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ABSTRACT

We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the
superposition of a few transient spiral modes. Each mode lasts between 5 and 10 rotations at its corotation radius
where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of
angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial
reflections of waves at these newly created features allows new standing-wave instabilities to appear that saturate
and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes
the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity
unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show
that this interpretation is consistent with the behavior reported in other recent simulations with low-mass disks.
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1. INTRODUCTION

The origin of spiral patterns in galaxies still has no fully
satisfactory dynamical explanation (see reviews by Binney &
Tremaine 2008; Sellwood 2013a). Compelling observational
evidence, both photometric (Schweizer 1976; Gnedin et al.
1995; Grosbøl et al. 2004; Zibetti et al. 2009) and kinematic
(Visser 1978; Chemin et al. 2006; Shetty et al. 2007), indicates
that spiral patterns are gravitationally driven density waves
in the stellar disk. Kormendy & Norman (1979) and Kendall
et al. (2011) found that the best developed, regular patterns are
observed in interacting galaxies and perhaps also those with
bars. While the behavior in these cases may not be entirely
understood, at least the driving mechanism is clear.

The majority of disk galaxies with a significant gas com-
ponent (e.g., Oort 1962) display less regular patterns, whose
origin is not so easily accounted for. The spiral patterns may
have some vague rotational symmetry, which is predominantly
2- or 3-fold (Davis et al. 2012, their Table 2), but it is usually far
from perfect as arms bifurcate and/or fade with the radius. The
ubiquity of the phenomenon, taken together with the fact that
simulations of isolated, unbarred, cool collisionless stellar disks
(cited below) always manifest similar patterns, argues that there
must be a mechanism for self-excitation, which is the question
we address here.

No galaxy in our hierarchical universe is truly isolated, and
infalling subhalos are predicted to bombard the outer halo of
every galaxy (e.g., Boylan-Kolchin et al. 2010). Since tides can
excite spiral responses, it is possible some patterns are excited by
halo substructure (e.g., Dubinski et al. 2008). But the inner halos
of galaxies, where fragile thin disks reside, are quite smooth
(Gao et al. 2011) and even large subhalos, such as that which
hosted the Sagittarius dwarf galaxy (Belokurov et al. 2006), can
be severely tidally disrupted before perturbing the disk (Purcell
et al. 2011). We argue here that spiral patterns appear so readily
as self-excited instabilities that disk responses to diffuse subhalo
perturbations probably give rise to a minority of spirals.

Continuously changing recurrent transient patterns have been
reported over many years from simulations of isolated, unbarred

disk galaxy models (e.g., Hockney & Brownrigg 1974; Sellwood
& Carlberg 1984; Roškar et al. 2008), and no qualitatively
different behavior has emerged as the numerical quality has
improved. Claims of long-lived spiral modes have not proven to
be reproducible (Sellwood 2011). Spiral activity fades over time
as stellar random motions rise due to scattering by the fluctuating
spiral patterns, but a reasonable amount of gas infall and
dissipation can prolong spiral activity apparently indefinitely
(e.g., Sellwood & Carlberg 1984; Carlberg & Freedman 1985;
Toomre 1990), which is also consistent with modern galaxy
formation simulations (e.g., Agertz et al. 2011).

Here, we finally address the issue that was left unexplained
in Sellwood & Carlberg (1984, hereafter Paper I), namely, the
nature of the spirals that arise in such simulations. In a follow-
up study to our original work (Sellwood 1989), we reported
that the continuously changing patterns appeared to result from
the superposition of a few longer-lived waves, each of which
had well-defined frequencies and shapes and lasted for between
five and ten full rotations of the pattern. These properties
are consistent with them being modes, or standing waves,
although they did not last indefinitely. Here we provide stronger
evidence and propose a mechanism for this interpretation, using
simulations of altogether higher quality than those in our original
study.

2. SIMULATIONS

Computational resources available at the time required that
the simulations presented in Paper I employed typically just
2 × 104 particles whose motion was confined to a plane.
Here we continue to employ the same basic physical model,
with a fraction of the total mass in a disk represented by
particles, while the remaining central attraction comes from
a rigid mass distribution, but we present results with greatly
increased numbers of particles and also full three-dimensional
(3D) motion.

We mimicked dissipation in some of our models in Paper I,
but we do not attempt to do so here in order to focus on
purely collisionless dynamics. All the models reported below
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therefore heat as a result of spiral activity (Carlberg & Sellwood
1985) until the disk becomes featureless after some number of
rotations.

2.1. Mass Model

The radial surface density profile of the disk has the form we
employed in Paper I
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and a circular velocity curve
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where a is a length scale, and M a mass unit; thus, the velocity
unit and dynamical time are, respectively, V0 = (GM/a)1/2 and
τ0 = (a3/GM)1/2.3 Expressions (1) and (2) are not perfectly
self-consistent, but a numerical solution with softened gravity
for the central attraction of the surface density (Equation (1))
gives a rotation curve that is quite well fitted by the function
V (R) in Equation (2). In Paper I, we devised this unconventional
model to meet two objectives: (1) to produce a rotation curve
that superficially resembled that of a large Sc galaxy and (2) to
yield a model that developed spirals all over the disk, since we
had found that quasi-uniform rotation in the inner disk prevented
spirals from developing there.

We employ this model again in the present paper for compar-
ison to our earlier work. Although the disk mass profile is not
the usual exponential, it is not unreasonable; our conclusions
seem quite general and should hold in any plausible model of a
differentially rotating disk. We continue to employ a rigid halo
principally because our focus is on spiral dynamics. While it
remains to be demonstrated explicitly, we believe that a respon-
sive halo would have very little affect on the spiral evolution;
bars can lose angular momentum to halos through resonant in-
teractions (Tremaine & Weinberg 1984), but spirals have both
lower amplitude and shorter lifetimes than do bars and, hence,
couple much more weakly to a halo. We showed in Paper I that
gas was important to prolong the lifetimes of the patterns, but we
omit this aspect also. In summary, the simplified experiments
presented here have allowed us to develop an understanding of
the driving mechanism for spirals in the stellar disk only, which
seems to be the key part according to the observational evidence
reviewed in the introduction.

