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Bence Béky, Matthew J. Holman, David M. Kipping1, and Robert W. Noyes
Harvard–Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; bbeky@cfa.harvard.edu

Received 2014 January 17; accepted 2014 March 28; published 2014 May 16

ABSTRACT

A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital
period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio
of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet
in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and
confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of
the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17
and confirm the findings of Bonomo & Lanza that the period ratio is not exactly 8:1 in that system. Finally,
we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed
commensurability for systems where the stellar differential rotation profile happens to include a period at some
latitude that is commensurable to the planetary orbit.
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1. INTRODUCTION

Many stars have been observed to exhibit photometric varia-
tions synchronous to the orbit of their close planet. When these
variations are attributed to photospheric features rotating with
the stellar surface, this implies a synchronicity between stellar
rotation and planetary orbit. One of the earliest robust detections
of this phenomenon is by Walker et al. (2008) in the system
τ Boo. They report on periodic photometric variations of the
host star with a period within 0.04% of that of the planetary
orbit, and they attribute this to an active region on the surface of
the star. Similarly, stellar photometric variations synchronous
to the planetary orbit have been detected for the planetary sys-
tems CoRoT-2 (Pagano et al. 2009; Lanza et al. 2009b) and
CoRoT-4 (Lanza et al. 2009a). For all three stars, the rotation
period inferred from spectroscopy is consistent with the period
of photometric variations, indicating that the variations are due
to photospheric features stationary on the stellar surface.

Another interesting example is Kepler-13. Szabó et al. (2012)
measure the rotational period of the star by frequency analysis
of the spot-modulated light curve and find a 5:3 commensura-
bility with the orbital period of the planet Kepler-13b at high
significance.

However, frequency analysis is not the only method suitable
for measuring rotation rates of spots on the stellar surface. A
transiting planet may eclipse spots on the surface of its host
star, resulting in anomalies in the transit light curve. This
phenomenon was observed, for example, in the systems HD
209458 (Silva 2003), HD 189733 (Pont et al. 2007), TReS-1
(Rabus et al. 2009), and CoRoT-2 (Lanza et al. 2009b). Repeated
transit anomaly detections due to the same spot can be used
to constrain the stellar rotation period. This method was first
applied by Silva-Valio (2008) to HD 209458.

Another application of starspot-induced transit anomalies is
to constrain the spin–orbit geometry, as was first mentioned by
Winn et al. (2010). This method was developed and applied
independently by Deming et al. (2011) and Sanchis-Ojeda &
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Winn (2011) to HAT-P-11, by Sanchis-Ojeda et al. (2011) to
WASP-4, and by Nutzman et al. (2011) to CoRoT-2.

Independent measurements of the Rossiter–McLaughlin ef-
fect on HAT-P-11 show that the planetary orbit normal is al-
most perpendicular to the projected stellar spin (the projected
obliquity is ≈103◦; see Winn et al. 2010; Hirano et al. 2011).
Relying only on photometric data, Deming et al. (2011) and
Sanchis-Ojeda & Winn (2011) independently identify two ac-
tive latitudes (where spots are most prevalent) on the surface
of the star, which they assume to be symmetrical around the
equator, to conclude that HAT-P-11b is on a nearly polar orbit
in accordance with the spectroscopic results and that the stellar
spin axis of HAT-P-11 is close to being in the plane of sky.

The transit light curve of Kepler-17b (P = 1.49 days) also
exhibits anomalies due to spots on the surface of its host star.
In their discovery paper, Désert et al. (2011) analyze these
anomalies to study both stellar rotation and orbital geometry.
They observe that the transit anomaly pattern repeats every
eighth planetary orbit, suggesting that the spots rotate once while
the planet orbits eight times. They dub the phenomenon of the
same spots reappearing periodically at the same phase in transit
light curves—every eighth one in this case—the stroboscopic
effect. As for the orbital geometry, they found that transit
anomalies in successive orbits are consistent with being caused
by the same spots that rotate one eighth of a full revolution on
the stellar surface with each orbit of the planet. This implies a
low projected obliquity of the planetary orbit and also excludes
frequency aliases (like the star rotating three or five times while
the planet orbits eight times).

In this paper, we present evidence for a 6:1 period commensu-
rability between the rotation of the star HAT-P-11 and the orbit
of its planet HAT-P-11b (P = 4.89 days; Bakos et al. 2010).
The increasing number of systems known to exhibit such com-
mensurability raises the question of whether this is the result of
an interaction between the planet and the star.

When studying stellar rotation, it is important to remember
that stars with convective zones exhibit differential rotation.
In this paper, the working definition of stellar rotation rate
is that inferred through dominant spots on the stellar surface,
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Figure 1. Top panel: long cadence Kepler light curve of HAT-P-11, with transits
of HAT-P-11b removed. Middle panel: autocorrelation function of the light
curve. Bottom panel: Lomb–Scargle periodogram of the light curve. The blue
vertical lines on the middle and bottom panels correspond to the proposed
rotational period (six times the planetary orbital period) and its integer multiples.

(A color version of this figure is available in the online journal.)

either from the rotational modulation of the out-of-transit light
curve or from transit anomalies. This way we measure the
rotation rate of the stellar surface at the latitude of the spots
or active regions. If spots from multiple latitudes with different
rotational rates contribute significantly to the light curve, then
we expect the inferred posterior distribution of the rotational
period to have a broader profile.

