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ABSTRACT

The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band.
It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the
gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the
unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided
by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm
is also presented, that takes into account the differences between associated and unassociated gamma-ray sources.
Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the
number of unassociated gamma-ray sources and contribute to a more complete characterization of the population
of gamma-ray emitting AGNs.
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1. INTRODUCTION

The identification of astrophysical MeV and GeV sources has
been a long-standing question in gamma-ray astronomy, mainly
due to the limited angular resolution of gamma-ray detectors.
The pioneer SAS-2 and COS-B satellites reported detections of
26 sources with median location error of ∼1◦ (Hartman et al.
1979; Swanenburg et al. 1981). However, only the emission
from the Crab and Vela pulsars and the quasar 3C 273 could be
firmly identified. The deeper survey by EGRET reported 271
gamma-ray sources with a median location error of 0.◦65, but
only 101 identifications were reported (Hartman et al. 1999).

The Large Area Telescope (LAT) on board the Fermi
Gamma-ray Space Telescope started operations in 2008. The
increased effective area, reduced dead time, and use of silicon
tracker technology resulted in an order of magnitude improve-
ment in source location compared to its predecessors. The sec-
ond Fermi-LAT source catalog (2FGL; Nolan et al. 2012) char-
acterizes 1873 gamma-ray sources between 0.1 and 100 GeV
with a median location error of 0.◦07. A total of 1297 sources in
the 2FGL are either identified through variability or morphol-
ogy, or reliably associated with counterparts from catalogs of
candidate gamma-ray-emitting source classes. The remaining
576 sources for which no counterpart was identified are left
unassociated.

Several studies have addressed the nature of unidentified
gamma-ray sources. Searches for counterparts have been car-
ried out through dedicated observations of the source error boxes
(e.g., Ozel et al. 1988; Crawford et al. 2006) or cross-correlations
with multiwavelength catalogs (Romero et al. 1999; Sowards-
Emmerd et al. 2003). Others studied latitude and flux distribu-
tions to discriminate between different source populations in
the unidentified sample (Lamb & Macomb 1997; Gehrels et al.
2000), or compared the properties of unidentified sources to
those of candidate source populations (Mukherjee et al. 1995;
Kaaret & Cottam 1996; Merck et al. 1996). A new possibil-
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ity offered by the large number of sources reported by Fermi-
LAT is to train machine-learning algorithms on populations
of known gamma-ray sources to find similar candidates in the
unassociated sample. Ackermann et al. (2012) characterized
the gamma-ray properties of pulsars and active galactic nuclei
(AGNs) in the LAT 11 month catalog (Abdo et al. 2010b),
and listed unassociated sources with similar characteristics.
Mirabal et al. (2012) followed a similar approach, finding can-
didate classifications for unassociated 2FGL sources at high
Galactic latitudes (|b| > 10◦), while Lee et al. (2012) used a
Bayesian approach to find pulsar candidates.

In this work, machine-learning algorithms are used to iden-
tify unassociated sources in the 2FGL catalog with properties
similar to gamma-ray-emitting AGN. Two different learning al-
gorithms are trained on the gamma-ray properties of the known
AGN in the 2FGL catalog. Only the sources selected by both al-
gorithms independently are considered AGN candidates, adding
robustness to the classification method. In addition, a realistic
way of estimating the performance of classification methods is
presented that takes into account the differences between the
associated and unassociated source samples. Section 2 of this
paper describes the properties of the 2FGL catalog. Section 3
shows how the data was prepared and which classification al-
gorithms were tested, while Section 4 discusses how the algo-
rithms were optimized. The method for performance estimation
is discussed in Section 5, and the final results are presented in
Section 6. Finally, Section 7 summarizes the main conclusions
of this study.

2. SOURCE CLASSES IN THE 2FGL CATALOG

There are fourteen classes of gamma-ray sources represented
in the 2FGL catalog (Table 1). The different types of AGNs add
up to 60% of the population. The rest of the catalog is distributed
among unassociated sources (31%), and source classes with
smaller number counts.

In this study, the classification of unassociated 2FGL sources
is approached as a two-class problem, where each source is
either labeled as “AGN” or “non-AGN” (see Table 1). Of the
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Figure 1. Scatter plots showing some gamma-ray properties listed in the 2FGL catalog (top panels) and parameters used by the machine-learning algorithms (bottom
panels; defined in Section 3) for AGN and non-AGN sources.

(A color version of this figure is available in the online journal.)