We use a cubic function to taper the surface density smoothly
to zero over the range 6.5a < R < 7.5a, leaving a total disk
mass of �3.4M with the half-mass radius being Re � 2.75a.
The circular speed has a broad maximum of V � 0.8V0 around
R ∼ 3a, and a rotation period at R = Re is ∼20 dynamical
times. Since the scaling to physical units is arbitrary, we here
set G = M = a = 1; one possible scaling is to choose
a = 3 kpc and τ0 = 10 Myr, leading to V0 � 293 km s−1

and M � 6.0 × 1010 M�.
In practice, we use a disk with a fractional surface density f,

of that given in Equation (1), while the contribution from the
rigid matter gives V 2(1 − f )/r to the central attraction, with V
given by Equation (2). In Paper I, our simulations started with
f = 0.3 to inhibit vigorous bar-forming instabilities in the disk.

3 The bizarre proportionality constants in Equations (1) and (2) are needed to
reconcile the units used in Paper I with those used here.

We start all simulations with Q = 1 at all radii, where

Q(R) = σR

σR,crit
, with σR,crit = 3.36Gf Σ(R)

κ(R)
(3)

(Toomre 1964). Here σR(R) is the local radial velocity disper-
sion of particles in the disk, and κ is the usual Lindblad epicycle
frequency. We set the azimuthal dispersion and mean orbital
speed using the Jeans equations in the epicycle approximation.
In 3D models, we distribute particles in z using a Gaussian
of width z0 = 0.05, and we construct vertical equilibrium by
solving the 1D Jeans equation in the vertical restoring force
computed from the particles. Since the disk mass is low, this
procedure yields models that are close enough to equilibrium
that no initial relaxation is required.

We generally compute the evolution for 500τ0. We use a
basic time step δt = 0.05τ0, and the time step is increased
by successive factors of two in three annular zones of greater
radii. In 2D, we adopt Plummer softening with softening
length ε = 0.05 and a grid with 128 radial spokes and 96
logarithmically spaced rings. In 3D models, we employ a cubic
spline law (Monaghan & Lattanzio 1985) with ε = 0.04 and
grid of 96 × 128 × 125 mesh points.

Our numerical techniques are described in full detail in
http://www.physics.rutgers.edu/∼sellwood/manual.pdf.

2.2. Two-dimensional Models

We first present a series of simulations with f = 0.3 and
other physical properties exactly as we used in our first model
from Paper I but which have increasing numbers of particles.
All the models manifested spiral activity resembling that in our
earlier paper.

Initial spiral activity is seeded by shot noise, which has an
amplitude that scales as N−1/2. While chance leading wave
components in the spectrum of shot noise give rise to responses
that are swing-amplified by a substantial factor (Goldreich &
Lynden-Bell 1965; Toomre 1981), we showed in Paper I that
the expected noise level was below the measured leading signal
even with N = 2 × 104 and is correspondingly lower still in the
present experiments with much greater numbers of particles.
Spiral activity at the amplitude we observe must be boosted
either by feedback creating unstable modes or by nonlinear
effects or both, as we discuss in Section 3.

Figure 1 shows the time evolution of Q at a radius of R = 4
as measured from the simulations. Spiral activity heated all the
models, but as we employed more particles, the spirals took
increasingly long to develop. To compensate for this delay,
which we account for in Section 3, we slide the curves from
the smaller N models to the right in the lower panel so that
they all coincide as Q rises through 1.4, which reveals that the
N = 2 × 104 model, as used in Paper I, heated a little more
rapidly and to a slightly higher value of Q than did the larger N
models.

However, the heating rates are all very similar once spiral
activity gets going, indicating that rapid heating is not caused
by two-body relaxation, as some authors (e.g., Fujii et al. 2011)
have suggested. We offer four additional reasons to reject their
conjecture. First, we noted in Paper I that heating was much
less rapid in the inner disk of a Kuzmin–Toomre model, where
shear is weak and spiral activity was insignificant, indicating
that heating was caused by the spirals and not by relaxation.
Second, the same code has been used with similar particle
numbers to reproduce the normal modes expected from stability
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Figure 1. Time evolution of Q at R = 4 in four simulations with increasing
numbers of particles, still confined to move in a plane. In the lower panel, the
curves have been shifted horizontally so that all pass through Q = 1.4 at the
same moment, which required larger time shifts in the experiments with smaller
N. Note that a rotation period at the half-mass radius is 20 dynamical times.

(A color version of this figure is available in the online journal.)

analyses of smooth stellar fluids (Sellwood & Athanassoula
1986), which would be impossible if relaxation were rapid.
Third, the code reproduced the behavior in a solution of the
collisionless Boltzmann equation (Inagaki et al. 1984). Finally,
relaxation in 2D systems differs fundamentally from that in
3D (Rybicki 1972; Sellwood 2013b) and is readily controlled
by force softening. The slower heating in the experiments by
Fujii et al. (2011) and others is accounted for in Section 4.3; see
Section 3 for an explanation of the origin of spirals and Section 4
for further discussion of related work by other authors.

2.3. Spiral Heating

In all cases, the model heated to Q � 2 in a few disk rotations,
and the increased random motion caused spiral activity to fade,
as reported in Paper I, and by others, in models without cooling.
Because the dynamical timescale is shorter near the center, the
inner disk heated more rapidly than the outer.

