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ABSTRACT

With numerical simulations, we analyze in detail how the bad data removal, i.e., the mask effect, can influence
the peak statistics of the weak-lensing convergence field reconstructed from the shear measurement of background
galaxies. It is found that high peak fractions are systematically enhanced because of the presence of masks; the
larger the masked area is, the higher the enhancement is. In the case where the total masked area is about 13%
of the survey area, the fraction of peaks with signal-to-noise ratio ν � 3 is ∼11% of the total number of peaks,
compared with ∼7% of the mask-free case in our considered cosmological model. This can have significant effects
on cosmological studies with weak-lensing convergence peak statistics, inducing a large bias in the parameter
constraints if the effects are not taken into account properly. Even for a survey area of 9 deg2, the bias in (Ωm, σ8) is
already intolerably large and close to 3σ . It is noted that most of the affected peaks are close to the masked regions.
Therefore, excluding peaks in those regions in the peak statistics can reduce the bias effect but at the expense of
losing usable survey areas. Further investigations find that the enhancement of the number of high peaks around the
masked regions can be largely attributed to the smaller number of galaxies usable in the weak-lensing convergence
reconstruction, leading to higher noise than that of the areas away from the masks. We thus develop a model in
which we exclude only those very large masks with radius larger than 3′ but keep all the other masked regions
in peak counting statistics. For the remaining part, we treat the areas close to and away from the masked regions
separately with different noise levels. It is shown that this two-noise-level model can account for the mask effect on
peak statistics very well, and the bias in cosmological parameters is significantly reduced if this model is applied
in the parameter fitting.
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1. INTRODUCTION

Gravitationally induced weak-lensing effects have emerged as
one of the most important probes in cosmological studies (e.g.,
Bartelmann & Schneider 2001; Albrecht et al. 2006; Amendola
et al. 2013; Abate et al. 2012; Heymans et al. 2012; Erben
et al. 2013; Simpson et al. 2013; Kilbinger et al. 2013). Besides
the shear two-point correlation analyses, weak-lensing peak
statistics can provide important and complementary information
especially considering that the structure formation is a nonlinear
process (e.g., White et al. 2002; Hamana et al. 2004; Tang
& Fan 2005; Hennawi & Spergel 2005; Marian et al. 2009;
Dietrich & Hartlap 2010; Kratochvil et al. 2010; Marian et al.
2012; Hilbert et al. 2012). Current observations have proved the
feasibility of detecting massive clusters from weak-lensing peak
identifications (e.g., Wittman et al. 2006; Gavazzi & Soucail
2007; Shan et al. 2012). Future weak-lensing surveys will be
able to provide a large number of peaks with high signal-to-noise
ratio, and therefore, their statistics should expectedly be able to
contribute significantly to precision cosmological studies. On
the other hand, it is known that many effects can profoundly
affect the weak-lensing peak statistics. The complex mass
distribution of clusters of galaxies and the projection effects of
large-scale structures along lines of sight prevent us from linking
weak-lensing peaks to single clusters in a simple way (e.g., Tang
& Fan 2005; Yang et al. 2011, 2013; Hamana et al. 2012). The
intrinsic ellipticities of source galaxies generate large noise that
not only produces false peaks through their chance alignments
(e.g., van Waerbeke 2000; Fan 2007) but also affects the true
peak signals from massive clusters significantly (Fan et al. 2010,

hereafter F10). Furthermore, various observational effects can
also have large impacts on weak-lensing peak statistics if they
are not taken into account properly. The full realization of the
power of weak-lensing analyses in future cosmological studies
relies on our thorough understanding of different systematics.

Weak-lensing observations target far away background galax-
ies; bad data occurrences are unavoidable, and they should be
masked out carefully (e.g., Heymans et al. 2012; Erben et al.
2013). These masks can occupy ∼10% to ∼20% of the to-
tal survey area and result in irregular survey boundaries and
artificial voids in the background galaxy distribution, which
in turn can affect the weak-lensing analyses considerably. The
mask effects on the shear power spectrum estimation and on the
weak-lensing Minkowski functionals have been investigated re-
cently (Hikage et al. 2011; Shirasaki et al. 2013). To perform
weak-lensing peak studies, in one way or another, to reconstruct
the mass distribution from the shape measurements of back-
ground galaxies. The so-called shear peak statistics is based on
the aperture mass map, which is the smoothed convergence
field with a compensated filter (e.g., Schneider et al. 1998;
Marian et al 2012). It is theoretically shown that the aperture
mass at a spatial location x0 can be obtained by applying a suit-
able filter to the tangential shear field with respect to x0 (e.g.,
Schneider 1996). The filter to the tangential shear field can be
derived from the compensated filter to the convergence field.
Alternatively, we can apply a filter to the full shear field (not the
tangential component) to obtain the smoothed shear field and
then from it to reconstruct the smoothed convergence field (e.g.,
van Waerbeke et al. 2013). It should be noted that in this lat-
ter approach, the filtering process is also applied directly to the
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shear field but not to the noisy convergence field reconstructed
from the unsmoothed shear field. Thus, the lack of galaxies in
masked regions inevitably affects the reconstructed mass map
and, consequently, the weak-lensing peak statistics. In this pa-
per, with numerical simulations, we perform detailed studies
of the mask effect on weak-lensing peak statistics and the de-
rived cosmological parameter constraints. Specifically, we run
sets of dark-matter-only N-body simulations and generate shear
and convergence maps by ray tracing. Background galaxies with
intrinsic ellipticities are randomly populated, and “observed” el-
lipticities including the shear signals from simulations are then
constructed for each galaxies. The masks are generated accord-
ing to the mask size distribution from Shan et al. (2012) and
are given spatial positions randomly in our statistical analyses.
We then remove galaxies inside the masks. To obtain the weak-
lensing mass distribution, we adopt the above-mentioned second
approach to reconstruct the smoothed convergence field from the
smoothed shear field obtained from the remaining galaxies. The
peak statistics is analyzed and compared with the case without
masks.

The rest of the paper is organized as follows. In Section 2, we
introduce the lensing basics related to our studies, including the
convergence reconstruction method. In Section 3, we describe
the simulations and the ray-tracing method. The generation of
the “observed galaxy ellipticities” and the reconstruction of
the convergence field from them without and with masks are
presented. In Section 4, the theoretical model of F10 used in our
peak statistical analyses is given, and its applicability is studied
by comparing with the results from simulations. Section 5
contains the main results of our analyses of the mask effects
on weak-lensing peak statistics. A summary and discussion are
given in Section 6.

2. THEORETICAL BASICS

Observationally, the weak-lensing effect is mostly extracted
from the shape distortion measurements of background galaxies,
which is directly related to the weak-lensing shear components.
On the other hand, for weak-lensing peak statistics, it targets
high peaks in the large-scale mass distribution and therefore is
more directly linked to the lensing convergence, which is the
weighted projection of the density distribution along the line
of sight. The convergence and the shear are not independent
quantities and are all determined by the lensing potential. Thus,
we can derive the mass distribution from the observed shape
measurements as described in the following.

Considering small source galaxies, their linear-order image
distortion from the gravitational lensing effect of a single
lens can be described by the Jacobian matrix given by (e.g.,
Schneider et al. 1992)

A =
(

δij − ∂2ψ(θ )

∂θi∂θj

)
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (1)

where κ is the lensing convergence and γ1 and γ2 are the two
shear components with

κ = 1

2
∇2ψ, γ1 = 1

2

(
∂2ψ

∂2θ1
− ∂2ψ

∂2θ2

)
, γ2 = ∂2ψ

∂θ1∂θ2
. (2)

The lensing potential ψ is determined by the surface mass
density of the lens through

ψ(θ) = 1

π

∫
d2θ

′ Σ(θ
′
)

Σcr
ln |θ − θ

′ |, (3)

where Σcr is the critical surface mass density given by

Σcr = c2

4πG

Ds

DlDls

(4)

with Dl,Ds , and Dls being the angular diameter distances from
the observer to the lens, to the source, and between the lens and
the source. It can be seen that κ = Σ/Σcr . For weak-lensing
effects from large-scale structures beyond a single lens, under
the Born approximation, the above formulations still hold except
the lensing convergence is given by, in the case of a fixed source
position (e.g., Bartelmann & Schneider 2001),

κeff = 3H 2
0 Ωm

2c2

∫ w

0
dw′ fK (w′)fK (w − w′)

fK (w)

δ[fK (w′)θ , w′]
a(w′)

,

(5)
where w is the comoving radial distance, fK is the comoving
angular diameter distance, a is the scale factor of the universe,
and δ is the density perturbation along the line of sight.