Despite their usefulness in confining planetary obliquity and
mapping spots, transit anomalies due to the planet eclipsing
spots can also be a nuisance: they contaminate the transit light
curve, introducing biases in the detected transit depth (Czesla
et al. 2009), time, and duration. Bordé et al. (2010) point
out that in the particular case of stellar rotation–planetary or-
bit commensurability, activity-induced transit timing variations
can be periodic and thus can result in spurious planet detec-
tions. This further motivates the need for understanding stellar
rotation–planetary orbit commensurability.

In Section 2, we look at the periodogram and autocorrelation
function of HAT-P-11 and Kepler-17 light curves to confine the
rotational period. In Section 3, we present the case of a spot on
HAT-P-11 recurring multiple times because of the stroboscopic
effect. In Section 4, we analyze all transit anomalies observed on
HAT-P-11 to feed the best-fit spot parameters into the rotational
modulation model macula (Kipping 2012) and compare the
resulting model light curve to observations. In Section 5, we
perform a statistical analysis of spot-induced anomalies in the
transits of HAT-P-11b and Kepler-17b. In Section 6, we look for
the periodicity of light curve minima for both stars. We show
evidence for two spots or spot groups at opposite longitudes on
both HAT-P-11 and Kepler-17 and find that on the former, they
seem to alternate in relative activity level, which is known as
the “flip-flop” phenomenon (Jetsu et al. 1991). In Section 7, we
calculate the probability of commensurate periods by chance.
In Section 8, we state one possible hypothesis about stellar

Figure 2. Same as Figure 1, for Kepler-17, with transits of Kepler-17b removed.
The blue vertical lines on the middle and bottom panel correspond to the
rotational period proposed by Bonomo & Lanza (2012; not exactly eight times
the planetary orbital period) and its integer multiples.

(A color version of this figure is available in the online journal.)

rotation–planetary orbit resonance and discuss difficulties in
proving it. Finally, we summarize our findings in Section 8.

2. OUT-OF-TRANSIT LIGHT CURVE

In their discovery paper, Bakos et al. (2010) report a strong
frequency component in the HATNet light curve of HAT-P-11
with a period of approximately 29.2 days. They attribute it to
rotational modulation of starspots, noting that the 6.4 mmag
amplitude is consistent with observations of other K dwarfs
and the period is consistent with the color, activity level, and
projected rotational velocity of HAT-P-11. They also note that
both the secondary peaks in the autocorrelation function and
the phase coherence of the light curve indicate that starspots (or
spot groups) persist “for at least several rotations.”

Figure 1 presents the entire Kepler space telescope (Borucki
et al. 2010) long cadence light curve of HAT-P-11 (quarters
0–6, 8–10, 12–14, and 16–17, with transits of HAT-P-11b
removed and each quarter scaled to have unit mean). Time is
measured in Barycentric Kepler Julian Date (BKJD), which is
BJDUTC−2,454,833. Figure 1 also displays the autocorrelation
function and periodogram of the long cadence light curve. This
analysis is similar to that performed by Bakos et al. (2010) but on
much better quality data. We confirm their findings: we identify
a peak in the autocorrelation function at a timelag of 29.32 days
(with FWHM 8.05 days) and a peak in the periodogram at
30.03 days (with FWHM 0.62 days), which we identify with the
rotational period of HAT-P-11. For comparison, six times the
planetary orbital period is 29.33 days, and it is indicated along
with its integer multiples on Figure 1 by blue vertical lines. We
also see multiple peaks in the autocorrelation function at integer
multiples of the base period, indicating that some spots must
live for multiple stellar rotations.

For comparison, on Figure 2 we present the same analysis for
the Kepler long cadence light curve of Kepler-17 (quarters 1–6,
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8–10, 12–14, and 16–17, with transits of Kepler-17b removed
and each quarter scaled to have unit mean). The blue vertical
lines indicate multiples of 12.01 days, the stellar rotation period
reported by Bonomo & Lanza (2012), instead of eight times
the planetary orbital period, which is 11.89 days. The first peak
of the autocorrelation function is at 12.10 days (with FWHM
3.13 days), while the periodogram peaks at 12.25 days (with
FWHM 0.11 days). It is interesting to note that HAT-P-11 and
Kepler-17 are in the same Kepler subfield on the sky; therefore,
we see gaps in both light curves during quarters 7, 11, and 15
due to the failure of a readout module.

The main reason for studying the autocorrelation function
and the periodogram is to exclude the possibility of frequency
aliases. If we interpret the half-width at half-maximum of
the autocorrelation function as a direct indicator for period
uncertainty (as done, for example, by Aigrain et al. 2008),
the resulting range is consistent with the proposed rotational
periods for both stars. We refer the reader to McQuillan et al.
(2013) for a discussion of using the autocorrelation function as
a complementary method to periodograms for studying stellar
rotation.

Note that Kepler data are dense in time, with long runs of
almost continuous observations. We confirm that the spectral
window function does not have large values at periods above
30 minutes, the cadence of observations. Therefore, unlike for
sparsely sampled ground-based observations, frequency aliasing
(Dawson & Fabrycky 2010) does not pose a problem in this
analysis.

The periodograms rule out that we are dealing with an alias
of the rotational rate. However, the narrow periodogram peak is
located at a period slightly larger than the proposed rotational
period for both stars. McQuillan et al. (2013) observe that spot
evolution and differential rotation can cause periodogram peaks
to split up into multiple narrow peaks, thus the FWHM may
not correspond directly to the period uncertainty. Therefore,
the periodograms are not inconsistent with the proposed rota-
tional periods of 29.33 days for HAT-P-11 and 12.01 days for
Kepler-17.