Scattering at the Lindblad resonances causes an irreversible
increase in the level of random motion of the scattered particles
(Carlberg & Sellwood 1985). Since Jacobi’s integral, IJ =
E − ΩpLz, is a conserved quantity in a non-axisymmetric
potential that rotates steadily at a rate Ωp (Binney & Tremaine
2008), changes of angular momentum ΔLz and specific energy

Figure 2. Lindblad diagram showing specific energy, E, as a function of angular
momentum, Lz, for particles in our Sc model. Eccentric orbits lie in the region
above the solid curve, which is for circular orbits. The dashed and dotted curves
show the loci of, respectively, corotation and the two Lindblad resonances for
an m = 3 disturbance with Ωp = 0.07. The arrows mark possible scattering
vectors at the three principal resonances.

are related as ΔE = ΩpΔLz. Thus, stars are scattered along
trajectories of fixed slope Ωp in the Lindblad diagram, shown in
Figure 2, and lasting changes occur only at resonances (Lynden-
Bell & Kalnajs 1972). Note that the scattering vectors at the
Lindblad resonances (dotted curves) are angled away from the
slope of the circular orbit curve and scattered particles therefore
gain energy of a non-circular motion. Random motions rise
everywhere because the simulations manifest multiple patterns
with resonances distributed widely over the disk (Section 2.5).

In Paper I we demonstrated that a modest rate of addition
of new particles on near-circular orbits, in a crude attempt to
mimic accretion of cold gas that was immediately converted
to star particles, was sufficient in this model to maintain spiral
activity “indefinitely.” Spiral activity has also been shown to
persist in simulations that employ other methods of cooling
(e.g., Carlberg & Freedman 1985; Toomre 1990; Roškar et al.
2008; Agertz et al. 2011). The persistence of spiral activity in
cooled simulations provides an attractive explanation for the
strong correspondence between the presence of spirals and gas
in real galaxies (Oort 1962).

2.4. Three-dimensional Models

We next present simulations of the same mass models that
allow full 3D motion for the disk particles. In addition, these
models have f = 0.4, making the disk slightly more massive.

Employing N = 2 × 104 particles, while almost enough in
2D, is woefully inadequate once 3D motion is allowed, since the
disk thickens excessively due to two-body relaxation (Sellwood
2013b). We therefore present results from experiments with
2 × 105 � N � 2 × 108.

Figure 3 shows the perturbed surface density at a few times
in the simulation with N = 2 × 108, showing that the evolution
resembles that of the uncooled model in Paper I, even though
the particle number was increased by four orders of magnitude
and 3D motion is allowed. Figure 4 shows the time evolution
of Q(4) in these 3D models for which there is again a mild N-
dependence. Once again, the onset of heating is more delayed
as N rises because spiral activity takes longer to get going.
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Figure 3. Surface density of particles in the N = 2 × 108 simulation at the times indicated. The color scale, which ranges over ±0.5, indicates the density relative
to the mean at each radius; values outside this range are black or white. The radius of each circle is 8 disk scales. Notice that the spirals develop quite rapidly in the
center, then spread outward before fading more slowly as the disk heats, while a small bar develops in the center.

(A color version of this figure is available in the online journal.)

Figure 4. Time evolution of Toomre’s Q at R = 4 in simulations in which 3D
motion is allowed and f = 0.4. The four curves show results with different
numbers of particles.

(A color version of this figure is available in the online journal.)

2.5. Power Spectra

We use Fourier transforms to compute the gravitational field
from the distribution of particles assigned to our polar grid at
every step. We save the vertically integrated azimuthal Fourier
coefficients of this mass distribution at each grid radius at
regular intervals, typically 40 time steps, or Δt = 2. Fourier

transformation in time of these coefficients yields the power
as a function of frequency, for each sectoral harmonic, m, and
radius R. The duration of the simulations is long enough, and
the data saved at sufficiently frequent intervals, that we can
subdivide the time range in order to compare the spectra from
different periods of evolution.

The top (bottom) rows of Figure 5 present power spectra
for three sectoral harmonics from the first (second) half of the
evolution of our 3D model with N = 2 × 106. The contours
are of power as functions of radius and frequency, the solid curve
shows mΩc and the dashed curves mΩc ± κ , where Ωc(R) is the
angular frequency of circular motion and κ(R) is the Lindblad
epicyclic frequency. Each horizontal ridge indicates a coherent
density wave of frequency mΩp, where Ωp is the pattern speed,
that persisted for some time and extended over a range of radii.
Plots from our larger N simulations are remarkably similar,
although the precise frequencies of the ridges differ.

The ridges typically have the largest amplitudes near corota-
tion and generally extend roughly as far as the Lindblad reso-
nances, as expected from the locally derived dispersion relation
for spiral waves (Binney & Tremaine 2008). In some cases,
the wave outside corotation is very weak. Note that the high-
frequency features near the center in the right panels (m = 4)
have twice the frequencies of the stronger inner features at
m = 2 (left panels), and they are therefore not independent.

In the early part of the evolution, these coherent waves are
strongest in the inner disk, but activity spreads outward over
time, while it weakens in the inner disk, which is heated more
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Figure 5. Contours of power as functions of radius and frequency for different sectoral harmonics m in our 3D model. The top row is for the first half of the evolution,
22 � t � 260, the bottom row shows the second half 262 � t � 500. In each panel, the solid (red) curve marks mΩc and the dashed (blue) curves mΩc ± κ . Each
horizontal stripe indicates a coherent wave with a well-defined angular frequency, mΩp , over the time interval. The green horizontal lines mark the frequencies of the
waves illustrated in Figure 6.

(A color version of this figure is available in the online journal.)

rapidly as a result of the spiral activity. Movies of the time
evolution of the power spectra from all of our models reveal that
each density ridge typically lasts for between 5 and 10 rotations
at its corotation radius.