The image distortion is then described by κ and γi with the
quantity (det A)−1 = [(1 − κ)2 − |γ |2]−1 giving rise to the flux
magnification (|γ | = (γ 2

1 + γ 2
2 )1/2) and the eigenvalues of A

related to the axial length. Specifically, the lensing effect makes
a circular source appear as an ellipse with an axial ratio of

a2

b2
= 1 − κ − |γ |

1 − κ + |γ | = 1 − |g|
1 + |g| , (6)

where gi = γi/(1 − κ) is called the reduced shear component.
Thus, for ideally circular sources, we can obtain g by accurately
measuring the shape of the sources and further reconstruct the
convergence κ from the relation between κ and γ , which in the
Fourier space can be written as (e.g., Kaiser & Squires 1993)

γ̂ (l) = π−1D̂(l)κ̂(l), (7)

where D̂ is given by

D̂(l) = π
l2
1 − l2

2 + 2il1l2

|l|2 . (8)

However, galaxies have intrinsic ellipticities. The complex
ellipticity of the lensing-distorted image ε with |ε| = (1 −
b/a)/(1 + b/a) is then related to the intrinsic ones εs by the
following relation (e.g., Seitz & Schneider 1997):

ε =
{ εs−g

1−g∗εs
for |g| � 1

1−gε∗
s

ε∗
s −g∗ for |g| > 1

(9)

where the asterisk represents the complex conjugation. It has
been shown that the average of ε gives rise to the unbiased
estimate of −g and −1/g for |g| � 1 and |g| > 1, respectively
(Seitz & Schneider 1997). In the case of κ � 1 and |γ | � 1,
we have g ≈ γ .

Equations (7) and (8) show that theoretically, we can ob-
tain the mass distribution that is related to the convergence
field from the observed 〈ε〉. The aperture mass peak statistics is
based on the quantity Map(θ) = ∫

d2θ ′κ(θ ′)U (|θ ′ − θ |), where
the function U is a compensated filter satisfying U (|θ |) = 0
for |θ | > |θ0| and

∫ |θ0|
0 |θ |d|θ | U (|θ |) = 0. From the re-

lation between κ and γ , it is shown that Map can be ob-
tained directly from the tangential component of the shear with
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Table 1
Cosmology Parameters

Fiducial M1 M2 M3 M4

σ8 0.82 0.77 0.87 0.82 0.82
Ωm 0.28 0.28 0.28 0.25 0.31
ΩΛ 0.72 0.72 0.72 0.75 0.69
Ωb 0.046 0.046 0.046 0.046 0.046
h 0.7 0.7 0.7 0.7 0.7
ns 0.96 0.96 0.96 0.96 0.96

Map(θ ) = ∫
d2θ ′γt (θ

′; θ )Q(|θ ′|), where γt (θ
′; θ ) is the tan-

gential shear component at θ ′ with respect to θ . The fil-
ter function Q can be derived from U with Q(|θ |) =
2/|θ |2 ∫ |θ |

0 |θ ′|d|θ ′|U (|θ ′|) − U (|θ |) (e.g., Schneider 1996).
Therefore, if the approximation 〈ε〉 ≈ γ is valid, one can di-
rectly obtain Map from the tangential component of the observed
ellipticities 〈εt 〉. For peak analyses, we are interested in high
peaks that are related to massive halos. In those regions, g ≈ γ
is not a good approximation, and thus, Map obtained from 〈εt 〉
with the filter function Q is not exactly equivalent to Map de-
fined through the convergence κ with the filter function U. Thus,
there can be some complications if one wants to theoretically
link Map from observations to the properties of κ due to the
nonlinear relation between g and γ .

Another approach to derive the mass distribution from the
observed ellipticities ε is to first obtain the smoothed field of the
full 〈ε〉 and then go through the nonlinear reconstruction process
to get the smoothed convergence field κ (e.g., van Waerbeke et al.
2013). This is the approach we adopt in this paper. It is noted
that the smoothing here is still applied directly to the observed
ellipticities. From Equation (9), we can construct the distortion
δ by using (e.g., Schneider & Seitz 1995)

δ = 2〈ε〉
1 + |〈ε〉|2 = 2g

1 + |g|2 (10)

as the observed quantity, which is independent of |g| � 1 or
>1. One can then solve for γ by

γ = 1 − κ

δ∗ [1 ±
√

1 − |δ|2], (11)

where the sign is determined by −sign[det(A)]. We proceed
with the reconstruction of the lensing convergence iteratively
from the following relation:

κ(θ) = − 1

π

∫
R2

d2θ ′Re[D(θ − θ ′)γ ∗(θ ′)] (12)

where D(θ ) = (θ2
1 − θ2

2 + 2iθ1θ2)/|θ |4. Specifically, we start
by assuming κ (0) = 0 and |g| � 1 everywhere, and thus (e.g.,
Bartelmann 1995),

γ (0)(θ ) = 1 −
√

1 − |δ(θ )|2
δ∗(θ)

. (13)

At the nth step, we obtain κ (n) from γ (n−1) via Equation (12) and
further calculate γ

(n)
test from κ (n) to determine the sign of det(A(n))

everywhere. At the n + 1 step, we insert κ (n) into Equation (11)
to estimate γ (n) by considering the signs of det(A(n)) calculated
in step n.

In the case of κ � 1 and |γ | � 1, we have 〈ε〉 = −g ≈ −γ ,
and thus, the convergence reconstruction is a single-step linear
process.

58
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Figure 1. Ray tracing sketch.

3. SIMULATIONS

To study the mask effects on weak-lensing peak statistics and
the corresponding cosmological parameter constraints derived
from the peak analyses, we carry out sets of dark-matter-only
N-body simulations in the flat Λ cold dark matter (ΛCDM)
framework. The fiducial model is taken to be Ωm = 0.28,
ΩΛ = 0.72, Ωb = 0.046, h = 0.7, σ8 = 0.82, and ns = 0.96,
where Ωm, ΩΛ, Ωb, and h are the present dimensionless total
matter density, energy density from the cosmological constant,
baryonic matter density, and the Hubble constant in units of
100 km s−1 Mpc−1, respectively. The parameter ns is the power
index for the initial density perturbations, and σ8 is the rms
of the linear density perturbations extrapolated to the present
with the top-hat smoothing scale of 8 h−1 Mpc. In order to
test the applicability of our theoretical model for weak-lensing
peak statistics (F10), we also run four sets of simulations
with different Ωm and σ8 near the fiducial ones. The detailed
cosmological parameters for the simulations are listed in Table 1.
The conventional ray tracing algorithm is adopted to calculate
the deflection of light rays and the corresponding shear and
convergence maps.

3.1. Base Simulations

In our weak-lensing analyses, we take the source redshift
zs = 1. For the fiducial cosmological model, the comoving
distance to zs = 1 is approximately 2.34 h−1 Gpc. To balance
the efficiency and the resolution, we bind four independent
simulations together to fill the range to zs = 1 as illustrated in
Figure 1. In other words, for each set of ray tracing calculations,
we run four independent simulations with different realizations
of the initial conditions. Each simulation is run in a comoving
cubic box of 585.2 h−1 Mpc in size. Therefore, in our setting,
an individual simulation box occurs only once, and there are no
repetitious structures along lines of sight. Such a design allows
us to pad the simulation boxes regularly without the need for
shifting and rotating to avoid the possible multiple use of the
same structures in the ray tracing calculations.

For each run, we use 6403 dark matter particles in the
simulation box. The particle mass is ∼6 × 1010 h−1 M� for the
fiducial model. The N-body code of Gadget-2 (Springel 2005)
is used to run the simulations. The initial redshift is taken to
be z = 50. The initial power spectrum is generated by CAMB
(Lewis et al. 2000), and initial conditions are constructed using
the code of 2LPTic (Crocce et al. 2006). The force softening
length is ∼20 h−1 kpc. The mass and the force resolutions
should be good enough for our purpose of studies that are

3



The Astrophysical Journal, 784:31 (18pp), 2014 March 20 Liu et al.

12.5 13 13.5 14 14.5 15
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

log M(h−1M )

M
as

s
fu

n
ct

io
n

lo
g
(d

n
/
d
lo

g
M

)
(h

3
M

p
c−

3
)

z=0
z=0.303388
z=0.98329

Figure 2. Mass functions for the fiducial model at different redshifts. The blue
dots, red squares, and green circles with error bars are for the simulation results
at z = 0, z ≈ 0.3, and z ≈ 0.98, respectively. The corresponding lines are the
theoretical results calculated from the Sheth–Tormen mass function.

(A color version of this figure is available in the online journal.)

mainly interested in high weak-lensing peaks corresponding
to massive dark matter halos with mass M > 1013 h−1 M�
along lines of sight. As a test, in Figure 2, we show the
mass functions of halos identified with the friends-of-friends
(FoF) algorithm with a linking length of 0.18 of the average
separation of dark matter particles, which is suitable for the
considered cosmological model (Courtin et al. 2011). The results
at redshift z = 0 (blue symbols), ∼0.3 (red symbols), and ∼0.98
(green symbols) from our fiducial simulations are presented.
The corresponding solid lines are the results calculated from
the Sheth–Tormen mass function (ST; Sheth & Tormen 1999).
It is seen that our simulation results agree with those from ST
very well.

For multiple-lens-plane ray tracing calculations to be de-
scribed in the next subsection, we use 40 planes corresponding
to 40 snapshots equally distributed along the comoving distance
to z = 1. Therefore, there are 10 planes for each simulation box
(see Figure 1). Each plane contains particles in a slice with a
comoving volume of (58.52 × 585.2 × 585.2) h−3 Mpc3. These
particles are projected along the thickness of the slice into the
plane with a comoving area of (585.2 × 585.2) h−2 Mpc2. The
size of the simulations allows us to construct 16 weak-lensing
maps of 3 × 3 deg2 each through one set of ray tracing calcu-
lations that is based on four independent runs of N-body simu-
lations with different realizations of the initial conditions. For
the fiducial model, we perform eight sets of ray tracing simula-
tions from a total of 32 runs of N-body simulations. Therefore,
in total, we have 8 × 16 = 128 weak-lensing maps of 9 deg2.
For the other four cosmological models, 16 N-body simula-
tions are done to generate four sets of ray tracing calculations
and thus 4 × 16 = 64 weak-lensing maps of 9 deg2 for each
model.