3. STROBOSCOPIC EFFECT ON HAT-P-11

Winn et al. (2010) were the first to note that the ratio between
the stellar rotation period of HAT-P-11 and the orbital period
of HAT-P-11b is approximately 6:1. If it was close enough to
6:1 and there were spots that lived long enough, then one would
be able to detect multiple light-curve anomalies because of the
same spot every sixth transit. However, HAT-P-11b has a polar
orbit with respect to the stellar spin axis; therefore, if the periods
were incommensurable, then the spot could not fall repeatedly
under the transit chord.

Sanchis-Ojeda & Winn (2011) pointed out that a 6:1 period
ratio is a priori unlikely. They were looking for recurrence of
transit anomalies, but quarters 0, 1, and 2 of Kepler data available
at the time did not provide a large enough sample for such
investigations.

In this section, we study a single extraordinary example
of spot recurrence observed by the Kepler space telescope
on HAT-P-11, presented on Figure 3. Light curves of transits
217, 223, 229, and 235 exhibit very similarly shaped spot-
induced anomalies. The striking similarity between these four
anomalies, spaced apart by six planetary orbits, suggests that
they are caused by the same spot, which evolves little during
these observations. If this is indeed the case, then we are
seeing the same stroboscopic effect as Désert et al. (2011) on

Figure 3. Transit anomalies providing evidence for the 6:1 commensurability.
The transits, from top to bottom, are separated by six planetary orbits, which
is the proposed stellar rotation period. Left panels show detrended Kepler short
cadence photometry, along with best-fit model light curve with single spot. Right
panels show the projected stellar disk, transit chord, and best-fit spot. Note that
spot seems to be stationary over this time period, which suggests a tight 6:1
commensurability.

(A color version of this figure is available in the online journal.)

Kepler-17, and the similarity of transit anomalies implies that
the period ratio is very close to 6:1.

However, the same transit anomaly might be caused by a
continuous active band encircling the star along a constant
latitude. In this case, the anomaly shape would not depend on
how much the star rotates between each six transits and thus
would provide no information on a possible commensurability.
To exclude this possibility, we look at all transits surrounding the
ones highlighted on Figure 3. We subtract the model transit light
curve without spots (Mandel & Agol 2002) from the observed
data and plot the residuals for each transit on Figure 4.

We look for anomalies in adjacent transits that are similar
to the one seen on Figure 3 in transits 217, 223, 229, and 235.
However, these adjacent transits exhibit anomalies either with
much smaller amplitude (in transits 218, 224, 228, 230, and
236), or at a different orbital phase (in transit 234), or none at
all (in transits 216 and 222). Therefore, we can exclude the case
of a continuous dark band around the star, because such a band
would cause transit anomalies of comparable amplitude at the
same phase in every single transit.

Note, however, that it is not possible to determine the exact
shape of the spots on the basis of transit anomalies that only scan
the star along sparse transit chords; therefore, the determination
of stellar rotation period hinges on the assumed shape of the
spots, which were circular in our case. If, on the other hand,
the spots were elongated in longitude, then the shape of the
transit anomaly would not be sensitive to the stellar rotation
rate and the stroboscopic effect could thus be observed even for
incommensurable periods.

Also note that there are signs of other spots evolving on
Figure 4, for example, between transits 225 (one small spot),
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Figure 4. Kepler short cadence observations minus Mandel–Agol model light
curve for transits 214–238, as a function of time. Residuals are vertically
displaced for each transit. Modeled spots (among 203 in total) are indicated
with red points. The four blue vertical lines indicate first, second, third, and
fourth contacts, from left to right.

(A color version of this figure is available in the online journal.)

231 (now split into two), and 237 (disappeared), which are also
separated by one stellar rotation each.

For our analysis, we adopt the revised transit ephemeris,
planetary radius and orbital semimajor axis relative to the stellar
radius, orbital inclination, and limb darkening parameters of
Deming et al. (2011). Their analysis accounts for eclipsed
and uneclipsed spots and relies on the orbital eccentricity and
argument of periastron measurement of Bakos et al. (2010) that
uses both radial velocity data and Hipparcos parallax for HAT-
P-11. To normalize each transit, we divide short cadence data
by a linear fit to the out-of-transit observation within 0.12 days
from the mid-transit time.

4. COMPARISON TO OUT-OF-TRANSIT LIGHT CURVE

When analyzing the light-curve periodicity to find the stellar
rotation rate, we assumed that the light curve is dominated by
rotational modulation of spots (as opposed to, for example,
stellar pulsation). As Bakos et al. (2010) noted, the rotational
modulation amplitude is indeed consistent with expectations
based on observations of other K dwarfs. In this section, we
offer an independent method to confirm this hypothesis: we first
identify a number of spots via transit anomalies, then we model
the rotational modulation caused by these spots and compare it
to the observed light curve.

We adopt the analysis of B. Béky et al. (2014, in preparation),
who manually identify 203 spots in 130 transits in the Kepler
data set and run MCMC analysis to explore the spot parameters.
The model they use assumes the same quadratic limb darkening
law for spots and the rest of the photosphere. It also assumes
that spots are circular on the surface of the star, that is, elliptical
in projection.

The best-fitting light curves for transits 217, 223, 229, and 235
are shown on Figure 3, involving a single independent spot for
each transit. The strikingly similar best-fit position of the spot
as shown on the right panels further supports the hypothesis

of stellar rotation–planetary orbit commensurability. We also
highlight data points that are considered to be part of a spot
anomaly according to the best-fit model in red on Figures 3
and 4.