For each frequency in Figure 5, the temporal Fourier trans-
form yields the amplitude and phase of the wave at the initial
moment. From this information, we can draw the shapes of the
waves that give rise to the ridges in the power spectra. Figure 6
shows the projected shapes of six waves that were marked with
green horizontal lines in Figure 5, with the corotation and Lind-
blad resonance radii for each drawn by solid and dotted circles,
respectively. The wave in panel (a) is probably a bar mode, while
each of the others has a trailing spiral form with peak amplitude
near corotation; most have a more tightly wrapped feature near
the inner Lindblad resonance (ILR).

2.6. Quiet Starts

The above results were obtained from simulations in which
the initial azimuths of the particles were selected at random,
causing the initial behavior to be driven by the shot noise
from the random positions of the particles. We have also run
several separate 2D quiet start simulations in order to identify
instabilities of the smooth initial disk.

A quiet start (temporarily) suppresses activity excited by
particle noise, since particles are initially spaced evenly around
rings and disturbance forces are restricted to a single sectoral
harmonic m. Provided the number of particles on each ring is
>2m + 1, forces from the ring are those of a mildly distorted
uniform ring, allowing disturbances to grow by many e-folds
before they saturate. Fitting the evolution of the amplitude and
phase of the density variation in the linear regime yields the
pattern speed and growth rate of dominant unstable mode(s)
at each m; see Sellwood & Athanassoula (1986) for a full
description of the technique.

With m = 2 only, we found a very slowly growing mode with
ω � 0.71 + 0.03i; the higher pattern speed of the bar mode in
the noisy start model (Figures 5 and 6(a)) is probably seeded by
shot noise. As the growing mode had an open bisymmetric spiral
form with no ILR, it qualifies as a bar-forming cavity mode of
the kind described in Section 3.1; the growth rate is low because
the disk is sub-maximal. Because it grew so slowly, it did not
produce a visible bar until t � 480 in the quiet start run. We
found a much fiercer instability when forces were restricted to
m = 3 only: the measured frequency was ω ≈ 2.1 + 0.13i. This
appeared to be another cavity-type mode, since its rotation rate
is high enough to avoid an ILR. But even this fierce mode is
outgrown, in noisy start simulations, by other features at larger
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Figure 6. Projected shapes of the six long-lived waves marked with green lines in Figure 5. Contours are of positive overdensity only and the solid circle marks
corotation, while the dotted circles mark the Lindblad resonances. Panels (a) through (d) are from the first half of the evolution while (e) and (f) are from the later part.

radii as shown in the top middle panel of Figure 5. There were
no credible linear modes with m = 4 only.

Note that we did not find any evidence for outer edge modes
(Toomre 1981; Papaloizou & Lin 1989) in any of these quiet
start simulations, although it is possible that one could be present
at each m. Our tapered edge would cause any instability to grow
too slowly to be detected and, if present, a mild instability would
not affect the inner disk because the orbit timescale is so much
longer near the disk edge (Rmax = 7.5).

3. NATURE OF THE WAVES

With the principal exception of the mode in Figure 6(a) that
gives rise to a small, persistent bar, we contend that almost all
the ridges in the power spectra resulted from transient spiral
modes of the form shown in the other panels of Figure 6. Here
we explain this interpretation more fully and provide supporting
evidence.

3.1. Swing-amplified Modes

The famous transient spiral presented by Toomre (1981, his
Figure 8), reproduced as Figure 6.19 in Binney & Tremaine
(2008), illustrates swing-amplification of a wave packet. The
evolution is not that of a mode because the wave neither
maintains a fixed shape nor grows indefinitely. Instead it is a
response to a particularly provoking initial disturbance.

After this transient swings from leading to trailing, accom-
panied by strong amplification, the spiral wave travels radially
away from corotation at the group velocity (Toomre 1969),4

4 Strictly, this is the direction of wave propagation on the short-wave branch
of the dispersion relation only (Lin & Shu 1966; Binney & Tremaine 2008;

advecting wave action, or angular momentum, across the disk.
In a stellar disk with smoothly varying surface density and ran-
dom motion, as was adopted for this calculation by Toomre, the
wave propagates without significant losses as far as the Lind-
blad resonances, which are the only locations where the wave
action can be absorbed by collisionless particles (Lynden-Bell
& Kalnajs 1972; Mark 1974).

Modes, on the other hand, are standing waves between two
reflecting ends, as is familiar from guitar strings and organ pipes.
If the in-going trailing wave can reflect off some feature, or the
center, it becomes a leading wave with a group velocity directed
back toward corotation. The outgoing leading wave incident on
corotation is “super-reflected,” or swing-amplified, allowing a
closed cycle with amplification. A growing mode is a continuous
wavetrain that propagates around this cycle. As usual, only the
frequencies for which the phase closes can give rise to standing
waves.

Modes of this type are termed cavity modes. Reflection off the
center is the mechanism for the bar-forming instability proposed
by Toomre (1981). Here, we suggest that reflections can also
occur where previous disturbances have created features by
resonant scattering in an initially smooth disk.5

Sellwood 2013a); the group velocity is in the opposite direction on the
long-wave branch. However, the long-wave branch probably does not exist
except in disks of very low mass (see the Appendix of Lynden-Bell & Kalnajs
1972).
5 Mark (1977) also proposed a feedback loop through reflection of waves off
a feature in the inner part of a low-mass disk, but the Q-barrier he invoked
caused more of a refraction of trailing waves from the short- to the long-wave
branch of the dispersion relation.
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3.2. Impedance Changes

Wave particle interactions at Lindblad resonances scatter
particles to more eccentric orbits and different angular momenta
(Figure 2). It is significant, as noted by Sellwood (2012) for
m = 2 waves in the Mestel disk, that scattering at the ILR
is in a direction in the (Lz,E) plane that is almost along the
locus of the ILR, and therefore, each scattered particle stays
on resonance causing large changes to its orbit from even quite
mild spiral patterns. Furthermore, the ILR is localized so that
only a small fraction of the particles are affected by it. This
important feature of ILR scattering is quite general (Figure 2
is drawn for an m = 3 wave in our Sc model), and it contrasts
with the behavior at the OLR where small changes are shared
by many particles that are each quickly scattered off resonance.