Table 1
List of Source Classes in the 2FGL Catalog

Class Description Source count Label

bzb BL Lac-type blazar 436 AGN
bzq FSRQ-type blazar 370 AGN
agu AGN of uncertain type 257 AGN
agn Non-blazar AGN 11 AGN
rdg Radio galaxy 12 AGN
sey Seyfert galaxy 6 AGN
psr Pulsar 108 Non-AGN
glc Globular cluster 11 Non-AGN
snr Supernova remnant 10 Non-AGN
pwn Pulsar wind nebula 3 Non-AGN
spp SNR/PWN 58 Non-AGN
hmb High-mass binary 4 Non-AGN
nov Nova 1 Non-AGN
gal Normal galaxy 6 Non-AGN
sbg Starburst galaxy 4 Non-AGN

Unassociated sources 576

total number of associated sources, 1092 are labeled as AGNs
and 205 as non-AGNs: mostly pulsars, pulsar wind nebulae and
supernova remnants.

The gamma-ray properties of LAT-detected sources are dis-
cussed in detail in Nolan et al. (2012). Bright AGN exhibit
significant flux variability, while pulsars show indication of
spectral curvature (Ackermann et al. 2012). The top panels of
Figure 1 show differences between AGNs and non-AGNs in
some parameter distributions. Given these differences, machine-

learning algorithms can be trained to recognize unassociated
sources with AGN-like properties. Although pulsars also have
distinct gamma-ray properties, they are not treated as a separate
population to produce a list of pulsar candidates in this work.
Detailed searches for pulsar candidates and multiwavelength
counterparts have received much more attention than AGNs in
the recent literature (see, e.g., Keith et al. 2011; Kerr et al. 2012;
Lee et al. 2012; Abdo et al. 2013).

3. DATA PREPARATION AND
CLASSIFICATION METHODS

Before starting the learning process, the sample of associated
sources (1297 objects) was split into two subsamples: training
(70% of the sources) and test (30%). Subsamples were selected
using stratified sampling to avoid biasing the parameter dis-
tributions. The training sample was used to train the learning
algorithms and optimize their performance, while the test sam-
ple was set aside to evaluate the performance of the classification
methods once all the optimizations were made.

Two quantities characterize the performance of classification
algorithms: recall and false-association rate. The recall is
calculated in this study as the fraction of true AGNs that are
correctly labeled as AGNs, and the false-association rate is
defined as the fraction of non-AGN sources that are misclassified
as AGNs.

In a first step, a variety of supervised machine-learning clas-
sification methods were investigated, covering random forest
(Breiman 2001), support vector machines (Chang & Lin 2011),
support vector networks (Cortes & Vapnik 1995), Bayesian
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classification (Berger 1985), logistic regression (Hosmer &
Lemeshow 2000), nearest-neighbor pattern classification (Cover
& Hart 1967), and multi-layer perceptrons, also known as neural
networks (Rosenblatt 1962; Cybenko 1989). Algorithms were
trained using the variables from Ackermann et al. (2012) and
default settings (e.g., number of iterations). The performance
parameters were estimated using tenfold cross-validation on the
training sample, where the classifier is iteratively trained on
90% of the sample and tested on the remaining 10%, repeating
the process ten times until the entire training sample has been
tested.

Based on performance, random forest (RF) and neural net-
works (NN) were selected. The choice of two independent algo-
rithms adds robustness to the overall classification scheme (RF
& NN), which requires both RF and NN to label a source as
AGN for it to be considered an AGN candidate. Combinations
of three or more learning algorithms were also explored without
showing any significant improvement of the performance.

The selection of RF and NN was done after a coarse test
over several algorithms. It is not excluded that, after a better
optimization, other algorithms could slightly improve the results
presented here.

4. OPTIMIZATION OF THE LEARNING ALGORITHMS

Optimization of the RF and NN methods was done by
selecting the set of parameters that optimizes the learning
process, tuning the running parameters of the classification
algorithms, and adjusting the confidence thresholds to select
AGN candidates.

Different attributes from the 2FGL catalog were used during
the learning process: spectral index, Fi (flux in the five reported
energy bands), variability, curvature, and significance (square
root of the test statistic value). The best separation power be-
tween the populations of AGN and non-AGN was found using
spectral index and seven combinations of the abovementioned
parameters (many already introduced in Ackermann et al. 2012):
HR12, HR23, HR34, HR45, hardness slope, normalized variabil-
ity, and normalized curvature. HRij describes the hardness ratio
between the energy fluxes measured in two contiguous spectral
bands:

HRij = FiEi − FjEj

FiEi + FjEj

(1)

where Fi and Ei are, respectively, the flux and mean energy in
the ith spectral energy band. A hardness slope parameter was
also defined as

hardness slope = HR23 − HR34, (2)

which presents a powerful handle to separate possible AGN
candidates from pulsar-like sources. Two additional parameters
were also included

normalized variability = variability

significance
(3)

normalized curvature = curvature

significance
. (4)

Direct use of variables correlated with the overall flux of
each source was avoided, and all parameter distributions were
renormalized between 0 and 1 to minimize the influence of their
very different ranges.
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Figure 2. Distributions of the likelihood of an AGN classification for AGN
and non-AGN sources in the test sample. The distributions are shown for
random forest (top panel) and neural networks (bottom panel). Dashed black
lines indicate the likelihood threshold of each algorithm to label a source as
AGN.