We feed the parameters of the spots derived from the
transit anomalies into the rotational modulation model macula
(Kipping 2012). Since a long-lived stationary spot would be
detected each stellar rotation (like the spot appearing in multiple
transits above), we model each detected spot as if it lived for
a single stellar rotation only, coming to life on the far side of
the star half a rotation before we detect the transit anomaly it
causes and ceasing to exist half a stellar rotation later, also on
the far side. Since we see HAT-P-11 almost equator-on (Winn
et al. 2010; Hirano et al. 2011), every spot we model gets to the
far side of the star half a stellar rotation after it is eclipsed by
the planet. If the same spot causes another transit anomaly one
stellar rotation later, we model it as a separate spot that is created
when the first one dies. This is the simplest way of treating
spot evolution: properties of a long-lived spot are described by
piecewise constant functions, with the jumps happening when
the spot is not in sight, resulting in a continuous model light
curve. In this treatment, we do not have to investigate whether
two transit anomalies separated by an integer number of stellar
rotations are due to the same spot or different spots, since we
treat them as separate spots in both cases.

For the macula model, we adopt the projected obliquity and
inclination distribution of Sanchis-Ojeda & Winn (2011) derived
from spot crossing events that also accounts for the results of
Winn et al. (2010) based on the Rossiter–McLaughlin effect.

Figure 5 shows the long cadence observations in red, along
with the macula model light curve in black, for quarters 3, 4,
9, and 10. We also calculate the 1σ and 2σ confidence regions
for the model light curve, accounting for the uncertainties of the
inclination and projected obliquity as reported by Sanchis-Ojeda
& Winn (2011) and the uncertainties of the spot parameters
calculated from the transit anomalies. For the latter, we resample
from the MCMC chains of B. Béky et al. (2014, in preparation).
The resulting confidence regions are highlighted in gray on the
figure.

It is important to remember that this is not a fit for the
out-of-transit light curve but rather a model light curve using
spot parameters inferred from a different phenomenon as input.
We see that the model is a fair match to the observations
in terms of qualitative features. In particular, the deepest
light-curve minima are correctly predicted to occur after the
transits drawn in blue on the bottom panel of Figure 5.
Projected obliquities of 90◦ and 270◦, both corresponding to
a polar orbit, can be distinguished by the time of light-curve
minima, which would occur after or before the transit with
the spot anomaly, respectively. Our light-curve analysis thus
confirms the projected obliquity measurements based on the
Rossiter–McLaughlin effect.

However, the observed flux variations have an amplitude
approximately two to six times larger than that of our model. It
is likely that there are spots on the stellar surface that are never
transited by the planet; therefore, this model does not account
for them. Such spots could contribute to the deeper minima in
the observations, explaining the amplitude discrepancy.

For reference, the times of the four transits from Figure 3 are
also indicated on the bottom panel of Figure 5 with blue vertical
lines.

Dark spots simultaneously increase transit depth and decrease
the total brightness of the star (Czesla et al. 2009; Deming
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Figure 5. Red dots: Kepler long cadence observations of HAT-P-11 with hand-
adjusted quarterwise scaling. Black curve and gray regions: macula light-
curve model based on spots detected via transit anomalies, and its 1σ and
2σ confidence regions, accounting for the uncertainty in stellar inclination,
projected obliquity, and spot parameters. This is not a fit for the out-of-transit
light curve but rather a model generated from spot parameters based on transit
anomalies. Top panel shows quarters 3 and 4, and bottom panels shows quarters
9 and 10. On the bottom panel, times of transits 217, 223, 229, and 235 are
indicated by solid blue vertical lines.

(A color version of this figure is available in the online journal.)

et al. 2011). Therefore, we expect a negative correlation between
these two quantities. Note, however, that the variation in out-
of-transit brightness and thus in transit depth is on the order of
one percent, therefore the expected change of brightness during
transit is a factor of few smaller than the noise of individual
short cadence photometric data points.

To investigate this correlation, we calculate the out-of-transit
brightness of HAT-P-11 at the middle of each of the 204 transits
by dividing the linear fit to short cadence out-of-transit data
by mean intensity across the entire quarter. We remove all data
points that are affected by transit anomalies according to the
best-fit model, we and fit a single transit depth scaling factor to
the remaining data points, using a nominal Mandel–Agol light
curve.

We find a Pearson correlation coefficient of r = −0.20
between out-of-transit intensity and transit depth, which does
not indicate significant correlation. In addition to the small
expected variation of transit depth, we attribute this negative
result to eclipsed spots that we do not identify during transits.
Note that an uneclipsed spot increases the transit depth, whereas

an eclipsed one, when not accounted for, results in a shallower
transit fit: a bias in the opposite sense. This potentially hinders
the study of the correlation between out-of-transit brightness
and transit depth.

5. SPOT RECURRENCE

Szabó et al. (2014) apply the method of hierarchical clustering
to look for recurrence of spot anomalies in Kepler-13b transits,
and they find a periodicity of three orbits with a high statistical
significance. This implies that after three orbits, the planet
rescans the same part of the stellar surface, supporting their
hypothesis that an integer number of stellar rotations (five in
this case) takes place during this time.

