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ABSTRACT

The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler
with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which
have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support
for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between
competing models. The currently available sample indicates a likelihood of ∼70%–80% that the Rh = ct universe
is the correct cosmology versus ∼20%–30% for the standard model. This possibly interesting result reinforces the
need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy
Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded
catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how
large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real
cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out Rh = ct at this level
of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead
Rh = ct . This difference in required sample size reflects the greater number of free parameters available to fit the
data with ΛCDM.
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1. INTRODUCTION

The idea of using gravitational lenses with time delays
between the various images of a background quasar as a
cosmological probe was first suggested by Refsdal (1964).
Null geodesics originating with distant variable sources have
different optical paths and pass through dissimilar gravitational
potentials. Their deflection angles and time delays can thus be
used to infer lens-system dependent angular-diameter distances,
which can then be compared to theoretical predictions from
general relativity to test the background cosmological expansion
and offer the possibility of testing competing models (see, e.g.,
Petters et al. 2001; Schneider et al. 2006).

As of today, time delays have been observed from 21 lensed
quasars, a relatively small subset of the several hundred known
strong-lens systems. But this is only the beginning. In the
near future, observational programmes, such as the COSmo-
logical MOnitoring of GRAvItational Lenses (COSMOGRAIL;
Eigenbrod et al. 2005) and perhaps also the International Liquid
Mirror Telescope (ILMT) project (Jean et al. 2001), which is
now in the final phases of construction in the Kumaun region of
the Himalayas (Sagar et al. 2013), should increase this sample
considerably. New strong gravitational lens systems will also
be discovered by cosmic structure surveys, including the Dark
Energy Survey6 (DES; Banerji et al. 2008; Buckley-Geer et al.

6 One should take note of the fact, however, that the actual image quality in
these surveys may be inferior to that expected, somewhat mitigating the
possible yield of suitable lens systems for this work. For example, the DES
was aiming to get 0.′′9 median FWHM in the r, i, and z band images for its
wide survey. At the end of the first year, the quality is close to this, though not
yet meeting expectations. In addition, g and Y bands are observed in poorer

2014; Schneider 2014), the Large Synoptic Survey Telescope
(LSST; Tyson et al. 2002; Blandford et al. 2006; Marshall et al.
2011; Chang et al. 2014) project, and the VST ATLAS survey
(Koposov et al. 2014), and time delays will be measured for
a subsample of these with subsequent monitoring observations.
Oguri & Marshall (2010) carried out a detailed calculation of the
likely yields of several planned surveys, using realistic distribu-
tions for the lens and source properties and taking magnification
bias and image configuration detectability into account. They
found that upcoming wide-field synoptic surveys should detect
several thousand lensed quasars. In particular, LSST should find
more than ∼8000 lensed quasars, some 3000 of which will have
well-measured time delays.

Several attempts have already been made to demonstrate the
usefulness of these data for constraining the cosmological pa-
rameters in the standard model, ΛCDM (see, e.g., Paraficz &
Hjorth 2009, 2010; Balmès & Corasaniti 2013; and Suyu et al.
2013; Sereno & Paraficz 2014). In this paper, we broaden the
base of support for this cosmic probe by demonstrating its use-
fulness in testing competing cosmological models. In particular,
we show that the currently available sample of time-delay lens-
ing systems favors the Rh = ct universe with a likelihood of
∼70%–80% of being correct, versus ∼20%–30% for ΛCDM.
Though this result is still only marginal, it nonetheless calls for
a significant increase in the sample of suitable lensing systems
in order to carry out more sophisticated and higher precision
measurements.

seeing conditions so their quality is even lower (G. Bernstein et al. 2014,
private communication). This is an important consideration in any discussion
concerning anticipated sample size, given that even SDSS has discovered only
∼5% of the originally expected lens systems.
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In Section 2, we describe the key theoretical steps used in
the application of time-delay lenses for cosmological testing,
and we apply this procedure to the currently known sample of
12 systems in Section 3. We discuss the results of our one-on-
one comparison between ΛCDM and Rh = ct in Section 4.
As we shall see, model selection tools favor the latter, but
the distinction, given the relatively small number of lenses, is
still not strong enough to completely rule out either model. We
therefore estimate the sample size required from future surveys
to reach likelihoods of ∼99.7% and ∼0.3%, for a 3σ confidence
limit, and we present our conclusions in Section 6.