3.2. Multiple-lens-plane Ray Tracing Calculations

For the ray tracing calculations, we follow closely the method
of Hilbert et al. (2009). We use 40 different snapshots to
construct 40 lens planes evenly distributed in the comoving

distance to z = 1. Dark matter particles within a slice with a
thickness of 58.52 h−1 Mpc around the lens plane k are projected
onto the plane. The two-dimensional density fluctuation field
Σ(k) on a regular mesh is then constructed from the projected
particle positions by the cloud-in-cell scheme. The potential
ψ̂ (k) on the lens plane is calculated from the two-dimensional
Poisson equation

∇2ψ̂ (k) = 3H 2
0 Ωm

f
(k)
K

a(k)
Σ(k), (14)

where f
(k)
K and a(k) are the comoving angular diameter distance

to the kth plane and the scale factor of the universe at the epoch
corresponding to the kth plane and the operation ∇2 is taken
with respect to the angular scale. We sample a convergence or
shear map of 3 × 3 deg2 on 1024 × 1024 pixels, corresponding
to 4096 × 4096 pixels over the total 16 maps. For the purpose
of numerical accuracy, a finer mesh for two-dimensional (2D)
density and potential calculations is needed, as pointed out by
Sato et al. (2009). We thus choose to sample the 2D density
and potential fields of a lens plane of 585.2 × 585.2 h−2 Mpc2

on 16, 384 × 16, 384 pixels. The resolution is then about 35.7
h−1 kpc. To suppress the Poisson noise, we further smooth
the potential field with a Gaussian window function with the
smoothing scale 30 h−1 kpc (e.g., White & Vale 2004).

The deflection angle α̂ and the shear matrix Uij on the mesh
are calculated by finite difference using the nearest neighboring
grids through

α̂
(k) = ∇ψ̂ (k) (15)

and
U

(k)
ij = ∂2

ij ψ̂
(k). (16)

To calculate the light ray position at the kth plane, we follow
the method of Hilbert et al. (2009) to use the ray positions at the
k − 2 and k − 1 planes. Specifically, we have

θ (k) =
(

1 − f
(k−1)
K

f
(k)
K

f
(k−2,k)
K

f
(k−2,k−1)
K

)
θ (k−2) +

f
(k−1)
K

f
(k)
K

f
(k−2,k)
K

f
(k−2,k−1)
K

θ (k−1)

− f
(k−1,k)
K

f
(k)
K

α̂
(k−1)(θ (k−1)), (17)

where the deflection angle α̂
(k−1) is calculated at the ray position

θ (k−1) by interpolating from the values at grids on the mesh. We
start with θ (0) = θ (1) = θ , with θ being the light ray direction
received by the observer. Therefore, the light ray propagation
can be computed iteratively.

Taking derivatives with respect to θ (0), we obtain the corre-
sponding distortion matrix,

A
(k)
ij =

(
1 − f

(k−1)
K

f
(k)
K

f
(k−2,k)
K

f
(k−2,k−1)
K

)
A

(k−2)
ij +

f
(k−1)
K

f
(k)
K

f
(k−2,k)
K

f
(k−2,k−1)
K

A
(k−1)
ij

− f
(k−1,k)
K

f
(k)
K

∂α̂i

∂θ
(k−1)
q

∂θ (k−1)
q

∂θ
(0)
j

=
(

1 − f
(k−1)
K

f
(k)
K

f
(k−2,k)
K

f
(k−2,k−1)
K

)
A

(k−2)
ij +

f
(k−1)
K

f
(k)
K

f
(k−2,k)
K

f
(k−2,k−1)
K

A
(k−1)
ij

− f
(k−1,k)
K

f
(k)
K

U
(k−1)
iq A

(k−1)
qj , (18)
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Figure 3. Convergence power spectrum for the fiducial model. The blue solid
line is for the simulation result obtained by averaging over 128 maps. The
shaded region represents the 1σ range for the variation from map to map. The
red dash-dotted line is for the theoretical result calculated from Equation (19).
The green dashed line is for the smoothed theoretical result with a Gaussian
smoothing scale of 35 h−1 kpc.

(A color version of this figure is available in the online journal.)

which can also be calculated iteratively. Here again U
(k−1)
iq is

calculated at the ray position θ (k−1) by interpolating. With the
final Aij, we can extract the convergence κ and the shear γi by
noting that there is an unobservable rotation angle involved in
Aij obtained through multiple-plane ray tracing.

Figure 3 presents the power spectrum calculated from the
simulated convergence maps of the fiducial model. The blue
solid line is the mean result from the 128 simulated maps of
3 × 3 deg2, with the shaded region showing the 1σ range of
variation of the power spectrum from map to map. The red
dash-dotted line is for the theoretical result calculated using the
Limber approximation (Limber 1954; Kaiser 1998) given by
(e.g., Bartelmann & Schneider 2001)

Pκ (l) =
(

9H 4
0 Ω2

m

4

) ∫ ws

0
dw

f 2
K (ws − w)

f 2
K (ws)a2(w)

Pδ

(
l

fK (w)
, w

)
,

(19)
where Pδ is the power spectrum of the three-dimensional density
fluctuations. We use the nonlinear Pδ calculated from CAMB
updated according to the improved halo fit model of Takahashi
et al. (2012) (Lewis et al. 2000). The green dashed line is the
theoretical result smoothed with a Gaussian function with a
smoothing scale of 35 h−1 kpc, approximately in agreement with
the simulation grid size for potential calculations. We can see
that up to l ∼ 10,000, the result from the simulations agrees
with the theoretical calculations very well.

3.3. Boundary Problem

As discussed in Hilbert et al. (2009), a problem can rise
if a fixed boundary is used to divide simulation particles
into two different slices to construct the density distribution
on the corresponding lens planes. Slicing leads to artificially
cutting particles of a cross-boundary halo into two parts. This
is particularly relevant to our studies on weak-lensing peak
statistics in which halos are related directly to peaks in weak-

lensing maps. We follow the same procedures as Hilbert et al.
(2009) to deal with this boundary problem.

Specifically, in each of the 40 snapshots, using FoF, we
identify all the halos in the corresponding simulation boxes and
find cross-boundary halos that have member particles on either
side of a boundary. For those halos, we then put all the member
particles into the slice in which their center of mass locates.
Consequently, these halos are excluded completely from the
other slice. Considering the possible cross-boundary motions of
halos that can lead to halo double counting or missing halos, a
further step adopted from Hilbert et al. (2009) is taken to avoid
such a problem. For the two slices on the different sides of a
boundary, if a halo is already included in the slice of the later
snapshot (closer to the observer) on the basis of its position of
the center of mass, it is excluded from the other slice of the
earlier snapshot even if its center of mass is inside that slice
in the earlier snapshot. A halo missing from both slices on the
basis of the position of its center of mass indicates that the halo
moves across the boundary in the direction that is farther away
from the observer. In this case, we assign the halo to the slice of
the earlier snapshot.

Detailed comparisons show that the differences between the
convergence from the simple fixed boundary calculation and
the adaptive one described above can be as large as ∼0.5σ0 for
σ0 ≈ 0.02. For halos with a typical radius of ∼h−1 Mpc, about
7% of them are involved in the cross-boundary problem.

In this paper, unless for comparison purposes as discussed in
this subsection, all the analyses are based on the ray tracing
simulations including the proper treatment of the boundary
problem.

3.4. Fiducial Reconstructed Convergence Maps

We follow the nonlinear reconstruction procedures described
in Section 2 to derive the weak-lensing convergence field from
background galaxy ellipticities for peak analyses.

To generate source galaxy data, for each of the 128 simulated
fields for the fiducial model, we randomly populate galaxies
in angular positions at zs = 1 and assign them intrinsic
ellipticities according to the following probability distribution
(e.g., Bartelmann 1995):

ps(εs1, εs2) = exp
[ − (

ε2
s1 + ε2

s2

)
/σ 2

ε

]
πσ 2

ε

[
1 − exp

( − 1/σ 2
ε

)] , |εs | ∈ [0, 1] (20)

where εs1 and εs2 are the two components of the intrinsic
ellipticities, |εs | =

√
ε2
s1 + ε2

s2, and the rms dispersion of |εs |
is taken to be σε = 0.4. We assume the number density of
source galaxies to be ng = 30 arcmin−2. The spatial clustering
and the intrinsic alignment of source galaxies are not considered
here.

The reduced shear signal g for each source galaxy is calcu-
lated from the simulated shear and convergence maps by inter-
polating the values on regular grids to the galaxy position. The
observed galaxy ellipticity ε is then constructed according to
Equation (9).

