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ABSTRACT

We present a new version of the Alfvén wave solar model, a global model from the upper chromosphere to the
corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency
Alfvén wave turbulence. The injection of Alfvén wave energy at the inner boundary is such that the Poynting
flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated
using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic
field boundaries; those develop self-consistently. The physics include the following. (1) The model employs
three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion
temperatures. The firehose, mirror, and ion–cyclotron instabilities due to the developing ion temperature anisotropy
are accounted for. (2) The Alfvén waves are partially reflected by the Alfvén speed gradient and the vorticity along
the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The
balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated
temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results
of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional
and collisionless electron heat conduction. We compare the simulated multi-wavelength extreme ultraviolet images
of CR2107 with the observations from STEREO/EUVI and the Solar Dynamics Observatory/AIA instruments.
We demonstrate that the reflection due to strong magnetic fields in the proximity of active regions sufficiently
intensifies the dissipation and observable emission.
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1. INTRODUCTION

During the last few decades, considerable progress has been
made in the understanding of the solar atmosphere due to the
increased availability of observational data and the development
of analytical and numerical models of the solar wind. One
aspect of this development is the construction of complex
three-dimensional (3D) models. These models can be validated
with observations and further refined to improve the comparison.
Important in the further progress of these models is a better
understanding of the coronal heating and solar wind acceleration
problem. Improvements in the theories of the coronal heating
scenarios may result in more realistic models that are more
reliable in predicting the solar wind conditions. Eventually, this
may further improve the numerical forecasting of space weather
events.

Recent Hinode observations suggested that there is more than
enough energy in the chromospheric magnetic field fluctuations,
which propagate away from the Sun, to heat the solar corona
(SC) and maintain the temperatures at 1 MK (De Pontieu
et al. 2007). With the Solar Dynamics Observatory (SDO)
these waves were shown to be ubiquitously present in the
transition region and low corona (McIntosh et al. 2011). These
observations suggest that it is therefore appealing to develop
a 3D SC and inner heliosphere (IH) model that is based on
Alfvén wave turbulence and check if such a theoretical model
reproduces emission features seen in the extreme ultraviolet
(EUV) images. In our previous corona model (Sokolov et al.
2013), we demonstrated that Alfvén wave turbulence can indeed
capture the overall observable EUV emission, with the exception
of some of the details such as the emission around active regions.

There is a long history of Alfvén wave turbulence in the
solar wind that dates back to the pioneering work of Coleman
(1968), who concluded that turbulence is important in the
solar wind near 1 AU based on Mariner 2 measurements.
The earliest solar wind models that incorporated Alfvén wave
turbulence were presented in Belcher & Davis (1971) and
Alazraki & Couturier (1971), followed by two-dimensional
(2D) global corona models by Usmanov et al. (2000) and Hu
et al. (2003). Suzuki & Inutsuka (2006) constructed a self-
consistent one-dimensional (1D) Alfvén wave turbulence model
from the photosphere to IH that included wave reflection and
mode conversion from Alfvén to slow waves. This model was
generalized to 2D by Matsumoto & Suzuki (2012) to account for
turbulent cascade. Alfvén waves that propagate outward from
the Sun are partially reflected by gradients due to stratification,
which produces waves propagating in opposite directions, see
for instance Heinemann & Olbert 1980, Leroy 1980, Matthaeus
et al. 1999, Dmitruk et al. 2002, Verdini & Velli 2007, Cranmer
2010, and Chandran et al. 2011. Counter-propagating waves are
essential for the classical incompressible cascade (Velli et al.
1989) and hence the coronal heating. The reflection due to strong
magnetic field gradients may be important in close proximity
of the active regions, further intensifying the dissipation and
the observable EUV emission. In the present paper, we will
determine if this enhanced wave reflection does improve our
model comparison with the observed EUV images.

Remote observations from the Ultraviolet Coronagraph Spec-
trometer have shown that the perpendicular ion temperature is
much larger than the parallel ion temperature in the corona holes
(Kohl et al. 1998; Li et al. 1998). Similarly, Helios observations
have shown that the ion temperature in the IH is anisotropic
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as well (Marsch et al. 1982). Several models have been con-
structed that take the ion temperature anisotropy into account,
see for instance Leer & Axford (1972), Isenberg (1984), Fichtner
& Fahr (1991), and Chandran et al. (2011) for 1D analysis and
Vásquez et al. (2003) and Li et al. (2004) for 2D analysis. The
ion temperature anisotropy has, to the best of our knowledge,
not yet been incorporated in a 3D solar wind model.

In recent years, our solar wind modeling efforts in the Space
Weather Modeling Framework (SWMF; Tóth et al. 2012) were
focused on creating an Alfvén wave turbulence-driven SC and
IH model with a two-temperature approach for the electrons
and ions. Our goal is to develop a single validated model that
can produce realistic synthesized line-of-sight (LOS) images
in the multi-wavelength EUV, and accurate 1 AU prediction
of the solar wind properties. This model will also produce
realistic background solar wind for simulations of coronal mass
ejections (CMEs). van der Holst et al. (2010) constructed a
solar wind model that has an inner boundary in the 1 MK
corona and has separate electron and ion temperatures. It
incorporated the collisional electron heat conduction and Alfvén
wave transport and dissipation along the open field lines. This
model was validated in Jin et al. (2012), while Evans et al. (2012)
enhanced the model by including surface Alfvén waves. The
two-temperature approach is important in producing a correct
CME shock, otherwise a strong and unphysical heat precursor
can appear ahead of the CME due to the heat conduction
(Manchester et al. 2012; Jin et al. 2013). Meanwhile, Downs
et al. (2010) developed a lower corona model that was able to
reproduce synthesized EUV images, but for the coronal heating
the model did still rely on ad hoc coronal heating functions.
Sokolov et al. (2013) combined the aforementioned efforts into
a single two-temperature model with Alfvén wave turbulence
by incorporating the concept of balanced turbulence at the apex
of the closed field lines, and via a concise analysis, the model
was able to numerically resolve the upper chromosphere and
transition region. This model was able to reproduce the overall
morphology of coronal holes and active regions in the EUV
images. Landi et al. (2013a) demonstrated that it was also able
to capture the charge state evolution, while Oran et al. (2013)
compared the model output to in situ Ulysses observations.

Lionello et al. (2009) demonstrated that a 3D magnetohydro-
dynamic (MHD) lower corona model based on a combination
of ad hoc coronal heating functions and with heat conduction
was able to well reproduce many features in the observed EUV
images. Odstrcil et al. (2005) showed that the ENLIL IH MHD
model prescribed by the empirical Wang–Sheeley–Arge (WSA)
model (Arge & Pizzo 2000) was able to capture the 1 AU obser-
vations, while Cohen et al. (2007), Feng et al. (2010), and van
der Holst et al. (2010) used the WSA to prescribe the coupled
corona and inner IH simulations to obtain 1 AU results.

In the approach taken in the Alfvén wave solar model (AW-
SoM) described in the current paper, we no longer rely on ad
hoc heating functions. The physics incorporated into the AW-
SoM model allows us to produce realistic LOS images and 1
AU solar wind predictions in one single model. We present
the theoretical approach and results in two companion papers.
The present paper is the first one and describes the coronal
heating methodology and electron heat conduction and presents
the resulting synthesized images of the multi-wavelength EUV
emission. We also demonstrate the newly implemented low dis-
sipation MP5 limiter (Suresh & Huynh 1997) in the BATS-R-US
model. The reduced numerical dissipation allows us to clearly
resolve the fine details in the solution, and allow a better com-

parison with observations. Our second paper, X. Meng et al. (in
preparation), describes the impact of these changes on the solar
wind acceleration and the 1 AU comparisons. The outline of
the paper is as follows. In Section 2, we present details of the
theoretical model and discuss the numerical implementation.
We first describe in Section 2.1 the Alfvén wave turbulence
approach for the two-temperature model. In Section 2.2 we
provide the derivation of the Alfvén wave propagation, reflec-
tion, and dissipation. In Section 2.3, we generalize this model to
three temperatures by using anisotropic ion temperatures and the
isotropic electron temperature. The implementation is described
in Section 2.4. In Section 3, we demonstrate the performance
of this model for Carrington rotation (CR) 2107 by comparing
EUV images with observations. We conclude in Section 4 and
provide details of the derivations in the appendices.