We aim to perform a statistical analysis of the same phe-
nomenon on HAT-P-11 in this section, using a different ap-
proach. To analyze similarities between transits, we devise the
following method: first, we calculate the deviation of the nor-
malized transit light curves from the spotless model of Mandel
& Agol (2002). Then we run a moving boxcar average of seven
data points to decrease independent noise in the data. After that,
we set a threshold and flag transits with data points above it as
anomalous. The next step is to pick a period and count pairs of
observed transits that are spaced apart by this period. Finally,
we plot the ratio of the ones among these pairs where both tran-
sits are flagged. If the planet could not eclipse the same spot
in different transits, then anomalies would be independent and
thus this ratio would not depend on the period. In particular, if
we flag the p fraction of total transits, then one randomly chosen
transit is flagged with probability p; therefore, two independent
transits are simultaneously flagged with probability p2 (as long
as the number of transits is large). Strong deviation of the ra-
tio of flagged pairs of transits from p2 as a function of period
indicates correlated transit anomalies.

Note that this method of identifying transit anomalies is
different from manually picking them for fitting in Section 4.
Using a uniform threshold has the advantage that detection
does not rely on human decisions. We chose a large threshold
(yielding fewer anomalies than what one can see by eye in the
light curves) to avoid spurious detections. It is important to note
that the actual occurrence rates depend strongly on the choice
of the threshold, although we find that the general features are
persistent across a range of thresholds.

Good quality observations exist for 204 transits of HAT-P-
11b in the Kepler data set. We pick a threshold of 1 × 10−4,
which results in 60 flagged transits. That is, the occurrence rate
of transit anomalies above this threshold is p = 0.29. Figure 6
presents the ratios for a number of periods on the top panel,
with the statistical background of p2 = 0.09 overplotted as a
horizontal red line. For example, there are 165 pairs of observed
transits that are six orbits apart. If transits in each pair were
flagged independently, we would expect to find 165p2 = 14
pairs of transits separated by six orbits with both transits flagged.
However, there are 33 such pairs in the data set, more than two
times as many.

We perform the same analysis on 587 good quality transit
light curves of Kepler-17. Since Kepler-17 is a fainter target,
we use a longer moving boxcar average, with 21 data points, to
suppress photon noise. We use the same threshold as for HAT-P-
11, resulting in 180 flagged transits. In this case, the occurrence
rate is p = 0.31, and the statistical background is p2 = 0.09.
The ratios of flagged pairs of transits as a function of period are
presented on the bottom panel of Figure 6.
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Figure 6. Bars: occurrence fraction of transit pairs separated by a given number
of orbits both exhibiting spot anomalies relative to the total number of pairs
with the same spacing in the short cadence Kepler data, as a function of period.
The “statistical background,” the fraction expected if such spot anomalies were
independent, is represented by red horizontal lines. Top panel is for HAT-P-11,
and bottom panel is for Kepler-17.

(A color version of this figure is available in the online journal.)

We find the highest occurrence rate at periods of six and
eight planetary orbits for HAT-P-11 and Kepler-17, respectively:
around 2.3 times the statistical background in both cases. We
identify the next largest peaks as aliases of this frequency:
at 12, 18, and 24 orbits for HAT-P-11 and 16 and 24 for
Kepler-17. These are due to long-lived spots and exhibit de-
creasing strength, because not all spots that live for one stellar
rotation continue to live for another one.

On the basis of these observations, we can exclude period
aliases: if the star rotated two, three, or four times while
the planet orbits six times, we would see a strong peak at
three, two, or three orbital periods, respectively, in the case of
HAT-P-11 on Figure 6. A similar argument holds for Kepler-17.
These and higher harmonics can also be readily excluded on
the basis of the periodogram, the autocorrelation function, the
projected rotational velocity of the star, and a priori expectations
of rotation rates (see Bakos et al. 2010; Désert et al. 2011, for
HAT-P-11 and Kepler-17, respectively).

An important difference between the interpretation of the
results for the two planetary systems is due to their different
geometry: Kepler-17b has an orbital axis well aligned with the
projected spin axis of the star; therefore, a spot would be eclipsed

by the planet again even the periods were not commensurable.
On the other hand, HAT-P-11b is known to be on a nearly polar
orbit, therefore—as Winn et al. (2010) pointed out—period
commensurability is required for transit anomalies to recur,
otherwise the planet would scan a different part of the stellar
surface, missing the spot that it had eclipsed a stellar rotation
earlier.

Another consequence of the orbital alignment of Kepler-17b
with its host star’s rotation is the excess on the side of each peak
on the bottom panel of Figure 6: at 1, 7, 9, 15, 17, etc. planetary
orbits. As the star rotates, each spot seems to move parallel to
the transit chord, thus spots are eclipsed in multiple subsequent
transits (see Figure 11 of Désert et al. 2011). Therefore, if a spot
recurs 8, 16, 24, etc. planetary orbits later, it is likely to also
cause an anomaly in the preceding and succeeding transits.

On the other hand, transits of HAT-P-11b not spaced apart
by an integer multiple of six orbits are expected to show spot-
induced anomalies independently, because spots on the stellar
surface rotate perpendicularly to the transit chord. This is indeed
the case, except for secondary peaks at 3, 9, 15, 21, and
27 planetary orbits. The reason for these is the two opposite
longitudes where spots seem to occur, as discussed in Section 6.

Finally, we note that the orbital period of HAT-P-11b is
3.3 times that of Kepler-17b; therefore, periods in the upper
panel represent correspondingly longer time than those in the
lower panel. If we assume that spots have similar lifetime on the
two stars, this explains why we see more noise for long periods
for HAT-P-11b than for Kepler-17b.

