
The Astrophysical Journal, 786:83 (8pp), 2014 May 10 doi:10.1088/0004-637X/786/2/83
C© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A COMPARISON OF TWO- AND THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS
SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

Tomoya Takiwaki1, Kei Kotake1,2, and Yudai Suwa3
1 Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

2 Department of Applied Physics, Fukuoka University, Fukuoka 814-0180, Japan
3 Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

Received 2013 August 27; accepted 2014 January 6; published 2014 April 18

ABSTRACT

We present numerical results on two- (2D) and three-dimensional (3D) hydrodynamic core-collapse simulations
of an 11.2 M� star. By changing numerical resolutions and seed perturbations systematically, we study how the
postbounce dynamics are different in 2D and 3D. The calculations were performed with an energy-dependent
treatment of the neutrino transport based on the isotropic diffusion source approximation scheme, which we have
updated to achieve a very high computational efficiency. All of the computed models in this work, including nine 3D
models and fifteen 2D models, exhibit the revival of the stalled bounce shock, leading to the possibility of explosion.
All of them are driven by the neutrino-heating mechanism, which is fostered by neutrino-driven convection and
the standing-accretion-shock instability. Reflecting the stochastic nature of multi-dimensional (multi-D) neutrino-
driven explosions, the blast morphology changes from model to model. However, we find that the final fate of
the multi-D models, whether an explosion is obtained or not, is little affected by the explosion stochasticity. In
agreement with some previous studies, higher numerical resolutions lead to slower onset of the shock revival in
both 2D and 3D. Based on the self-consistent supernova models leading to the possibility of explosions, our results
systematically show that the revived shock expands more energetically in 2D than in 3D.
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1. INTRODUCTION

Ever since the first numerical simulation of core-collapse su-
pernovae (CCSNe; Colgate & White 1966), the neutrino-driven
mechanism has been the leading candidate of the explosion
mechanism for more than four decades. In the long history, a
very important lesson we have learned from Rampp & Janka
(2000), Liebendörfer et al. (2001), Thompson et al. (2003), and
Sumiyoshi et al. (2005) near the Millennium, is that the spheri-
cally symmetric one-dimensional (1D) form of this mechanism
fails to explode canonical massive stars. Supported by accu-
mulating supernova observations of the blast morphology (e.g.,
Wang & Wheeler 2008 and references therein), a number of
multi-dimensional (multi-D) hydrodynamic simulations have
been reported so far, which gives us confidence that hydrody-
namic motions associated with neutrino-driven convection (e.g.,
Herant et al. 1994; Burrows et al. 1995; Janka & Müller 1996;
Fryer et al. 2002 and see collective references in Burrows et al.
2012; Murphy et al. 2013; Couch 2013) and standing-accretion-
shock instability (SASI; e.g., Blondin et al. 2003; Scheck et al.
2004, 2006; Ohnishi et al. 2006, 2007; Ott et al. 2008; Murphy
& Burrows 2008; Foglizzo et al. 2006, 2007, 2012; Iwakami
et al. 2008, 2009, 2013; Endeve et al. 2010, 2012; Fernández &
Thompson 2009a, 2009b; Fernández 2010; Hanke et al. 2012)
can help the onset of neutrino-driven explosions.

In fact, a growing number of neutrino-driven explosions have
been recently obtained in the state-of-the-art two-dimensional
(2D) simulations, in which spectral neutrino transport is solved
with different levels of sophistication (e.g., Buras et al. 2006;
Marek & Janka 2009; Müller et al. 2012, 2013; Bruenn et al.
2013; Suwa et al. 2010, 2011, 2013; Janka 2012 for a review).
This success is, however, accompanying new questions. Among

them,4 three-dimensional (3D) effects on the neutrino-driven
mechanism are attracting paramount attention (e.g., see Burrows
2013 and Kotake et al. 2012 for a review). Unfortunately,
however, experimental 3D models that employed a light-bulb
scheme (e.g., Murphy & Burrows 2008) have provided divergent
results so far. The basic result of Nordhaus et al. (2010), who
were the first to point out that 3D leads to easier explosions than
2D, has been supported by the follow-up studies (Burrows et al.
2012; Dolence et al. 2013), but not by Hanke et al. (2012) and
Couch (2013). On top of the urgent task of making a detailed
comparison between these idealized models, self-consistent 3D
simulations should be done in order to have the final word on
the 3D effects.

