
The Astrophysical Journal, 788:3 (14pp), 2014 June 10 doi:10.1088/0004-637X/788/1/3
C© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

CHARACTERIZING THE STRUCTURE OF DIFFUSE EMISSION IN Hi-GAL MAPS

D. Elia1, F. Strafella2, N. Schneider3, R. Paladini5, R. Vavrek6, Y. Maruccia2, S. Molinari1, A. Noriega-Crespo4,6,
S. Pezzuto4,5, K. L. J. Rygl1,7, A. M. Di Giorgio1, A. Traficante8, E. Schisano4, L. Calzoletti9, M. Pestalozzi1,

S. J. Liu1, P. Natoli9,10,11,12, M. Huang13, P. Martin14, Y. Fukui15, and T. Hayakawa15
1 INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma, Italy; davide.elia@iaps.inaf.it

2 Dipartimento di Matematica e Fisica E. De Giorgi, Università del Salento, CP 193, I-73100 Lecce, Italy
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ABSTRACT

We present a study of the structure of the Galactic interstellar medium (ISM) through the Δ-variance technique,
related to the power spectrum and the fractal properties of infrared/submillimeter maps. Through this method,
it is possible to provide quantitative parameters, which are useful for characterizing different morphological and
physical conditions, and better constraining the theoretical models. In this respect, the Herschel Infrared Galactic
Plane Survey, carried out at five photometric bands from 70 to 500 μm, constitutes a unique database for applying
statistical tools to a variety of regions across the Milky Way. In this paper, we derive a robust estimate of the power-
law portion of the power spectrum of four contiguous 2◦ × 2◦ Hi-GAL tiles located in the third Galactic quadrant
(217◦ � � � 225◦, −2◦ � b � 0◦). The low level of confusion along the line of sight, testified by CO observations,
makes this region an ideal case. We find very different values for the power spectrum slope from tile to tile but also
from wavelength to wavelength (2 � β � 3), with similarities between fields attributable to components located at
the same distance. Thanks to comparisons with models of turbulence, an explanation of the determined slopes in
terms of the fractal geometry is also provided, and possible relations with the underlying physics are investigated.
In particular, an anti-correlation between ISM fractal dimension and star formation efficiency is found for the two
main distance components observed in these fields. A possible link between the fractal properties of the diffuse
emission and the resulting clump mass function is discussed.

Key words: infrared: ISM – ISM: clouds – ISM: structure – methods: data analysis – methods:
statistical – stars: formation
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1. INTRODUCTION

One of the most intriguing tasks in the observational study
of the interstellar medium (ISM) is to extract information
about the three-dimensional structure of the clouds, starting
from the two-dimensional maps of these objects, generally
taken at different wavelengths and with different techniques
and resolutions. Although a certain degree of self-similarity
of the ISM maps over a given range of spatial scales can be
visually perceived in many cases, there are numerous, more
solid, arguments suggesting that this may be the case, starting
from the work of Scalo (1990).

In this respect, the phenomenon mainly responsible for
self-similar morphologies is turbulence. This is a largely rec-
ognized fact in molecular clouds, being a typical, scale-free
phenomenon inducing fractality (see, e.g., Sreenivasan et al.
1989). Turbulence is indeed characterized by the lack of a spe-
cific length scale, then it can produce a fractal distribution of
matter in a molecular cloud over a wide range of scales. There-
fore, the determination of the starting and ending points of these

ranges is generally considered a tentative way of determining
an estimate of the turbulence injection and dissipation scales.
An extensive and detailed review of the observational evidences
of the presence of turbulence in molecular clouds and its role
in shaping their structure in a fractal sense can be found in
Vázquez-Semadeni (1999) and Schneider et al. (2011).

It is noteworthy that the ISM clouds belong to the same
category as stochastic fractals, whose structures do not appear
perfectly self similar, but rather self-affine: although a stochastie
set and a part of it do not have exactly the same appearance,
they have the same statistical properties and therefore it is still
possible to use a fractal description for them.

There are many observational grounds supporting the fractal
scenario. Observations of the low-J 12CO and 13CO emission
lines in several star-forming molecular cloud complexes (e.g.,
Falgarone & Phillips 1996; Schneider et al. 1998; Wilson et al.
1999) show that the measured line intensities, shapes, and ratios
cannot be produced in clouds of uniform gas temperature and
density. This suggests that these interstellar objects are far
from being homogeneous, instead being organized in small
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clumps with a filling factor lower than unity (Elmegreen 1997b).
Interestingly, such a structure is also able to further justify
observed characteristics of the investigated region, such as, for
example, the clump mass function (Shadmehri & Elmegreen
2011) and the stellar initial mass function (Elmegreen 2002).
These remain meaningful observables, though in the last several
years the understanding of the ISM has changed with the
recognition of filaments as intermediate structures (e.g., Rosner
& Bodo 1996; Wilson et al. 1999), which have definitely
been found ubiquitous in recent Herschel16 observations (e.g.,
Molinari et al. 2010a; Schisano et al. 2013). In any case, the
cloud description, based on a hierarchical decomposition in
recognizable substructures (Houlahan & Scalo 1992), is not
incompatible with the fractal approach. Indeed Stutzki et al.
(1998) have shown that these two points of view are consistent:
an ensemble of clumps with a given mass and size spectrum can
give rise to a fractal structure of the cloud.

Statistical descriptors, which can generally be related to
the fractal properties of a cloud, are powerful methods for
characterizing its structure. The techniques initially used to
estimate the fractal dimension of the interstellar clouds were
based on the isocontours of the images, as for example the
perimeter–ruler and the area–perimeter relations (see, e.g.,
Sánchez et al. 2005, and references therein). Subsequently,
statistical tools have been applied, namely descriptors based
on the value and the spatial distribution of the single pixels,
providing quantitative information on one or more aspects
of the investigated morphology (a relevant portion of this
information is summarized in Elmegreen & Scalo 2004). The
direct estimate of the power spectrum (e.g., Ingalls et al. 2004;
Miville-Deschênes et al. 2007; Martin et al. 2010; Gazol &
Kim 2010) can be used to infer the fractal structure of the ISM,
though to deal with real observational sets other algorithms have
been demonstrated to be more adequate (Stutzki et al. 1998).
Other statistical estimators are the structure function (Padoan
et al. 2002, 2003; Kritsuk & Norman 2004; Campeggio et al.
2005; Gustafsson et al. 2006; Kowal et al. 2007; Rowles &
Froebrich 2011), the Δ-variance (see below), the autocorrelation
function (Campeggio et al. 2005), and the adapted correlation
length (Cartwright et al. 2006), whereas further development of
these monofractal descriptors is represented by the multifractal
spectrum (Chappell & Scalo 2001; Vavrek et al. 2001). In
particular, the Δ-variance method was introduced by Stutzki
et al. (1998) and subsequently improved by Bensch et al. (2001)
and Ossenkopf et al. (2008) to analyze the drift behavior of
observed scalar functions such as the intensity distribution in
molecular clouds, real or synthesized. It has been applied not
only to maps of line emission (see also Bensch et al. 2001;
Ossenkopf et al. 2001, 2008; Schneider et al. 2011; Rowles
& Froebrich 2011) and dust extinction (Campeggio et al. 2004;
Schneider et al. 2011), or emission (Russeil et al. 2013), but also
to the recovered velocity field (Ossenkopf et al. 2006; Federrath
et al. 2010), or to three-dimensional density fields of turbulence
simulations (Federrath et al. 2009).