2. STRONG LENSING

The measurement of time delays in strong gravitational lenses
is not straightforward, due in part to the uncertainty associated
with the lens mass distribution and the possible presence of
other perturbing masses along the line of sight. To this point,
two principal methods have been employed to model the lens
itself, which may be characterized as either simple-parametric
(see, e.g., Oguri et al. 2002; Keeton et al. 2003) or grid-based
parametric (see, e.g., Warren & Dye 2003; Bradac et al. 2008;
Coles 2008; Suyu et al. 2013) approaches. The former uses
simply parameterized forms for the mass distribution of the
deflector, while the latter uses as parameters a grid of pixels,
to describe either the potential or the mass distribution of
the deflector, and/or the source surface brightness distribution.
Some have also used a hybrid approach, in which pixellated
corrections were made to a simply parametrized mass model
(Suyu et al. 2010; Vegetti et al. 2010).

The grid-based methods are regularized, often by imposing
physical priors, otherwise they would just fit the noise. The
simply parameterized methods can even be computationally
more intensive, depending on the choice of the parameters.
If an appropriate subsample of homogeneous systems can be
identified—meaning a set of lenses whose properties provide
evidence that the same lens model description may be used
with the same level of statistical significance—the simply
parameterized method can serve as an ideal first attempt at
gauging whether the image-inversion effort is warranted with
follow-up analysis. This is the method we will be using in this
paper.

For a given image i at angular position θ i , with the source
position at angle β, the time delay, Δti , is the combined effect of
the difference in path length between the straight and deflected
rays, and the gravitational time dilation for the ray passing
through the effective gravitational potential of the lens, Ψ(θ i):

Δti = 1 + zl

c

DA(0, zs)DA(0, zl)

DA(zl, zs)

[
1

2
(θ i − β)2 − Ψ(θ i)

]
(1)

(see, e.g., Blandford & Narayan 1986 and references therein),
where zl and zs are the lens and source redshifts, respec-
tively, and DA(z1, z2) is the angular-diameter distance between
redshifts z1 and z2. If the lens geometry θ i − β and the lens
potential Ψ are known, the time delay measures the ratio

R ≡ DA(0, zs)DA(0, zl)

DA(zl, zs)
, (2)

also known as the time-delay distance, which depends on the
cosmological model.

It has been known for over a decade that lens spiral and ellip-
tical galaxies have a mass distribution that is well approximated

by power-law density profiles (Witt et al. 2000; Rusin et al.
2003), for which the lens potential may be written as

Ψ(θ) = b2

3 − n

(
θ

b

)3−n

, (3)

in terms of the deflection scale b and index n. The single
isothermal sphere (SIS) is the special case corresponding to
n = 2, for which b = 4πDA(zl, zs)σ 2

� /DA(0, zs), where σ�

is the velocity dispersion of the lensing galaxy. Though some
systems have shallow profiles with n < 1, measurements of
galaxy density distributions suggest that n is generally close to
the isothermal value. Thus, in addition to the SIS model being
convenient for its simplicity, it is actually also a surprisingly
useful and accurate model for lens galaxies (Guimaraes &
Sodré 2009; Koopmans et al. 2009). And for such systems with
only two images at θA and θB , the time delay is given by the
expression

Δt = tA − tB = 1 + zl

2c
R(zl, zs)

(
θ2
B − θ2

A

)
. (4)