At present, there are only a few 3D CCSN simulations in-
cluding spectral neutrino transport (Hanke et al. 2013; Takiwaki
et al. 2012). Very recently, Hanke et al. (2013) succeeded in
performing 3D simulations with detailed neutrino transport for
a 27 M� star. In addition to the first discovery regarding the
violent SASI activity in self-consistent 3D models, their results
illuminate the importance of going beyond the prevalent light-
bulb scheme; only by doing so, the nonlinear couplings, such as
between core-contraction of the proto-neutron star (PNS), the
accretion neutrino luminosity, and the multi-D hydrodynamic
feedback of neutrino-driven convection and the SASI, can be
self-consistently determined. On the other hand, there is a very
high computational cost allowed Hanke et al. (2013) to focus
on a single (self-consistent) 3D model, and it has not yet been

4 Note that general relativity (GR; e.g., Müller et al. 2012; Kuroda et al.
2012; Ott et al. 2013) and detailed weak interactions (e.g., Langanke et al.
2008; Furusawa et al. 2013) are considered as important as 3D effects.
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clarified whether 3D helps or harms the onset of neutrino-driven
explosions compared to 2D.

To address this question, we investigate how the explosion
dynamics will differ from 3D to 2D by systematically changing
numerical resolutions and initial seed perturbations in multi-
D radiation-hydrodynamic simulations. For the multi-group
neutrino transport, the isotropic diffusion source approximation
(IDSA) scheme (Liebendörfer et al. 2009) is implemented
in a ray-by-ray manner (e.g., see Takiwaki et al. 2012 for
more details), which we have updated to achieve a very high
computational efficiency. As in Takiwaki et al. (2012), we focus
here on the evolution of an 11.2 M� star of Woosley et al. (2002).
We choose this lighter progenitor because the shock revival
occurs relatively earlier after bounce (e.g., Buras et al. 2006)
compared to more massive progenitor models as employed in
Hanke et al. (2013). The updated transport scheme, together
with the employed earlier-to-explode progenitor, allows us to
conduct a systematic numerical study, for the first time, in both
2D and 3D (to the best of our knowledge) in the context of
self-consistent neutrino-driven supernova models.

2. NUMERICAL METHODS AND MODELS

Here, we briefly summarize several major updates of the code
that we have implemented after our previous work (Takiwaki
et al. 2012) in which the spectral neutrino transport scheme
IDSA (Liebendörfer et al. 2009) was implemented in the
ZEUS-MP code (Hayes et al. 2006).

In the original IDSA scheme, a steady-state approximation
(∂f s/(∂t) = 0) is assumed. Here, f s represents the streaming
part of the neutrino distribution function (e.g., Liebendörfer
et al. 2009). Then, one should deal with a Poisson-type equation
to find the solution of f s (e.g., Equation (10) in Liebendörfer
et al. 2009). This is computationally expensive, because a
collective data-communication is required on the message
passing interface (MPI) routines for all of the processors (along
the given radial direction in the ray-by-ray approximation) to
solve the Cauchy problem.

To get around the problem, one needs to solve the evolution
of f s as,

∂E s

c∂t
+

1

r2

∂

∂r
r2F s = S[j, χ, Σ], (1)

E s ≡ 1

2

∫
dμf s, (2)

F s ≡ 1

2

∫
μdμf s, (3)

S ≡ − (ĵ + χ̂)E s + Σ, (4)

where E s and F s correspond to the radiation energy and
flux of the streaming particle, and S represents the source
term that is a functional of the neutrino emissivity (j), ab-
sorptivity (χ ), and the isotropic diffusion term (Σ) all de-
fined in the laboratory frame, respectively. From local hydro-
dynamic quantities (density, Ye, entropy), the source term of
Equation (1) (S[j, χ, Σ]) can be determined. For closure, we
use a prescribed relation between the radiation energy and flux
as F s/E s = (1/2)(1 +