The aim of this paper is to contribute to both the enlargement
of the sample of regions whose structural properties have been
studied by means of fractal techniques, and the improvement
of characterizing the response of statistical tools in different
observing conditions. The Hi-GAL survey (Herschel Infrared
GALactic plane survey; Molinari et al. 2010b) represents an

16 Herschel is a European Space Agency (ESA) space observatory with
science instruments provided by the European-led Principal Investigator
consortia and with important participation from NASA.

extraordinary resource for carrying out statistical studies of
the ISM. A large coverage is obtained in five different bands,
allowing for a large variety of morphologies and physical
conditions to be investigated at unprecedented spatial resolution.
Moreover, these large Herschel maps offer the opportunity
to probe a wide range of spatial scales, since the number
of available pixels is very important for the reliability of the
statistical descriptors.

Galactic plane observations suffer from confusion due to the
superposition of different components along the line of sight,
especially in the first and fourth Galactic quadrants. To minimize
the problem of confusion, the first available observations of the
third Galactic quadrant (in the range 217.◦0 � � � 224.◦3) are
studied as a first test case, in which we are more confident that
the observed ISM emission corresponds to a morphology that is
quite coherent from the spatial point of view. These observations
have been presented by Elia et al. (2013) (hereafter Paper I), and
are briefly summarized in Section 2.

As a paradigm of synthetic cloud images used for testing
the statistical tools applied in this work, we consider the class
of so-called fractional Brownian motion images (hereinafter
fBm). They have already been used, for example, by Stutzki
et al. (1998), Bensch et al. (2001), Khalil et al. (2006), Miville-
Deschênes et al. (2007), and Shadmehri & Elmegreen (2011)
to test their algorithms. We briefly discuss the properties of this
class of images in Section 3.

In this paper, we adopt the Δ-variance algorithm to derive
a robust estimate of the power spectrum slope of the maps. In
Section 4, this method is briefly described, and its application to
synthetic maps is discussed to characterize the response of the
algorithm in case of the analyzed image’s departure from ideal
fBm-like behavior.

In Section 5, we present the results of our Δ-variance
analysis and discuss the obtained power spectrum slopes and
self-similarity ranges, searching for cross-correlations among
different maps and observational wavebands. Moreover, links
with turbulence and observables related to star formation (as
star formation efficiency and mass functions) are investigated.
Finally, the results are summarized in Section 6.

2. OBSERVATIONAL DATA SETS

The Herschel (Pilbratt et al. 2010) open time key project, Hi-
GAL (Molinari et al. 2010b), is a five-band photometric survey
which was initially aimed at studying stellar life cycles in the
inner Galaxy (−72◦ � � � 68◦) and subsequently extended to
the whole Galactic plane.

The first available Hi-GAL observations of the outer Galaxy,
presented in Paper I, consist of four 2.◦3 × 2.◦3 adjacent tiles
in the Galactic third quadrant. We will denote these with �217,
�220, �222, and �224, respectively, according to the Herschel
Data Archive nomenclature. These far-infrared maps of the outer
Galaxy represent an ideal case for studying the structure of the
ISM for two main reasons: the lower occurrence, in general,
of compact bright sources and of star forming regions, and the
lower degree of confusion along the line of sight.

The reduction procedure and the main characteristics of these
observations are described in Paper I. Therefore, here we resume
with only those features that are useful for the discussion in
this paper. The observed wavebands are centered around 70
and 160 μm (PACS; Poglitsch et al. 2010) and 250, 350, and
500 μm (SPIRE; Griffin et al. 2010), with nominal resolutions
of about 5′′, 12′′, 18′′, 25′′, and 36′′, respectively. The pixel
sizes of these maps are 3.′′2, 4.′′5, 6.′′0, 8.′′0, and 11.′′5, at 70, 160,
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Table 1
Sizes in Pixels of the Investigated Images

Tile 70 μm 160 μm 250 μm 350 μm 500 μma

�217 1971 1403 1051 789 549
�220 1951 1387 1041 781 545
�222 1961 1395 1047 785 547
�224 1977 1405 1055 791 551

Note. a The size of the column density maps is the same as that of the
corresponding 500 μm maps.

250, 350, and 500 μm, respectively. The fields were observed
by simultaneously acquiring PACS and SPIRE images in the
five aforementioned photometric bands. This observing mode
generally implies that the areas imaged by the two instruments
are not exactly the same; in this paper, in particular, we consider
only the common area of each tile, because we are interested in
comparing the statistics of the same regions of the sky seen at
different wavelengths.

The final images extracted at each wavelength for each tile are
shown in Figure 1, where the color coding used to identify the
different Herschel bands throughout the article is introduced.
Since for a given tile the same area of the sky is considered in
each band, the total number of pixels depends on the band; the
size of each image in pixels is reported in Table 1.

The column density maps of each tile are analyzed here as
well. They have been derived from a pixel-to-pixel modified
black body fit, as explained in more detail in Paper I. To this end,
first the maps were absolutely calibrated, correcting their zero
level by means of offset values derived from the comparison with
the Planck/IRAS data Bernard et al. (2010). Then, the 160, 250,
and 350 μm maps were reprojected onto the grid of the 500 μm
ones. The 70 μm maps were not involved in this calculation
because they can contain emission coming from the so-called
very small grains (Compiègne et al. 2010), not at thermal
equilibrium, and/or from warmer spectral components, such
as the proto-stellar content of the clumps, reflection nebulae,
etc. For these reasons, the column density maps we obtained are
more suitable to describe the cold component of dust in these
regions. At a first glance, they look very similar to the SPIRE
maps, and in particular to the 500 μm ones, having also the same
resolution: both of these aspects turn out to be important for the
spatial analysis reported in the following sections.

The four tiles show the presence of star forming activity, but
�217 and �224 contain the brightest and most extended regions,
mainly arranged in large filamentary shapes.

The knowledge of the kinematic distances of the clouds is
somehow fundamental for identifying really coherent nebular
structures, instead of superpositions of different distance com-
ponents, to which the statistical descriptors can be applied. The
distances for the Hi-GAL tiles analyzed here are obtained from
CO(1–0) line observations carried out at the NANTEN sub-
millimeter telescope (Mizuno & Fukui 2004), and presented in
detail in Paper I. In detail, gas emission in the �217 field is
dominated by a component located at a kinematic distance of
∼2.2 kpc (see Table 1 of Paper I, their component II). CO emis-
sion is fainter in the �220 tile, yet the component corresponding
to the 2.2 kpc distance is still predominant.

Looking at the second row in Figure 1, the �222 and �224 tiles
are found to be dominated by a bright component, corresponding
to an average distance of ∼1.1 kpc, i.e., the so-called component
I of Paper I. Two further distance components, III and IV, can
be considered negligible in the present analysis. The former,

located at an average distance of 3.3 kpc (therefore, likely in the
Perseus arm) coincides with a bright region in the southeastern
corner of the original �222, which lies outside the region
considered in this paper as a consequence of the tile cropping
described above. The latter is constituted only by a bright, but
small, portion of the �217 field.

3. POWER SPECTRUM AND FBM IMAGES

The statistical descriptors we use in this paper revolve around
the central concept of power spectrum P(k) of the observable
A(x), defined as the square modulus of its Fourier transform
Ã(k). The variable x is defined in an E-dimensional space, with
E = 2 in the case of image analysis. A convenient approach is to
study the shell-averaged power spectrumP(k), where k = ‖k‖2.
Because a power law is a distinctive experimental signature
seen in a large variety of complex systems, frequently a search
for a power-law behavior in the spectrum is carried out. An
emblematic case is that of the Kolmogorov’s power spectrum
of turbulence (Kolmogorov 1941), calculated for the velocity
field of incompressible fluids; a dependence of P(k) ∝ kp is
expected, with p = −11/3 in three dimensions, p = −8/3 in
two, and p = −5/3 in one, respectively. Different models, such
as the classic Burgers’ turbulence (e.g., Bec & Khanin 2007),
still show similar power spectrums, though with different slopes
(p = 2, Biskamp 2003). The presence of such a power-law
behavior (in the full range of values of the k-wave number, or
over a limited part of it) can be interpreted as an indication of
turbulence and can suggest the characteristic scales at which
both energy injection and dissipation take place.