Treu et al. (2006) found that the ratio f ≡ σ�/σSIS is
very close to unity, where σSIS includes systematic errors in
the rms deviation of the velocity dispersion and a softened
isothermal sphere potential (see additional details below). Note
that if the velocity dispersion σ� of the lensing galaxy could
also be observed, and assuming a ratio f = 1, two of the
angular-diameter distances appearing in Equation (2) could be
replaced with the measured value of σ� and the Einstein radius
θE = (θA + θB)/2. An alternative approach would be to impose
some prior (see, e.g., Oguri 2007), or to compute σ� from
a dynamical model (see, e.g., Treu & Koopmans 2002). As
shown by Paraficz & Hjorth (2009), the quantity Δt/σ 2

SIS is
more sensitive to the cosmological parameters than Δt or σ 2

SIS
separately, so this additional datum would improve the reliability
with which this approach could distinguish between competing
models. As of today, however, there are simply too few time-
delay lenses with the corresponding measure of σ�, so all of the
analysis we carry out in this paper will be based solely on the use
of Equation (4). Even looking to the future, velocity dispersions
are particularly difficult to measure for these systems precisely
because they are crowded by quasars that make the time delay
measurement possible.

In ΛCDM, the angular-diameter distance depends on several
parameters, including H0 and the mass fractions Ωm ≡ ρm/ρc,
Ωr ≡ ρr/ρc, and Ωde ≡ ρde/ρc, defined in terms of the current
matter (ρm), radiation (ρr), and dark energy (ρde) densities, and
the critical density ρc ≡ 3c2H 2

0 /8πG. Assuming zero spatial
curvature, so that Ωm + Ωr + Ωde = 1, the angular-diameter
distance between redshifts z1 and z2 (>z1) is given by the
expression

DΛCDM
A (z1, z2) = c

H0

1

(1 + z2)

∫ z2

z1

[Ωm(1 + z)3

+ Ωr(1 + z)4 + Ωde(1 + z)3(1+wde)]−1/2 dz ,

(5)

where pde = wdeρde is the dark-energy equation of state.
Thus, the essential free parameters in flat ΛCDM are H0,
Ωm, and wde (since radiation is insignificant at gravitational
lensing redshifts). In the Rh = ct universe (Melia 2007;
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Table 1
Time Delay (Two-image) Lenses

System zl zs θA θB Δt = tA − tB Robs RΛCDM RRh=ct Refs.
(arcsec) (arcsec) (days) (Gpc) (Gpc) (Gpc)

B0218+357 0.685 0.944 0.057 ± 0.004 0.280 ± 0.008 +10.5 ± 0.2 5.922 ± 1.757 5.268 5.361 1–3
B1600+434 0.414 1.589 1.14 ± 0.075 0.25 ± 0.074 −51.0 ± 2.0 2.082 ± 0.677 1.403 1.435 4, 5
FBQ0951+2635 0.26 1.246 0.886 ± 0.004 0.228 ± 0.008 −16.0 ± 2.0 1.237 ± 0.391 0.917 0.956 6
HE1104-1805 0.729 2.319 1.099 ± 0.004 2.095 ± 0.008 152.2 ± 3.0 1.976 ± 0.575 2.202 2.170 2, 7, 8
HE2149-2745 0.603 2.033 1.354 ± 0.008 0.344 ± 0.012 −103.0 ± 12.0 2.676 ± 0.837 1.909 1.908 6, 9
PKS1830-211 0.89 2.507 0.67 ± 0.08 0.32 ± 0.08 −26 ± 5 2.835 ± 1.385 2.620 2.546 10, 11
Q0142-100 0.49 2.719 1.855 ± 0.002 0.383 ± 0.005 −89 ± 11 1.295 ± 0.408 1.428 1.431 6, 12
Q0957+561 0.36 1.413 5.220 ± 0.006 1.036 ± 0.11 −417.09 ± 0.07 0.837 ± 0.243 1.256 1.294 6, 13, 14
SBS 0909+532 0.83 1.377 0.415 ± 0.126 0.756 ± 0.152 +45.0 ± 5.5 4.398 ± 3.107 4.085 4.072 6, 15
SBS 1520+530 0.717 1.855 1.207 ± 0.004 0.386 ± 0.008 −130.0 ± 3.0 4.135 ± 1.203 2.435 2.419 6, 16
SDSS J1206+4332 0.748 1.789 1.870 ± 0.088 1.278 ± 0.097 −116 ± 5 2.543 ± 0.934 2.632 2.612 17
SDSS J1650+4251 0.577 1.547 0.872 ± 0.027 0.357 ± 0.042 −49.5 ± 1.9 3.542 ± 1.082 2.079 2.098 6, 18