2. COMPUTATIONAL MODEL

We now present the equations of the AWSoM model. We first
describe the two-temperature MHD equations for the electrons
and ions to demonstrate the incorporation of the Alfvén wave
turbulence and collisionless heat conduction. The details of
the derivation of the Alfvén wave equations are presented in
Section 2.2. In Section 2.3, these equations are generalized to
ion temperature anisotropy. In Section 2.4, we give some details
of the numerical implementation. We finalize this section with
a discussion on the boundary conditions (Section 2.4.1).

2.1. Governing Equations of Two-temperature Model

The starting point of our model is the MHD equations, which
well describe the large-scale, low-frequency phenomena of the
SC and IH plasma. In the inertial frame, the mass conservation,
momentum conservation, and induction equation are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ ·

(
ρuu − BB

μ0

)

+ ∇
(

Pi + Pe +
B2

2μ0
+ PA

)
= −ρ

GM�
r3

r, (2)

∂B
∂t

− ∇ × (u × B) = 0, (3)

respectively. In addition, the initial conditions should satisfy
∇ ·B = 0. The notation in these equations is as follows: ρ is the
mass density, u is the velocity, assumed to be the same for the
ions and electrons, B is the magnetic field, G is the gravitational
constant, M� is the solar mass, r is the position vector relative
to the center of the Sun, and μ0 is the permeability of vacuum.
The Alfvén wave pressure, PA, provides additional solar wind
acceleration. The isotropic ion pressure Pi and electron pressure
Pe are determined by the energy equations:

∂

∂t

(
Pi

γ − 1
+

ρu2

2
+

B2

2μ0

)

+ ∇ ·
[(

ρu2

2
+

γPi

γ − 1
+

B2

μ0

)
u − B(u · B)

μ0

]
=

− (u · ∇) (Pe + PA) +
NikB

τei

(Te − Ti) + Qi − ρ
GM�

r3
r · u,

(4)
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∂

∂t

(
Pe

γ − 1

)
+ ∇ ·

(
Pe

γ − 1
u
)

+ Pe∇ · u =

− ∇ · qe +
NikB

τei

(Ti − Te) − Qrad + Qe. (5)

in which Te,i are the electron and ion temperatures, Ne,i are
the electron and ion number densities, and kB is the Boltzmann
constant. We use the simple equation of state Pe,i = Ne,ikBTe,i

and the polytropic index is γ = 5/3. We have the following
additional energy contributions in the plasma energy equations.
The optically thin radiative energy loss in the lower corona is
given by

Qrad = NeNhΛ(Te), (6)

where Nh is the hydrogen number density and Λ(Te) is the
radiative cooling curve taken from the CHIANTI version 7.1
database (Landi et al. 2013b). The Coulomb collisional energy
exchange between the ions and electrons depends on the
relaxation time τei . The electron heat flux qe consists of two
contributions. We use both the collisional formulation of Spitzer:

qe,S = −κeT
5/2
e bb · ∇Te, (7)

where b = B/B and κe ≈ 9.2 × 10−12 W m−1 K−7/2, as well as
the collisionless heat flux as suggested by Hollweg (1978):

qe,H = 3

2
αpeu, (8)

in which we assume α = 1.05. We smoothly transition between
these formulations

qe = fSqe,S + (1 − fS)qe,H . (9)

Here, the fraction of Spitzer heat flux is defined as a function
of r

fS = 1

1 + (r/rH )2
, (10)

where rH = 5 R� similar to Chandran et al. (2011). The Spitzer
form is in this way the dominant heat flux contributor near
the Sun where the density is high enough so that the electron
temperature length scale LT = Te/ |∇Te| is much larger than the
collisional mean free path of the electrons (this is not correct for
part of the transition region, but we ignore that fact in the present
paper), while far away from the Sun the collisionless heat flux
is more significant. In Appendix C, we describe the numerical
implementation of the collisionless heat flux. The electron and
ion heating functions are denoted by Qe and Qi, respectively.
Their sum equals the total turbulence dissipation per unit
time and per unit volume. The partitioning of the dissipation
into the coronal heating of the electrons and ions is obtained
from results of linear wave theory and stochastic heating, see
Chandran et al. (2011) for details and Appendix B for a brief
summary. To determine the Alfvén wave pressure and total wave
dissipation, we additionally solve for the propagation, reflection
and dissipation of the wave energy densities, w±, in which the
+ sign is for waves propagating in the direction parallel to B,
while the − sign is for waves propagating antiparallel to B.
The turbulence equations are derived in Section 2.2. Here, we
summarize the final expressions for the time evolution of w±:

∂w±
∂t

+∇ · [(u ± VA)w±]+
w±
2

(∇ ·u) = ∓R√
w−w+ −Γ±w±,

(11)

where VA = B/
√

μ0ρ is the Alfvén speed. The third term on the
left-hand side of Equation (11) represents the energy reduction
in an expanding flow due to work done by the Alfvén wave
pressure PA = (w+ + w−)/2. The last term in Equation (11)
is the wave dissipation per unit time and per unit volume. It
is expressed in the form of the phenomenological dissipation
rate

Γ± = 2

L⊥

√
w∓
ρ

, (12)

which contains the transverse correlation length of the Alfvén
waves in the plane perpendicular to B. Similar to Hollweg
(1986), we use a simple scaling law L⊥ ∝ B−1/2 with the
proportionality constant L⊥

√
B as adjustable input parameter

of the model. Since Γ± depends on the returning wave w∓,
it is essential to include the partial reflection of the forward
propagating wave w±. The first term on the right hand side of
Equation (11) is the new source term describing the conversion
into oppositely propagating waves. The signed reflection rate R
in this term is derived as

R = min [Rimb, max(Γ±)]

×

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 2

√
w−
w+

)
if 4w− � w+

0 if 1/4w− < w+ < 4w−(
2
√

w+
w−

− 1
)

if 4w+ � w−

, (13)

Rimb =
√[

(VA · ∇) log VA

]2
+ (b · [∇ × u])2. (14)

The reflection rate consists of three parts: (1) for the strongly
imbalanced turbulence, where min(w±)/ max(w±) 
 1, and
moderately imbalanced turbulence on open field lines and at
the bottom of closed field lines, the wave reflection rate is
represented by Rimb. In this case, the reflection is due to
Alfvén speed gradients and vorticity along the field lines.
(2) We additionally assume that the reflection rate is smaller than
the maximum dissipation rate to limit the reflection rate in the
transition region, which is accomplished by the min function.
(3) The full expression of the reflection rate (13) includes a
correction to the right of the curly bracket when the oppositely
propagating waves are of equal wave energy density near the
apex of the closed field lines. This correction presumes that the
waves originating from the two foot points are uncorrelated and
as a result, the reflection rate is negligible.

2.2. Propagation, Reflection, and Dissipation of Alfvén Waves

In this section, we derive the Alfvén wave energy density
equations in several steps. In Section 2.2.1, we first derive the
WKB wave transport equation in the absence of wave reflec-
tion and dissipation. The nonlinear cascade rate is discussed in
Section 2.2.2. In Section 2.2.3, the wave reflection is presented
and we arrive at the final expressions for the oppositely prop-
agating waves. The limit of strongly imbalanced turbulence is
further analyzed in Appendix A.