The power spectra (or portions of them) of the ISM maps often
exhibit a power-law behavior. The link with turbulence is quite
natural: it is commonly accepted that a turbulent velocity field
within the ISM can also shape the density field (cf. Boldyrev
2002; Padoan et al. 2003; Rowles & Froebrich 2011). However,
it requires some care to derive the slope of the power spectrum.
Indeed, the Fourier transform of a non-infinite mapped signal
inevitably introduces unwanted frequencies due to the spatial
sampling and limited size of the image (since the Fourier
transform implicitly assumes wrap-around periodicity) leading
to aliasing (Stutzki et al. 1998; Bensch et al. 2001). In the past,
this has lead to the use of statistical tools that are more robust
than the direct determination of a power spectrum. The improved
performance of the new generation of observing instruments has
allowed the production of maps with large numbers of pixels
(as in the case of the Hi-GAL tiles), which might mitigate the
aforementioned issues. Nevertheless, in this paper, we prefer
to keep exploiting one of these indirect methods, namely the
Δ-variance technique, briefly discussed in Section 4. In this
way, we can both make possible a direct comparison with the
literature and exploit further information that this technique can
provide about the structure of the maps (see Section 4).

3.1. Fractional Brownian Motion Images

There is a category of stochastic fractals that can be helpful to
test the statistical algorithms for structure analysis, since their
Fourier transform has specific analytic properties which make
them easy to be generated: the fractional Brownian motion
(Peitgen & Saupe 1988). In the two-dimensional case, these
show a good similarity to molecular cloud maps (Stutzki et al.
1998; Bensch et al. 2001; Miville-Deschênes et al. 2003; see also
Figure 2). A detailed description of the fBm image properties is
provided in Stutzki et al. (1998); here, we summarize only the
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Figure 1. Fields investigated in this paper, divided by observed band. The instrument/wavelength combination is specified in each row (the column density maps are
also shown in the last row), adopting a color convention which is used throughout the rest of the paper (blue: 70 μm, cyan: 160 μm, green: 250 μm, orange: 350 μm,
red: 500 μm, magenta: column density). The color scales are linear, and the top value (corresponding to the white level) is chosen to allow a satisfactory visualization
of the lower emission levels; the units are MJy sr−1 for the PACS and SPIRE maps, and 1020 cm−2 for the column density ones. The Galactic coordinate grid is
displayed in the 70 μm case to show the displacement in the sky of the four considered tiles. The CO(1–0) contour levels (Paper I) are overplotted on the map at
160 μm. They start from 5 K km s−1 and are in steps of 15 K km s−1. Components I, II, III, and IV are represented with purple, orange, yellow, and cyan contours,
respectively. The area surveyed in CO(1–0) is delimited by a gray dashed line.

(A color version of this figure is available in the online journal.)
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(a)  β = 2.0 (b)  β = 2.4 (c)  β = 2.8

(d)  β = 3.2 (e)  β = 3.6 (f)  β = 4.0

Figure 2. Synthetically generated fBm 300×300 pixels images, generated with
increasing power spectrum slope, β, and starting from the same random phase
distribution. Map units are arbitrary.

(A color version of this figure is available in the online journal.)

most relevant ones, which will prove to be useful in the analogy
we make with ISM maps in the following sections. First, they
are characterized by having a power-law power spectrum with
exponent β = E+2H , where E is the Euclidean dimension of the
considered space (for cloud maps, E = 2) and H is the so-called
Hurst exponent, ranging from zero to one. Therefore, β can take
values from two to four. Second, the phases of their Fourier
transforms are random. Based on these two constraints, it is
quite easy to obtain fBm images once β is assigned and a random
phase distribution is generated.17 In Figure 2, six 300×300 pixel
fBm images are shown. They have the same phase distribution
and differ only by β, which ranges from 2.0 to 4.0 in steps
of 0.4. It can be seen that the phase distribution determines
the overall appearance of the “cloud,” but as β increases the
structure becomes smoother and smoother due to the transfer of
power from high to low spatial frequencies. We recall that the
case β = 0 would correspond to white noise.

In terms of the fractal description, it has been shown that the
fractal dimension of an E-dimensional fBm image is given by:

D = E + 1 − H, (1)

so that the direct relation between D and β is:

D = 3E + 2 − β

2
. (2)

An important property of the fBm images is that the
power spectrum of the (E − 1)-dimensional projection on an
E-dimensional fBm set is again a power law with the same
spectral index (Stutzki et al. 1998). This result turns out to be
important for establishing a link between the observed two-
dimensional column density and the real three-dimensional
cloud density field for clouds that can be considered isotropic, as
suggested through theoretical arguments (Brunt et al. 2010) and
empirical evidences (Federrath et al. 2009; Gazol & Kim 2010).

Thus, invoking Equation (2), it is found that

DE−1 = DE − 3

2
, (3)

i.e., the fractal dimension of an fBm object changes under
projection by 1.5, not by 1 as one could erroneously expect.

17 The fBm images generated in such a way are periodic, i.e., it is possible to
place the image and its exact copy side by side and to connect with continuity
the image to itself. Clearly, this cannot be the case of real ISM maps.

4. Δ-VARIANCE ANALYSIS

The Δ-variance method is a generalization of the Allan
variance (Allan 1966), elaborated and characterized in detail
by Stutzki et al. (1998). For a two-dimensional observable field
A(x, y), the Δ-variance at the scale L is defined as the variance
of the convolution of A with a filter function,

⊙
L:

σ 2
Δ (L) = 1

2π

〈(
A ∗

⊙
L

)2〉
x,y

, (4)

where

⊙
L

(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

π (L/2)2

(
r � L

2

)

− 1

8π (L/2)2

(
L

2
< r � 3L

2

)

0

(
r >

3L

2

)
(5)

is the down-up-down cylinder (or French hat) function and
r =

√
x2 + y2. The two non-zero terms of the above definition

represent the core and the annulus component of the filter,
respectively.

Ossenkopf et al. (2008) recommended as a possible alterna-
tive to the French hat function to obtain a more reliable estimate
of the spectral index, β, is to use the smoother Mexican hat,
defined as

⊙
L

(r) = 4

πL2
e

r2

(L/2)2 − 4

πL2(v2 − 1)

[
e

r2

(vL/2)2 − e
r2

(L/2)2
]
, (6)

where the two main terms in the right side of the equation repre-
sent the core and the annulus components, respectively, and v is
the diameter ratio between them. To speed up calculations, the
same authors suggest to perform the operation in Equation (4)
as a multiplication in the Fourier domain,

σ 2
Δ (L) = 1

2π

∫ ∫
P

∣∣∣∣
⊙̃

L

∣∣∣∣
2

dkxdky, (7)

where P is the power spectrum of A, and
⊙̃

L is the Fourier
transform of the filter function.