References. (1) Carilli et al. 1993; (2) Lehár et al. 2000; (3) Wucknitz et al. 2004; (4) Jackson et al. 1995; (5) Dai & Kochanek 2005; (6) Kochanek et al. 2008;
(7) Wisotzki et al. 1993; (8) Poindexter et al. 2007; (9) Burud et al. 2002; (10) Lovell et al. 1998; (11) Meylan et al. 2005; (12) Koptelova et al. 2012; (13) Falco et al.
1997; (14) Colley et al. 2003; (15) Dai & Kochanek (2009; (16) Auger et al. 2008; (17) Paraficz & Hjorth 2009; (18) Vuissoz et al. 2007.

Melia & Shevchuk 2012), the angular-diameter distance de-
pends only on H0. In this cosmology,

D
Rh=ct
A (z1, z2) = c

H0

1

(1 + z2)
ln

(
1 + z2

1 + z1

)
. (6)

3. SAMPLE OF TIME-DELAY (TWO-IMAGE)
LENSING SYSTEMS

In their careful Bayesian approach to constraining H0 within
the framework of ΛCDM, Balmès & Corasaniti (2013) collected
a sample of time-delay lenses for which Bayesian selection
techniques can identify the lens mass model with the highest
probability of describing the lens system. Rather than attempting
to model individual lenses in all their complexity, the goal was
to identify the model whose parameters significantly influence
the time-delay, allowing them to average over individual mass
model parameter uncertainties on a homogeneous mass sample.
The first selection criterion in such an approach is therefore a
restriction to two-image lenses, listed in Table 1, which seem
to be more likely than other lens systems to be consistent
with a simple power-law (or even SIS) profile. Paraficz &
Hjorth (2010) followed the alternative method of using inversion
techniques with each individual intensity image to map the mass
distribution in each individual lens system, and produced a very
useful comparison of their mass profiles, shown in Figure 1 of
that paper. Indeed, the two-image lenses are significantly more
symmetric than the rest. But though the object constituting the
lens has been identified unambiguously in all the entries listed
in Table 1, it is not yet clear whether these are part of a group or
whether perturbators contribute along the line of sight. Thus, at
this stage, an important caveat to our conclusions is that external
shear may yet be contributing to some selection bias.

Note, however, that the two-image criterion may not be suf-
ficient to guarantee a simple power-law lens model. Balmès &
Corasaniti (2013) concluded from this sample that nine have
Bayes factors favoring such a mass profile, though six of these
are somewhat inconclusive. Thus, for a more balanced assess-
ment in our analysis, we will consider two sample cuts, one
with the full set of 12 two-image lenses listed in Table 1, and the
second with just these nine: B1600+434, SBS 1520+530, SDSS
J1650+4251, B0218+357, FBQ 0951+2635, HE 2149−2745,
PKS 1830−211, Q0142−100, and SBS 0909+532.

For each model, we find the optimized fit by maximizing the
joint likelihood function

L(σSIS, ξ ) ∝
∏
i=1

1√
σ 2

SIS + σ 2
Ri

× exp

[
− (Rth,i[ξ ] − Robs,i)2

2
(
σ 2

SIS + σ 2
Ri

)
]

, (7)

where “th” stands for either ΛCDM or Rh = ct , Rth is the
theoretical time-delay distance calculated from zl,i , zs,i and the
model specific parameters ξ , Robs is the measured value, and
σR is the dispersion of Robs. The measured time-delay distance
is

Robs(zl, zs) = 2c

1 + zl

Δt(
θ2
B − θ2

A

) , (8)

so the propagated error σR in Robs is

σR = Robs

[(σΔt

Δt

)2
+ 4

(
θBσθB

θ2
B − θ2

A

)2

+ 4

(
θAσθA

θ2
B − θ2

A

)2
]1/2

.

