ± 51.02 23.65 ± 4.63 −107.21 ± 58.02 885.18
Loop 2 2.8 163.46 ± 2.70 3.59 ± 0.11 9.04 ± 0.69 14.83
Loop 3 3.9 63.75 ± 1.30 13.95 ± 0.89 0.96 ± 1.36 6.83
Loop 3 7.2 155.38 ± 3.76 19.21 ± 1.31 −9.08 ± 4.51 25.39
Loop 3 22.2 275.87 ± 4.35 11.39 ± 0.52 19.04 ± 3.54 85.67
Loop 4 3.9 13.69 ± 0.54 11.09 ± 1.32 7.20 ± 0.51 1.12
Loop 4 6.6 32.25 ± 0.80 6.77 ± 0.37 10.30 ± 0.37 2.09
Loop 4 22.2 140.94 ± 7.89 21.51 ± 2.81 −3.37 ± 9.20 37.76
Slit 1 6.1 15.70 ± 0.23 23.72 ± 0.59 1.50 ± 0.05 0.55
Slit 1 13.2 39.83 ± 0.30 28.33 ± 0.38 1.60 ± 0.08 1.11
Slit 1 20.4 64.69 ± 0.90 26.30 ± 0.64 2.42 ± 0.23 9.23
Slit 2 2.1 7.59 ± 0.07 61.83 ± 1.52 0.86 ± 0.05 0.11
Slit 2 5.1 32.99 ± 0.14 39.73 ± 0.34 1.49 ± 0.05 0.34
Slit 2 13.2 57.21 ± 0.31 39.62 ± 0.43 0.92 ± 0.12 1.61
Slit 2 22.2 53.16 ± 0.99 46.75 ± 1.95 0.44 ± 0.47 19.26
Slit 3 13.2 60.78 ± 0.79 15.68 ± 0.32 2.55 ± 0.13 4.45
Slit 3 20.4 86.50 ± 2.54 10.63 ± 0.48 4.23 ± 0.32 31.98
Slit 3 28.8 103.80 ± 2.08 24.27 ± 0.82 4.89 ± 0.46 46.10
Slit 4 3.3 7.24 ± 0.10 42.02 ± 1.26 1.17 ± 0.04 0.17
Slit 4 5.1 9.55 ± 0.15 34.41 ± 1.08 1.28 ± 0.05 0.35
Slit 4 6.6 10.44 ± 0.16 32.16 ± 0.91 1.31 ± 0.05 0.33
Slit 4 13.2 24.97 ± 0.47 17.73 ± 0.54 2.02 ± 0.09 1.76
Slit 4 26.4 54.65 ± 0.48 23.02 ± 0.34 2.02 ± 0.11 2.28
Slit 5 3.0 7.02 ± 0.07 52.24 ± 1.33 1.20 ± 0.04 0.11
Slit 5 5.1 11.39 ± 0.14 41.03 ± 1.06 1.81 ± 0.06 0.35
Slit 5 18.7 41.99 ± 0.24 36.01 ± 0.40 1.51 ± 0.08 0.88
Slit 6 3.9 7.43 ± 0.09 41.63 ± 1.09 1.10 ± 0.04 0.15
Slit 6 6.6 13.09 ± 0.20 22.84 ± 0.58 1.48 ± 0.04 0.39
Slit 6 18.7 57.04 ± 0.30 27.03 ± 0.25 1.94 ± 0.08 1.04
Slit 6 28.8 40.15 ± 0.39 33.55 ± 0.62 2.50 ± 0.13 2.17
Slit 7 6.6 20.37 ± 0.17 34.12 ± 0.53 1.28 ± 0.06 0.40
Slit 7 20.4 62.27 ± 1.44 29.08 ± 1.21 4.00 ± 0.41 26.00
Slit 8 3.3 5.58 ± 0.07 61.22 ± 2.17 0.90 ± 0.06 0.09
Slit 8 5.6 7.75 ± 0.10 41.73 ± 1.28 1.20 ± 0.05 0.19
Slit 8 7.9 9.90 ± 0.17 34.48 ± 1.21 1.38 ± 0.06 0.44
Slit 8 13.2 18.98 ± 0.17 38.47 ± 0.73 1.12 ± 0.07 0.46
Slit 8 20.4 21.98 ± 0.30 27.80 ± 0.70 1.86 ± 0.09 1.10
Slit 8 28.8 35.96 ± 0.84 10.61 ± 0.39 3.60 ± 0.12 3.51
Slit 9 2.8 6.51 ± 0.06 56.43 ± 1.37 1.37 ± 0.04 0.08
Slit 9 5.6 8.24 ± 0.11 36.46 ± 0.97 1.30 ± 0.04 0.20
Slit 9 11.1 18.76 ± 0.32 26.31 ± 0.77 1.66 ± 0.08 1.17
Slit 9 20.4 50.68 ± 0.30 26.99 ± 0.28 1.63 ± 0.08 1.07
Slit 10 4.7 7.03 ± 0.10 46.45 ± 1.78 1.33 ± 0.07 0.17
Slit 10 11.1 17.83 ± 0.39 23.94 ± 0.96 2.44 ± 0.11 1.60
Slit 10 18.7 45.65 ± 0.81 28.99 ± 1.03 3.92 ± 0.30 8.27