2.2.1. WKB Equation for Alfvén Turbulent Wave Energy Densities

In this section, we derive the equations governing the evo-
lution of the wave energy densities, w±. Our starting point
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is reduced MHD, which solves the non-conservative form of
Equations (2) and (3):

∂u
∂t

+ (u · ∇)u +
∇B2

2μ0ρ
+

∇(Pe + Pi)

ρ
= (B · ∇)B

μ0ρ
− GM�

r3
r,

(15)

∂B
∂t

+ (u · ∇)B + B(∇ · u) = (B · ∇)u, (16)

as well as the continuity equation (1). We represent the magnetic
field and velocity vectors as sums of regular and turbulent parts,
u = ũ + δu and B = B̃ + δB (below tildes are omitted) and
simplify the equations for turbulent amplitudes by assuming the
incompressibility conditions ∇ · δu = 0 and B · δB = 0:

∂δu
∂t

+ (u · ∇)δu + (δu · ∇)δu + (δu · ∇)u = (B · ∇)δB
μ0ρ

+
(δB · ∇)δB

μ0ρ
+

(δB · ∇)B
μ0ρ

, (17)

∂δB
∂t

+ (u · ∇)δB + (δu · ∇)δB + (δu · ∇)B + δB(∇ · u)

= (B · ∇)δu + (δB · ∇)δu + (δB · ∇)u, (18)

∂ρ

∂t
+ (u · ∇)ρ + (δu · ∇)ρ + ρ∇ · u = 0. (19)

The equations for the Elsässer variables, z± = δu ∓
δB/

√
μ0ρ are obtained as the sum Equation (17) ∓ 1√

μ0ρ
×

Equation (18) ± δB
ρ
√

μ0ρ
× Equation (19):

d±z±
dt

+ z∓ · ∇u ∓ z∓ · ∇B√
μ0ρ

− z± − z∓
4ρ

d∓ρ

dt
= 0, (20)

where (d±/dt) = (∂/∂t) + (u ± VA + z∓) · ∇ and VA =
(B/

√
μ0ρ) (see the analogous equation in Velli 1993; Chandran

& Hollweg 2009; Chandran et al. 2009). Note, that for the regular
plasma velocity and magnetic field the non-conservative form
of Equations (2) and (3) is fulfilled, the wave pressure resulting
from the turbulent magnetic field being:

P full
A = (δB)2

2μ0
= ρ

(
z2

+

8
+

z2
−
8

− z− · z+

4

)
. (21)

The equations for the wave energy densities, w± = ρz2
±/4,

is obtained by the sum ρz±/2× Equation (20) +3z2
±/8×

Equation (19):

∂w±
∂t

+ ∇ · [(u ± VA + z∓)w±] +
w±
2

(∇ · u) +
ρ

2
z±

·
[

(z∓ · ∇)u ∓ (z∓ · ∇)B√
μ0ρ

]
+

z+ · z−
8

d∓ρ

dt
= 0. (22)

As a first approximation we set the oppositely propagating wave
z∓ = 0 in the equations for w± and obtain:

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
w±
2

(∇ · u) = 0. (23)

This WKB equation describes Alfvén wave propagation along
the magnetic field lines (first two terms) and the wave energy
reduction in the expanding plasma (the last term) because of
the work done by the wave pressure, the latter in the WKB
approximation can be represented as:

PA = 1

2
(w+ + w−), (24)

This approximation is valid if the waves propagate only in
one direction and we neglect reflection in a gradually varying
medium so that we have in this case z+ �= 0 and z− = 0 or vice
versa. Alternatively, one can consider the oppositely propagating
waves originating from two footpoints of the closed magnetic
field line by assuming that the sources of these waves are not
correlated. In this case the quadratic in z± wave energy densities,
w±, produced by each of the sources do not vanish, while the
product of two random and non-correlated amplitudes may be
assumed to have a zero average: 〈z+ · z−〉 = 0

2.2.2. Dissipation Rate

Within the more accurate approximation (but still within
the WKB method), the nonlinear term ∇ · (z∓w±) results in
the turbulent cascade and the wave energy dissipation (see,
e.g., Dmitruk et al. 2002; Chandran & Hollweg 2009). The
dissipation rate for the wave energy density, w+, is controlled
by the amplitude of the oppositely propagating wave, |z−| =
2
√

w−/ρ, and the correlation length, L⊥, in the transverse
(with respect to the magnetic field) direction, because for
the Alfvén wave, propagating along the magnetic field, δu
and δB are perpendicular to the magnetic field. Therefore,
∇ · (z∓w±) ∼ (2/L⊥)

√
(w∓/ρ)w± and the WKB equations

with an account for nonlinear dissipation read:

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
w±
2

(∇ · u) = −Γ±w±, (25)

Γ± = 2

L⊥

√
w∓
ρ

(26)

These equations work for the balanced turbulence (w+ =
w− = w). For imbalanced turbulence, they properly reduce the
dissipation rate for the dominant wave by expressing this rate
in terms of the amplitude of the minor oppositely propagating
wave.

The system of Equations (1)–(5) once completed with
Equations (25) and (26) is consistent as long as the wave pres-
sure as in Equation (24) is used. The source of the dissipated
turbulence energy in Equations (4) and (5) is balanced with
the energy sink in Equation (25). The wave pressure is ap-
plied in Equation (2) as the momentum source, while the work
done by the wave pressure is, accordingly, taken into account in
Equation (25). The model consistency is explicitly pronounced
in the fact that the sum of energy equations (4), (5), and (25)
has a form of a conservation law:

∂

∂t

(
Pi + Pe

γ − 1
+

ρu2

2
+

B2

2μ0
+ w+ + w−

)

+ ∇ ·
[(

ρu2

2
+

γ (Pi + Pe)

γ − 1
+

B2

μ0

)
u − B(u · B)

μ0

]

+ ∇ · [(w+ + w− + PA) u + (w+ − w−) VA]

= −∇ · qe − Qrad − ρ
GM�

r3
r · u. (27)
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The non-conservative sources in the right hand side, which do
not have a divergence-like form, are due to the energy losses
for emission and for the work done against the gravitational
force. The conservative property of the governing equations is
important, since it ensures the consistency of the model. Below,
we carefully keep the conservative property of the model while
including the wave reflection.

2.2.3. The Model of Reflection

Equation (20) for z± demonstrates that even in a linear
approximation, the WKB approach dismisses the correlations
between inward and outward propagating waves. Indeed, in the
Equation (20) for z+ there are source terms linearly proportional
to z− and vise versa, while in the WKB approximation these
source terms describing the conversion between the oppositely
going waves are omitted. The omitted correlations are important
for turbulent cascade (Tu & Marsch 1995; Dmitruk et al. 2002).
We include them into the solar model as follows. First, in the
part of the Elsässer Equation (20) that is responsible for the
wave reflection, we use the continuity equation (19) to obtain

1

ρ

d∓ρ

dt
= −∇ · u ∓ VA · ∇ log ρ ∓ 1√

μ0ρ
δB · ∇ log ρ. (28)

The third term on the right hand side is a nonlinear term,
which can lead to wave reflection due to very steep density
gradients in the direction of the wave amplitude δB. This
direction is under the incompressibility condition, B · δB = 0,
transverse to the magnetic field. Such surface reflection can
for instance arise at coronal loop boundaries and streamer
boundaries, ultimately resulting in enhanced heating near these
locations. In the present paper, we do not consider these effects,
so that (1/ρ)(d∓ρ/dt) ≈ −∇ · u ∓ VA · ∇ log ρ. Now, we
apply this transformation in Equation (22) and repeat the above
procedure to check how Equation (27) is modified. Second, if
we admit a non-zero correlator 〈z+ · z−〉, then we should use
the full magnetic pressure (21) in the momentum equation.
This point is also clear from the observation, that the work
done by the wave pressure in Equation (22) now becomes
[(w±/2) − ρ(z− · z+/8)]∇ · u, with their total being equal to
P full