(9)
The dispersion σz in the measured redshifts zl and zs (which
enter through the angular distances in Robs) will be ignored
here because a careful analysis of SDSS quasar spectra shows
that σz/(1 + z) ∼ 10−4 (Hewett & Wild 2010), much smaller
than the other errors appearing in Equation (9).

However, we must include another source of error, in addition
to σR, that we will call σSIS; this takes into account at least
several effects that apparently give rise to the observed scatter
of individual lenses about the pure SIS profile. These include:
systematic errors in the rms deviation of the velocity dispersion
and a softened isothermal sphere potential, which tends to
decrease the typical image separations. Moreover, Koopmans
et al. (2009) showed that the mean mass density profile is slightly
steeper than SIS and has significant scatter, not to mention that
the line of sight contribution is generally nonzero on average
(Suyu et al. 2010). According to Cao et al. (2012), σSIS may be
as big as ∼20%, depending on how many such factors actually
contribute to this scatter. In our approach, we will adopt the
additional free parameter η to relate the dispersion σSIS to the

3



The Astrophysical Journal, 788:190 (8pp), 2014 June 20 Wei, Wu, & Melia

Figure 1. Twelve R measurements, with error bars, compared to two theoretical models: (left) the standard ΛCDM cosmology, assuming a flat universe, with
H0 = 87+17

−16 km s−1 Mpc−1, Ωm = 0.48+0.25
−0.37, and η = 0.29+0.15

−0.09; and (right) the Rh = ct universe, with H0 = 81+18
−13 km s−1 Mpc−1 and η = 0.29+0.16

−0.09.

measured effective lensing distance Robs, according to

σSIS ≡ ηRobs. (10)

We will add σSIS and σR in quadrature, and optimize the
parameter η for each fit individually though, as we shall see,
the value of η appears to be quite independent of the model
itself. Thus, the total uncertainty σtot in Robs is given by the
expression σ 2

tot = σ 2
SIS + σ 2

R.

4. RESULTS AND DISCUSSION

We have used the data shown in Table 1 to directly compare
ΛCDM with the Rh = ct universe. The parameters in each
model were individually optimized by maximizing the likeli-
hood estimation, as described above. We will use two well es-
tablished priors associated with the concordance ΛCDM model:
(1) dark energy is a cosmological constant, so wde = −1; and
the spatial curvature constant is zero, i.e., the universe is flat, so
that ΩΛ = 1−Ωm. But to allow for added flexibility in the opti-
mization of the model fit, we will employ three free parameters:
H0, Ωm, and η. We have restricted the fraction Ωm to the range
(0.0, 1.0). With the full sample of 12 time-delay lenses, ΛCDM
fits the data with a maximum likelihood for H0 = 87+17

−16 (1σ ) km
s−1 Mpc−1, Ωm = 0.48+0.25

−0.37 (1σ ) and η = 0.29+0.15
−0.09 (1σ ). The

best fit with the Rh = ct universe has only two free parameters:
H0 = 81+18

−13 (1σ ) km s−1 Mpc−1 and η = 0.29+0.16
−0.09 (1σ ). The

entries in Column 7 of Table 1 are calculated from the observed
angles and time delays. By comparison, cColumns 8 and 9 show
the entries for RΛCDM and RRh=ct , respectively, corresponding
to these best-fit parameters using all 12 lens systems.

To facilitate a direct comparison between ΛCDM and Rh =
ct , we show in Figure 1 the 12 observed values ofRobs compared
with those predicted by these two theoretical models. The
optimized values of η and the maximum likelihood are quite
similar for these two cases. However, these models formulate
their observables (such as the angular diameter distances in
Equations (5) and (6)) differently, and do not have the same
number of free parameters. Therefore a comparison of the
likelihoods for either being closer to the “true” model must
be based on model selection tools.