The particles scattered at an ILR of one disturbance have
increased radial excursions over a highly localized range of
angular momenta. (We show this to be the case in our models
in Figure 8 below.) The effect of this locally increased random
motion is that part of the disk will respond less cooperatively to
subsequent waves as they travel across the disk, with important
consequences. It is the abrupt change to the density of particles
in action space that matters for spiral dynamics, which is not
blurred by the increased epicyclic excursions.

Toomre (1969) applied the group velocity of a wave packet

vg = ∂ω

∂k
, (4)

to spiral waves, for which ω ≡ mΩp and k are the pattern
speed and radial wavenumber of the wave, respectively. The
radial speed at which angular momentum is advected, vg can
be computed from the dispersion relation for spiral waves in a
stellar disk, which is (in the WKB approximation)

(ω − mΩ)2 = κ2 − 2πGΣF(s, χ )|k|, (5)

(Lin & Shu 1966; Binney & Tremaine 2008; Sellwood 2013a).
Here, Ω and κ are the usual circular and epicycle frequencies in
the axisymmetric potential, while F(s, χ ) is the factor by which
the responsiveness of the disk to the spiral potential is reduced
compared with that were the disk to have no random motion. It
depends on two properties of the stellar distribution: the ratio
of the forcing frequency experienced by a star to its natural
frequency, s ≡ |ω − mΩ|/κ , and χ ≡ 〈v2

R〉k2/κ2, which is the
square of the ratio of the typical sizes of the stellar epicycles
(∝ 〈v2

R〉1/2/κ) to the wavelength of the wave (∝ |k|−1). When
χ is large, F � 1 because the unforced epicyclic amplitude of
most stars is larger than the radial wavelength of the disturbance,
and the weak supporting response arises mainly from the small
fraction of stars near the center of the velocity distribution.

In our situation, there is an abrupt change to the sizes of the
epicycles of stars that causes a corresponding abrupt change to
F . To understand how this affects the transmission of a spiral
wave, it is useful to introduce the concept of impedance, familiar
from electrical circuits or, more usefully, acoustic waves (see,
e.g., French 1971). The impedance in a stretched string, for
example, is defined as Z = Fy/vy = (T μ)1/2, where Fy and vy

are, respectively, the restoring force and displacement velocity
in the vibration normal the x-direction of the equilibrium string;
T is the tension; and μ the mass per unit length. When two
strings with differing μ are joined, the difference of impedance
determines the reflection and transmission of waves across the
join. For example, a wave in a heavy string is perfectly reflected
at a join to a massless string.

Returning to spiral waves, the displacement velocity for spiral
waves in the local approximation is

v̄Ra = − ω − mΩ
κ2 − (ω − mΩ)2

kΦaF (6)

(Binney & Tremaine 2008, Equation (6.58)), the impedance,
therefore, is Z = kΦa/v̄Ra ∝ F−1, with the frequency factor
being dependent only on the properties of the axisymmetric
potential and the pattern speed of the spiral. Thus, when a spiral
wave traveling across a disk encounters an abrupt change to F ,
it will be partly reflected and partly transmitted. In particular, a
large decrease in F , previously created by resonance scattering
from an earlier wave, will be highly reflective.

3.3. Emergence from Noise

Sellwood (2012) studied the emergence of true instabilities
from noise in highly restricted simulations of the half-mass
Mestel disk with differing numbers of particles; motion was
confined to a plane and perturbing forces arose from a single
sectoral harmonic. He reported that changes caused by ILR
scattering by earlier disturbances led to enhanced activity in the
disk, presumably because the impedance change caused partial
reflection of later in-going trailing waves. He found that the level
of spiral activity exponentiated rather slowly until the reflections
became strong enough to trigger an unstable global spiral mode
with a much higher growth rate.

Our present simulations are slightly more general than those
of Sellwood (2012), because they allow 3D motion and include
multiple sectoral harmonics in the determination of the forces
from the particles. However, we suggest that the recurrent cycle
of modes also develops here because of impedance changes
caused by resonance scattering in the inner disk.

In our large-N experiments, swing-amplification of the ini-
tial low-amplitude shot noise created mild in-going spiral re-
sponses that are fully absorbed at the ILR causing important,
though small, localized changes to the impedance of the disk.
Subsequent responses to noise were partially reflected at these
features, and the partial feedback boosted later activity to a
somewhat higher amplitude. As found by Sellwood (2012), sev-
eral cycles of scattering by swing-amplified responses to shot
noise were required before the impedance changes wrought by
the absorption of these transient wave packets could give rise
to reflections that were sufficiently strong enough to trigger in-
stabilities. Hence, the increasing delay to the start of the visible
spiral activity and the disk heating reported in Figures 1 and 4.

Figure 7 presents further evidence in support of this picture.
Each curve shows the amplitude of the m = 3, cot α = 1
component of the transform:

A(m,α, t) = 1

N

N∑
j=1

exp[im(φj + cot α ln Rj )], (7)

where (Rj , φj ) are the cylindrical polar coordinates of the
jth particle at time t, and α is the pitch-angle of an m-arm
logarithmic spiral, with positive values for trailing spirals. We
have smoothed the curves in time using a running average of 10
consecutive values.