The fundamental relation that relates the slopes of Δ-variance
and of the power spectrum (β) was shown by Stutzki et al.
(1998):

σ 2
Δ (L) ∝ Lβ−2. (8)

Given the expression above, one can derive the power spectrum
slope by performing a linear fit over the range of spatial scales for
which the logarithm of Δ-variance manifests a linear behavior. In
this work, we adopted this procedure following the prescriptions
of Ossenkopf et al. (2008),18 i.e., using a Mexican Hat filter with
v = 1.5. Furthermore, we do not adopt any strategy based
on assigning different weights to the pixels involved in the
Δ-variance calculation, which is recommended by Ossenkopf
et al. (2008) in case of maps characterized by a variable
data reliability. The portions of the Hi-GAL maps we chose,
indeed, being far from the tile boundaries, are characterized by
quite uniform coverage (see also Traficante et al. 2011) and,
consequently, by a stable rms noise.

18 The IDL package for calculating the Δ-variance can be found at
http://hera.ph1.uni-koeln.de/∼ossk/Myself/deltavariance.html.
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4.1. The Contribution of Compact Sources

From Equation (8) the Δ-variance behavior of an fBm image
is expected to be a perfect power law. Although the ISM maps
generally exhibit an fBm-like behavior (see Section 3.1), it is
important to identify and characterize all of the signatures in the
power spectrum ascribable to possible departures from the ideal
fBm case, first of all, the presence of bright compact sources.
For this purpose, we performed a test by simulating a PACS
160 μm map of a portion of the Galactic plane, using some
typical parameters of this band, such as the pixel size of 4.′′5.
The steps of the recipe can also be followed in Figure 3, together
with the effects they achieve on the corresponding Δ-variance
curve.

1. A 2700 × 2700 pixel fBm background has been generated
with a “typical” power spectrum slope β = 2.5 (see, e.g.,
Schneider et al. 2011). Therefore, to avoid dealing with a
periodic image (see Section 3.1), this has been truncated,
extracting a sub-image of 1800 × 1800 pixels.

2. To simulate the presence of very bright small regions,
another 2700 × 2700 pixel fBm set has been generated
with a significantly higher power spectrum slope (β = 3.4)
and a different phase distribution. The resulting image has
been exponentiated in order to enhance the high-signal
regions. Again, a sub-image of 1800 × 1800 pixels has
been extracted, making sure that the extracted image still
contains the maximum of the original image. Finally, this
has been added to the image obtained in (1), resulting in
regions of enhanced brightness.

3. To reproduce the luminosity decrease off the Galactic plane,
a modulation through a Gaussian profile has been applied.
To make this profile more realistic, both the FWHM of the
Gaussian and position of the peak slowly float as a function
of the longitude, following a Gaussian distribution and a
long-period sinusoid, respectively. A relevant decrease in
emission moving away from the plane is more pronounced
in the Hi-GAL observations of the inner Galaxy with respect
to those considered in this work. However, the goal of
this test is to qualitatively identify the effect on the Δ-
variance curve of peculiar structures, thus it is instrumental
to exacerbate these contributions.

4. A population of 500 compact sources has been spread
across the map, generating random two-dimensional Gaus-
sians whose size and peak flux distributions follow those
found for the Hi-GAL field � = 30◦ (Elia et al. 2010). The
probability of displacing a source in a given position of
the map has been weighted with the intensity of the image
in that position, to obtain a more realistic concentration
of compact sources in regions with bright diffuse emis-
sion. Before co-adding the sources, the background image
has been scaled by a given amount, such that its dynami-
cal range gets similar to that of the � = 30◦ background
at 160 μm. Finally, the image has been convolved with the
PACS 160 μm beam and a low-level white noise is summed
over, using an additional fBm image with β = 0.

In the right panels of Figure 3, the Δ-variance of the simulated
images displayed on the left is plotted. All the images have
been normalized between zero and one, to prevent overflows
in calculation. As a consequences, the units of Δ-variance are
arbitrary. We note that the Δ-variance slope is not affected by this
rescaling. In step (1), the extracted sub-image curve (black line)
shows a slightly steeper slope than that of the original set, plotted
for reference (green line). While the latter line looks as expected,

the former exhibits a linear behavior only over a limited range of
scales (the gray area). The flattening of the curve at L � 2000′′
is due to the truncation of the original fBm set. Moving to
step (2), a slope similar to the original one is still found on
the limited range of scales 400′′ � L � 1300′′ (darker gray
area β = 2.45), while the steeper slope at L � 400′′ is caused
by the co-addition of the bright spots in the image. A further
steepening is produced in step (3) by modulating emission with
a low spatial frequency profile. This is particularly evident at
the largest scales, where it compensates the flattening of the
Δ-variance seen in the previous steps. Finally, the insertion of
compact sources in step (4) is responsible for the appearance
of a bump for 10′′ 	 L 	 100′′, which is the typical size
range of the injected sources. This clearly corresponds, in light
of the correspondence between Δ-variance and power spectrum,
to the Pcirrus(k) component of the power spectrum discussed by
Miville-Deschênes et al. (2007) and Martin et al. (2010). Here,
the diffuse emission behavior can be recovered only for a limited
range of scales, since at the largest scales the effect is obviously
still present due to the Galactic plane shape. At the smallest
scales, on the other hand, a flattening of the Δ-variance curve is
seen due to white noise (cf. Bensch et al. 2001). In any case, no
physical information can be extracted at scales smaller than the
instrumental beam.

Notice, however, that the significance of the effects described
in this section depends on the analyzed map. For example,
for the third Galactic quadrant maps we don’t expect a strong
influence on the Galactic plane shape. Furthermore, the bump
in Δ-variance due to compact sources is likely not as sharp as
that seen in Figure 3, because in the real maps the transition
between a compact source and the surrounding cirrus emission
is smoother than in our simulations. Larger clumps, H ii regions,
and filaments present in the real maps are additional intermediate
structures between the two scale regimes of compact sources
and the diffuse emission, contributing to the enlargement of the
bump toward larger spatial scales and to a smoother connection
with the linear portion of the Δ-variance. The importance of the
filaments in the scenario of star formation and their ubiquity
in the ISM have been highlighted by Herschel observations
(e.g., Molinari et al. 2010a; Arzoumanian et al. 2011; Russeil
et al. 2013; Schisano et al. 2013) and they are certainly mainly
responsible for the departure of the images from fbm-like
behavior at intermediate scales between compact sources and
cirrus.

5. Δ-VARIANCE OF THE THIRD GALACTIC
QUADRANT Hi-GAL FIELDS

After normalizing, as described in Section 4.1, the Hi-GAL
maps shown in Figure 1, the Δ-variance versus spatial lag curves
have been computed. They are plotted in Figure 4 using the
color-band coding introduced in Figure 1.

5.1. General Results

Some general considerations can be drawn from the global
trends exhibited by these curves. The lack of a sufficient level of
diffuse emission in the 70 μm maps influences the correspond-
ing Δ-variance spectrum, which shows peculiar trends compared
with other wavelengths. Therefore, the curves at this wavelength
are plotted only for completeness and the corresponding slopes
are not shown. Only as a general remark, we notice that in the
tiles �217 and �224, namely those with a significant emission
of compact emission at 70 μm, a bump is present, peaking at
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Figure 3. Simulation of a Hi-GAL image in four main steps (left panels) and corresponding Δ-variance plots (right panels). Step (1): an 1800 × 1800 pixel fBm image
is generated as a background. Step (2): the brightness of a few limited regions is enhanced. Step (3): the characteristic shape of the Galactic plane is introduced through
a Gaussian profile. Step (4): 500 Gaussian compact sources are spread across the map and a low-level white noise is finally added. The Δ-variance curves are plotted
in the right panels. The x-axis variable is the decimal logarithm of the spatial lag, L, (expressed in arcseconds) and the range is the same for all panels. The range on
the y-axis is different for each panel but its width has been kept the same in all panels to allow a visual comparison of the slopes. The Δ-variance is represented as a
black solid line, while the linear fit over the inertial range (i.e., the range where the curve has a power-law behavior, here highlighted with a gray area) is plotted as a
blue dashed line. In the top right panel, the Δ-variance of the larger original fBm set is also plotted as a green solid line. In the same panel, the error bars associated
with the Δ-variance values are shown by way of example.