Several information criteria commonly used in cosmology
(see, e.g., Melia & Maier 2013 and references therein) include
the Akaike Information Criterion, AIC ≡ −2 ln L+2n, where L
is the maximum likelihood, n is the number of free parameters
(Liddle 2007), the Kullback Information Criterion, KIC =
−2 ln L + 3n (Cavanaugh 2004), and the Bayes Information
Criterion, BIC = −2 ln L + (ln N )n, where N is the number of
data points (Schwarz 2014). With AICα characterizing model
Mα , the unnormalized confidence that this model is true is the
Akaike weight exp(−AICα/2). Model Mα has likelihood

P (Mα) = exp(−AICα/2)

exp(−AIC1/2) + exp(−AIC2/2)
(11)

of being the correct choice in this one-on-one comparison. Thus,
the difference ΔAIC ≡ AIC2 − AIC1 determines the extent
to which M1 is favoured over M2. For Kullback and Bayes,
the likelihoods are defined analogously. For the two optimized
fits discussed above, the magnitude of the difference ΔAIC =
AIC2 − AIC1 = 1.7, indicates that M1 is to be preferred over
M2. According to Equation (11), the likelihood of Rh = ct (i.e.,
M1) being the correct choice is P (M1) ≈ 70%. For ΛCDM
(i.e., M2), the corresponding value is P (M2) ≈ 30%. With
the alternatives KIC and BIC, the magnitude of the differences
ΔKIC = KIC2 − KIC1 = 2.7 and ΔBIC = BIC2 − BIC1 = 2.2,
indicates that Rh = ct is favored over ΛCDM by a likelihood of
≈75%–80% versus 20%–25%.

We also carried out a one-on-one comparison using the
reduced sample of only nine two-image lens systems. In
this case, the best ΛCDM fit has a maximum likelihood for
H0 = 69+12

−11 (1σ ) km s−1 Mpc−1, Ωm = 0.51+0.32
−0.27 (1σ ) and

η = 0.19+0.16
−0.07 (1σ ). For Rh = ct , the best fit corresponds

to H0 = 65+13
−8.8 (1σ ) km s−1 Mpc−1 and η = 0.19+0.16

−0.08 (1σ ).
Figure 2 is similar to Figure 1, except now for the reduced sample
of nine lenses. In this case, the magnitude of the differences
ΔAIC = 2.0, ΔKIC = 3.0, and ΔBIC = 2.2 indicates that
Rh = ct is preferred over ΛCDM with a likelihood of ≈73%
versus ≈27% using AIC, ≈82% versus ≈18% using KIC, and
≈75% versus ≈25% using BIC.
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Figure 2. Same as Figure 1, except now for the reduced sample of nine lens systems. The optimized ΛCDM model has H0 = 69+12
−11 km s−1 Mpc−1, Ωm = 0.51+0.32

−0.27,
and η = 0.19+0.16

−0.07. The optimized Rh = ct universe has H0 = 65+13
−8.8 km s−1 Mpc−1 and η = 0.19+0.16

−0.08.

Figure 3. 1D probability distributions and 2D regions with the 1σ and 2σ contours corresponding to the parameters Ωm, ΩΛ, H0, and η in the best-fit ΛCDM model,
using the simulated sample with 1000 lens systems, assuming Rh = ct as the background cosmology.

(A color version of this figure is available in the online journal.)
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Figure 4. 2D region with the 1σ and 2σ contours for the parameters H0 and η

in the Rh = ct universe, using a sample of 1000 time-delay lenses, simulated
with Rh = ct as the background cosmology. The assumed value for H0 in the
simulation was H0 = 70 km s−1 Mpc−1.

(A color version of this figure is available in the online journal.)

5. MONTE CARLO SIMULATIONS WITH
A SYNTHETIC SAMPLE

Our results in this paper have shown that time-delay lenses
can in fact be used to select one model over another in a one-
on-one comparison. But though the likelihood of Rh = ct being
closer to the correct cosmology than ΛCDM is ∼80% or higher,
depending on the choice of information criterion, the outcome
Δ ≡ AIC1− AIC2 (and analogously for KIC and BIC) is judged
“positive” in the range Δ = 2–6, and “strong” for Δ > 6.
The constraints based on the currently known 12 lens systems
should therefore be characterized as “positive,” though not yet
strong. In this section, we will estimate the sample size required
to significantly strengthen the evidence in favor of Rh = ct
or ΛCDM, by conservatively seeking an outcome even beyond
Δ = 6, i.e., we will see what is required to produce a likelihood
∼99.7% versus ∼0.3%, corresponding to 3σ .