A ∇ · u. One can find that in the equation analogous to
Equation (27) the wave pressure is changed for P full

A and the
non-divergent term breaking the energy conservation appears in
the left hand side as follows:

∂

∂t

(
Pi + Pe

γ − 1
+

ρu2

2
+

B2

2μ0
+ w+ + w−

)

+ ∇ ·
[(

ρu2

2
+

γ (Pi + Pe)

γ − 1
+

B2

μ0

)
u − B(u · B)

μ0

]

+ ∇ · [(
w+ + w− + P full

A

)
u + (w+ − w−) VA

]
+ Qnoncons

= −∇ · qe − Qrad − ρ
GM�

r3
r · u, (29)

Qnoncons = ρ

2
[z+ · (z− · ∇)u + z− · (z+ · ∇)u

+
z− · (z+ · ∇)B − z+ · (z− · ∇)B√

μ0ρ

]
. (30)

Since the tensor z−z+ + z+z− is symmetric, one can find that
the non-conservative energy source involves a contribution
proportional to the symmetric part of the deformation velocity

tensor, (∂ui/∂xj ) + (∂uj/∂xi) and another term proportional to
∇ × B. The energy source can also be expressed as follows:

Qnoncons = ρδu · (δu · ∇)u − 1

μ0
δB · (δB · ∇)u

+
1

μ0
δB · (δu · ∇)B − 1

μ0
δu · (δB · ∇)B. (31)

The reason for this energy non-conservation is that the system
of Alfvén waves, which are assumed to be transversely polar-
ized (δz± · B = 0) and interact with each other (via reflection)
and with the moving plasma (via the turbulent heating and wave
pressure), is not closed. Indeed, one can take the following lin-
ear combination: ρu· Equation (17) +(B/μ0)· Equation (18) +
ρδu · u× Equation (19) + δu· Equation (15) +(δB/μ0)·
Equation (16) + (u2/2) × [Equation (19)−Equation (1)] (the
latter subtraction is applied because (u2/2)× Equation (1) con-
tributes to Equation (4) and should not be doublecounted), which
gives:

∂

∂t

(
ρu · δu +

δB · B
μ0

)
+ ∇ ·

[
δu

(
ρu2

2
+

B2

μ0

)

+ (u + δu)

(
ρδu · u + 2

δB · B
μ0

)]

− 1

μ0
∇ · [δB (u · B) + (B + δB) (δu · B + δB · u)]

− Qnoncons = 0. (32)

Here, we did not assume that ∇ · δu = 0 and δB · B = 0,
as we did before, and we account for the term, ∇(δB · B), in
Equation (17) and the term (B + δB)∇ · δu in Equation (18). We
also accounted for the term δB ·B∇ ·u, which we omitted while
deriving Equation (22) under the assumption of ∇ · δu = 0. We
omitted all terms related to the ion and electron pressures and
their variations. We obtain yet another non-closed conservation
law, which governs the change in energy related to the variation
in the longitudinal magnetic field. The non-convervative source,
Qnoncons appears to come with the opposite sign to the newly
derived equation, meaning that this source describes the energy
nonlinear conversion from transverse Alfvén waves to the
compressible mode with δB · B �= 0, i.e., magnetosonic
waves. We arrive at an important conclusion: the model of
Equation (22) allowing a correlation between the oscillations in
the oppositely propagating waves is not closed unless the model
for compressible turbulence is included. As long as, here, we do
not include such model, we are to eliminate the turbulent energy
sink to nowhere and add the term, −Qnoncons/2, to the left hand
side of each of Equation (22):

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
(w±

2
− ρz+ · z−

8

)
(∇ · u)

= ρ

4

[
[z± × z∓] · [∇ × u] ± Tr[(z±z∓ + z∓z±) · ∇B]√

μ0ρ

±(z+ · z−)(VA · ∇) log
√

ρ
] − Γ±w±, (33)

where we used an easy-to-derive identity, Tr [(ab − ba) · ∇c] =
[b × a] · [∇ × c], for any three vectors, a, b, c. We can further
simplify this expression by assuming the transverse polarization
of the Alfvén waves: z± · B = 0. For δB part of the Elsässer
variables, z± = δu ∓ δB/

√
μ0ρ, the condition, δB · B = 0,

had been already introduced above, while the requirement for
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the velocity oscillation δu to be approximately perpendicular
to the magnetic field line is a consequence of the assumed
incompressibility property of the turbulence, ∇·δu = 0, together
with the expectation that the turbulent wave vectors are directed
along the magnetic field, so that to satisfy the incompressibility
condition the velocity oscillations should, rather, be transverse.
For transverse waves in the 3-by-3 tensor (∇B) as present in
the expression for the wave conversion rate, one can leave only
2-by-2 transverse components in the plane perpendicular to the
magnetic field, (∇B)⊥⊥. Only the symmetric part of this tensor
matters, which possesses two eigenvalues (for curl-free, hence,
potential magnetic field, these eigenvalues can be expressed
in terms of the curvature radii of the equipotential surface).
If we neglect the difference between two eigenvalues, we can
admit that the symmetric part of the tensor is proportional to
2-by-2 unity tensor, the proportionality coefficient can be found
by observing that the trace of the 2-by-2 unity tensor equals 2,
while Tr [(∇B)⊥⊥] = ∇⊥ ·B⊥ = ∇ ·B−B ·∇ log |B|. Under the
specified assumptions, the equation accounting for the Alfvén
turbulent wave reflection, that is, the energy exchange between
two oppositely propagating waves, which reduces the amplitude
of the outgoing wave and amplifies the incoming wave, reads:

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
w±
2

(∇ · u)

= ∓ρ

4
{[z− × z+] · [∇ × u]

+ (z+ · z−)(VA · ∇) log VA} − Γ±w±. (34)

Note, that we omitted the contribution from the correlator
z− · z+ to the work done by the wave pressure (see the modified
multiplier at ∇ ·u). Accordingly, we do not use this contribution
to the wave pressure in the momentum equation and return to
Equation (24). The reason for this is that the correlator z− · z+ is
assumed to be non-zero only when the waves of one direction
dominate over the opposite ones. In this case, the contribution
from this correlator to the wave pressure is negligible compared
with that from the dominant wave: |z− · z+| � ‖z−‖‖z+‖ 

max(z2

±). On the other hand, this contribution may be a large
loss term in the wave energy equation for the minor wave. The
neglect can be justified only if the reflection coefficient is limited
in such way, that the maximum admissible value, corresponding
to the equality case in the following estimate:

|[z− × z+] · [∇ × u] + (z+ · z−)(VA · ∇) log VA|
|z−||z+|

�
√

(b · [∇ × u])2 + [(VA · ∇) log VA]2, (35)

can be only achieved if one of the waves dominates over the
opposite, so that min(w±)/ max(w±) 
 1. In this case, the
amplitude and polarization of the minor wave are imposed
by those for the dominant wave, the sign of the correlator is
governed by the requirement that, in the course of reflection,
the dominant wave should decrease, the oppositely propagating
“reflected” wave should grow. If the oppositely propagating
waves are comparable, they are assumed to be non-correlated.
The following choice of the final expression for the reflection
coefficient satisfies all the listed requirements:

∂w±
∂t

+∇ · [(u ± VA)w±]+
w±
2

(∇ ·u) = ∓R√
w−w+ −Γ±w±,

(36)

where

R = Rimb

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 2

√
w−
w+

)
if 4w− � w+

0 if 1/4w− < w+ < 4w−(
2
√

w+
w−

− 1
)

if 4w+ � w−

, (37)

Rimb =
√

(b · [∇ × u])2 + [(VA · ∇) log VA]2. (38)

The above considerations may be limited by the assumption of
a small reflection coefficient, which, probably, should be less
than the dissipation rate, above the other criteria. Therefore,
Equation (37) may be bounded as follows:

R = min [Rimb, max(Γ±)]

[
max

(
1 − 2

√
w−
w+

, 0

)

− max

(
1 − 2

√
w+

w−
, 0

)]
. (39)

By comparing Equations (34) and (36) we can find the correla-
tors of amplitudes of the counter-propagating waves:

ρ

4
(z− · z+) = (VA · ∇) log VA

(b · [∇ × u])2 + [(VA · ∇) log VA]2
R√

w−w+,

(40)

ρ

4
b · [z− × z+]

= (b · [∇ × u])

(b · [∇ × u])2 + [(VA · ∇) log VA]2
R√

w−w+.