√
1 − [Rν/ max (r, Rν)]2) with Rν be-

ing the radius of an energy-dependent scattering sphere (see
Equation (11) in Liebendörfer et al. 2009). Since the cell-
centered value of the flux, F s, is obtained by the prescribed

relation, the cell-interface value is estimated by the first-order
upwind scheme assuming that the flux is out-going along
the radial direction. With the numerical flux, the transport
equation of E s (Equation (1)) now expressed in a hyperbolic
form is numerically solved. This modification does not pro-
duce any significant changes in the numerical results (see T.
Takiwaki et al. 2014, in preparation for more details), how-
ever, the computational cost becomes more than 10 times
smaller than that in the previous treatment. The velocity de-
pendent terms (O(v/c)) are only included (up to the lead-
ing order) in the trapped part of the distribution function
(Equation (15) in Liebendörfer et al. 2009). Concerning heavy-
lepton neutrinos (νx = νμ, ντ , ν̄μ, ν̄τ ), we employ a leakage
scheme to include the νx cooling via pair, photo, and plasma
processes (e.g., Rosswog & Liebendörfer 2003; Itoh et al. 1989).
We apply the so-called ray-by-ray approach in which the neu-
trino transport is solved along a given radial direction, assuming
that the hydrodynamic medium for the direction is spherically
symmetric. To improve the accuracy of total energy conserva-
tion, we follow the prescription proposed by Müller et al. (2010).
For the calculations presented here, self-gravity is computed by
a Newtonian monopole approximation. We use the equation of
state (EOS) by Lattimer & Swesty (1991) with a compressibility
modulus of K = 180 MeV (LS180).

Our fiducial 3D models are computed on a spherical polar grid
with a resolution of nr × nθ × nφ = 320 × 64 × 128, in which
unequal spatial radial zones cover from the center to an outer
boundary of 5000 km. The radial grid is chosen such that the
resolution Δr is better than 2 km in the PNS interior and typically
better than 5 km outside the PNS. For the spectral transport, we
use 20 logarithmically spaced energy bins ranging from 3 to
300 MeV, and we take a ray-by-ray approximation (e.g., Buras
et al. 2006; Bruenn et al. 2013), in which a ray is cast for every
angular zone. In all the multi-D runs, the innermost 5 km is
computed in spherical symmetry to avoid excessive time-step
limitations. Seed perturbations for aspherical instabilities are
imposed by hand at 10 ms after bounce by introducing random
perturbations of 1% in velocity behind the stalled shock.

To test the sensitivity of the supernova dynamics to numerical
resolutions, we compute 3D model series with lower angular
resolutions, namely, half or quarter of the (equidistant) mesh
numbers in the azimuthal direction (nr ×nθ ×nφ = 320×64×64
and nr ×nθ ×nφ = 320 × 64 × 32). In 2D simulations, we vary
the mesh numbers in the lateral direction as nr ×nθ = 320×64,
nr ×nθ = 320×128 and nr ×nθ = 320×256, respectively (see
Table 1). In the table, model 3D-H-1 differs from model 3D-H-2
(and 3D-H-3 etc.) only in the random seed perturbations (with
the perturbation amplitudes being the same in all cases). Note
that the lowest-resolution 3D model in this work corresponds
to the best-resolution model in Takiwaki et al. (2012). By
using the fastest K computer in Japan, it typically took 1.3
months (equivalently ∼4 million core-hour computing-time) for
each of our 3D fiducial models.

3. RESULTS

As summarized in Table 1, all the computed models including
nine 3D models and fifteen 2D models exhibit shock revival,
leading to the possibility of explosion. Before going into detail
how the explosion dynamics and stochasticity are different in
2D and 3D, we briefly outline the hydrodynamic features using
model 3D-H-1 as an example.

The top panel of Figure 1 shows the blast morphology of
model 3D-H-1 at tpb = 230 ms (postbounce) when the revived
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Table 1
Model Summary

Model nr × nθ × nφ Angular t400 t400,av σ [t400] tend Rmax Ediag (l, m)max |cl,m|max

Resolution (◦) (ms) (ms) (ms) (ms) (km) (1050 erg)

3D-H-1 320 × 64 × 128 2.◦8 × 2.◦8 223 236 24 284 550 0.15 1,0 0.02
3D-H-2 320 × 64 × 128 2.◦8 × 2.◦8 216 369 850 0.25 2,0 0.02
3D-H-3 320 × 64 × 128 2.◦8 × 2.◦8 269 269 400 0.15 2,0 0.02

3D-M-1 320 × 64 × 64 2.◦8 × 5.◦6 192 194 1.2 269 600 0.25 1,0 0.01
3D-M-2 320 × 64 × 64 2.◦8 × 5.◦6 194 319 700 0.30 1,0 0.02
3D-M-3 320 × 64 × 64 2.◦8 × 5.◦6 195 279 700 0.27 1,0 0.01