The red curve in Figure 7 shows the time evolution of the
amplitude, |A|, in our largest simulation (N = 2×108 particles).
The other lines show the amplitude evolution in three further
experiments, each derived from that used for the red line by
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Figure 7. Amplitude evolution of the m = 3, 45◦ trailing logarithmic spiral
transform of the particle distribution in experiments with N = 2×108 particles.
The red curve shows the evolution in the model used in Figure 4, while the green,
blue, and cyan curves show the behavior when the particles from that model have
their azimuthal coordinates randomized after two, four, and six disk rotations,
respectively. The right panel shows the same lines shifted to a common start
time.

(A color version of this figure is available in the online journal.)

restarting from randomized coordinates of all the particles after
two, four, and six rotations. We merely rotated the radius vector
to each particle through a random angle, while preserving the
radius, R, and the polar velocity components (vR, vφ). This
procedure clearly destroyed all non-axisymmetric structure at
that moment and reduced the amplitude back to the shot noise
level, while leaving the other parts of the phase space structure
intact. It is clear that the green and blue curves rise more quickly
than the red does, indicating that the models scrambled after two
and four rotations possess more vigorous instabilities than the
original.

In the cases of the models restarted at t = 40 and at t = 80,
shown by the blue and green curves, we find the time evolution
over the first 30 dynamical times is quite well fitted by two
exponentially growing modes, with growth rates in the range
0.07 � γ � 0.11 and both modes rotate slowly enough to
possess ILRs, although the precision of our frequency estimates
is limited by the brevity of the period of linear growth. This
contrasts with the original run, shown by the red curve, where
many frequencies are present in the evolution to t = 40 that
appear to be mostly responses to swing-amplified shot noise.

Not only does this result show that the prior evolution has
altered the phase space structure in such a way as to provoke
instability, but the growing disturbances owe nothing to pre-
existing density variations in the disk, since they were all
destroyed by randomizing the azimuths of all the particles. It is
therefore inconsistent with other possible explanations for the
continued activity that invoke nonlinear effects (D’Onghia et al.
2013) or mode coupling (Tagger et al. 1987; Fuchs et al. 2005).

The cyan curve does not rise as rapidly as do the blue and
green curves because it was restarted at t = 120 in the original
model when the disk had heated somewhat, especially in the
inner parts. The vigor of instabilities in the inner disk at later
times will be reduced by the increased random motion, while
those farther out in the disk would grow more slowly anyway
because the dynamical timescale is longer.

3.4. Limiting Amplitude

A mode that grows exponentially at a small amplitude must
saturate as the second- and higher-order terms, which are
neglected in linear analyses, become important. The equilibrium

state is unchanged to first order, but it can be altered by the
higher-order terms.

During the period when linear theory is adequate, the de-
flections of the stellar motions caused by the growing potential
perturbation must reinforce the perturbed density or else the
mode would not grow. However, the orbital deflections of the
particles change at finite amplitude; in particular, horseshoe
orbits appear near corotation. Sellwood & Binney (2002) ar-
gued that the maximum amplitude of a spiral is limited by the
widening horseshoe region where stars are driven away from,
instead of toward, the density maximum. This change kicks in
suddenly because the exponentially growing disturbance den-
sity is linearly dependent upon in the disturbance potential,
but the width of the horseshoe region grows as its square root
(Sellwood & Binney 2002). Empirically, the relative overden-
sity in the disturbance reaches some 20% or 30% before this
behavior terminates the growth of a linear mode. The wave then
begins to decay about as rapidly as it grew (Sellwood & Binney
2002), and all the wave action, i.e., angular momentum, stored
in the disturbance (Lynden-Bell & Kalnajs 1972) is carried away
from corotation at the group velocity (Toomre 1969).

3.5. Recurrent Cycle

Once the distribution function, hereafter DF, has become suf-
ficiently non-smooth to provoke one instability, further instabil-
ities can give rise to later spirals. Each is a cavity mode with
reflections off corotation, where it is amplified, and some inner
radius where recent disturbances have caused abrupt changes to
the impedance of the disk.

Evidence for this picture is presented in Figure 8. The upper
panel shows the density of particles in the space of the actions
at time 0, while the lower panel shows the change in the density
of particles between times 160 and 200 in the same space. The
azimuthal action, Jφ ≡ Lz in an axisymmetric potential, while
the radial action, JR, is a measure of the amount of in-and-out
motion of the particle. At the initial moment, the density of
particles in this space is quite smooth, declining steeply with
increasing random motion, and slowly with increasing angular
momentum. The differences at later times reveal rising features
with steep negative slopes marked by the blue contours that
indicate the movement of particles to higher JR and slightly
lower Jφ , which is characteristic of ILR scattering. The dotted
lines, which have similar slopes to each other and to the ridges,
indicate the slopes of two fiducial ILRs for arbitrarily chosen
pattern speeds.

The increases in JR over this short time period are localized
at a small number of ILRs. The consequent abrupt changes
to the impedance of the disk cause traveling waves to be
sufficiently strongly reflected that the system can support fresh
standing waves that are amplified at corotation. As reflections at
impedance changes are partial, some wave action continues to
the ILR of the mode, where further resonant scattering occurs.
Over time, the generally rising level of random motion makes
the disk less able to support and amplify coherent waves and
activity eventually dies away—unless some cooling is applied.

4. OTHER RECENT WORK

Grand et al. (2012a, 2012b), Baba et al. (2013), and Roca-
Fàbrega et al. (2013) presented a view of the behavior of
spirals in their simulations that differs from ours in at least
two substantial respects. We do not question their simulation
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Figure 8. Upper panel: the density of particles in the space of the actions (Jφ, JR)
at t = 0 in the N = 2 × 106 particle experiment. The density maximum is near
the origin, and the contour spacing is logarithmic; the third contour is at 0.1 and
the seventh is at 10−3 of the maximum. Lower panel: changes to the density of
particles on the same axes between times 160 and 200 in the same simulation.
Contours in this panel are linearly spaced and are colored blue where the density
has increased, red where the density decreased. The dotted lines indicate the
slopes of ILRs in this plane for arbitrarily chosen frequencies; green is for m = 3
and cyan for m = 4.