(41)

In this way, the contribution from the first correlator to the
wave pressure, P full

A could be accounted for, but we do not do
this in the present paper and use Equation (24). Equations (36)
and (37) describing the Alfvén wave propagation, reflection
and dissipation close the system of the MHD equation in a
physically consistent way, as long as the energy conservation
law, Equation (27), is fulfilled.

The reflection model used in Matthaeus et al. (1999) is very
similar to ours due to the following common features: (1) the
reflection turns to zero in balanced turbulence, (2) the sign of
effect is such that the reflection reduces the amplitude of the
dominant wave and enhances the counter-propagating minor
wave, and (3) the magnitude of the reflection coefficient is
controlled by the gradient of the Alfvén speed. Our account
of the vorticity is also not quite new, since the effect of sheared
flow on the mode conversion in the solar atmosphere is discussed
by Hollweg & Kaghashvili (2012) and Hollweg et al. (2013).
The important distinction is that, for the sake of the model
consistency and energy conservation, we ruled out the non-
conservative sources from Equations (36). Now, we can evaluate
the neglected terms, Qnoncons/2 and −(ρ/8)(z−·z+)(∇·u), which
might be added to the right hand side of Equations (36) with the
opposite sign: (ρ/8)(z− · z+)(∇ · u) − (Qnoncons/2). In the low
steady-state SC, the plasma moves mostly along the magnetic
field lines: u = uB/B, which allows us to express the transverse
components of the velocity derivatives in terms of those of
the magnetic field: (∇u)⊥⊥ = (u/B)(∇B)⊥⊥. If we neglect
the contribution from ∇ × B into the non-conservative source
and express approximately ∇ · u ≈ −(u · ∇) log ρ from the
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continuity equation, the energy source due to the Alfvén wave
interaction with the compression mode reads:

ρ

8
(z− · z+)(∇ · u) − Qnoncons

2
≈ ρ

4
(z− · z+)(u · ∇)

× (− log
√

ρ + log B) = ρ

4
(z− · z+)(u · ∇) log VA. (42)

Thus, we do not introduce the mode conversion term propor-
tional to (u · ∇) log VA into our model. The reason for this
omission is that including this compressible MHD turbulence
term would break the energy conservation.

2.3. Generalization to Ion Temperature Anisotropy

Due to observational evidence of ion temperature anisotropy
in the lower corona (Kohl et al. 1998; Li et al. 1998) and in the IH
(Marsch et al. 1982), we have generalized our solar wind model
to anisotropic ion temperatures. The implementation and global
magnetosphere application of the anisotropic ion pressure is
presented in Meng et al. (2012a, 2012b). Here we will use the
same implementation in the solar context.

The equation for the ion pressure (4) is now decomposed into
two equations for both the ion pressure component perpendicu-
lar to the magnetic field, Pi⊥, and the ion pressure component
parallel to the magnetic field Pi‖. However, for convenience, we
solve for the averaged ion pressure Pi = (2Pi⊥ + Pi‖)/3 instead
of Pi⊥. The ion pressures are determined by the equations

∂

∂t

(
Pi

γ − 1
+

ρu2

2
+

B2

2μ0

)
+ ∇ ·

[(
ρu2

2
+

Pi

γ − 1
+

B2

μ0

)
u

+ Pi · u − B(u · B)

μ0

]
= −u · ∇(Pe + PA)

+
NikB

τei

(Te − Ti) + Qi − ρ
GM�

r3
r · u, (43)

∂Pi‖
∂t

+ ∇ · (Pi‖u) + 2Pi‖b · (∇u) · b = δPi‖
δt

+ (γ − 1)
NikB

τei

(Te − Ti‖) + (γ − 1)Qi‖, (44)

where Ti‖ is the parallel ion temperature obtained from the
equation of state Pi‖ = NikBTi‖ and Pi = Pi⊥I + (Pi‖ −Pi⊥)bb
is the ion pressure tensor. The second term on the right hand sides
of Equations (43) and (44) are the collisional energy exchanges
with the electrons. The third term on the right hand sides are the
heating functions Qi and Qi‖ for the averaged ion and parallel
ion pressure, respectively. The sum of the electron and averaged
ion heating functions, Qe + Qi , is equal to the total turbulence
dissipation per unit volume per unit time, Γ+w+ + Γ−w−. The
partitioning of the wave dissipation into Qe, Qi, and Qi‖ is
described in Appendix B. The first term on the right hand side
of Equation (44), δPi‖/δt , is for the relaxation of the pressure
anisotropy by the parallel firehose, mirror, and ion-cyclotron
instability constraints. If those instability criteria are met, we
reduce the pressure anisotropy so that the plasma is stable
again. Details about the stability formulation, implementation
and results are given in Meng et al. (2012b). The anisotropic ion
pressure also modifies the momentum equation (2):

∂ρu
∂t

+ ∇ ·
[
ρuu + (Pi‖ − Pi⊥)bb − 1

μ0
BB

]

+ ∇
(

Pi⊥ + Pe +
B2

2μ0
+ PA

)
= −ρ

GM�
r3

r, (45)

in which the second term on the left hand side contains a new
contribution due to pressure anisotropy. We further assume that
the anisotropic pressure does not significantly change the Alfvén
wave turbulence, and hence we use the turbulence as formulated
for isotropic temperatures in Section 2.1.

2.4. Model Implementation

In this section we present some details of the implementation
of the improved solar wind model. This model uses the numer-
ical schemes of the BATS-R-US MHD solver and the overar-
ching SWMF, see Tóth et al. (2012) for a description of the
SWMF and BATS-R-US tools. The SWMF is a software frame-
work for modeling various space physics domains in a single
coupled model. It has been used, besides space weather appli-
cations for the coupled Sun–Earth system, for many planetary,
moon and comet applications as well as the outer heliosphere.
It has recently been extended to applications of radiation hy-
drodynamics in the context of laser-driven high-energy-density
physics (van der Holst et al. 2011; van der holst et al. 2013).
The new components of the SWMF, presented in this paper, are
the SC and IH.