3D-L-1 320 × 64 × 32 2.◦8 × 11.◦3 193 188 4 314 1000 0.60 2,1 0.009
3D-L-2 320 × 64 × 32 2.◦8 × 11.◦3 188 273 800 0.45 2,1 0.009
3D-L-3 320 × 64 × 32 2.◦8 × 11.◦3 183 273 700 0.35 2,1 0.01

2D-H-1 320 × 256 0.◦7 138 151 7 300 1100 0.65 1,0 0.05
2D-H-2 320 × 256 0.◦7 154 329 1200 0.45 2,0 0.08
2D-H-3 320 × 256 0.◦7 159 311 1200 0.76 2,0 0.1
2D-H-4 320 × 256 0.◦7 156 368 1500 0.6 2,0 0.05
2D-H-5 320 × 256 0.◦7 150 345 1200 0.7 2,0 0.1

2D-M-1 320 × 128 1.◦4 140 142 10 369 1700 0.5 1,0 0.1
2D-M-2 320 × 128 1.◦4 125 319 1800 0.8 2,0 0.06
2D-M-3 320 × 128 1.◦4 151 400 1700 0.85 1,0 0.1
2D-M-4 320 × 128 1.◦4 144 469 2300 1.0 1,0 0.1
2D-M-5 320 × 128 1.◦4 152 400 1800 1.0 2,0 0.05

2D-L-1 320 × 64 2.◦8 137 133 6 387 2100 1.1 2,0 0.08
2D-L-2 320 × 64 2.◦8 137 395 2200 1.26 2,0 0.1
2D-L-3 320 × 64 2.◦8 126 483 2800 1.3 1,0 0.09
2D-L-4 320 × 64 2.◦8 140 559 2400 1.3 1,0 0.09
2D-L-5 320 × 64 2.◦8 125 569 2500 1.3 2,0 0.05

Notes. Note that “H,” “M,” and “L” appended to our models stand for high, moderate, and low azimuthal angular resolutions, respectively. The
third number (−i) of each model, which runs from 1 to 3 for 3D models and from 1 to 5 for 2D models, represents the difference only in the
random seed perturbations (with the perturbation amplitudes being the same in all cases). t400 represents the time when the average shock radius
touches a radius of 400 km, and t400,av and σ [t400] denote the model average and the dispersion of t400. tend denotes the time of the end of the
simulation. Rmax and Ediag are the averaged shock radius and the diagnostic explosion energy at tend. (	, m)max denotes the set of spherical
harmonics mode when the normalized amplitude takes the maximum value (|c	,m|max) during the linear SASI phase.

shock is reaching an angle-averaged radius of 400 km (e.g.,
red dashed line in the right panel of Figure 2). As seen from
the side wall panels, a bipolar explosion is obtained for this
model. The bottom left panel (red regions) shows that the ratio of
the residency timescale to the neutrino-heating timescale (e.g.,
Equations (6) and (7) in Takiwaki et al. 2012) exceeds unity
behind the shock, which presents evidence that the shock revival
is driven by the neutrino-heating mechanism. The bottom right
panel of Figure 1 depicts spatial distribution of the net neutrino-
heating rate at tpb = 150 ms. Small scale inhomogeneities
(colored as red or yellow) are seen, which predominantly
comes from neutrino-driven convection and anisotropies of the
accretion flow, but the shape of the gain region is very close to
being spherical before the onset of an explosion. This suggests
that the bipolar geometry of the shock is produced not by the
global anisotropy of the neutrino heating in the vicinity of the
neutrino sphere, but by multi-D effects such as by neutrino-
driven convection and the SASI in the gain regions after the
explosion (gradually) sets in.

Reflecting the stochastic nature of the multi-D neutrino-
driven explosions, the blast morphology changes from model
to model. The left and middle panels of Figure 2 show that
a stronger explosion is obtained toward the north direction
(model 3D-H-2) and the south pole (model 3D-H-3), which is
only different from model 3D-H-1 (e.g., Table 1) in terms of the
imposed initial random perturbations. Note that, due to the use
of the spherical coordinates, we cannot omit the possibility that

the polar axis still gives a special direction in our 3D simulations.
But more importantly, our results show that the final fate of the
3D and 2D models whether an explosion is obtained or not, is
little affected by the stochasticity of the explosion geometry.