(A color version of this figure is available in the online journal.)

about 40′′ and 25′′, respectively. At larger spatial scales, in all
cases, the 70 μm curves appear as slopes smaller than those
of the larger wavelengths and are even negative in three cases
out of four. This behavior is expected in the presence of low
signal-to-noise ratio in the maps, keeping in mind Equation (8)

and the white noise (β = 0) borderline case for the power spec-
trum slope.

For the remaining wavebands and for the column density
maps, only one common linear range has been identified for each
tile. Note that scales shorter than 100′′ have not been considered
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Figure 4. Δ-variance curves of the maps shown in Figure 1, using the same tile naming and band-color encoding. Also, in this case, we use the same x-axis range in all
panels, and the same range width for the y-axis, to allow a direct comparison of the slopes. The inertial range is highlighted as a gray area. The corresponding linear
slopes are transformed in power spectrum slopes through Equation (8) and reported on the bottom of each panel (except for 70 μm). Finally, for reference, the spatial
scales corresponding to the nominal beams at each band are plotted as dotted lines in the top-left panel; scales below them are meaningless.

(A color version of this figure is available in the online journal.)

because of the possible contamination by compact sources. The
curvature of each line, defined as c = (σ 2

Δ )′′/{1+[(σ 2
Δ )′]2}3/2 has

been estimated by allowing only ranges where reasonably low
values of |c| are found.19 This procedure keeps the extremes of
the range far from possible peaks of the curve (e.g., in �222),
where the most relevant departure from linearity is expected.

The estimated fitting ranges and the corresponding slopes
of the power spectrum (obtained from the Δ-variance slopes
through Equation (8)) are reported in Figure 4 and summarized
in Table 2, together with the corresponding fractal dimensions
of the maps (derived through Equation (2)).

As a general remark on some evident trends found in all
of the four tiles, we notice that, from the qualitative point
of view, for each tile, the three SPIRE bands have similar
spectral behaviors, whereas the general shape of the PACS
160 μm curves appear relatively different. More importantly,
a systematic increase of the slope with the wavelength is found
from 160 to 500 μm. This suggests not only that the emission
morphology changes when observed at different wavelengths,
but that its statistical properties are found to be different also.
In particular, at 160 μm the contribution of warmer very small

19 In reality, only few Δ-variance curves exhibiting no linear behavior in the
common inertial range, e.g., the one of 160 μm of �224, have not been
considered in the evaluation of the linear range. However, despite these
exceptions, the constraint we apply on the linear range appears more robust
than the qualitative criteria adopted in the literature.

grains can still be relevant (Compiègne et al. 2010) and seems
to be responsible for a more uniform distribution of the power
of the image through the different spatial scales, resulting in a
shallower β. In other words, the warmer dust turns out to be more
diffuse and spread around than the cold dust, which is expected
to be preferentially concentrated in denser environments like
filaments (e.g., Padoan et al. 2006; Campeggio et al. 2007),
producing a global smoothing of the observed emission features.

This effect can represent a possible explanation for the
systematic discrepancy, found by Schneider et al. (2011),
between the Δ-variance slope of AV and 13CO maps (shallower
and steeper, respectively) of the same areas of the sky. These
two tracers most likely do not describe the same components
of the ISM in the same manner (e.g., Goodman et al. 2009).
Moreover, the ISM is optically thinner at the SPIRE wavelengths
than at 160 μm, so at long wavelengths one expects a more
enhanced contrast between emission from high-density and
low-density regions, resulting in a possible steepening of the
power spectrum (and, equivalently, of the Δ-variance). However
this reasoning could be too simplistic, because moving toward
SPIRE wavelengths, a number of cold, small-scale filaments can
manifest themselves, thus contributing to the power spectrum
and counter-balancing the effect described above.

Another consideration concerns the Δ-variance of the column
density maps: although the maps look quite similar to the SPIRE
ones, the power spectrum behavior is generally found to be
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Table 2
Power Spectrum Exponent and Fractal Dimension of the Investigated Hi-GAL Maps

Field Distance Fit Range β D

(kpc) (pc) 160 μm 250 μm 350 μm 500 μm Col. Dens. 160 μm 250 μm 350 μm 500 μm Col. Dens.

�217 2.2 1.3–4.2 1.02 1.45 1.65 1.90 2.15 3.49 3.27 3.17 3.05 2.93
�220 2.2 1.3–5.3 2.12 2.21 2.25 2.35 2.35 2.94 2.89 2.87 2.83 2.83
�222 1.1 0.5–3.8 2.65 2.72 2.74 2.79 2.65 2.67 2.64 2.63 2.61 2.68
�224 1.1 0.5–1.7 2.17 2.27 2.41 2.61 2.77 2.91 2.86 2.79 2.70 2.61

slightly different. Nonetheless, all the slopes we discovered lie in
the typical range of values found for clouds studied in previous
works (Bensch et al. 2001; Schneider et al. 2011; Rowles &
Froebrich 2011; Russeil et al. 2013).

5.2. Results of Individual Maps

Going into detail of single tiles, we start from the westernmost
field, �217, associated with distance component I (see Figure 1).
As in the case of �224 discussed in the following, the abundance
of compact sources and filaments in this field produces a visible
bump at L � 100′′ (see Section 4.1) at all wavelengths,
whose peak and upper endpoint shift toward larger scales
with increasing wavelength. This is generally followed by a
descending trend which stops around 1000′′, corresponding to a
physical scale of ∼11 pc at a distance of 2.2 kpc. The presence of
the large filament associable with Sh 2-287 (Sharpless 1959) in
the northern part of the map is probably responsible for this slope
change and for the departure of the maps from self-similarity at
smaller scales.

The �220 tile exhibits a more extended range of linearity. In
fact, in the data set we consider, this tile has the poorest of bright
features, therefore, the cirrus component can be thoroughly
probed. The inertial range (1.3–5.3 pc) partially overlaps those
found by Schneider et al. (2011) for some low-mass star-
forming clouds. A good correspondence is also found with the
Herschel-based analysis of the NGC 6334 star-forming region
(d = 1750 pc) of Russeil et al. (2013), where three out of four
separate sub-regions exhibit inertial ranges similar to that of
�220. At longer scales, around 15 pc, the Δ-variance curves
flatten, which does not seem to correspond to any of the visible
structures in the maps, such as filaments, ridges, or bubbles (and
corresponding cavities). In this case it is likely that the upper
limit of the self-similarity range is really correlated with the
injection scale of turbulence.

In tile �222 the steepest β slopes are found, over an inertial
range of 0.5–2.7 pc. As in the case of �220, the small number
of bright features in the maps translates into a wide range of
linearity of the Δ-variance and into a weak compact source
bump. A peak is present at ∼1000′′ (5.4 pc at d = 1.1 kpc),
corresponding approximately to one-sixth of the map size.
Although we do not have sufficient information to claim that
this feature is associated with the bubble located on the east
side of the tile (see Figure 1), we believe that this structure
is responsible for the high values of β we find: indeed it
generates a certain degree of segregation between relatively
empty and bright regions (compare, for example, panels b and
d of Figure 2), hence a transfer of power toward large scales.