With these galaxy data in each 3×3 deg2 field, we first obtain
a smoothed field of ε on a regular mesh of 1024 × 1024 pixels
using

〈ε〉(θ ) =
∑

i W (θ i − θ )ε(θ i)∑
i W (θ i − θ )

, (21)

where θ is for pixel position and θ i is for galaxy position. The
summation is over galaxy positions. The window function W is
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taken to be Gaussian, given by

W (x) = 1

πθ2
G

exp

(
−|x|2

θ2
G

)
. (22)

Because we are interested in high peaks that are related to
massive halos, we take the smoothing scale θG to be θG = 1′,
suitable for halos with masses of about 1014 M� and higher
(e.g., Hamana et al. 2004). From the smoothed field 〈ε〉, the
convergence reconstruction is done iteratively as described
in Section 2. The results converge quickly with about eight
iterations for the converging accuracy of 10−6, defined to be the
maximum difference between the corresponding reconstructed
convergence maps from two consecutive iterations. We then
obtain 128 reconstructed convergence maps, and the total
area is 128 × 9 = 1152 deg2. We refer to such maps as “g
reconstruction” maps. It is emphasized again that the smoothing
procedure is applied directly to ε.

Figure 4 shows a set of convergence maps. The left one is the
pure convergence map from ray tracing simulations smoothed
with a Gaussian window function with θG = 1 arcmin. The
right one is the g reconstruction map. We can see that most
of the high peaks in the left map are still apparent in the right
reconstructed map. However, the right one is noisy compared
to the left one because of the intrinsic ellipticities of source
galaxies. The noise can affect the height of true peaks. It also
generates pure noise peaks, and their distribution is biased by
the true mass distribution. These two noise effects have to be
taken into account properly in modeling the weak-lensing peak
statistics (F10).

In our peak statistics analyses, we identify peaks from the
reconstructed convergence maps as follows. Considering a
pixel on a map of 3 × 3 deg2 (1024 × 1024 pixels), if its
reconstructed convergence value is the highest among its eight
nearest neighboring pixels, it is identified as a peak. To reduce
the map boundary effects, we exclude the 10 outermost pixels
in each of the four sides of the map in our analyses. The signal-
to-noise ratio of a peak is defined by

ν = K

σ0
(23)

where K is the reconstructed convergence value of the peak and
σ0 is the rms of the noise that depends on the number density
of source galaxies and the smoothing scale of the window
function used in obtaining the smoothed ellipticity field 〈ε〉.
For a Gaussian window function used in our studies, we have
(Kaiser & Squires 1993; Van Waerbeke 2000)

σ 2
0 = σ 2

ε

2

1

2πθ2
Gng

. (24)

For σε = 0.4, ng = 30 arcmin−2, and θG = 1′, σ0 ≈ 0.02.
In our analyses here, we consider high peaks with ν � 4. We
count peaks in 11 bins in the range of 4.25 � ν � 9.75 with
a bin width of 0.5. It is noted that different binnings can affect
the peak abundance analyses quantitatively. Because our main
focus in this paper is on the mask effects, we do not discuss the
binning optimization here. We will see later that the existence
of masks enhances systematically the weak-lensing peak counts
in our considered signal-to-noise ratio range. This should not be
changed qualitatively by different choices of peak binning. On
the other hand, careful and quantitative comparisons of different
binning methods for weak-lensing peak analyses are desired and
will be explored in our future studies.

3.5. Mask Model and Convergence Reconstruction with Masks

Removing bad- and low-quality imaging data is essential
in weak-lensing observational analyses. This leaves holes in
the source galaxy distribution, which, in turn, affects the
convergence reconstruction and the subsequent cosmological
studies. To investigate the mask effects on weak-lensing peak
counts statistically, we generate mock masks by modeling the
basic masks for point sources, bright saturated stars, and bad
pixels with a circular shape. The mask size distribution is in
agreement with that of CFHTLS used in Shan et al. (2012). We
also add rectangle-shaped masks in both the x and y directions
to the circular ones with a radius larger than 1′ to mask out
saturation spikes. These extra masks have a size of 0.2r × 5r ,
with r being the radius of the circular mask to be added on. We
populate masks randomly in each of the considered 3 × 3 deg2

fields. With the size distribution of Shan et al. (2012), the total
number of masks in each field is set to be Nmask. We consider
three cases with Nmask = 140, 280, and 420, corresponding
to a total masked area fraction of ∼7%, ∼13% and ∼19%,
respectively. We then remove galaxies within masks from the
source galaxy catalogs generated in Section 3.4. With the
remaining galaxies, following the reconstruction procedures, we
first smooth the galaxy ellipticities from Equation (21) to get
the smoothed 〈ε〉 where the summation is over the remaining
galaxies, and then we perform the nonlinear reconstruction to
obtain the reconstructed convergence maps. Because of the
removal of galaxies in masked regions, the effective number
of usable galaxies in obtaining the smoothed 〈ε〉 around those
area is less than the other places, causing higher noise levels.
We will show later in our analyses that this nonuniform noise is
mainly responsible for the mask effects on weak-lensing peak
count statistics. An example of the reconstructed convergence
map with masks is presented in Figure 5. The mask regions are
shown in yellow.

For the fiducial model, we then have two separate sets
of convergence maps reconstructed from observed ellipticities
without and with masks, respectively. Each set contains a total
of 128 convergence maps of 3 × 3 deg2 for peak analyses.

4. PEAK ABUNDANCE

Our studies aim to understand the mask effects on weak-
lensing peak abundances and the consequent biases on cos-
mological parameter constraints derived from the peak counts.
To constrain cosmological parameters from weak-lensing peak
abundances, we need to calculate the expected peak numbers
for different cosmological models. Because true high peaks in
weak-lensing convergence maps correspond well to massive ha-
los along lines of sight, it is natural to relate the peak counts
to the mass function of dark matter halos (e.g., Hamana et al.
2004). However, the nonspherical mass distribution of dark mat-
ter halos and the projection effects of large-scale structures can
complicate the lensing signal of a halo and therefore affect the
predicted peak abundance (e.g., Tang & Fan 2005; Hamana
et al. 2012). Also, the intrinsic ellipticities of source galaxies
generate noise that leads to significant effects on weak-lensing
peak counts from the reconstructed convergence maps as seen
in Figure 4. The easily seen noise effect is the occurrence of
false peaks resulting from the chance alignments of the intrin-
sic ellipticities of source galaxies. Different peak identification
methods have been proposed to suppress the contribution from
noise peaks, such as the tomographic method, the optimal filter-
ing method, etc. (e.g., Hennawi & Spergel 2005; Marian et al.
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Fiducial convergence map
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g reconstruction with intrinsic noise
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Figure 4. Examples of convergence maps. The left one is from the base ray tracing simulation smoothed with θG = 1′. The right one is the corresponding g
reconstruction convergence map from the populated galaxy catalog.

Masked g reconstruction with intrinsic noise
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Figure 5. Masked g reconstruction convergence map corresponding to the right
panel of Figure 4; here the yellow patterns are the masks that occurred in this
case.

2012). However, yet another effect of noise is its influence on
the measured lensing signals of true peaks (e.g., Hamana et al.
2004, 2012; Yang et al. 2011; F10). Therefore, even though we
can pick out true peaks, we still need to consider the noise effect
on them.

Given the complications, extensive simulation studies have
been done to understand the cosmological model dependence of
weak-lensing peak counts (e.g., Dietrich & Hartlap 2010; Yang
et al. 2011; Marian et al. 2012). Different phenomenological
models derived from simulations have also been proposed (e.g.,
Marian et al. 2009; Hamana et al. 2012). On the basis of the
theory of Gaussian random fields, Maturi et al. (2010) present
an analytical model to predict the weak-lensing peak counts with
relatively low signal-to-noise ratios where peaks are dominantly
due to the noise from galaxy intrinsic ellipticities and the line-
of-sight projection effects from large-scale structures. In F10,

we develop a model for high signal-to-noise peak counts by
taking into account the noise effects on the peak heights of true
halos and the biased spatial distribution of noise peaks around
dark matter halos.

For the analyses here, we adopt the model of F10. In
Section 4.1, we describe the basic ingredients of the model.
In Section 4.2, we show the model applicability by comparing
with numerical simulations.

4.1. Theoretical Model

Considering high peaks, the model of F10 takes into account
the effects of noise from intrinsic ellipticities of source galaxies,
including the noise-induced bias and the dispersion on the
heights of true convergence peaks from massive halos and the
enhancement of the pure noise peak abundances due to the
existence of the true mass distribution.