In fact, the right panel of Figure 2 shows the evolution of the
average shock radius for our 1D (blue line), 2D (green lines),
and 3D (red lines) models. Before the onset of shock revival
(before 100 ms after bounce), the evolution of the shocks are
all similar to that of the 1D model (blue line). After that, our
results show that the shock expansion is systematically more
energetic in 2D (green lines) than in 3D (red lines). This feature
is qualitatively consistent with Takiwaki et al. (2012) and also
with Hanke et al. (2013) who recently reported 2D versus 3D
comparison based on a single 3D model but employing a more
detailed neutrino transport than ours.

Due to our lack of necessary computational resources, our
3D models should be terminated typically before tend � 300 ms
postbounce (e.g., in Table 1) but we expect them to produce
explosions subsequently, seeing a continuous shock expansion
out to a radius of 500 km in 3D (and 700 km in 2D). Given the
same numerical resolution (e.g., model series 3D-L in Table 1),
the average shock radii in this study is smaller than those in
Takiwaki et al. (2012), in which the cooling by heavy-lepton
neutrinos was not taken into account. Due to the inclusion of
the νx cooling, the (angle-averaged) ν̄e luminosity decreases
more quickly after bounce (compare Figure 3 and Figure 14
of Takiwaki et al. 2012), which leads to the less energetic
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Figure 1. Three-dimensional plots of entropy per baryon (top panel), τres/τheat
(bottom left panel), which is the ratio of the residency to the neutrino-heating
timescale (see the text for details), and the net neutrino-heating rate (bottom
right panel, in units of erg cm−3 s−1) for three snapshots (top and bottom left:
t = 230 ms, and bottom right: t = 150 ms measured after the bounce (t ≡ 0) of
our model 3D-H-1). The contours on the cross sections in the x = 0 (back right),
y = 0 (back bottom), and z = 0 (back left) planes are projected on the sidewalls
of the graphs. For each snapshot, the length of the white line is indicated in the
bottom right text.

(A color version of this figure is available in the online journal.)

shock expansion in this study. It should be mentioned that, by
comparing our νx luminosity estimated by the leakage scheme
with that obtained by the work of Buras et al. (2006) with
detailed neutrino transport, the peak luminosity is more than
20% smaller in our case. Such underestimation of cooling
by heavy-lepton neutrinos should lead to artificially larger
maximum shock extent (Rmax ∼ 260 km, blue line in the right
panel of Figure 2) compared to Rmax ∼ 170 km in Buras et al.
(2006). We have to emphasize that the use of the leakage scheme,
together with the omission of inelastic neutrino scattering on
electrons and general relativity (GR) effects in the present
scheme, is likely to facilitate artificially easier explosions.
Regarding our 2D models, the relatively earlier shock revival
(∼100 ms postbounce) coincides with the decline of the mass
accretion rate onto the central PNS. This could be the reason
that the timescale is similar to that in Müller et al. (2012) who
reported 2D (GR) models for the same progenitor model with
detailed neutrino transport.

As seen from Figure 3, the angle-averaged neutrino lu-
minosity (〈Lν〉) and the mean neutrino energy (〈εν〉 =∫

E3F sdE/
∫

E2F sdE, where E is neutrino energy) are barely
affected by the imposed initial perturbations (presumably at a
few-percent levels in amplitude). This again supports our finding
that the explosion stochasticity is very influential in determining
the blast morphology but not the working of the neutrino-heating
mechanism.

From the bottom panel of Figure 3, it can be seen that
the overall trend in the neutrino luminosities and the mean
energies is similar between our 3D and 2D models. The neutrino
luminosities in the 2D model (green lines) show a short-time
variability (with periods of milliseconds to �10 ms) after around
100 ms postbounce. Such fast variations in the postbounce
luminosity evolution have been already found in previous 2D
studies (e.g., Ott et al. 2008; Marek et al. 2009). This is caused
by the modulation of the mass accretion rate due to convective
plumes and downflows hitting onto the PNS surface (see also
Lund et al. 2012 and Tamborra et al. 2013 about the detectability
of these neutrino signals). It is interesting to note that such a
fast variability is less pronounced in our 3D model (red lines
in the bottom panel). This is qualitatively consistent with Lund
et al. (2012) who analyzed the neutrino signals from 2D and 3D
models, in which an approximate neutrino transport was solved
(Wongwathanarat et al. 2010) as in Scheck et al. (2006).