Finally, for �224, similarly to �217, we find that the contribu-
tion of compact sources and filaments introduces features in the
Δ-variance curves that make it difficult to identify a possible in-
ertial range. The one we find between 0.5 and 1.7 pc (neglecting
the 160 μm curve) is compatible with that of �222. The slopes

are generally steeper than those of the component II tiles, but
shallower than those of �222.

This comparison suggests that the region of the plane covered
by the eastern tiles (�222 and �224), which is quite coherent from
the kinematical point of view being associated with distance
component I, show some common global statistical properties,
different from those of the western tiles (�217 and �220,
component II), generally characterized by shallower slopes.
Furthermore, within the two distance components, the tiles
containing bright features (�217 and �224, respectively) show
slopes shallower than those of the corresponding low-emission
tiles (�220 and �222, respectively).

Anyway, the variety of power-spectrum slopes we find in dif-
ferent tiles reinforces the scenario of the non-universality of
the ISM fractal properties. From the morphological point
of view, this corresponds to a different distribution of the
power of the image on a spatial frequency range. From the point
of view of the underlying physics, different power spectrum
slopes are related to different conditions of the compressible
turbulence, which is widely considered the most realistic situ-
ation in the ISM, especially in the presence of star formation
(Henriksen & Turner 1984; Padoan & Nordlund 2002). Unlike
the “rigid” results of the Kolmogorov (1941) incompressible
turbulence (see Section 3), the compressible one is able to pro-
duce, in the ISM, a variety of morphologies and hence of power
spectrum profiles (Federrath et al. 2009).

5.3. The Fractal Dimension of the Images

The fractal dimension, D, is another important observable,
useful to characterize the ISM morphology. As mentioned in
Section 1, several computational approaches have been adopted
to derive it. Here, we use Equation (2), assuming that the
analyzed maps have an fBm-like behavior in the recognized
inertial ranges. This makes the descriptions based on β and
D completely equivalent, however, speaking in terms of the
fractal dimension allows us to make further comparisons with
observational and theoretical results present in the literature.
An overview of possible alternative methods for calculating the
fractal dimension is provided in the Appendix.

The linear relation between the power spectrum slope, β,
and the fractal dimension, D, contained in Equation (2) clearly
expresses the intuitive concept that a “smoother” texture (high
β, see Figure 2) must correspond to a lower degree of fractality
(i.e., low D). The factor, 1

2 , appearing in the equation can split the
perception of the variation of D in half, which is in fact expected
to vary only between two and three. Although in the literature
a variation of 0.1–0.2 between two values of D is presented
as negligible, it actually corresponds to significant structural
differences of the maps. In this respect, the fractal dimensions
reported in Table 2 reassert (1) the decrease of D at increasing
observed wavelength (already discussed as an increase of beta
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Figure 5. Grayscale map of the Mach number for distance components I and II (identified with purple and orange contours, respectively) of Paper I, calculated across
the entire NANTEN available data cube as described in the text. Contours range from 5 to 30 in steps of 5. The gray dotted squares enclose the four areas investigated
in this paper.

(A color version of this figure is available in the online journal.)

in Section 5.1) and (2) the significant differences between the
structure observed in the western and eastern tiles.

In the three tiles showing fractal behavior (�220, �222, and
�224), all the values we derived range from D = 2.61 (500 μm
of �222 column density of �224) to D = 2.94 (160 μm of
�220), and most of them are compatible with the typical range
of variability found through statistical techniques (Rowles &
Froebrich 2011; Schneider et al. 2011, and references therein),
but also mostly with the 2.6 � D � 2.8 found by Sánchez et al.
(2007, 2009) through the perimeter–area relation.

Instead, the values we obtained are significantly larger than
the average value found on IRAS 100 μm maps by Miville-
Deschênes et al. (2007; β = 2.9, which is D = 2.55 in the fBm
approximation), in particular those found at 160 μm, which is
the closest band to the IRAS 100 μm one.

In any case, the values we find are far away from the
first estimates of the fractal dimension of interstellar clouds
(D = 2.3; Falgarone et al. 1991; Elmegreen & Falgarone 1996;
Elmegreen 1997a), which initially described a quite constant and
universal behavior of the ISM structure, and were found also to
be in good agreement with the predictions of the Kolmogorov
incompressible turbulence (β = 3.6 for the density field, then
D = 2.2; Falgarone et al. 1994). Instead, the values found here,
as well as the others obtained through the Δ-variance (Schneider
et al. 2011, and references therein), are more compatible with
the power spectra slopes of compressible turbulence, (e.g.,
Federrath et al. 2009), and in particular for the case of solenoidal
driving of turbulence (β = 2.89, D = 2.55).

We can also compare with the theoretical predictions of Gazol
& Kim (2010) on the power spectrum of both three-dimensional
and column density in turbulent thermally bistable flows.20 Their
slope (calculated between 7 and 25 pc, i.e., a range of scales
larger than ours) gets shallower as the Mach number increases:
from β = 2.64 at M = 0.2 to β = 2.11 at M = 4.0 (a similar
trend can also be clearly found in Kritsuk et al. 2006; Kowal
et al. 2007). Although these simulations essentially reproduce
the Hi emission and despite the different investigated spatial
ranges, the behavior we find suggests that the two eastern fields
are characterized by smaller Mach numbers. In turn, the star
formation efficiency of a cloud is recognized to inversely depend
on the Mach number, whose contribution, however, can be found

20 A gas in which temperatures above and below a given instability range can
coexist in thermal pressure equilibrium is called bistable (see Gazol et al. 2005,
and references therein). The atomic ISM is generally believed to be bistable.

to be concomitant and then surpassed by that of other physical
factors (e.g., Rosas-Guevara et al. 2010).

To investigate this aspect in our data, we derived the three-
dimensional turbulent Mach numbers from the NANTEN data
cube for the velocity components I and II, as the ratio between
the local values of the deconvolved CO(1–0) line width 〈σCO〉
and the sound speed cs:

M =
√

3
〈σCO〉

cs

. (9)

Here, cs = (kT /μ)1/2 = 0.188(T/10 K)1/2 km s−1, where T
is taken from the dust temperature maps obtained in Paper I
simultaneously with the column density maps. The amount
of CO spectra suitable for this analysis is limited by few
constraints. First, only lines with a reasonable signal-to-noise
ratio are considered (see details in Paper I); second, the line
full width at half maximum must be larger than the spectral
resolution element (Δv = 1 km s−1) to allow deconvolution;
third, the location of CO spectra must lie within one of the four
fields we investigate in this paper. These are shown in Figure 5
(left panel), overlaid to the distribution of the Mach number
across the entire NANTEN data set.

We note that we can derive meaningful statistical information
only for the brightest regions, while the observations are not
sensitive enough to trace the cirrus component, which is the one
showing the self-similar behavior that justifies such a test. For
this reason, we stress that observations with better sensitivity
and spectral resolution are required for confirming this result.

We recall that in Paper I the distance components I and II
have been found to differ in star formation efficiency by a factor
of two (0.008 against 0.004, respectively). Interestingly, a direct
correspondence between a larger fractal dimension and a higher
star formation efficiency is found in this case. Unfortunately, the
inconclusive argument of the Mach number cannot support the
aforementioned theoretical picture, so that further checks are
required and will be feasible when star formation efficiencies
will be available for other portions of Hi-GAL.