frequency dependence. Nevertheless, the discrepancy in the re-
sults from the on-disk and the polar regions indicates the exis-
tence (or dominance) of different damping mechanisms in these
two regions possibly due to different physical conditions. It is
also possible that the sunspot loops and the on-disk plume-like
structures also behave differently, but the current data is limited
to make any such conclusions.

We thank the anonymous referee for useful comments. The
authors also thank I. De Moortel for helpful discussions. The
AIA data used here is courtesy of the SDO (NASA) and
AIA consortium. This research has been made possible by the
topping-up grant CHARM+top-up COR-SEIS of the BELSPO
and the Indian DST. It was partly funded by the IAP P7/08
CHARM and an FWO Vlaanderen Odysseus grant.

Table 3
Periodicity, Exponential Fit Parameters, and the Reduced

χ2 Values for all the Data from AIA 193 channel

Structure Period A0 Ld C χ2
red

(minutes) (Arbitrary Units) (arcsec) (Arbitrary Units)

Loop 1 3.0 81.62 ± 2.39 1.87 ± 0.10 9.90 ± 0.43 7.84
Loop 1 12.1 58.75 ± 2.72 10.89 ± 1.53 25.23 ± 2.60 27.39
Loop 1 17.1 121.21 ± 7.62 13.48 ± 2.61 45.37 ± 8.72 154.00
Loop 2 2.8 63.19 ± 2.82 2.15 ± 0.17 8.05 ± 0.54 11.76
Loop 3 4.7 22.28 ± 0.47 8.85 ± 0.45 5.72 ± 0.26 0.89
Loop 3 7.2 37.66 ± 1.31 18.37 ± 1.86 6.90 ± 1.57 3.61
Loop 4 4.7 13.32 ± 0.65 15.48 ± 2.23 4.98 ± 0.77 0.88
Slit 3 2.5 4.54 ± 0.04 62.96 ± 1.72 0.81 ± 0.03 0.05
Slit 3 7.9 13.74 ± 0.20 27.08 ± 0.68 1.30 ± 0.05 0.48
Slit 3 14.4 26.11 ± 0.65 28.98 ± 1.26 1.60 ± 0.17 5.27
Slit 3 28.8 70.20 ± 1.39 19.46 ± 0.62 3.47 ± 0.26 16.59
Slit 4 2.3 3.48 ± 0.05 48.70 ± 1.59 0.98 ± 0.03 0.04
Slit 4 5.6 5.01 ± 0.10 34.91 ± 1.38 1.11 ± 0.04 0.15
Slit 4 8.6 7.31 ± 0.13 30.40 ± 1.03 1.17 ± 0.04 0.24
Slit 4 14.4 14.76 ± 0.31 20.76 ± 0.72 1.48 ± 0.07 0.87
Slit 4 28.8 29.39 ± 0.67 25.74 ± 1.02 1.87 ± 0.17 4.97
Slit 5 2.5 2.55 ± 0.03 60.29 ± 2.05 0.93 ± 0.02 0.02
Slit 5 6.6 7.11 ± 0.13 28.61 ± 0.92 1.77 ± 0.03 0.21
Slit 5 18.7 17.68 ± 0.26 28.62 ± 0.74 1.84 ± 0.07 0.82
Slit 9 2.3 2.11 ± 0.03 59.64 ± 2.32 0.90 ± 0.02 0.02
Slit 9 6.1 4.13 ± 0.10 23.80 ± 1.00 1.11 ± 0.02 0.11
Slit 9 11.1 9.54 ± 0.23 15.69 ± 0.59 1.28 ± 0.04 0.36
Slit 9 14.4 8.02 ± 0.26 19.00 ± 1.01 1.37 ± 0.05 0.58
Slit 9 24.3 9.74 ± 0.19 47.24 ± 2.14 1.04 ± 0.10 0.74
Slit 10 3.6 3.33 ± 0.07 31.00 ± 1.44 1.19 ± 0.03 0.07
Slit 10 6.1 4.92 ± 0.12 20.04 ± 0.82 1.33 ± 0.03 0.12
Slit 10 18.7 30.96 ± 0.87 8.47 ± 0.37 3.21 ± 0.12 3.09

APPENDIX

The exponential fit parameters for all the periods identified
in the on-disk and polar data are listed in Tables 2 and 3 for the
171 and 193 channels, respectively. The corresponding reduced
χ2 values are also listed as a goodness-of-fit statistic.
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