Figure 4 shows the evolution of the average PNS radius
for the 1D (blue line), 2D (green line), and 3D models (red
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line) that are defined by a fiducial density of 1011 g cm−3. The
PNS contraction is similar among the 1D, 2D, and 3D models.
Although the PNS contraction potentially affects the evolution
of the shock (Hanke et al. 2013; Suwa et al. 2013), in our cases,
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(A color version of this figure is available in the online journal.)

it is unchanged by the difference of the dimension and is not the
main agent to explain the divergence of the shock evolution in
1D, 2D, and 3D. The PNS contraction is slightly stronger in the
later postbounce phase in 1D (�150 ms postbounce, compare
blue with green and red lines) compared to 2D and 3D because
no shock revival was obtained in the 1D model, and heavier
PNS and slightly deeper gravitational potential are obtained
compared to that of the multi-D models. In the figure, three more
lines (solid, dashed, dotted gray lines) are plotted, in which we
estimate the evolution of the PNS radius based on the fitting
formula (Equation (1) of Scheck et al. 2006) by changing a final
radius of PNS Rf for a given set of an exponential timescale
of tib = 1 s and an initial radius of PNS Ri = 85 km. As can
be seen, the dashed gray line (Rf = 12 km) can most closely
reproduce our results, which is just between the slow and fast
contraction investigated in the work by Hanke et al. (2013).

The top panel of Figure 5 shows angle-averaged entropy
profile at 100 ms postbounce, after the difference of the
subsequent shock evolution between our 1D, 2D, and 3D models
becomes remarkable (e.g., right panel in Figure 2). As has
been studied in detail since the 1990s (e.g., Herant et al. 1994;
Burrows et al. 1995; Janka & Müller 1996), buoyancy-driven
convection supported by turbulence (e.g., Murphy et al. 2013)
transports heat radially outward, leading to a more extended
entropy profile in the 2D (green line in the panel) and 3D (red
line) model compared to the 1D model (blue line; see also Hanke
et al. 2012).
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(A color version of this figure is available in the online journal.)

The bottom panel of Figure 5 compares the turbulent energy
spectra of the anisotropic velocity (Takiwaki et al. 2012) as a
function of wavenumber (k) between our 2D (green line) and
3D (red line) model. The green and red lines cross at around
kcross = 0.02 km−1 (corresponding to ∼50 km in spatial scale),
above which the amplitude for the 3D model (red line) domi-
nates that of the 2D model (green), and below which the am-
plitude for the 2D model dominates that of the 3D model. This
is qualitatively consistent with the previous results using the
light-bulb method (e.g., Hanke et al. 2012; Burrows et al. 2012;
Dolence et al. 2013; Couch 2013; Fernández et al. 2013). By
comparing the 2D and 3D curve with spectral slopes labeled by
the corresponding exponent (−5/3: dotted blue line, −3: dotted
black line), the power-low dependence (∝ k−5/3) approximately
holds for kint � 0.02 km−1 in the 2D model (green line) pre-
sumably as a result of the inverse energy cascade (Kraichnan
1967). Above kcross, the slope of the 3D model (red line) be-
comes closer to k−5/3 (blue line), while the spectrum slope of
the 2D model drops much more steeply with the wave number as
k−3 (gray line). These features are again in accord with the
previous studies mentioned above (e.g., Hanke et al. 2012;
Burrows et al. 2012; Dolence et al. 2013; Couch 2013;
Fernández et al. 2013).

As shown in the middle panel of Figure 2, model 3D-H-3
produces a one-sided explosion toward the south pole during the
simulation time. Reflecting the unipolarity, the average shock
radius is smaller than for the other 3D models (compare dotted
line (in red) with solid and dashed red line (in red) in the right
panel of Figure 2). To quantify the vigor of the shock expansion,
t400 is a useful quantity that was defined in Hanke et al. (2012)
as the moment of time when the shock reaches an average radius
of 400 km. In fact, as seen from Table 1, t400 of model 3D-H-3
(t400 ≈ 270 ms) is delayed about 50 ms compared to those of
models 3D-H-1 and 3D-H-2 (t400 ≈ 220 ms).

The model average of t400 (e.g., t400,av in Table 1) clearly
shows that models with higher numerical resolutions lead to
a slower onset of the shock revival in both our 3D and 2D
models. This feature is qualitatively consistent with the 2D self-
consistent models by Marek & Janka (2009) and with the 3D
idealized models by Hanke et al. (2013) and Couch (2013).