From this discussion, it clearly emerges that the estimation
of the fractal dimension of far-infrared dust emission from
interstellar clouds (or portions of them) constitutes a further
constraint to be put on theoretical models of cloud structure.
In this sense, the vast amount of data provided by the multi-
wavelength Hi-GAL survey represents a real minefield which
can be searched for such observables.
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5.4. Cloud Structure and Clump Mass Function

The quantitative indications obtained in the previous sections
allow us to probe a relation derived by Stutzki et al. (1998),
linking the power spectrum of the ISM to the mass function
of the clumps (CMF hereinafter) which originate from such
a structure. Indeed, as mentioned in Section 1, these authors
showed that the fractal description of the ISM and the approach
based on a hierarchical decomposition (e.g., Houlahan & Scalo
1992) are compatible. Stutzki et al. (1998) demonstrated that, for
an fBm-like cloud characterized by a power-law power spectrum
with slope β, assuming a clump mass spectrum in the cloud
dN/dM ∝ M−α (in its high-mass end) and a relation between
the clump mass and size as M ∝ rγ ,

β = (3 − α)γ. (10)

This theoretical relation contains the intuitive concept that,
once γ is fixed (where the cases γ = 3 and γ = 2 indicate
clumps with constant volume and column density, respectively),
a steeper power spectrum corresponds to a power transfer toward
larger scales, hence to the presence of bigger clumps, which
makes the CMF shallower.

Thus far, Equation (10) has been tested on very few data
sets due to the lack of observational constraints, namely the
simultaneous knowledge of the power spectrum and the CMF
of a cloud. Stutzki et al. (1998) combined the “average” slopes
β and α found for a sample of molecular clouds (β = 2.8
and α = 1.6–1.8, respectively), deriving γ = 2–2.33. More
recently, Shadmehri & Elmegreen (2011) explored this relation,
analyzing three-dimensional fBm synthetic clouds, starting
from the assumption that molecular clouds have on average
β = 2.8 (different, however, from the shallower slopes we find
in �217 and �220).

Here, it is possible to check this relation using the estimates
of β for the investigated fields and exploiting the clump masses
derived in Paper I to build a statistically significant CMF by
selecting the sources as follows. First, it makes sense to consider
only pre-stellar cores, namely starless sources gravitationally
bound (i.e., those exceeding their corresponding Bonnor–Ebert
mass, see, e.g., Giannini et al. 2012). Second, the considered
source samples should be coherent from the spatial point of view,
namely all the sources should belong to a physically connected
region, following the steps described in Paper I for 398 compact
sources associated with the closest velocity component (I),
which is the component dominating the �222 and �224 fields.
Here, we also consider component II for comparison, identifying
131 sources suitable for this analysis. The amounts of sources
associated with components III and IV, on the other hand, are
not statistically relevant to extend the analysis. The slope of
the CMF for component I has already been estimated in the
Paper I as αI = 2.2 ± 0.1, using an algorithm independent of
the histogram binning (Olmi et al. 2013, and references therein)
which also allows us to determine the lower limit of the validity
range of the power law. Similarly, for component II, here we
obtain αII = 1.9 ± 0.1 (Figure 6, panel a).

For the power spectrum slopes, we decided to use the
values obtained for the column density maps of the two tiles
characterized by low contamination of compact sources, namely
�220 for component I and �222 for component II, respectively.
Thus, we assume βI = 2.65 and βII = 2.35 for components I
and II, with error bars of 0.1, and we get γI = 3.4 ± 0.2 and
γII = 2.2 ± 0.1, respectively.

A comparison between these results and the observational
mass versus radius relation can be performed using the same
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Figure 6. Panel (a): CMFs (solid histograms) of the pre-stellar clumps associated
with the velocity components I (purple) and II (orange), respectively. Being the
CMF in logarithmic form, the slope of the linear fit (dotted lines) corresponds
to α − 1, with α defined as in the text. Panel (b): mass vs. radius plot for the
sources associated with components I and II (same colors as in panel a). The
dotted lines represent the linear trends expected from Equation (10) (not to be
confused with a fit to data). The gray dashed vertical line expresses the ideal
transition between cores and clumps, according to the classification of Bergin
& Tafalla (2007).

(A color version of this figure is available in the online journal.)

sources identified for building the CMFs of components I and
II (Figure 6(b)). However, the distributions are affected by a
significant dispersion and lack of a clear power-law trend, as
noted in previous analyses of this kind (e.g., André et al. 2010;
Giannini et al. 2012), so no clear-cut conclusion can be reached.
Indeed, the lack of a definite scaling relation is indicative of a
departure from pure self-similarity. Moreover, despite the fact
that such clumps have been selected in order to build samples
as homogeneous as possible, residual differences of physical
and evolutionary conditions can be encountered. This might
increase the scattering in the mass versus size plot, making it
rather difficult to confirm the theoretically expected value for γ .

It is interesting, instead, to discuss the two very different val-
ues of γ that we find, especially in the context of the applicability
of Equation (10) to various cases. The large discrepancy between
these values depends on the different average β found for the two
components, but mostly on the different values of α appearing at
the denominator of Equation (10). The discrepancy between the
CMF slopes of the two components can be justified, in turn, with
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the relatively different intrinsic nature of the observed sources.
Paper I discussed the fact that the detected compact sources,
characterized by the same range of angular sizes (from one to
few instrumental point spread functions), correspond to a vari-
ety of physical sizes depending on the source distance. In this
case the typical factor, ∼2, between distances of component I
and II sources is responsible of the clear segregation in size be-
tween the two populations, visible in Figure 6, panel b, such that
the former are clumps, while the latter are a mixture of clumps
and cores, according to the typical definition of these categories
(e.g., Bergin & Tafalla 2007). It is widely acknowledged that the
mass function slope of the cores is similar to that of the stellar
initial mass function (e.g., André et al. 2010) and steeper than
that of larger clumps (e.g., α = 1.6–1.8; Kramer et al. 1998), as a
consequence of the underlying fragmentation process. Samples
characterized by contamination generally present intermediate
slopes (e.g., Giannini et al. 2012). In this scenario, the CMF
slope of the component II looks more similar to the case of
the Polaris flare CO clumps (α = 1.8; Heithausen et al. 1998)
used by Stutzki et al. (1998) to derive a value of γ = 2.3. The
component I source sample, on the contrary, consists of sources
intrinsically smaller (as better resolved), closer to spatial scales
where gravity dominates the morphology of the ISM, definitely
stopping its scale-free behavior. As a consequence, in this case
the applicability of Equation (10) turns out to be dubious.

These indications must be confirmed in the future by extend-
ing this kind of analysis to a larger variety of cases, offered
by further Hi-GAL fields characterized by favorable observing
conditions, typically found in the outer Galaxy.

6. SUMMARY

We have analyzed the first four fields of the outer Galaxy
(217◦ � � � 225◦, −2◦ � b � 0◦) observed by Herschel as
part of the Hi-GAL survey, to give a quantitative description of
the structure of the far infrared diffuse emission. We exploited
the power spectrum slope as a descriptor, and the Δ-variance
algorithm as a tool to derive it in a robust way. The low
degree of confusion along the line of sight, revealed by CO
line observations, and both the resolution and the large size of
the Herschel maps represent an ideal case to study the structure
of the diffuse ISM on the Galactic plane. In this respect, the
results of our analysis have a double value, because on the
one hand we characterize the morphology of the ISM in this
portion of the plane and on the other hand we provide a
set of general prescriptions, considerations, and caveats for a
possible extension of this kind of analysis to other Herschel
maps. It is difficult in some cases to separate global from local
results. Accordingly, in the following we try to summarize the
conclusions going from the more general ones to those which
have a more specific value:

1. The presence of compact sources in the maps affects the Δ-
variance curves in terms of a bump up to scales of ∼100′′.
Other relevant effects are produced by the interruption of the
self-similarity due to the Galactic plane latitude emission
profile, and, on smaller spatial scales, to the presence of
bright filaments and star forming regions. In our sample,
however, these effects (especially the former) are less
relevant than, for example, in the Hi-GAL fields of the
inner Galaxy.