We will consider two cases: one in which the background
cosmology is assumed to be ΛCDM and a second in which
it is Rh = ct , and we will attempt to estimate the number of
time-delay lenses required in each case in order to rule out the
alternative (incorrect) model at a ∼99.7% confidence level. The

Figure 5. Same as Figure 3, except now with ΛCDM as the (assumed) background cosmology. The simulated model parameters were Ωm = 0.3, ΩΛ = 0.7, and
H0 = 70 km s−1 Mpc−1.

(A color version of this figure is available in the online journal.)
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synthetic time-delay lenses are each characterized by a set of
parameters denoted as (zl , zs , Δt , Θ), where Θ ≡ θ2

B − θ2
A, and

are generated using the following procedure.
1. Since the 12 observed lens redshifts all fall in the range

0.26 � zl � 0.89, and the source redshifts are 1.246 �
zs � 2.719, with a time delay −150 � Δt � 150 (days),
we assign zl uniformly between 0.2 and 1.0, zs uniformly
between 1.2 and 3.0, and Δt uniformly between −150 and
150 days.

2. We first infer Θ ≡ (θ2
B − θ2

A) from Equation (4) corre-
sponding either to the Rh = ct universe with H0 = 70 km
s−1 Mpc−1 (Section 5.1), or to ΛCDM with Ωm = 0.3,
ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1 (Section 5.2). We
then assign a random deviation (ΔΘ) to the Θ value within
the 3σ confidence interval, i.e., we put Θ′ = Θ+(2x−1)·3σ ,
where x is a uniform random variable between 0 and 1, and
σ = 0.04 Θ. This value of σ is taken from the current ob-
served sample, which shows a median deviation ∼0.04 Θ.
The same relative error is assigned to Θ′.

3. Since the observed σΔt is about 4% of Δt , we will also
assign a dispersion σΔt = 0.04 Δt to the synthetic sample.

This sequence of steps is repeated for each lens system in
the sample, which is enlarged until the likelihood criterion
discussed above is reached. As with the real 12-lens sample,
we optimize the model fits by maximizing the joint likelihood
function in Equation (7). We employ Markov-chain Monte
Carlo techniques. In each Markov chain, we generate 105

samples according to the likelihood function. Then we derive the
coefficients η and the cosmological parameters from a statistical
analysis of the sample.

5.1. Assuming Rh = ct as the Background Cosmology

We have found that a sample of at least 1000 time-delay
lenses is required in order to rule out ΛCDM at the ∼99.7%
confidence level. The optimized parameters corresponding to
the best-fit ΛCDM model for these simulated data are displayed
in Figure 3. To allow for the greatest flexibility in this fit, we relax
the assumption of flatness, and allow ΩΛ to be a free parameter,
along with Ωm. Figure 3 shows the 1D probability distribution
for each parameter (Ωm, ΩΛ, H0, η), and 2D plots of the 1σ
and 2σ confidence regions for two-parameter combinations.
The best-fit values for ΛCDM using the simulated sample with
1000 lens systems in the Rh = ct universe are Ωm = 0.85+0.21

−0.21

(1σ ), ΩΛ = 0.48+0.47
−0.48, H0 = 72+0.81

−0.80 (1σ ) km s−1 Mpc−1, and
η = 0.038+0.0040

−0.0050 (1σ ).
In Figure 4, we show the corresponding 2D contours in the

H0–η plane for the Rh = ct universe. The best-fit values for
the simulated sample are H0 = 71+0.24

−0.24 (1σ ) km s−1 Mpc−1 and
η = 0.038+0.0050

−0.0040(1σ ).
Since the number N of data points in the sample is now much

greater than one, the most appropriate information criterion to
use is the BIC. The logarithmic penalty in this model selection
tool strongly suppresses overfitting if N is large (the situation
we have here, which is deep in the asymptotic regime). With
N = 1000, our analysis of the simulated sample shows that
the BIC would favor the Rh = ct universe over ΛCDM by an
overwhelming likelihood of 99.7% versus only 0.3% (i.e., the
prescribed 3σ confidence limit).