In Table 1, σ400 represents the model dispersion of t400, which
varies much more stochastically in 3D models with different
numerical resolution (from 1.2 to 24 ms) than those in 2D
models (from 6 to 10 ms). For model 3D-H-3, the shock revival
is the most delayed (e.g., Table 1) and the shock expansion
is weakest among the computed models (dotted red line in

Figure 1). Nagakura et al. (2013) proposed that shock revival is
very sensitive to the imposed seed perturbations near the stalled
shock. Following the hypothesis, we speculate that the influence
of seed perturbations is seen most remarkably in our weakest
explosion model.

In Table 1, Ediag denotes the diagnostic energy defined as the
total energy (internal plus kinetic plus gravitational) integrated
over all matter where the sum of the corresponding specific
energies is positive. We include recombination energy in internal
energy (Bruenn et al. 2013). Reflecting the earlier shock revival,
the diagnostic energy is systematically bigger in 2D than in 3D
models. When we terminated the simulation, these diagnostic
energies were typically on the order of ∼1049 erg and ∼1050 erg
for our 3D and 2D models, respectively. It should be noted that
this quantity is estimated at the end of simulation, tend. In order
to compare the diagnostic energy with the observed kinetic
explosion energy (∼1051 erg), a much longer-term simulation
including improved microphysics, GR, and nuclear burning
would be needed.

Recently, it is enthusiastically discussed whether the neutrino-
driven convection or the SASI plays a more crucial role in
facilitating neutrino-driven explosions (Foglizzo et al. 2006;
Dolence et al. 2013; Murphy et al. 2013; Burrows et al. 2012;
Hanke et al. 2012, 2013). The left panel of Figure 6 shows
the time evolution of the Foglizzo parameter χ (Foglizzo et al.
2006). As seen, χ continuously exceeds the critical number of
3 (Foglizzo et al. 2006) rather shortly after bounce (∼40 ms),
marking the transition to the nonlinear phase. The earlier onset
of the shock revival and the absence of clear features of the
SASI in the linear phase (see discussion below) could indicate
that neutrino-driven convection dominates over the SASI when
the explosion sets in (e.g., at t400 in Table 1).

The right panel of Figure 6 shows the evolution of the
normalized coefficient of spherical harmonics of the shock
surface for model 3D-H-1. No clear feature of the linear
growth of the SASI (�40 ms postbounce) was obtained for
the 11.2 M� star explored in this work. In both our 3D and
2D models, the qualitative behaviors of the harmonic modes
seen in Figure 6 are less sensitive to the employed numerical
resolution and seed random perturbations (see the Appendix).
The dominant channels are of low modes (e.g., (	,m)max in
Table 1), the amplitudes of which (e.g., |c	,m|max in the table)
are systematically larger in 2D than in 3D. This is qualitatively
consistent with previous 3D simulations employing different
numerical setups (e.g., Nordhaus et al. 2010; Hanke et al. 2012,
2013; Burrows et al. 2012).
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(A color version of this figure is available in the online journal.)

After the linear phase comes to an end at around 100 ms
postbounce, the trajectory of the revived shock shows a wider
diversity (e.g., Figure 1) depending on the employed numerical
resolution and seed perturbations.

4. SUMMARY AND DISCUSSION

Studying an 11.2 M� and changing numerical resolutions and
seed perturbations systematically in the multi-D simulations
employing the updated IDSA scheme, we studied how the
postbounce dynamics are different in 2D and 3D models. All
of the computed models exhibit the neutrino-driven revival
of the stalled bounce shock, leading to the possibility of an
explosion. Though the blast morphology changes from model
to model reflecting the stochastic nature of multi-D neutrino-
driven explosions, it was found that the final fate of these multi-D
models whether an explosion is obtained or not, is little affected
by the explosion stochasticity at least in the current investigated
progenitor model. In line with some previous studies, higher
numerical resolutions lead to slower onset of the shock revival
in both 3D and 2D. Our results systematically showed that the
revived shock expands more energetically in 2D than in 3D.

The caveats of our 3D models include the ray-by-ray approx-
imation, the use of the softer EOS, and the omission of detailed
neutrino reactions and GR (e.g., Kuroda et al. 2012; Ott et al.
2013). Keeping our efforts to improve them, it is important to
study the dependence of progenitors (e.g., Buras et al. 2006;
Bruenn et al. 2013) and EOS (e.g., Marek & Janka 2009; Suwa
et al. 2013) on the neutrino-driven mechanism in 3D computa-
tions. A number of exciting issues still remain to be investigated,

such as gravitational-wave signatures (e.g., Kotake 2013), neu-
trino emission and its detectability (e.g., Lund et al. 2012), and
the possibility of 3D SASI flows generating pulsar kicks and
spins (e.g., Wongwathanarat et al. 2013). Shifting from individ-
uals to populations of 3D models, a rush of 3D explorations with
increasing sophistication are now going to shed light on these
fascinating riddles (hopefully in the near future) with increasing
supercomputing resources on our side.