The SC model uses a 3D spherical grid with the radial
coordinate ranging from 1 R� to 24 R�. The grid is highly
stretched toward the Sun with smallest radial cell size Δr =
10−3 R� to numerically resolve the steep density gradients in
the upper chromosphere. We artificially broaden the transition
region similar to that as described in Sokolov et al. (2013)
and Lionello et al. (2009) to be able to resolve this region.
The grid is block decomposed using the block-adaptive tree
library (Tóth et al. 2012). This library is a tool to create, load
balance and message pass the adaptive refined mesh and solution
data. In the simulations of this paper, the grid blocks consist
of 6 × 4 × 4 mesh cells. Inside r = 1.7 R�, the angular
resolution is 256 cells in longitude and 128 cells in latitude
corresponding to an angular cell size of 1.◦4, while outside that
radius the grid is one level less refined. The system of equations
described in Sections 2.1 and 2.3 are solved in the heliographic
rotating frame by including centrifugal and Coriolis forces
−ρ [� × (� × r) + 2� × u] in the momentum equation and
adding the centrifugal contribution −ρu · [� × (� × r)] to
the ion energy equations (4) and (43). Here � is the angular
velocity of the Sun. We assume a uniform solar rotation with a
25.38 days period so that Ω = 2.865×10−6 rad s−1. For steady-
state simulations, we use local time stepping, which speeds up
the convergence relative to time accurate simulations. During
the steady-state convergence, we apply one additional level of
mesh refinement at the heliospheric current sheet (HCS). To
resolve the details in the LOS EUV images, we also demonstrate
higher resolution in latitude and longitude by using 6 × 6 × 6
grid blocks and hence, an angular cell size of 0.94◦ near the
Sun, in combination with the numerical scheme based on the
spatially fifth-order MP5 limiter (Suresh & Huynh 1997) instead
of our standard second-order shock-capturing schemes (Tóth
et al. 2012).

Details of the IH setup and simulations are provided in X.
Meng et al. (in preparation).

2.4.1. Boundary Conditions

Here, we limit our discussion to the pre-specified boundary
conditions only, and refer the reader to Sokolov et al. (2013)
for a more complete description. The radial magnetic field
component Br is prescribed using synoptic magnetogram data
in the following way: this data is first extrapolated to a 3D

7



The Astrophysical Journal, 782:81 (15pp), 2014 February 20 van der Holst et al.

potential field source surface (PFSS) solution using either
spherical harmonics or the finite difference iterative potential-
field solver (FDIPS). In the current paper, we use FDIPS
since this method avoids the ringing patterns near regions of
concentrated magnetic fields to which the spherical harmonics
method is susceptible, see Tóth et al. (2011). The PFSS magnetic
field is used both as the initial condition and to set the boundary
conditions.

The boundary condition for the Alfvén wave energy density is
empirically set by prescribing the Poynting flux of the outgoing
waves (w is w+ for positive Br and w− for negative Br):
SA = VAw ∝ B�, where B� is the field strength at the
inner boundary and the proportionality constant is estimated
in Sokolov et al. (2013) as (SA/B)� = 1.1 × 106 W m−2 T−1.
Under the assumption of sufficiently small returning flux, this
estimate of the Poynting-flux-to-field ratio is equivalent to the
following averaged velocity perturbation

〈δu⊥ · δu⊥〉1/2 ≈ 15 km s−1

(
3 × 10−11 kg m−3

ρ

)1/4

, (46)

where the mass density 3 × 10−11 kg m−3 (ion number density
Ni = 2 × 1016 m−3) corresponds to the upper chromosphere.
This value is compatible with the Hinode observations of the
turbulent velocities of 15 km s−1 (De Pontieu et al. 2007).
Hence, the energy density of the outgoing wave is set to
w = (SA/B)�

√
μ0ρ. The returning wave energy density is

absorbed by setting it to zero.
The temperatures are all set to the same value Te = Ti =

Ti‖ = T� = 50,000 K uniformly at the inner boundary. In
Sokolov et al. (2013) it was demonstrated that the grid spacing
of Δr = 10−3 R� is, in this case, sufficient to numerically
resolve the density scale height. We overestimate the density
for this temperature by an order of magnitude with the value of
Ne = Ni = N� = 2 × 1017 m−3 at the inner boundary. This
overestimate prevents chromospheric evaporation and extends
the upper chromosphere to reach the correct lower density, but
does not significantly change the global solution as shown in
Lionello et al. (2009).

3. SIMULATION RESULTS FOR CR2107

For this paper, we selected CR2107 (2011 February
16–March 16). This rotation was also used in the validation
studies of Sokolov et al. (2013). In that paper, we were able
to reproduce the overall morphology of the coronal holes and
active regions in the LOS EUV images of SDO and STEREO.
However, details in those images did not show up. It is the goal
of the present section to demonstrate that with the new version
of the AWSoM model, we are now able to produce high quality
synthesized images that capture details of the EUV observa-
tions. The validation of this model with in situ data at 1 AU will
be presented in X. Meng et al. (in preparation).

To simulate a background solar coronal solution, we need
to specify the radial magnetic field component at the inner
boundary, which is located in the upper chromosphere. We
obtain this magnetic field in the following way: the synoptic
map CR2107 of the SDO/Helioseismic and Magnetic Imager
(HMI) is used. The polar field of this map is corrected with a
two-dimensional and third-order polynomial fitting of the data
above 60◦ (Sun et al. 2011). We use FDIPS to generate an initial
condition for the magnetic field and the boundary condition
values for the radial magnetic field component (see Figure 1).

Figure 1. Carrington map of the radial magnetic field component at 1 R�.
This map is based on a synoptic magnetogram of CR2107 from SDO/HMI and
processed to a PFSS solution using FDIPS. For the purpose of showing both the
active regions and coronal holes, we have saturated the magnetic field in this
plot at ±10 G.

(A color version of this figure is available in the online journal.)

Table 1
The Model Parameters

Parameter Value

N� 2 × 1017 m−3

T� 50,000 K
(SA/B)� 1.1 × 106 W m−2 T−1

L⊥
√

B 1.5 × 105 m
√

T
hS 0.17
α 1.05
rH 5 R�

In all our results we will use parameter values as summarized
in Table 1, unless stated otherwise. The boundary condition
values are the same as in Sokolov et al. (2013). The value of
L⊥

√
B is twice larger compared to the value used in Sokolov

et al. (2013) due to a factor two difference in the definition
of this parameter. The stochastic heating parameter hs and the
collisionless heat conduction parameter rH are assigned with the
same values as in Chandran et al. (2011).

3.1. Heat Partitioning

We will first demonstrate the heat partitioning of the tur-
bulence dissipation for our three-temperature model. In this
simulation, we used the version of this model with the wave
reflection term in Equations (11)–(14). The steady-state solu-
tion is obtained with the spatially second-order shock-capturing
scheme. In Figure 2, we show the three obtained temperatures
Ti⊥, Ti‖, and Te from top to bottom in the panels on the left.
These temperatures are shown in the meridional slice X = 0
along with a few projected field lines to indicate the location
of open and closed field lines. Very close to the Sun, the three
temperatures are nearly the same. This is due to the high density
near the Sun, resulting in a sufficiently high rate of Coulomb
collisions that equilibrate the temperatures. The collision rate
decreases with the density, so that further away from the Sun
the collisions are too infrequent to equilibrate the temperatures.
The significant heating of the perpendicular ion temperature in
the polar coronal holes is due to the stochastic heating. The heat
partitioning fractions of the coronal heating into ion perpendic-
ular, ion parallel, and electron heating are shown in the panels
on the right from top to bottom, respectively. The ion perpen-
dicular heating, due to the stochastic heating process, dominates
in the lower corona sufficiently far away from both the Sun and
the HCS. The parallel ion heating is only significant very close
to the HCS due to the high plasma beta βi , while the electron
heating is important very close to the Sun and around the (HCS).
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Figure 2. Meridional slice (X = 0 plane from −10 R� to 10 R�) of the lower corona showing the three temperatures and heating fractions. Left panels (from top to
bottom): perpendicular ion temperature, parallel ion temperature, and electron temperature in color contour, respectively. Streamlines represent field lines by ignoring
the out-of-plane component. Right panels (from top to bottom): the ratio of the perpendicular ion, parallel ion, and electron coronal heating with the total turbulence
dissipation.