The model assumes that the reconstructed smoothed conver-
gence field can be written as KN = K + N , where K represents
the true lensing convergence and N is for the residual noise
from intrinsic ellipticities. The noise field N is modeled as a
Gaussian random field from the central limit theorem (e.g., van
Waerbeke 2000). The model concentrates on high peaks and
assumes that true peaks come from individual massive halos.
Thus, a considered survey area is split into halo regions and
field regions. Within an individual halo region, the peak number
distribution can be calculated from the Gaussian statistics of KN
with known K from the halo. Then the total number of peaks in
halo regions can be obtained from the summation of the peaks
in individual halo regions weighted by the halo mass function.
In field regions, the number distribution of peaks is computed
directly from the noise field N. The total surface number density
of peaks can then be written as

npeak(ν)dν = nc
peak(ν)dν + nn

peak(ν)dν, (25)

where ν = KN/σ0 is the signal-to-noise ratio of a peak. The
term nc

peak(ν) is for peaks in halo regions including both true
peaks corresponding to real halos and the noise peaks within
halo regions, and nn

peak(ν) is for peaks in field regions with only
noise peaks.
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Here nc
peak(ν), the peak count in halo regions, can be written

as

nc
peak(ν) =

∫
dz

dV (z)

dzdΩ

∫
dMn(M, z)f (ν,M, z), (26)

where dV (z) is the cosmological volume element at redshift z,
dΩ is the solid angle element, n(M,z) is the mass function of
dark matter halos, and

f (ν,M, z) =
∫ Rvir

0
dR(2πR)n̂c

peak(ν, R,M, z) (27)

gives rise to the number of peaks in the area within the virial
radius of a halo of mass M at redshift z. Here n̂c

peak(ν, R,M, z)
describes the surface number density of peaks at the location
of R from the center of the halo, which depends on the
projected density profile of dark matter halos. To calculate
n̂c

peak(ν, R,M, z) in a particular halo region, we start from
KN = K + N , where K is the smoothed convergence of
the halo, which is assumed to be known and to follow the
Navarro–Frenk–White (NFW) mass distribution (Navarro et al.
1996, 1997). The noise field N is taken to be a Gaussian random
field. Therefore, KN is also a Gaussian random field. We are
interested in maxima peaks of KN . By definition, such a maxima
peak occurs in the place where the first derivatives ∂iKN = 0
for i = 1, 2, and the second derivative tensor ∂ijKN should
be negative definite. Thus, to calculate statistically the peak
abundance, we need the joint probability distribution of KN ,
∂iKN , and ∂ijKN (e.g., Bardeen et al. 1986; Bond & Efstathiou
1987), which, for a Gaussian field, is given by (F10)

p
(
KN,K11

N ,K22
N , K12

N , K1
N, K2

N

)
dKN dK11

N dK22
N dK12

N dK1
N dK2

N

= 1
[2π(1−γ 2

N )σ0]1/2

× exp

{
−

{
(KN − K)/σ0 + γN

[(
K11

N − K11
)

+
(
K22

N − K22
)]

/σ2

}2

2
(
1 − γ 2

N

) }

× 1

2πσ 2
2

exp

{
−

[(
K11

N − K11
) − (

K22
N − K22

)]2

2σ 2
2

−
(
K11

N − K11
)2

σ 2
2

−
(
K22

N − K22
)2

σ 2
2

}

× 8

(2π )1/2σ2
exp

{
−4

(
K12

N − K12
)2

σ 2
2

}

× 1

πσ 2
1

exp

[
−

(
K1

N − K1
)2

σ 2
1

−
(
K2

N − K2
)2

σ 2
1

]
× dKN dK11

N dK22
N dK12

N dK1
N dK2

N, (28)

where we denote Ki
N = ∂iKN and K

ij

N = ∂ijKN and similarly
for Ki and Kij. Here the quantities σi are the moments of the
noise field N given by (e.g., van Waerbeke 2000)

σ 2
i =

∫
dk k2i〈|N (k)|2〉, (29)

where N (k) is the Fourier transform of the noise field N. With
the diagonalization of (−K

ij

N ), we obtain its two eigenvalues
λN1 and λN2 (λN1 � λN2) and the rotation angle θN constrained
in the range [0, π ]. For maxima peaks, we require λN1 � 0
and λN2 � 0. We further define xN = (λN1 + λN2)/σ2 and

eN = (λN1 − λN2)/(2σ2xN ); then the average number density
of maxima peaks with a given signal-to-noise ratio KN/σ0 = ν
can be expressed as (e.g., Bond & Efstathiou 1987)

n̂c
peak(ν, R,M, z) = 〈δ(KN/σ0 − ν)δ

(
K1

N

)
δ
(
K2

N

)(
σ 2

2 /4
)

× x2
N

(
1 − 4e2

N

)
Θ(1 − 2eN )Θ(eN )〉, (30)

where the average is calculated by the probability distribution
function corresponding to Equation (28) using the variables xN ,
eN , and θN instead of K11

N , K22
N , and K12

N . The dependence on
R, M, and z comes in through the halo quantities K, Ki, and Kij.
The step functions Θ(1 − 2eN ) and Θ(eN ) occur because of the
requirements for maxima peaks. Then, explicitly, we have

n̂c
peak(ν, R,M, z) = exp

[
− (K1)2 + (K2)2

σ 2
1

]
×

[
1

2πθ2∗

1

(2π )1/2

]
exp

[
− 1

2

(
ν − K

σ0

)2]
×

∫ ∞

0
dxN

{
1[

2π
(
1 − γ 2

N

)]1/2

× exp

[
− [xN + (K11 + K22)/σ2 − γN (ν0 − K/σ0)]2

2
(
1 − γ 2

N

) ]

× F (xN )

}
, (31)

where θ2
∗ = 2σ 2

1 /σ 2
2 and γN = σ 2

1 /(σ0σ2). For K, Ki, and Kij of
a halo with mass M at redshift z, we assume the spherical NFW
profile for the halo and adopt the concentration–mass relation
from Bhattacharya et al. (2013) given by

cvir(M, z) = D̃(z)0.97.7

[
δc

σ (M, z)

]−0.29

. (32)

Here D̃(z) is the linear growth factor normalized to z = 0
calculated with the fitting formula given by Carroll et al. (1992).
The quantity δc is the linear collapse threshold at redshift z
computed according to Henry (2000). The quantity σ (M, z) is
the rms of the smoothed linear density fluctuations at redshift
z over the top-hat scale corresponding to M and is calculated
with the same linear power spectrum as that used in our N-body
simulations from CAMB taking into account the linear growth
factor at z.

The function F (xN ) in Equation (31) is given by (F10)

F (xN ) = exp

[
− (K11 − K22)2

σ 2
2

]
×

∫ 1/2

0
deN 8

(
x2

NeN

)
x2

N

(
1 − 4e2

N

)
exp

( − 4x2
Ne2

N

)
×

∫ π

0

dθN

π
exp

[
− 4xNeN cos(2θN )

(K11 − K22)

σ2

]
.

(33)

With n̂c
peak(ν, R,M, z) in Equation (31), we can then calculate

f (ν,M, z) using Equation (27) and, further, nc
peak(ν) using

Equation (26), where we adopt the Sheth–Tormen mass function
in the calculations (Sheth & Tormen 1999).
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Figure 6. Derivatives of the peak counts with respect to σ8 (left) and Ωm (right), respectively. The blue symbols with error bars are for the average results from 64
pairs of maps. The shaded regions indicate the 1σ variation from pair to pair. The error bars show the 1σ range for the average derivatives over the 64 pairs. The
red solid line is each panel is for the result predicted from the model of F10 including the noise effect. The green lines are for the results from the theoretical model
without noise.

(A color version of this figure is available in the online journal.)

The field term nn
peak(ν) in Equation (25) is given by

nn
peak(ν) = 1

dΩ

{
nran(ν)

[
dΩ −

∫
dz

dV (z)

dz

×
∫

dM n(M, z)
(
πR2

vir

)]}
, (34)

where nran(ν) is the surface number density of pure noise
peaks without foreground halos. It can be calculated using
Equation (31) with K = 0, Ki = 0, and Kij = 0.

Further details of the model can be found in F10.

4.2. Comparison of the Model with Simulations

To test the model applicability in cosmological studies, we
compare the peak counts predicted from the model of F10 with
simulation results in terms of their cosmological dependence.
Within the flat ΛCDM framework, we concentrate on Ωm and σ8,
the two most important parameters for weak-lensing analyses.
Therefore, for comparison purposes, in addition to the fiducial
model runs, we also perform ray tracing simulations for four
other cosmological models with different (Ωm, σ8) around the
fiducial values as shown in Table 1.

For each of the variational models, we run four sets of ray
tracing simulations and obtain a total of 4 × 16 = 64 weak-
lensing maps, each with 3 × 3 deg2. In order to suppress the
cosmic variance to reveal the cosmological dependence of the
peak counts clearly, except for having different Ωm or σ8, each
set of the simulations is done in a way identical to that of the
corresponding fiducial model with matching initial conditions
for each N-body run. For each of the maps, we also perform
the convergence reconstruction in a way that is identical to the
corresponding fiducial one using the same background galaxy
catalog. With these matched reconstructed maps, the derivatives
of the peak counts with respect to Ωm and σ8 are then analyzed
separately as follows using the double-sided derivative estimator

(e.g., Marian et al. 2013):

∂Npeak(νi)

∂pα

|pα

= 1

M

M∑
f =1

N
f

peak(νi, pα + Δpα) − N
f

peak(νi, pα − Δpα)

2Δpα

,

(35)

where pα stands for the cosmological parameter we are inter-
ested in, specifically Ωm or σ8 for the analyses here, f is for
different matched pairs of maps with a total number of pairs
M = 64, and N

f

peak(νi, pα ± Δpα) is for the number of peaks
in the signal-to-noise ratio bin centered on νi with a bin width
of 0.5 in a map of 3 × 3 deg2 with the cosmological parameter
pα ± Δpα in pair f. The derivatives are estimated at the fiducial
value of pα .