6. FLIP-FLOP

A light curve rotationally modulated by a single starspot has
a well-defined minimum when the spot seems to be closest to
the center of the stellar disk, and a flat maximum when the spot
is behind the stellar limb. For a non-evolving spot, these minima
happen repeatedly with the rotational period of the star. In this
section, we make use of this effect, together with the assumption
that light-curve variations are mostly due to starspots (supported
by the matching order of magnitude of amplitudes shown in
Section 4), to confirm the rotational periods of HAT-P-11 and
Kepler-17.

To this end, we identify local minima in their light curves.
Figure 7 shows the results for the two stars, indicating not only
the time of each minimum on the horizontal axis but also their
phase relative to the stellar rotation on the vertical axis with
the proposed stellar rotational period. For both stars, we find
two minima during most stellar rotations, indicating two large
spots (or spot groups) at opposite longitudes. This structure is
responsible for the spurious signal in the periodograms at half
the rotation period, shown on Figures 1 and 2. On some other
stars, this phenomenon might lead to incorrect identification
of rotational periods (see, for example, Collier Cameron et al.
2009).

We find a very stable phase in case of HAT-P-11 with the
proposed stellar rotation period of six times the planetary orbital
period, further supporting the proposed 6:1 commensurability
(top panel). On the other hand, in case of Kepler-17, the phases
of minima exhibit a large drift if we choose to calculate them
with respect to eight times the planetary orbital period as the
stellar rotation period (middle panel). This phase drift indicates
that the real rotational period is different from what we used
to calculate the phases. Indeed, we use the period 12.01 days
as suggested by Bonomo & Lanza (2012) to recalculate the
phases, we and confirm that this yields phases of the minima
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Figure 7. Phases of light-curve minima with respect to the proposed stellar
rotation period as a function of time. The color of each filled circle corresponds
to the difference between the minimum brightness and the brightness of the next
smallest local minimum within 0.65 times the stellar rotation period: darker
circles indicate relatively deeper minima. Top panel shows HAT-P-11, with
the stellar rotation period being six times the planetary orbital period. The
dominant phase changes from 0.7 to 0.2 around 300 BKJD, and it changes back
around 1100 BKJD, which we interpret as flip-flop events. Middle panel shows
Kepler-17, with minimum phases calculated using eight times the planetary
orbital period as the stellar rotation period, as suggested by Désert et al. (2011).
Bottom panel shows Kepler-17, with stellar rotation period proposed by Bonomo
& Lanza (2012).

without a significant drift (bottom panel). For both stars, the
phase fluctuations of the minima might be due to spot migration,
evolution, or new spots appearing at different longitudes.

The first discovery of phase jumps in a stellar light curve
was reported by Jetsu et al. (1991) on FK Comae Berenices and
named “flip-flop behaviour.” Korhonen et al. (2001) attribute
this phenomenon to two active regions on the star at opposite
longitudes, with changing relative activity level. This results
in minima in the light curve at two phases, with alternatingly
one or the other being stronger. This phenomenon is exhibited
by a large range of stars: RSCVn binaries, fast rotating G
and K dwarfs, and the Sun (Hussain 2002; Berdyugina 2005;
Strassmeier 2009).

To determine whether a similar phenomenon takes place
on the two stars we study, we quantify how much deeper
each minimum is than the deepest neighboring minimum. On
Figure 7, we represent minima that are much deeper than the
ones half a stellar rotation earlier and later with black spots
and ones that are not so deep with lighter gray spots. Isolated
minima, that is, ones that are not preceded or succeeded with
one within less than one stellar rotation, are also black.

We interpret the results for HAT-P-11 as evidence for two
flip-flop events: the dominant phase changes from 0.7 to 0.2
around 300 BKJD, and it changes back around 1100 BKJD.
The 2 yr interval between these events is consistent with the
flip-flop period on other stars (Berdyugina 2005). On the other
hand, we are not able to interpret the results for Kepler-17 as
flip-flop cycles with a reasonable period.

7. PROBABILITY OF COMMENSURABILITY
BY CHANCE

A number of systems are known to exhibit commensurabil-
ity between the planetary orbit and stellar rotation, for example,
τ Boo (Walker et al. 2008), CoRoT-2 (Pagano et al. 2009; Lanza
et al. 2009b), CoRoT-4 (Lanza et al. 2009a), and Kepler-13
(Szabó et al. 2012). To understand how likely this commensu-
rability is to occur by chance, we analyze the stellar rotational
period of 24 124 active drawfs in the Kepler field measured by
Reinhold et al. (2013a, 2013b), and the orbital period of 965
confirmed Kepler planets2. We draw stars and planets indepen-
dently from the two sets, 1 000 000 times, and calculate the ratio
of the stellar rotational and planetary orbital periods. The top
panel of Figure 8 presents a histogram of the fractional part of
such ratios (subtracting the rounded ratio from itself), 0.0 corre-
sponding to an integer ratio. The distribution is flat, consistent
with the hypothesis that the prior rotational and orbital period
distributions, when considered independently, do not inherenty
carry a preference for, neither against, integer period ratios. The
underlying reason is that the period distributions are spread out,
and taking the fractional part of the ratio averages out small
scale variations.

Among these 965 confirmed planets, there are 251 for the host
star of which Reinhold et al. (2013a, 2013b) reports a stellar
rotation period. Their period ratio histogram is presented on the
bottom panel of Figure 8. The main difference from the top panel
is that here each stellar rotational period and planetary orbital
period belong to the same physical system, instead of being
drawn independently. Note that the histogram is generated by
spreading the contribution of each system across several bins
according to its period ratio uncertainty, which is dominated by
the stellar rotational period uncertainty reported by Reinhold
et al. (2013a, 2013b).