(A color version of this figure is available in the online journal.)
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3.2. EUV Comparison

From the density and electron temperature distribution, cal-
culated with our solar model, we can produce synthesized EUV
that can be compared with the observed ones. Such a compari-
son serves as a check for the performance of the coronal heating
model. The presented model accounts for the partial reflection
of the outward propagating waves, which is accompanied by
the generation of counter-propagating waves. These oppositely
propagating waves are ultimately responsible for the turbulent
cascade rate and hence, the coronal heating. The distinct feature
in the present model is the enhanced reflection in the presence
of strong magnetic fields, such as in close proximity of active
regions, that can increase the dissipation and thereby intensify
the observable EUV emission.

To better resolve the details in the synthesized LOS images,
the latitudinal and longitudinal resolution is increased by using
adaptive mesh refinement grid size of 6×6×6. The first attempt
to use the full model as described in Section 2 did not yet
provide us the desired LOS image quality. The problem is due
to the numerical inaccuracy in the Alfvén speed gradients in the
reflection source term. To overcome this issue, we plan to solve
the upper chromosphere and transition region semi-analytically
in a forthcoming paper. In the present paper we changed for
now to the turbulence model that is based on local dissipation in
Equations (A4) and (A5) instead of the turbulence model with
the wave reflection term in Equations (11)–(14). This model is
less susceptible by these numerical errors.

In Figure 3, we computed the STEREO/EUVI emission
images in the three coronal bandpasses for Fe emission lines
at 171, 195, and 284 Å. These LOS images are produced by
assuming that the plasma is optically thin for all the considered
wavelengths. In the top row, the images are for the CR2107
steady solution of our previous model (Sokolov et al. 2013)
using the spatially fifth-order MP5 limiter. In the middle row,
we demonstrate the new model with the MP5 limiter. The new
model better captures the active region emissivity as observed
by the EUVI imager (Howard et al. 2008) on board STEREO
A, as shown in the bottom panels. This enhanced emissivity
is due to the increased reflection rate caused by the strong
magnetic fields around active regions. We note that the steady-
state simulation was performed for a synoptic magnetogram,
while the observation is for the time 2011 March 7 20:00 UT,
and consequently, the model cannot reproduce time dependent
activity during the rotation. Also the polynomial extrapolation
toward the pole in the CR2107 magnetogram might distort the
high latitudinal region somewhat unfavorably. The observed
polar coronal holes are somewhat wider than the coronal holes
of the new model. In Figure 4, we similarly plot the results for
STEREO B, which shows the other side of the Sun as the two
STEREO spacecraft are separated by about 177◦. The emissivity
of the active regions is, again, improved.

In Figure 5, we show the comparison between the model
synthesized SDO/AIA images with the images observed by
AIA (Lemen et al. 2012) on board SDO. The model results
are obtained with the MP5 limiter. The wavelengths indicated
at the top of each panel correspond to various characteristic
temperatures. Again, the active regions are well captured.

4. CONCLUSIONS

We have presented our new AWSoM model. This solar
model, which is part of the SWMF, is a 3D Alfvén wave
turbulence-driven model ranging from the upper chromosphere

to the whole heliosphere. Compared to our previous models,
AWSoM includes a generalization of the Alfvén wave turbu-
lence to counter-propagating waves on both open and closed
field lines. The outward propagating waves are now partially
reflected by the Alfvén speed gradients and field-aligned vor-
ticity. The balanced turbulence at the apex of the closed field
lines is accounted for. We have also generalized our separate
electron and ion temperature to anisotropic ion temperatures
and isotropic electron temperatures. To distribute the turbulence
dissipation to the coronal heating of the three temperatures, we
use the results of the linear wave theory and nonlinear stochastic
heating as presented in Chandran et al. (2011). For the isotropic
electron temperature, we have now also incorporated the colli-
sionless heat conduction.

Our new model has no ad hoc coronal heating functions
and has only a few adjustable parameters: three to prescribe
the boundary conditions (density, temperature, and Poynting
flux of the Alfvén waves), a transverse correlation length
parameter for the turbulence and heat partitioning, a parameter
related to the nonlinear stochastic heating of the ions, and
two parameters for the collisionless heat conduction. Some
of these parameters could potentially be described more self-
consistently. For example, the transverse correlation length
could be obtained from a time evolution equation (Breech et al.
2008) instead of the simple scaling with the magnetic field
strength.

Since the evolution equations of our model do not assume
open or closed field lines, those will develop self-consistently
by using the data from photospheric magnetic field observations
as boundary conditions for the magnetic field. The correctness
of the coronal heating can be tested by comparing the simulated
and observed multi-wavelength EUV images. We performed
such a validation for CR2107. We demonstrated that our model
can reproduce many features seen in the LOS images. The
high latitudinal region is somewhat distorted. This might be
an artifact due to the polynomial interpolation of the synoptic
magnetogram above 60◦ toward the pole. Future improvements
in adapting magnetograms might address this issue. In our
companion paper, X. Meng et al. (in preparation), we will
showcase the model performance in the IH by comparing the
results for two CRs with in situ observations at 1 AU.

This work was supported by the NSF grant AGS
1322543. W.B. Manchester IV was supported by NASA grant
NNX13AG25G. The simulations were performed on the NASA
Advanced Supercomputing system Pleiades.

APPENDIX A

MODEL SIMPLIFICATION TO LOCAL DISSIPATION

We now consider the case that the turbulence is strongly
imbalanced, i.e., min(w±)/ max(w±) 
 1. For simplicity, we
also assume that w+ is the dominant wave, and hence, w− is
the minor wave (w− 
 w+). We can then simplify the wave
equations (36) as

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
w±
2

(∇ · u)

= ∓Rimb
√

w−w+ − Γ±w±. (A1)

For the minor wave equation, only the right hand side of
Equation (A1) has terms with the dominant wave. Hence, the
reflection and dissipation term of the minor wave equation can,
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Figure 3. Comparison of synthesized EUV images of the model with observational STEREO A/EUVI images. The columns are from left to right for 171 Å, 195 Å,
and 284 Å. Top panels: synthesized EUV images of the Sokolov et al. (2013) model. Middle panels: synthesized EUV images of the improved model. Bottom panels:
observational STEREO A/EUVI images. The observation time is 2011 March 7 20:00 UT.

(A color version of this figure is available in the online journal.)

in leading order of the small quantity w−/w+, be assumed to
be balanced. Using the dissipation rate Γ− = (2/L⊥)

√
w+/ρ,

the minor wave energy density can then analytically be deter-
mined as w− = (1/4)ρL2

⊥R2
imb. Using this expression in the

dissipation rate Γ+ = (2/L⊥)
√

w−/ρ of the dominant wave
equation and further noting that, to leading order, the reflection
term on the right hand side of Equation (A1) is much smaller
than the dissipation term for the dominant wave, we arrive at
the dominant wave equation

∂w+

∂t
+ ∇ · [(u + VA)w+] +

w+

2
(∇ · u) = −Rimbw+, (A2)

valid for strongly imbalanced turbulence. We note that the
resulting equation only depends on the dominant wave energy
density. A similar derivation can be performed when the w−
is the dominant wave, and we combine both cases in a single
formulation for strongly imbalanced turbulence:

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
w±
2

(∇ · u) = −Rimbw±. (A3)

The exponentially small minor wave energy density is now
assumed to be zero due to the absence of a reflection term
in these evolution equations (although it could be recovered

11
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Figure 4. Comparison of synthesized EUV images of the model with observational STEREO B/EUVI images. The columns are from left to right for 171 Å, 195 Å,
and 284 Å. Top panels: synthesized EUV images of the Sokolov et al. (2013) model. Middle panels: synthesized EUV images of the improved model. Bottom panels:
observational STEREO B/EUVI images. The observation time is 2011 March 7 20:00 UT.