The results are shown in Figure 6, where the left and right
panels are for the derivatives with respect to σ8 and Ωm,
respectively, divided by the corresponding average peak number
from the fiducial model. The blue symbols with error bars are for
the simulation results. The shaded regions indicate the 1σ ranges
of the variations of the derivatives estimated from single pairs.
The error bars show the expected errors for the values averaged
over the 64 pairs of maps. The red solid lines are the results
calculated from our model in F10 taking into account the noise
effects, and the green dashed lines are for the theoretical results
without including the noise effects calculated from the halo
mass function assuming spherical NFW halos (e.g., Hamana
et al. 2004; F10). It is seen that within the error ranges, our
model predictions (red lines) agree with the simulation results
very well. Comparing the red and green lines, we can see that
the two are in good agreement with each other for peaks with
ν � 6. On the other hand, for peaks with ν ∼ 4–5, the green
lines are higher than the red lines, signifying more cosmological
information predicted by the green ones. This shows that the
noise is important for peak counts with ν ∼ 4–5. It is noted
that in our model in F10, we only include the noise effect from
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Figure 7. Left: average numbers of peak counts per map for the fiducial model. The blue histograms with error bars are for the results from g reconstruction maps. The
red histograms are the results predicted from F10. The black histograms are for the results from the theoretical model without noise. Right: cosmological constraints
on (Ωm, σ8) from χ2 fitting for a survey of 9 deg2 from the g reconstruction maps without masks. The contours from the inside out show the 1σ , 2σ , and 3σ ranges,
respectively. The dashed line more or less gives the degeneracy direction between Ωm and σ8 in terms of the weak-lensing peak counts considered here.

(A color version of this figure is available in the online journal.)

intrinsic ellipticities of source galaxies and do not consider the
projection effect from line-of-sight large-scale structures and
the nonspherical mass distribution for dark matter halos. While
the noise is indeed the dominant source of errors, the latter two
effects can also affect the peak counts to some extent, and they
contain cosmological information themselves (e.g., Tang & Fan
2005; Hamana et al. 2012). This may be related to the tendency
seen in Figure 6 that the simulation results are mildly higher than
the red lines. We will explore the model improvements further
in our future studies. For the current analyses, we conclude that
within the error ranges, the cosmological dependence predicted
by our model with the noise effect included is in very good
agreement with the simulation results.

Besides the derivatives with respect to cosmological parame-
ters, we also perform a direct comparison between peak counts
from simulations and our model prediction. The results are
shown in the left panel of Figure 7. The blue histograms show
the peak counts in 3×3 deg2 averaged over the 128 g reconstruc-
tion maps for the fiducial model. The attached error bars are for
the 1σ ranges of the map-to-map variations. The red histograms
are our model predictions, and the black ones are for the theoret-
ical results without including the noise effects. We can see that
in the considered peak range, there is an excellent agreement
between the results from our model prediction and those from
simulations. The black histograms are systematically lower than
the simulation results for ν ∼ 4–6, again demonstrating clearly
the noise effect on peak counts. Therefore, if the model without
including the noise effect is used in cosmological parameter fit-
ting, a significant bias can arise. On the other hand, our model
(F10) can expectedly give better constraints. We note again that
here we use 11 bins, linearly distributed in the considered signal-
to-noise ratio range with a bin width of 0.5, in our peak counting.
Different binning methods can give rise to specifically different
values of peak counts. However, the systematic agreement of
the trend between the blue and red histograms and the system-
atic differences between them and the black ones indicate that a
different choice of binning should not change the results of the

comparisons qualitatively. This is also true for the results of the
mask effects on peak counts to be shown in the following.

Given the good agreements within error ranges shown above,
in the studies for the mask effects on weak-lensing peak counts
and the consequent bias on the derived cosmological parameters,
we adopt the model of F10 in the cosmological parameter fitting
analyses.

4.3. Cosmological Parameter Fitting from Peak Counts

As shown in the previous subsection, our model including
the noise effects agrees well with simulation results. We then
use the peak counts identified directly from reconstructed
maps for cosmological studies without the need to distinguish
between true and false peaks. To derive cosmological parameter
constraints from weak-lensing peak counts, we minimize the χ2

defined as follows:

χ2
p′ = d N (p′)(Ĉ−1)d N (p′) =

∑
ij=1,...,11

dN
(p′)
i

(
Ĉ−1

ij

)
dN

(p′)
j ,

(36)
where dN

(p′)
i = N

(p′)
peak(νi) − N

(d)
peak(νi), with N

(p′)
peak(νi) being the

prediction for the cosmological model p′ from F10 and N
(d)
peak(νi)

being the observed data for the peak count in the signal-to-noise
ratio bin centered on νi , and Cij is the covariance matrix of the
peak counts including the error correlations between different ν
bins. It has been shown that the direct inversion of Cij estimated
from simulated maps leads to a biased estimate of its inverse.
An unbiased estimator of the inverse covariance matrix is given
by Hartlap et al. (2007):

Ĉ−1 = R − Nbin − 2

R − 1
(C−1), Nbin < R − 2 (37)

where Nbin is the number of bins used for peak counting and R
is the number of independent maps used in calculating Cij. In

our case, Nbin = 11 and R = 128. We adopt Ĉ−1 to evaluate
the inverse covariance matrix during the whole analysis.
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Figure 8. Mask effects on peak positions. The left panel shows the spatial distribution of peaks in one map. The squares and pluses are for peaks in the cases
with and without masks, respectively. The red, black, and yellows symbols are, respectively, for peaks with spatial offsets larger than 0.5 arcmin, in the range of
[0.2 arcmin, 0.5 arcmin], and less than 0.2 arcmin. The masks are shown in blue. The right panel is the statistical distribution of the spatial offset obtained by averaging
over the 128 pairs of maps.

The observed data are constructed from the simulations for
the fiducial model as follows. For each of the 128 reconstructed
maps without or with masks, we identify peaks following the
descriptions in Section 3.4. To reduce the boundary effect
on peak counts, we exclude the 10 outermost pixels in each
direction in peak counting. Thus, the effective area of each map
is [3(1 − 20/1023)]2 ≈ 8.65 deg2. For each map r, we count
peaks in each of the 11 signal-to-noise ratio bins of width Δν =
0.5 in the range of 4.25 � ν � 9.75. We then calculate the mean
number of peaks in each bin by averaging over the 128 maps
and scale it back to 9 deg2 by multiplying by a factor of 9/8.65.
These average peak counts form the observed data N

(d)
peak(νi),

with νi = {4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5},
respectively.

The covariance matrix Cij is also calculated from the 128
simulated maps by

Cij = 1

R − 1

R∑
r=1

[
Nr

peak(νi)−N
(d)
peak(νi)

][
Nr

peak(νj )−N
(d)
peak(νj )

]
(38)

where r denotes different maps with a total number of maps
R = 128 and Nr

peak(νi) is for the peak count in the bin centered

on νi from map r (scaled back to 9 deg2).
The right panel of Figure 7 shows the fitting result of (Ωm, σ8)

with the data obtained from the reconstructed maps for the
fiducial model without masks. Here the red symbol indicates
the best fit values, and the contours from the inside out show
the 1σ, 2σ , and 3σ ranges, respectively. The blue symbol is
for the input (Ωm, σ8) for the fiducial model. We see that the
best fit result obtained using our model agrees with the fiducial
input very well. This further demonstrates the cosmological
applicability of our model within error ranges in addition to the
comparisons shown in Section 4.2.

We now proceed to analyze the mask effects on weak-lensing
peak counts and consequently on cosmological studies.

5. RESULTS

5.1. Mask Effects

In this section, we discuss the mask effects on weak-lensing
peak analyses by comparing two sets of g reconstruction

convergence maps with and without masks, respectively. There
are 128 maps for each set. For each map in the case without
masks, there is a corresponding map with masks where the
source galaxies are exactly the same as in the other one except
that the galaxies within the masked regions are discarded and
the convergence reconstruction is done from the smoothed 〈ε〉
field obtained from the remaining galaxies. We then have 128
pairs of maps that allow us to do detailed comparisons. The
mask size distribution model is described in Section 3.5. Three
cases with a total number of masks Nmask = 140, 280, and 420
for each 9 deg2 are considered, which corresponds to a masked
area fraction of ∼7%, ∼13%, and ∼19%, respectively. The case
with Nmask = 280 is taken to be our fiducial case for most of
the results presented in the following.

To perform detailed comparisons for peaks in convergence
maps with and without masks, we need to identify the peak
correspondences between each pair of maps. This is done by
peak matching. For each peak in a map from one set, we
check for peaks within 3.5 arcmin in each dimension around
it in its peer map from another set and define the nearest peak
within this region as its partner peak. Only those pairs of peaks
that are partners to each other are identified as peaks with
correspondences.

The existence of masks affects the convergence reconstruc-
tion and, consequently, the peak properties both in their spatial
location and in peak height.