This second histogram does not exhibit a significant prefer-
ence for (or against) integer period ratios either. This would be
unexpected if there was a prevalent star–planet interaction re-
sulting in period commensurability, suggesting that the systems
with such commensurability are either special or they happen by
coincidence, or that the effect of such hypothetical interactions
is so small that detection is not possible with this sample size.

The apparently flat period ratio fractional part prior distribu-
tion allows us to estimate the probability that commensurability
happens by chance. For example, Walker et al. (2008) reports a
period synchronicity within 0.04% for τ Boo. The probability
of this happening by coincidence is 0.08% (the uncertainty is
two sided). Similarily, the periodogram peak identified in Sec-
tion 2 indicates that the period ratio for the HAT-P-11 system is
6:1 within 0.034%, while the autocorrelation functions tells us
that the periods are commensurate within 2.4%. A period ratio
so close to 6:1 could happen by chance with a probability of
0.068% and 4.8%, respectively.

2 Retrieved from
http://archive.stsci.edu/kepler/confirmed_planets/search.php on 2014-04-25.
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Figure 8. Top panel: histogram of the fractional part of stellar rotation and
planetary period ratios for 1 000 000 random and independent draws. Bottom
panel: histogram of the fractional part of stellar rotation and planetary period
ratios for 251 confirmed Kepler planets.

Investigating the fractional part of the period ratio only
reveals whether it is close to n:1, where n is an integer.
However, the example of Kepler-13 reminds us that other
fractions might be of interest too. Therefore we calculate the
probability that the period ratio is within 0.034% or within 2.4%
(corresponding to the periodogram and autocorrelation function
peaks, respectively) of a rational number that can be expressed
as the ratio of two integers not exceeding 6. (These ratios are
1:6, 1:5, 1:4, 1:3, 2:5, 1:2, 3:5, 2:3, 3:4, 4:5, 5:6, 1:1, 6:5, 5:4,
4:3, 3:2, 5:3, 2:1, 5:2, 3:1, 4:1, 5:1, 6:1, in increasing order.)
We find that among 1 000 000 draws of independent rotational
and orbital periods, 0.13% and 8.1% of them have a ratio that
falls within the given tolerances, respectively. For comparison,
among the 251 planets in our sample, 0.0% and 4.4% of them
are so close to any of these ratios, respectively.

8. STAR–PLANET INTERACTION

To explore the effect of a hypothetical star-planet interaction,
first consider two systems without period commensurability.
One is CoRoT-6, for which Lanza et al. (2011) report that the
spot covering factor gets enhanced when spots on the stellar
surface cross a particular longitude with respect to the planet
CoRoT-6b. Herrero et al. (2013) find a similar behavior on
the surface of LHS 6343 A, with a photospheric activity

enhancement of existing spots, again at a particular position
relative to its brown dwarf companion. Both research groups
suggest that it is magnetic interactions that cause the enhance-
ments; see, for example, the models of McIvor et al. (2006),
Preusse et al. (2006), and Lanza (2008).

A resonance effect might exist even if magnetic (or other)
interactions between a planet and its host star were too weak to
transfer enough angular momentum to make the planet migrate
or to change the spin of the star. The same way the companions
of CoRoT-6 and LHS 6343 A might cause an enhancement
synchronous to their orbit, it is conceivable that if there was a
latitude on the surface of a star with a period matching that of
its companion, this effect, continuously acting on the same part
of the stellar surface, would result in preferential spot formation
at that latitude. For example, after measuring the differential
rotation of τ Boo, Catala et al. (2007) note that this is such
a system: the planetary orbital period falls between the stellar
rotation periods at the equator and the pole and therefore there is
an intermediate latitude with a period matching that of the planet.
By this hypothesis, a relatively weak interaction might result in
photospheric activity preferentially at this latitude, which would
then cause photometric variations synchronous to the planetary
orbit. Such variations were later detected by Walker et al. (2008),
who indeed suggest magnetic interactions between the star and
the planet as the cause of this phenomenon.

We extend this hypothesis from matching periods to general
commensurability. For example, if the differential rotation
profile of HAT-P-11 happens to be such that at some intermediate
latitude, the rotational period is exactly six times the orbital
period of HAT-P-11b, then we propose that spot formation
might be enhanced at this latitude by resonance with the planet,
resulting in a light curve reflecting this commensurability, as we
have shown in this paper.

It is possible that a number of small spots might form
randomly at different latitudes on the surface of HAT-P-11.
These spots might be too small to be detected through their
contribution to rotational modulation or transit anomalies. We
speculate that interactions with the planet might influence the
growth or merger of such small spots, preferentially creating
larger ones that we detect at resonant latitudes. Even though
many of these large spots might only live for relatively few
stellar rotations, the buildup phase during which large spots
form from smaller ones might take much longer, possibly long
enough for the hypothetical resonance to have a noticeable effect
in the resulting large spot distribution as a function of latitude.