We are thankful to K. Sato and S. Yamada for continuing en-
couragements. Numerical computations were carried on in part
on the K computer at the RIKEN Advanced Institute for Com-
putational Science (Proposal number hp120285), XC30/XT4 at
NAOJ, and on SR16000 at YITP at Kyoto University. This study
was supported in part by Grants-in-Aid for Scientific Research
(Nos. 23540323, 23340069, 24244036, and 25103511) and by
the HPCI Strategic Program of the Japanese MEXT.

APPENDIX

DEPENDENCE ON THE AMPLITUDE
OF SEED PERTURBATIONS

In this Appendix, we briefly report on the dependence
on the amplitudes of the initial seed perturbations. We have
added a radial velocity perturbation, δvr (r, θ, φ), to the profile
obtained by 1D simulation, v1D

r (r), according to the equation
δvr = pamp rand × v1D

r where rand is a pseudorandom number
that takes a value from −1 to 1 and pamp represents the absolute
amplitude of the seed perturbations that we take as 1% in the
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models discussed in the main section. Let us firstly note that
the amplitude of seed perturbations, a	,m, assumed in this study
scales as pamp/N

1/2, where a	,m denotes the amplitude of the
(	,m) component of the seed perturbations at a given radius (i.e.,
a	,m = ∫

dφ
∫

sin θdθ (v1D
r + δvr )Y ∗

	,m, where Y ∗
	,m is conjugate

of spherical harmonic function) and N = nθ × nφ represents
the total angular mesh number where nθ , nφ is the mesh number
in the θ and φ direction, respectively (e.g., in our 3D model
with highest resolution, nθ = 64, nφ = 128). Therefore, the
seed amplitudes assumed in this work depend on numerical
resolution (i.e., N).

If we keep the seed amplitudes (a	,m) constant for models with
different resolutions, will our results drastically change? Since
we cannot rerun 3D models due to the limited computational
resources, we compute a number of 2D models to answer this
question. First of all, let us discuss 2D models with different seed
amplitudes. The top panel of Figure 7 shows the evolution of
c1,0 (the normalized harmonic amplitudes of shock position) for
2D models with pamp = 1% (red lines) or 0.176%(= 1%/

√
32)

(green lines) for five different realizations of initial random
perturbation. The reduced amplitude is determined by the ratio
of total grid number of 2D-H models and 3D-H models (i.e.,
1/

√
32 =

√
nθ |2D−H /(nθnφ)|3D−H ). One might guess that

c	,m(t) could evolve as a	,m exp(t/t0) with t0 representing the
duration of the linear growth rate of hydrodynamic instabilities
including the SASI or neutrino-driven convection. If this were
the case, the linear growth amplitude (before 35 ms postbounce
in the top panel) should be higher by about

√
32 times for

red lines compared to green lines. But as is shown, this is
not the case.5 After the early rising phase (about 40 ms
postbounce in the panel), the saturation amplitudes are shown
to be insensitive to the initial perturbation amplitudes (for the
initial strength employed above). Remembering that neutrino-
driven convection is likely to dominate over the SASI in the
nonlinear regime for the 11.2 M� progenitor employed in this
work, the delay of t400 (in the nonlinear phase) for models with
higher numerical resolutions cannot be simply ascribed to the
difference of the seed amplitudes.

The bottom panels of Figure 7 show the evolution of c1,0 for
different resolutions (H, M, and L) between our 2D and 3D
models. For a given numerical resolution, t400 of the chosen
models in these plots is close to a median of t400 for each model
series. Note that in these models, the initial seed amplitudes
are dependent on both resolution and dimension. As can be
seen, in both 2D and 3D, the amplitudes in the linear phase
(<40 ms postbounce) are comparable for models with different
resolutions. In the nonlinear regime, monotonic dependence of
the nonlinear evolution on the initial seed amplitudes (between
H, M, and L models) cannot be found. These results show that
the findings in this work are less sensitive to the assumed initial
seed perturbations.
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