2. The maps obtained in four PACS/SPIRE wavebands
(160–500 μm) for the investigated fields, together with the
column density maps derived from them, show common

features of the Δ-variance (or, equivalently, of the power
spectrum), i.e., spatial scales corresponding to peaks and
turn over points. However, the slope of the power spectrum
can remarkably change from one band to another, gener-
ally increasing from 160 μm to 500 μm, probably due to a
different spatial displacement of small against large grain
dust components.

3. The obtained power spectrum slopes strongly vary from one
tile to another, but remain in the typical range of slopes,
2 � β � 3, calculated for different phases of the ISM
by Schneider et al. (2011). The power spectrum, and the
corresponding fractal dimension, are then far from being
constant and universal as initially suggested by the analysis
of the boundaries of the interstellar clouds (Falgarone et al.
1991). In two of the four investigated fields, the presence of
regions of intense emission is responsible for a peak in the
power spectrum, followed by a linear trend with a slope that
is shallower than the case of the other two tiles, dominated
by the cirrus.

4. None of these slopes are consistent with the Kolmogorov’s
incompressible turbulence case. We find that the model
of supersonic isothermal turbulence with the solenoidal
forcing of Federrath et al. (2009) seems more realistic,
as already found by Schneider et al. (2011) using different
tracers.

5. The power spectrum slopes of the two eastern fields, �224
and �222, are steeper than those of the western fields, �220
and �217. Each of these two pairs is dominated by the
emission of a different distance component (d = 1.1 kpc
and 2.2 kpc, respectively). Morphological differences of the
density field suggest a higher degree of turbulence in the
second component, also suggested by a lower star formation
efficiency (yet not confirmed by the Mach number analysis).
This represents an interesting evidence of the connection
between fractality and star formation efficiency predicted
by the theory.

6. We tested the linear relation, predicted for fBm-like clouds,
between the mass function of the over dense structures
(clumps) and the cloud power spectrum slope, using as a
probe the exponent of the clump mass versus radius power-
law relation. However, the mass versus radius distribution
that we obtain is affected by significant dispersion and
cannot be used to draw strong conclusions. Also, this
relation seems to work better on the clumps at 2.2 kpc,
while its predictions at 1.1 kpc are unrealistic, probably
because the sample of clumps associated to this component
is contaminated by cores.

Data processing and map production have been possible
thanks to generous support from the Italian Space Agency
via contracts I/038/080/0 and I/005/11/0. Data presented in
this paper were also analyzed using the Herschel interactive
processing environment (HIPE), a joint development by the
Herschel Science Ground Segment Consortium, consisting of
ESA, the NASA Herschel Science Center, and the HIFI, PACS,
and SPIRE consortia.

During the preparation of this paper, D. E. lost his father, Elio
Elia. D. E. is grateful for the example he set and his inborn and
unconditional generosity. Nothing in D. E.’s career, including
this paper itself, would have been possible without his father’s
steady support in many aspects of his life. This paper is dedicated
to his memory.

Facility: Herschel (PACS, SPIRE)
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Figure 7. Left: average volume (see the text) occupied by the maps of �222, plotted as a function of the investigated box size (reported to units of arcseconds to be
comparable with the lag L used throughout the article). Tile naming and band-color encoding are the same as in Figure 1. Fractal dimensions correspond to the linear
fit slopes of these series, estimated over the same scale range of Figure 4, bottom-left panel. They are reported in different colors, according to wavelength. Right:
fractal dimensions of the maps analyzed in this paper (tiles from �217 to �224, wavelengths from 160 to 500 μm), derived through Δ-variance (x axis, from Table 2,
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box at the bottom-right corner. The gray dotted line represents the bisector of the plane.

(A color version of this figure is available in the online journal.)

APPENDIX A

BOX COUNTING FRACTAL DIMENSION

In this paper, we followed the fBm approach to derive
the fractal dimension, D, of the analyzed images from the
analysis of their power spectrum, through Equation (2). Several
other approaches might be used, however, to derive D for
grayscale images. These can be seen as surfaces defined on
a two-dimensional plane and embedded in a three-dimensional
space (“mountain surfaces”). A fractal image, in particular, is
a complex surface whose dimension is larger than two (as the
Euclidean geometry would expect).

Methods aimed at estimating the fractal dimensions of the
image intensity contour levels, such as the perimeter–ruler
and the area–perimeter relation, are based on the distorted
assumption that the image fractal dimension can be derived from
the contour dimension simply by adding one. This immediately
appears incorrectly in the case of highly anisotropic fractals,
but also in more isotropic cases, such as the fBm sets (see
Equation (3)) and simulated IS clouds (Sánchez et al. 2005).

Instead, considering the fractal set itself, it is possible to use
approaches based on directly sampling the set with grids having
different spacings. For example, the box counting approach is
one of the most intuitive ways to derive the fractal dimension,
and to understand its sense as well. Following Mandelbrot
(1983), a three-dimensional cube containing the fractal surface
A(x,y) is partitioned into grids of cubes of variable size L.
The number of volume elements occupied by the fractal set
is a function of the element size: N (L) ∝ L−DB , where DB
designates the box-counting fractal dimension, which can be
obtained from the least square linear fit of the logarithms.
However, whereas the estimate of N (L) is rather trivial for
binary fractal sets, it requires additional care in the case of gray-
scale images such as ours. One possible approach consists of
partitioning the (x, y) plane in a grid of squares (boxes) of size
L, and estimating the difference between the maximum and the
minimum values (normalized to integer multiples of L) achieved
by the image in each box (Sarkar & Chaudhuri 1994). This is

needed to estimate the volume spanned by the image in such a
box. At each explored value of L, the average μL of the volume
over all boxes is computed. Again, the so-called mass fractal
dimension can be derived from the power-law scaling of μL:

μL ∝ LDM (A1)

(Mandelbrot 1983).
For each tile and at each wavelength between 160 and

500 μm, we evaluated the linear fit in the same spatial scale
range reported in Table 2. In Figure 7, left panel, an example of
the DM calculation is shown for the �222 tile at four different
wavelengths.

The comparison of the box-counting versus the Δ-variance-
based fractal dimension of all the Hi-GAL maps analyzed in
this article is shown in Figure 7, right panel. In most cases, a
good agreement is found between the two methods at the SPIRE
wavelengths, whereas strong discrepancies are found for PACS
160 μm, in at least three tiles out of four. It is possible that, being
the 160 μm band, the one exhibiting the most evident departures
from a linear (i.e., fractal) behavior (see Figure 4), estimating
a univocal fractal dimension for maps at this wavelength is
particularly difficult and plagued by strong uncertainties. In
fact, it is well known that the Δ-variance is more sensitive to
variations of the fractal behavior over different spatial scale
ranges (Stutzki et al. 1998; Ossenkopf et al. 2008; Schneider
et al. 2011), highlighted by distortions or local maxima/minima
of the curves, so that a fractal dimension can be derived in a
limited inertial range which is an integral part of the information.
Instead, the curves obtained through box counting algorithms
show linearity over larger scale ranges, as in Figure 7, left panel,
but the corresponding fractal dimension represents a coarser
description of the global statistical properties of the images.
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André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
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