5.1.1. Spatial Location

In Figure 8 we present the mask effect on spatial positions
of peaks for Nmask = 280. The left panel shows an example
map of the spatial distribution of peaks with correspondences.
The squares and pluses are for peaks in the cases with and
without masks, respectively. The red, black, and yellow symbols
are for the pairs of peaks with a spatial offset larger than
0.5 arcmin, in the range of [0.2, 0.5] arcmin, and less than
0.2 arcmin, respectively. It is seen clearly that strongly affected
peaks are almost all closely associated with masks, especially
large masks. In the right panel of Figure 8, the statistical offset
distribution averaged over 128 pairs of maps is shown. About
40% of the peaks have an offset larger than 0.1 arcmin. The
fraction with an offset larger than 0.5 arcmin is ∼11%. We also
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Figure 9. Peak counts distribution. The left panel shows the peak number distributions for the cases without (purple) and with (yellow) masks, respectively. The right
panel shows the peak number difference between the two cases as a function of ν = KN/σ0 with σ0 = 0.02.
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Figure 10. Illustration of the spatial distribution of the affected peaks. In the left panel, the red, green, and purple symbols are for type I affected peaks, type II affected
peaks, and type II with ν � 2, respectively. The yellow symbols are for the rest of the peaks with correspondences between the cases with and without masks. The
right panel shows the type I peaks with ν < 3.25 in the case without masks but with the corresponding peak height shifting to ν > 4.25 in the case with masks (red
symbols).

notice that lower peaks are more strongly affected by masks.
This offset due to mask can have significant effects on weak-
lensing analyses for individual clusters. For a typical weak-
lensing observation targeting a particular cluster, the observed
size is about 20 arcmin. If there happens to be a large mask close
to the central region of the cluster, the weak-lensing-determined
center for the cluster can be considerably offset from its true
center, which, in turn, can lead to large errors in the weak-
lensing determination of the density profile for the cluster.

5.1.2. Peak Height

We now discuss the mask effects on peak heights. Figure 9
shows the results, where the left panel is the peak number
distribution in 9 deg2 averaged over 128 maps in each case
and the right panel is the peak number differences between the
cases without and with masks as a function of signal-to-noise
ratio (ν = KN/σ0, with σ0 = 0.02). It is clearly seen that the

number of peaks in high signal-to-noise bins is systematically
higher in the case with masks, which can expectedly affect
the cosmological parameter constraints with weak-lensing peak
counts significantly. We further examine the correlation between
the positions of the strongly affected peaks and the locations of
masks. We define two types of strongly affected peaks. Type I is
for peaks with a peak height difference between the cases with
and without masks higher than 1σ . Type II is for peaks without
correspondences between the two cases. Figure 10 presents
a typical map with masks. The left panel shows the spatial
distribution of peaks with squares and pluses for peaks in the
cases with and without masks, respectively. The red symbols
are for type I peaks, the green symbols are for type II peaks,
the purple symbols are for type II peaks with ν � 2, and the
yellows symbols are for the rest. The clustering of the strongly
affected peaks around large masks is apparent. The right panel
shows particularly the type I peaks with ν < 3.25 in the case
without masks but with the corresponding peak height shifting
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without masks, and the model prediction of F10 with a uniform noise of
σ0 = 0.02.

(A color version of this figure is available in the online journal.)

to ν > 4.25 in the case with masks. It is found that they all trace
large masks. These high type I peaks can profoundly affect the
cosmological parameter constraints.

Figure 11 shows the effects of masks on the peak counts,
where the peak counts are calculated by averaging over
128 maps in each case and ν is computed with σ0 = 0.02 in all
cases. The blue, green, and red histograms are for peak counts in
the case with masks, the case without masks, and the theoretical
prediction of F10 with a uniform noise with σ0 = 0.02. It is seen
clearly that the peak counts considered here are systematically
higher due to the presence of masks. We do not expect the results
to change qualitatively with different choices of peak binning.

Figure 12 shows the corresponding fitting results with a survey
area of 9 deg2 (left) and 150 deg2 (right), respectively. The fit-
tings are done with the observed data being the peak counts for
the masked case and the model of F10 with σ0 = 0.02 uniformly.
The covariance matrix is calculated from the 128 reconstructed
maps with masks. The meanings of the lines and symbols are
similar to those of Figure 7. Clearly, the enhanced peak counts
due to the occurrence of masks lead to a large bias in the cosmo-
logical parameter fitting. Even for a survey of 9 deg2, the true
cosmological parameter values (blue symbols) lie outside the
2σ contour around the best fit (red symbol). This demonstrates
the significance of the mask effects, which must be taken into
account carefully in cosmological parameter constraints with
weak-lensing peak counts. For the results with a survey area
of 150 deg2 (similar to the survey area of CFHTLenS; Erben
et al. 2013), we take a simple approach to rescale the covari-
ance matrix calculated from 128 masked convergence maps to
that of the larger survey area assuming a Poisson scaling rela-
tion to the survey area S as 1/S (Kratochvil et al. 2010). This
may underestimate the covariance matrix by a factor of ∼1.5
given the existence of long-range correlations of the true peaks
(Kratochvil et al. 2010).

The above results are shown for the average masked area
fraction of ∼13% with Nmask = 280 in 9 deg2. We also analyze
how the effects depend on the masked fraction. We consider
three cases with the number of masks Nmask = 140, 280, and
420 in 9 deg2 and corresponding masked fractions of ∼7%,
∼13%, and ∼19%, respectively. The peak statistics are listed
in Table 2. The mask effects are clearly stronger for a larger
masked fraction. The fraction of peaks with ν > 3 is about
7% in the case without masks. This fraction increases to ∼9%,
∼11%, and ∼13% for Nmask = 140, 280, and 420, respectively.
More than 90% and 70% of type I and type II affected peaks,
respectively, are within the regions around masks with a size of
twice the mask radius. The results are further visually illustrated
in Figure 13, where all the symbols are the same as those shown
in left panel of Figure 10. The corresponding fitting results for a
survey area of 9 deg2 are shown in Figure 14. We see that with
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Figure 12. Bias in cosmological parameter constraints due to the mask effects. The left panel shows the fitting results for the survey area of 9 deg2. The blue symbol
is for the fiducial values, and the red symbol is for the best fit with the peak counts in the case with masks as the observed data and σ0 = 0.02 in the model of F10.
The right panel is for the results with a survey area of 150 deg2.

(A color version of this figure is available in the online journal.)
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Figure 13. Illustration of the dependence of the mask effects on the masked fraction. From left to right, the masked area fraction is ∼7%, ∼13%, and ∼19%
(Nmask = 140, 280, and 420 in 9 deg2), respectively. The meanings of the symbols are the same as those in the left panel of Figure 10.
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Figure 14. Corresponding results of cosmological constraints for the different mask fractions shown in Figure 13.

Table 2
Mask Effects on Peak Statistics with Different Mask Fractions

fmask
a Nmask

b fnocorr
c foffset

d fν >3
e fm,ν >3

f fLPin
g fNCin

h fLIinALL
i

∼7% 140 6.29% 24.05% 6.67% 8.53% 92.67% 72.26% 40.54%
∼13% 280 10.97% 40.03% 6.67% 10.93% 93.59% 77.83% 44.13%
∼19% 420 15.00% 52.11% 6.67% 12.53% 94.01% 82.24% 47.45%

Note.
a Masked area fraction.
b Number of masks in 9 deg2.
c Fraction of no-correspondence peaks among the total number of peaks.
d Fraction of peaks with spatial offset larger than 0.1 arcmin.
e Fraction of peaks with S/N > 3 in the mask-free case.
f Fraction of peaks with S/N > 3 in the case with masks.
g Fraction of type I affected peaks within regions around masks with a size of twice the corresponding masks
among the total number of type I affected peaks.
h Fraction of no-correspondence peaks within regions of twice the size of masks among the total number of
no-correspondence peaks.
i Fraction of (type I+type II) affected peaks within regions of twice the size of masks among the total number of
peaks within the regions.

the increase of the masked fraction, the effects become larger.
For a masked fraction of ∼19%, the bias for (Ωm, σ8) is already
larger than 3σ for a 9 deg2 survey.

5.2. Mask Effect Correction

We have demonstrated in Section 5.1 that the mask effects
on weak-lensing peak counts are significant. The subsequent
cosmological parameter constraints are largely biased if they are
not taken into account properly. We therefore need to explore
ways to control the mask effects on cosmological applications
with weak-lensing peak counts.

From Table 2 and Figure 10, we see that the strongly
affected peaks are mostly clustered around masks. Thus, the
first method we use to suppress the mask effects is to exclude
the severely affected regions around masks when performing
the peak counting. It is expected that the bias on cosmological
parameters can be considerably removed but inevitably at the
expense of losing effective survey areas and therefore enlarging
the statistical error contours. We call this method the rejection
method. We consider three cases with rejection regions of 1, 1.5,
and 2 times the mask size around each mask. We pay attention
to the mask overlaps. Figure 15 shows the results, where the
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Figure 15. Results after rejection of regions around masks. The top left panel is the same as the left panel of Figure 12, showing the fitting result without any rejections.
The top right panel shows the fitting results with the rejected regions being the same as the masked regions. The bottom left and right panels are the results for rejections
of regions 1.5 and 2 times the mask size, respectively. Here the number of masks is Npeak = 280 in 9 deg2, and the corresponding masked area fraction is 13%.