That we have presented another planetary system with a
tight commensurability is not enough by itself to prove that
there is an interaction at force between certain stars and their
close-in planets. While HAT-P-11 is a system with some very
unique features, the tight 6:1 commensurability can still be
purely by coincidence. One way to confirm our hypothesis
is by a statistical analysis of a large number of planet hosts.
We compared the occurrence rate of detected commensurability
with the rate predicted by our hypothesis using reasonable
prior distributions for planetary orbital periods and stellar
rotational periods. This statistical method could be extended by
accounting for differential rotation profiles, possibly by using
the sample of 18 616 stars with differential rotation parameters
given by Reinhold et al. (2013a, 2013b). Note, however, that
this prediction is very sensitive to the assumed differential
rotation profiles. Another difficulty lies in the method of
determining tight commensurability: as we have shown, neither
a periodogram nor an autocorrelation function by itself is
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suitable for this. Part of the problem is the evolution of spots,
as well as starspots occurring—although possibly in a smaller
number—at other latitudes that do not have resonant rotational
periods, thereby broadening the period peaks. The third method,
using repeated transit anomalies like in this work or for Kepler-
17 by Désert et al. (2011), is limited to bright host stars. Finally,
identifying light-curve minima and looking for their periodicity
by itself might not be sufficient, since it is not clear a priori if a
star has active regions stationary on its surface or if the minima
are due to spots appearing independently at random longitudes.
One virtue of HAT-P-11 is that we could apply and compare
all these methods, and we are able to conclude that there are
two dominant active regions, which seem to be stationary on the
surface of the star for a long time.

We note that theoretically there are other ways to prove
the hypothetical interaction between HAT-P-11b and its host
star. Deming et al. (2011) point out that since the planet scans
different latitudes of the stellar surface, it allows us to track
the evolution of active latitudes with time. These observations
would lead to a butterfly diagram, named after the characteristic
migration pattern of active latitudes first observed on the
Sun. Katsova et al. (2007) find similar behavior on some G
and K dwarfs.

However, if interactions with HAT-P-11b induce preferential
spot formation on HAT-P-11 at fixed latitudes, this migration
pattern might be suppressed. Therefore, observing constant
active latitudes instead of a butterfly-shaped migration pattern
would be a strong indication of interactions between the planet
and stellar surface activity. Unfortunately, the activity cycles
for stars most similar to HAT-P-11 in color and activity level
as reported by Baliunas et al. (1995) span from 7 to 21 yr
(HD 201091, 190007, and 156026), which is much longer than
the timespan of Kepler observations. Therefore, even though we
do not see strong evidence of spot migration in the Kepler data,
we cannot yet determine whether the star exhibits Sun-like spot
migration patterns on longer timescales.

It is also possible that active latitude migration is not sup-
pressed on any star, no matter how strong the interaction with the
planet is. For example, Cranmer & Saar (2007) theoretically de-
scribe a mechanism that can cause the planetary interaction with
the stellar magnetic fields to disappear at times (albeit for inter-
actions with the chromosphere, not the photosphere). Shkolnik
et al. (2008) observationally confirm this phenomenon on both
HD 179949 and υ And, and they dub it the on-off mechanism.
Even though there is no indication of such an event in the Kepler
data for HAT-P-11, this possibility might make it impossible to
confirm the effect of the planet on the basis of spot migration
patterns only.

9. CONCLUSION

The main focus of this paper is to present evidence for
the 6:1 commensurability between the planetary orbit and the
stellar rotation in the HAT-P-11 system. For reference, we
perform the same analysis for Kepler-17b, for which Désert
et al. (2011) observe an 8:1 commensurability on the basis of
transit anomalies. However, Bonomo & Lanza (2012) show
that, in fact, spots with a different rotational rate dominate
the out-of-transit light curve. These results are not necessarily
contradictory because of possible differential rotation: in the
case of Kepler-17, the spots dominating the light curve might
lie at a different latitude that the ones observed via anomalies in
the transits of the planet with a low projected obliquity.

We calculate the autocorrelation function for the light curve
of these two stars and present a statistical analysis of possible
spot-induced transit anomaly recurrence periods, which inde-
pendently exclude frequency aliases of the proposed 6:1 and
8:1 commensurabilities. In the case of HAT-P-11, the recurring
transit anomalies imply a tight commensurability because of the
polar orbit. We also present periodograms and propose that the
period discrepancy when looking at the FWHM of frequency
peaks might be due to spot evolution causing the peaks to split.

We also present evidence for a tight 6:1 commensurability
for HAT-P-11 in the form of four observed transit anomalies
presumably due to the same spot. We fit for all observed
transit anomalies of HAT-P-11 and feed the resulting spot
parameters intomacula to show that it is plausible that rotational
modulation accounts for most of the out-of-transit light-curve
variation. Furthermore, we identify minima in the light curve
of both stars and conclude that in the case of HAT-P-11, there
is a tight 6:1 period commensurability, whereas for Kepler-
17, we confirm the period of 12.01 found by the much more
sophisticated analysis of Bonomo & Lanza (2012), distinct from
the 8:1 commensurability. We identify two active longitudes for
both stars and see an indication of two flip-flop events between
these active longitudes on HAT-P-11.

Finally, we hypothesize that for stars with an intermediate
latitude with a rotational period commensurable to the orbit
of a close planet, star–planet interactions might induce spot
formation preferentially at this latitude, which would show up
as a resonance between the dominant period in the out-of-transit
light curve and the planetary orbit and also as the stroboscopic
effect if the planet is transiting and the transit chord intersects
this active latitude. However, proving this hypothesis might be
difficult mostly because of the small number of bright targets
and the uncertainties in differential rotation parameters.
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Bakos, G. Á., Torres, G., Pál, A., et al. 2010, ApJ, 710, 1724
Baliunas, S. L., Donahue, R. A., Soon, W. H., et al. 1995, ApJ, 438, 269
Berdyugina, S. V. 2005, LRSP, 2, 8
Bonomo, A. S., & Lanza, A. F. 2012, A&A, 547, A37
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