(A color version of this figure is available in the online journal.)

results, which are consistent with most other work, but we take
issue with their interpretation.

4.1. Superposed Modes

First, these authors argued that the spirals in their simulations
of generally rather low-mass disks appeared to shear continu-
ously. In particular, they almost corotated with the stars at all
radii, making them qualitatively different from the usual density
wave assumption (e.g., Binney & Tremaine 2008).

We have run simulations with N = 2 × 106 particles and half
the disk mass of those presented above, i.e., with f = 0.2, and
observe multi-arm spiral features that appear to shear as these
authors describe. However, power spectra, shown in Figure 9
again reveal coherent waves that qualitatively resemble those in
the more massive disk.

Most spiral activity in this low-mass disk occurs with m � 4,
and there is little power for sectoral harmonics m � 3.
Furthermore, waves with higher angular periodicities have
smaller radial extents because the Lindblad resonances lie closer
to corotation. Higher-multiplicity spiral patterns are preferred in
lower-mass disks for reasons that are well understood (Paper I).

The yardstick for dynamical instabilities,

λcrit = 4π2GΣ
κ2

(8)

(Toomre 1964), decreases with the disk mass (for a fixed rotation
curve). Swing-amplification is strongest where the wavelength
of an m-armed disturbance around its corotation circle:

2πRCR

m
∼ 2λcrit or m ∼ RCRκ2

4πGΣ
, (9)

(Goldreich & Lynden-Bell 1965; Julian & Toomre 1966;
Toomre 1981). Thus lower disk mass fractions, for which λcrit
is shorter, favor higher-multiplicity patterns.

Figure 9 reveals that apparently shearing patterns are simply
the result of the superposition of multiple separate modes. The
co-existence of two or more waves rotating at different angular
rates necessarily produces a shearing density ridge, provided
those waves with a lower frequency have peak amplitudes at
a larger radii.6 Because these higher-multiplicity spiral modes
have a smaller radial extent than those in the high-mass disk, the
spectra must be computed from long time periods of evolution
with frequent analyses to reveal the underlying modal behavior.

4.2. Radial Mixing

The authors of the papers cited at the start of this section
offer a description of the mechanism for radial mixing, which
still occurred in their simulations, that differs from the standard
view (Sellwood & Binney 2002; Roškar et al. 2012; Solway
et al. 2012) that requires stars to move through the pattern,
albeit slowly.

In fact, the standard view still holds, as shown in Figure 10,
which plots ΔLz = Lz(400) − Lz(0) versus initial Lz(0) for the
particles in the low-mass disk. The ΔLz values display similar
angled streakiness to that reported by Sellwood & Binney (2002)
and by Solway et al. (2012) that results from distinct modes, even
though the individual patterns may appear to be shearing.

The angular momentum of a particle on a horseshoe orbit
changes substantially; those inside corotation gain enough
angular momentum to cross the resonance, while those outside
it lose a similar amount. The particles experience these changes
once only for each transient spiral mode because the disturbance
has a large amplitude for less than half a horseshoe orbit period
(Sellwood & Binney 2002). Thus, the dominant changes to the
angular momenta of particles near corotation of a single wave
are for low angular momentum particles to gain and high angular
momentum particles to lose, giving rise to a single angled streak
in this plot. The multiple streaks visible in Figure 10 arose from
multiple coherent waves that each scattered particles across its
own corotation resonance, which requires the wave to have
had a coherent frequency and to have saturated as described
in Section 3.4.

It should be noted that where linear perturbation theory holds,
i.e., for small amplitude disturbances away from resonances, the
response of the disk particles when multiple waves are present
can be computed separately for each wave (see, e.g., Binney &
Tremaine 2008, pp. 188–190), with the net response being the
sum of the separate linear responses. Thus, resonant scattering
by one wave is unaffected by the co-existence of other waves,
unless resonances were to overlap.

6 For an animation showing how this is possible, see
http://www.physics.rutgers.edu/∼sellwood/spirals.html.
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Figure 9. Power spectra from the full duration of the low-mass disk model (f = 0.2). Note that there is little power in this model at 2 � m � 3 and most power is for
m � 4, whereas sectoral harmonics m > 4, not shown in Figure 5, had very little power in the disk with f = 0.4.

(A color version of this figure is available in the online journal.)

4.3. Slower Disk Heating

Fujii et al. (2011) and the authors of the papers cited at the
beginning of this section also reported that spirals heat the disk
more slowly than the rate reported in Paper I. Figure 11 shows
that the heating rate is indeed lower in disks with smaller active
mass fractions. The reason for the difference is clear: lower-mass
disks support patterns of higher multiplicity (Figure 9), which
therefore have Lindblad resonances closer to corotation. Thus,
the angular momentum transferred outward over the shorter
radial extent of these multi-arm patterns releases less energy
into non-circular motion (see Figure 2).

4.4. Heavy Particles

D’Onghia et al. (2013) employed N = 108 particles in
their simulations of a low-mass disk, and experimented with
the consequences of adding a few co-orbiting, heavy particles.
They ran a model with no heavy particles for about 2.5 disk
rotations during which no visible change occurred, but it is
likely that non-axisymmetric disturbances were growing that
would have appeared had they continued the evolution. (We
note that our experiment with a low-mass disk employing merely
2×106 particles manifested no visible activity and little heating
for perhaps eight rotations, as shown by the green curve in
Figure 11.)