(A color version of this figure is available in the online journal.)

from the aforementioned analytical expression for the minor
wave). Hence, by comparing Equations (A3) and (25), we can
conclude that in strongly imbalanced turbulence, the dissipation
rate is equal to the reflection rate, i.e., the wave dissipation is
local. The dissipation does, in addition, no longer depend on the
perpendicular correlation length. However, this derivation still
dismisses the case that near the apex of closed field lines the
wave energy densities can be of equal amplitude (w+ ≈ w−).
For the balanced turbulence, the dissipation should still be
estimated by the original expression (26). Combining both cases
results in the final expression for the wave propagation and local

dissipation

∂w±
∂t

+ ∇ · [(u ± VA)w±] +
w±
2

(∇ · u) = −Γ±w±, (A4)

in which the dissipation rate is

Γ± = max

(
Rimb,

2

L⊥

√
w∓
ρ

)
. (A5)

This approximation is valid for strongly imbalanced and bal-
anced turbulence. The applicability to moderately imbalanced

12
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Figure 5. Comparison between synthesized AIA images of the model with the observed SDO/AIA images. Top panels (from left to right): AIA synthesized images
for 94 Å, 171 Å, and 193 Å. Panels in second row: observational SDO/AIA images for those wavelengths. Panels in third row: AIA synthesized images for 131 Å,
211 Å, and 355 Å. Bottom panels: observational SDO/AIA images for those wavelengths. The observation time is 2011 March 7 20:00 UT.

(A color version of this figure is available in the online journal.)

turbulence, for example in the transition region and chromo-
sphere, is less certain.

APPENDIX B

APPORTIONING ION AND ELECTRON HEATING

The partial reflection of the Alfvén waves due to Alfvén
speed gradients and field-aligned vorticity generates counter-

propagating waves. The nonlinear interaction between these
oppositely directed waves results in an energy cascade from
the large scale L⊥ through the inertial range to the smaller
perpendicular scales, i.e., larger perpendicular wavenumber k⊥,
where it can dissipate. The apportioning of the dissipated energy
to the coronal heating functions Qe, Qi, and Qi‖ depends on
the microphysics that is involved. In this paper, we follow the
partitioning strategy based on the dissipation of kinetic Alfvén

13
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waves (KAWs) using the theory described in Chandran et al.
(2011). That formalism has the distinct advantage of providing
approximated formulas that can readily be implemented in a
numerical solar wind model that is based on the turbulent
cascade of Alfvén waves. We have implemented those formulas
in the present model, and below, we reproduce them for
convenience.

In Chandran et al. (2011), the cascading of Alfvén waves
transitions into cascading of KAWs. The KAWs can dissipate
when k⊥ri ∼ 1, where ri is the ion gyro radius. Among the dis-
sipation mechanisms considered are the linear Landau damping
and linear transit time damping of KAWs, which contribute to
electron and parallel ion heating. The corresponding damping
rates Γe and Γi‖ are

Γetc = 0.01

(
Pe

Piβi

)1/2 [
1 + 0.17β1.3

i

1 + (2800βe)−1.25

]
, (B1)

Γi‖tc = 0.08

(
Pe

Pi

)1/4

β0.7
i exp

(
−1.3

βi

)
, (B2)

where βe = 2μ0Pe/B
2 and βi = 2μ0Pi/B

2 are the electron and
averaged ion plasma beta. Similar to Chandran et al. (2011), the
Alfvén frequency 1/tc = k‖VA for the parallel wavenumber
k‖ can be rewritten as tc = ρδv2

i /(Γ+w+ + Γ−w−) under
the assumption of the critical-balance condition. The velocity
perturbation δvi of the Alfvén waves and KAWs at k⊥ri ∼ 1 is
assumed to scale with ri/L⊥ via

ρδv2
i ≈ wd

√
ri

L⊥
, (B3)

where wd = max(w+, w−) is the dominant wave energy density.
The minor wave energy density, wm = min(w+, w−), is assumed
to be exponentially small compared to wd , which is, strictly
speaking, not true in the balanced turbulence regime and
hence, introduces some uncertainty in the heating partitioning.
The above scaling is compatible with the 1 AU observations
of Podesta et al. (2007). Furthermore, we assume similar
to Chandran et al. (2011), nonlinear damping of KAWs via
stochastic heating of ions, resulting in perpendicular ion heating.
This energization is effective if δvi is large enough (Chen et al.
2001; Johnson & Cheng 2001). This form of heating is the result
of stochastic ion orbits perpendicular to B in an electrostatic
potential. The damping rate for βi‖ = 2μ0Pi‖/B2 � 1 is

Γi⊥ = 0.18εiΩi exp

(
−hS

εi

)
, (B4)

where Ωi = (e/mi)B is the ion gyro frequency, vi⊥ = √
2Pi⊥/ρ

is the perpendicular ion thermal speed, εi = δvi/vi⊥, and hS is an
input parameter for the stochastic heating. The heating functions
are expressed in terms of the damping rates:

Qe = 1 + Γetc

1 + (Γe + Γi‖ + Γi⊥)tc
(Γ+w+ + Γ−w−), (B5)

Qi‖ = Γi‖tc
1 + (Γe + Γi‖ + Γi⊥)tc

(Γ+w+ + Γ−w−), (B6)

Qi = Γ+w+ + Γ−w− − Qe. (B7)

The 1+ term in these expressions is for the remaining cascading
power that succeeds to cascade to k⊥ri � 1, so that it can be
assumed to be dissipated via interactions with electrons and
hence, contributes to electron heating.

APPENDIX C

COLLISIONLESS HEAT CONDUCTION

In this Appendix, we will derive the final form of our imple-
mented collisionless electron heat conduction. For convenience,
we will limit the derivation to the IH only, where the collisional
heat conduction, Coulomb collisional heat exchange with the
ions and the radiative cooling, can be neglected in the full elec-
tron energy equation (5). We additionally omit the time derivate
as we focus in this paper on the steady-state solar wind, and
hence, Equation (5) can be simplified as

∇ ·
(

pe

γ − 1
u
)

+ pe∇ · u = −∇ ·
[

3

2
αpeu

]
+ Qe. (C1)

The first term on both the left hand side and the right hand side
can be combined, resulting in

∇ ·
(

pe

γH − 1
u
)

+ pe∇ · u = Qe, (C2)

where we have introduced a new polytropic index γH for the
electrons in the collisionless regime:

γH = γ + 3
2 (γ − 1)α

1 + 3
2 (γ − 1)α

. (C3)

For our standard values α = 1.05 (taken from Cranmer et al.
2009) and γ = 5/3, we obtain γH ≈ 1.33. By reintroducing
the missing terms of Equation (5), we obtain our final evolution
equation for the electron pressure:

∂

∂t

(
Pe

γe − 1

)
+ ∇ ·

(
Pe

γe − 1
u
)

+ Pe∇ · u

= −∇ · q∗
e +

NikB

τei

(Ti − Te) − Qrad + Qe, (C4)

where
γe = γfS + γH (1 − fS) (C5)

interpolates the electron polytropic index γe between the colli-
sional regime where γe = γ and the collisionless regime where
γe = γH and the interpolation function fS is taken to be the same
as Equation (10). The ∗ in q∗

e indicates that we set qe,H = 0
in the electron heat flux (9), i.e., q∗

e = fSqe,S , since it is now
parameterized via a spatially varying γe.

The main difference between Equation (C4) and (5) is the use
of γe instead of γ in the time derivative, and hence, the time
evolution of both (ad hoc) formulations is different. As a final
note, we mention that a spatially varying electron polytropic
index does not negatively impact the shock evolution of CMEs.
Since the electron speed of sound is much larger than the CME
speeds, only the ions will be heated by the CME shock. The ion
fluid still uses the standard polytropic index γ = 5/3.
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