(A color version of this figure is available in the online journal.)

model of F10 with a uniform noise of σ0 = 0.02 is used in the
fitting. The top left panel shows the result without any rejections,
which is the same as the left panel of Figure 12. The top right,
bottom left, and bottom right panels show the fitting results for
the three considered rejections, from the smallest to the largest
rejections, respectively. Note that in each case, the covariance
matrix used in the fitting is recalculated with the peak counts
from the 128 maps with the corresponding rejections. It is seen
that while it is reduced significantly, the bias is still apparent
with the rejection of only the masked areas in peak counting
(top right panel). By rejecting regions 1.5 times the mask size
around masks, the bias is suppressed to an insignificant level
noting the degeneracy direction between the two parameters
(bottom left panel). Increasing the rejection areas further leads
to a mild improvement of the fitting result (bottom right panel).
On the other hand, we see that with the increase of the rejection
areas, the confidence contours become larger, as expected. We

thus conclude that rejecting regions 1.5–2 times the mask size
around the masks is an optimal choice for controlling the bias
in cosmological parameter constraints without losing statistics
significantly.

We also explore ways to improve our theoretical modeling to
take properly into account the mask effects. From Figure 10, we
see that the significantly affected peaks are closely associated
with masked regions, especially those of large masks. Therefore,
for theoretical modeling, we need to treat these masked regions
separate from the rest of the survey area. For our peak abundance
analyses, the presence of masks mainly affects the number of
galaxies that are usable in obtaining the smoothed ellipticity
field 〈ε〉 around the masked regions. This in turn leads to
nonuniform noises in the convergence field reconstructed from
〈ε〉 with higher noises near masks than in the area away from
them. These higher noises affect the peak counts in regions
around masks in two ways. One is that the systematic peak
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Figure 16. Left: average peak counts. The blue histograms with error bars are for the results from masked reconstructed maps excluding part I regions. The red
histograms are calculated with our two-noise-level model. Right: corresponding cosmological constraints. Here Npeak = 280.

(A color version of this figure is available in the online journal.)

height shift for true peaks is larger in these regions (F10). The
other is the enhancement of the number of noise peaks given
their peak heights measured in signal-to-noise ratio with σ0 still
taken to be 0.02, the value in the mask-free case. The latter
can be understood by noting that for different two-dimensional
Gaussian random fields, their peak number density distributions
are the same if the peak heights in each field are measured
in the signal-to-noise ratio defined with the noise level σ0 of
the field itself (e.g., van Waerbeke 2000). Thus, if we use a
fixed σ0 to define the signal-to-noise ratio for peaks in different
Gaussian random fields, the peak number distribution would be
different for different Gaussian random fields. Here, because of
the presence of masks, the true noise levels around the masks are
higher. When counting peaks, however, we uniformly use the
fixed value σ0 = 0.02 (corresponding to ng = 30 arcmin−2) to
define their signal-to-noise ratios. Therefore, the number density
of peaks with high ν = KN/σ0 � 4 (σ0 = 0.02) is higher than
that of the mask-free case.

For further quantitative analyses of the nonuniform noise, we
calculate the contribution of source galaxies to each grid point
in constructing the smoothed field of 〈ε〉 by

Re(θ) =
∑Ngal

k=1 Rk(θ k)W (θ k − θ)∑Ngal

k=1 W (θ k − θ )
, (39)

where the summation is over all galaxies with Rk = 1 for
galaxies outside masks and Rk = 0 for galaxies inside masks.
The kernel W is taken to be the Gaussian smoothing function
with θG = 1′ consistently. The effective number density
of source galaxies at each grid point is then estimated by
ne

g(θ ) = Re(θ)ng , where ng = 30 arcmin−2. We find that Re

can be significantly smaller than 1 in large mask regions.
Considering the fact that the noise cannot be suitably modeled

as a Gaussian random field in regions with Re � 1, we exclude
the circular masked regions with a mask radius larger than
3′ from our peak counting analyses. We call these regions
part I regions, which, on average, occupy about 1 deg2 over
the total 9 deg2 survey area in our studies. For the remaining

∼8 deg2 area, we develop a two-noise-level model to include the
nonuniform noise in our theoretical considerations. Specifically,
for each of the 128 reconstructed convergence maps, we first
exclude part I regions. We then divide the remaining area of
each map further into two parts, with part II being the leftover
spiked mask regions around the excluded circular regions of
part I and part III being the rest of the area. We then calculate
the effective number density of source galaxies for part II and
part III separately by averaging ne

g over the grid points inside
the corresponding regions and over all 128 maps. For part II, we
obtain neII

g ≈ 11.4 arcmin−2, which is considerably smaller than
ng = 30 arcmin−2. For part III, neIII

g ≈ 28.4 arcmin−2, which is
close to 30 arcmin−2, as expected.

With neII
g and neIII

g , we calculate the expected number density
of peaks with the model of F10 separately for part II and part
III regions. We then rescale the signal-to-noise ratios of the
peaks in the two regions by a uniform noise level, σ0 = 0.02,
the value used in counting peaks from simulated maps, to
obtain the rescaled number density of peaks nII

peak and nIII
peak,

respectively. The average areas of the two regions SII and SIII

over a map are computed from the 128 reconstructed maps with
masks using SII = (

∑128
i=1 SII

i )/128, where SII
i is the area of part

II in map i and SIII is the same for part III. The theoretical
predictions for the total number of peaks in each signal-to-
noise bin (with σ0 = 0.02) over a map are then calculated
by nII

peakS
II + nIII

peakS
III. These theoretical predictions are then

compared with the corresponding mean observed numbers of
peaks obtained by averaging over the 128 counted numbers of
peaks directly from the reconstructed convergence maps with
masks after the exclusion of part I regions. We note that in this
treatment, the effective usable area over a map SII+SIII ≈ 8 deg2,
compared with ∼7 deg2 and ∼6 deg2 for the pure rejection
analyses with rejection areas of 1.5 times and 2 times the mask
size around each mask, respectively (see Figure 15.)

The results are shown in Figure 16, with the left panel for
the peak counts and the right panel for the fitting results from
our two-noise-level model. The blue and red histograms in the
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left panel correspond to the results from the reconstructed con-
vergence maps with masks excluding part I regions and the
theoretical prediction from the two-noise-level model, respec-
tively, where the signal-to-noise ratio ν in the horizontal axis
is defined with σ0 = 0.02. It is seen that the theoretical pre-
dictions agree well with the simulation results. The right panel
presents the corresponding constraint for (Ωm, σ8). Compared
to the result shown in the left panel of Figure 12, we see that our
treatment here works well and improves the fitting dramatically,
with a much reduced bias.

6. SUMMARY AND DISCUSSION

In this paper, we analyze the mask effects on weak-lensing
convergence peak statistics and the consequent cosmological
parameter constraints from weak-lensing peak counts. We run
large sets of ray-tracing simulations to generate base conver-
gence and shear maps assuming the source redshift zs = 1. By
randomly populating source galaxies with intrinsic ellipticities,
we perform convergence reconstruction from 〈ε〉, the smoothed
field of the observed ellipticities of source galaxies, for cases
without and with masks. The mask size distribution from Shan
et al. (2012) is adopted. We then investigate in detail the mask
effects on weak-lensing peak counts by comparing the results
from the two cases. Their influences on cosmological parameter
constraints derived from peak abundances are further studied
using the peak model of F10 including the noise effects. The
validity of this model in terms of the cosmological dependence
of peak abundances is tested with simulations.

Our main results are summarized as follows.

1. The occurrence of masked regions reduces the number of
usable source galaxies and therefore increases the noise in
the regions around masks. This in turn leads to systematic
increases of the number of high peaks and, consequently,
a significant bias in cosmological parameters constrained
from weak-lensing peak counts. The larger the masked area
fraction is, the larger the effects are.

2. We find that the strongly affected region around a mask is
about 1.5–2 times the mask size. Excluding such regions
in peak counting can largely eliminate the mask effects
and therefore significantly reduce the bias in cosmological
parameter constraints.

3. We develop a two-noise-level model that treats the mask
affected regions separately. This model can account for the
mask effects on weak-lensing peak counts very well except
for very large masked regions with a radius larger than 3′,
where the noise cannot be suitably modeled as a Gaussian
random field. These very large masks need to be excluded
in peak analyses. Then the constraints on cosmological
parameters based on the two-noise-level model improve
dramatically compared to the large bias from the model
with uniform noise.

In our analyses, we apply the Kaiser–Squires method for the
nonlinear convergence reconstruction with a Gaussian filter. For
the maximum-likelihood reconstruction method (Bartelmann
et al. 1996), we expect that the mask effects on the reconstructed
convergence field and the peak counts are qualitatively similar to
the results shown in this paper, although quantitative studies are
still needed. For other methods, such as the multiscale entropy
restoration filtering, namely, MRLens (Starck et al. 2006), the
mask effects can be different, and detailed analyses should be
carried out when a specific reconstruction method is used. It
is also noted that while qualitatively similar mask effects on

peak abundances are expected, different filter functions used
in the convergence reconstruction and different peak binning
methods used in the analyses can lead to quantitatively different
results.

The model of F10 and the improved two-noise-level model
for the mask effects contain only the noise effects without
including the projection effects of large-scale structures and
the complex mass distribution of dark matter halos. While the
noise from intrinsic ellipticities is the dominant source of errors
in weak-lensing peak analyses and our results show that the
model(s) can, indeed, give rise to very good descriptions of
the peak counts, future large surveys aimed at high-precision
cosmological studies need more accurate modeling of the
peak counts theoretically. We will carefully explore further
improvements of the model in our future studies.
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