D’Onghia et al. (2013) showed that starting similar models
with a sprinkling of heavy particles provoked almost immediate
multi-armed spiral activity. In one case, they introduced a
single perturbing particle that produced a one-armed spiral
response and then removed it again one full disk rotation after the
start. Four disk rotations after the perturber was removed, they
showed that the disk continued to manifest multiple spiral arms,
which they attributed to the nonlinear evolution of the original
disturbance. We suggest instead that their system developed
self-excited instabilities due to changes to the originally smooth
DF of the disk. Instabilities, which grew out of the initial noise
in our experiments were, in their experiment, seeded by the
response to the massive co-orbiting particle they introduced,
enabling visible self-excited activity immediately thereafter.

Of course, the heavy particles employed by D’Onghia et al.
(2013) were intended to mimic the molecular cloud complexes
possessed by real galaxy disks. Julian & Toomre (1966) showed
that a massive, co-orbiting perturber provoked a spiral response
in the surrounding stellar disk having an amplitude that scaled
with the mass of the perturber. We have preferred to avoid further
complicating the dynamical picture with this added realism,
as we wish to understand how purely collisionless disks can
develop and support recurring spiral patterns. However, if spirals
can develop as self-excited instabilities, as we have argued
here, then the role of heavy clumps in the disk is probably not
fundamental to the origin of spiral patterns (cf. Toomre 1990).
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Figure 10. Change in angular momentum, ΔLz, vs. initial angular momentum,
Lz, for particles in the low-mass disk simulation. The upper panel shows a
representative fraction of the particles while the lower panel shows contours of
higher than average density in the same plane.

5. CONCLUSIONS

We have presented evidence that spiral activity in simulations
of cool, unbarred, collisionless stellar disks results from a re-
current cycle of transient spiral modes of spiral form (Figure 6).
We describe them as modes because they start as linear insta-
bilities that grow exponentially even from very low amplitude
(Figure 7) before saturating and decaying.

Growing modes are standing-wave oscillations that have
positive feedback to cause instability. We argue that the growing
wavetrain reflects off corotation, where it is swing-amplified,
and again at some inner radius, where the DF has been modified
by previous disturbances in the disk. Scattering of particles at
resonances causes localized heating over a moderately narrow
range of angular momenta (Figure 8), which introduces abrupt
changes to the impedance experienced by traveling waves. Such
changes cause partial reflection of a subsequent wave, allowing
a standing wave, or unstable mode to develop.

Spiral instabilities saturate as a result of the onset of horseshoe
orbits that appear as the relative overdensity near corotation
approaches ∼20%, as originally proposed by Sellwood &
Binney (2002). Once growth is halted by the dispersal of
the overdensity at corotation, the wave action stored in the
remaining disturbance propagates away from corotation until
it is absorbed by wave–particle interactions that cause further
localized heating. Thus, the instability cycle is able to repeat.

The repeated scattering of particles at different locations leads
to a general rise of random motion over the disk that weakens its

Figure 11. Time evolution of Q at R = 4 in two 3D models with the same
N = 2 × 106, but different active mass fractions. The lighter disk (green)
has f = 0.2, which is half the mass fraction of those shown in Figure 4 and
reproduced in red.

(A color version of this figure is available in the online journal.)

ability to support further coherent waves, and activity gradually
fades on a timescale of some twenty disk rotations. We have also
shown that this timescale is longer in low-mass disks because
the multi-arm patterns that are dynamically favored in this case
transport angular momentum over a shorter radial distance and,
therefore, release less energy into random motions (Section 4.3).

While we recognize that we have not substantiated all the
details, we have presented considerable evidence to support
our broad picture. In particular, we find the apparent rapidly
changing spirals result from the superposition of a small number
of relatively long-lived coherent waves (Figure 5); the phase
coherence and large limiting amplitude of these waves are most
naturally accounted for by unstable modes. The evolution of
each disturbance creates the seeds for a fresh instability, since
we find more vigorous growth in simulations that are restarted
after scrambling only the azimuthal phases of the particles
(Figure 7). Not only does this result support our picture, but
it shows that the activity in the simulations owes nothing to
pre-existing density structures, that were erased by scrambling.
Figure 8 presents evidence of resonance scattering, which we
argue changes the impedance of the disk to traveling waves,
thereby creating features that cause partial reflection of the
waves, allowing fresh cavity modes to develop.

Much of our picture builds on previous work by many au-
thors: the dispersion relation for spiral waves (Lin & Shu
1966), their group velocity (Toomre 1969), swing-amplification
(Goldreich & Lynden-Bell 1965; Julian & Toomre 1966;
Toomre 1981), resonance scattering (Lynden-Bell & Kalnajs
1972; Mark 1974), feedback loops (Mark 1977; Toomre 1981),
global mode analyses (Zang 1976; Kalnajs 1977; Evans & Read
1998), and horseshoe orbits at corotation (Sellwood & Binney
2002). We could not have reached our present level of under-
standing without all of these contributions, yet our picture is
distinct from any previous suggestion. In particular, we argue
that the assumption of a smooth DF, which many authors regard
as the natural starting point, fundamentally discards the spiral
baby with the bathwater!

Direct observational tests of the generating mechanism for
spirals are difficult to devise. Evidence for density waves was
summarized in the introduction but does not help to distinguish
between rival theories for their origin. However, analysis of
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the complete phase-space information for a sample of solar
neighborhood stars (Sellwood 2010) revealed evidence for a
resonant scattering feature, of the kind illustrated in Figure 8,
which supports the picture we present here. Furthermore, the
existence of such a feature is inconsistent with other leading
theories for the origin of spiral patterns (e.g., Bertin et al. 1989;
Toomre 1990).
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dian NSERC and the Canadian Institute for Advanced Research
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