5.2. Assuming ΛCDM as the Background Cosmology

In this case, we assume that the background cosmology is
ΛCDM, and seek the minimum sample size to rule out Rh = ct

Figure 6. Same as Figure 4, except now with ΛCDM as the (assumed)
background cosmology.

(A color version of this figure is available in the online journal.)

at the 3σ confidence level. We have found that a minimum
of 135 time-delay lenses are required to achieve this goal. To
allow for the greatest flexibility in the ΛCDM fit, here too
we relax the assumption of flatness, and allow ΩΛ to be a
free parameter, along with Ωm. In Figure 5, we show the 1D
probability distribution for each parameter (Ωm, ΩΛ, H0, η),
and 2D plots of the 1σ and 2σ confidence regions for two-
parameter combinations. The best-fit values for ΛCDM using
this simulated sample with 135 lens systems are Ωm = 0.34+0.20

−0.18

(1σ ), ΩΛ = 0.58, H0 = 71+2.1
−2.1 (1σ ) km s−1 Mpc−1, and

η = 0.041+0.011
−0.013 (1σ ). Note that the simulated lenses give a

good constraint on Ωm, but a weak one on ΩΛ; only an upper
limit of 0.90 can be set at the 1σ confidence level.

The corresponding 2D contours in the H0 − η plane for the
Rh = ct universe are shown in Figure 6. The best-fit values for
the simulated sample are H0 = 65+0.57

−0.63 (1σ ) km s−1 Mpc−1 and
η = 0.048+0.011

−0.011(1σ ). These are similar to those in the standard
model, but not exactly the same, reaffirming the importance of
reducing the data separately for each model being tested. With
N = 135, our analysis of the simulated sample shows that in
this case the BIC would favor ΛCDM over Rh = ct by an
overwhelming likelihood of 99.7% versus only 0.3% (i.e., the
prescribed 3σ confidence limit).

6. CONCLUSIONS

The general agreement between theory and observation dis-
played in Figures 1 and 2 is promising, particularly since this
work was based on the use of a single isothermal sphere pro-
file for the lens mass distribution. It would be helpful to have
additional information from which one may extract the lens
structure from individual images. Up to now, these approaches
have been used to optimize parameters in ΛCDM itself, but not
for an actual one-on-one comparison between competing cos-
mological models. This must be done because the results we
have presented here already indicate a strong likelihood of be-
ing able to discriminate between models such as ΛCDM and
Rh = ct . Such comparisons have already been made using,
e.g., cosmic chronometers (Melia & Maier 2013), gamma-ray
bursts (Wei et al. 2013), and Type Ia SNe (Wei et al. 2014). The
use of time-delay lenses introduces yet another standard ruler,
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with systematics different from those encountered elsewhere,
thus providing an invaluable tool with which to cross-check the
outcomes of these other important tests.

But though time-delay lens observations currently tend to
favor Rh = ct over ΛCDM, the known sample of such systems is
still too small for us to completely rule out either model. We have
therefore considered two synthetic samples with characteristics
similar to those of the 12 known systems, one based on a ΛCDM
background cosmology, the other on Rh = ct . From the analysis
of these simulated lenses, we have estimated that a sample of
about 150 lenses would be needed to rule out Rh = ct at a
∼99.7% confidence level if the real cosmology is in fact ΛCDM,
while a sample of at least 1000 systems would be needed to
similarly rule out ΛCDM if the background cosmology were
instead Rh = ct . The difference in required sample size results
from ΛCDM’s greater flexibility in fitting the data, since it has a
larger number of free parameters. Such a level of accuracy may
be achievable with the successful implementation of surveys,
such as DES, VST ATLAS, and LSST.
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