(A color version of this figure is available in the online journal.)

The two selected learning algorithms have parameters that can
be tuned to improve the performance of the method (see Breiman
2001; Cybenko 1989, for definitions). The RF parameters were
adjusted to number of trees = 100 and depth of trees = 10. For
NN, values of number of cycles = 1000, learning rate = 0.2,
and momentum = 0.1 were found to be optimal.

After the learning process, RF and NN independently give a
likelihood LAGN of a tested source to be an AGN. Figure 2
shows likelihood distributions obtained with the RF & NN
applied to the test sample. Thresholds of LAGN,RF � 0.85
and LAGN,NN � 0.92 were required for each method to label
a source as an AGN. The thresholds were optimized targeting a
false-association rate of ∼10% for the combined classification
method (RF & NN).

5. PERFORMANCE OF THE CLASSIFICATION METHOD

The performance of the classification algorithms is evaluated
on the test sample, and is used to predict the completeness and
number of spurious sources present in the final list of AGN
candidates. However, the gamma-ray properties of associated
(test) and unassociated sources differ in parameters that affect
the performance of the classification methods. Figure 3 shows
that unassociated sources appear to be more clustered at low
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Figure 3. Galactic latitude (left panel) and significance (middle panel) distributions of associated and unassociated sources in the 2FGL catalog. Right panel: weights
applied to the sources in the test sample to obtain a realistic performance estimate, as described in Section 5.

(A color version of this figure is available in the online journal.)

significances and low Galactic latitudes than sources in the
associated sample. This is expected, as association probabilities
are lower for sources with larger location errors, and counterpart
catalogs tend to be incomplete near the Galactic plane (see Nolan
et al. 2012, also discussion in Section 7).

Low-significance and low-latitude sources also challenge
machine-learning classification algorithms. They are often too
faint and/or influenced by the bright Galactic foreground to
extract definitive information on their spectral shape and flux
variability. As shown in the top panel of Figure 4, the number
of sources incorrectly labeled as AGNs at low latitudes has
a probability of <1% of arising from random sampling the
test sample. It is also shown (Figure 4, bottom panel) that all
misclassified sources have significance<12. This scenario has a
chance probability of 1% if the performance of the classification
algorithm would not depend on significance. These trends, and
the differences between populations shown in Figure 3, imply
that sources in the test sample are easier to classify (or less
likely to be misclassified) than unassociated sources. Therefore,
a false-association rate directly evaluated on the test sample will
lead to an over-optimistic performance estimate.

To overcome this limitation, sources are binned in signif-
icance and Galactic latitude. Then, weights are calculated as
wij = Nua

ij /N a
ij , where N a

ij and Nua
ij are, respectively, the num-

ber of associated and unassociated sources in the i, j th bin. The
actual binning and weight values are shown in the right panel of
Figure 3. The false-association rate is then estimated as

false-association rate =

∑

i,j

N fa
ij · wij

∑

i,j

NAGN
ij · wij

(5)

where N fa
ij is the number of sources misclassified as AGNs on

each bin, and NAGN
ij the number of sources labeled as AGNs. The

use of weights corrects the bias introduced by the differences
between source populations, giving a realistic estimate of the
false-association rate.

The performance of the classification algorithm (RF & NN),
together with the individual performance of each learning
method, is shown in Table 2. The algorithm is expected to
recognize 80% of the AGNs present in the unassociated sample,
with a false-association rate of 11%.
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Figure 4. Cumulative distribution of sources in the test sample that were
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panel) and significance (bottom panel). To test the compatibility of the
distributions of misclassified AGNs with a random sampling of the 389 sources
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(A color version of this figure is available in the online journal.)
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Table 2
Performance of the Random Forest (RF), Neural Networks (NN),

and Combined Algorithm (RF & NN) Evaluated on the Test Sample,
Containing 389 Sources: 328 AGNs and 61 Non-AGNs

AGN→AGN Non-AGN→AGN Recall False-assoc. Rate

Random forest 289 12 88.1% 16.3%
Neural networks 278 12 84.7% 13.5%
RF & NN 261 9 79.6% 11.2%

Notes. Columns show the number of true AGNs correctly labeled as AGNs,
non-AGNs misclassified as AGNs, and the recall and false-association rate.

Table 3
List of High-confidence AGN Candidates, Ordered by R.A.

2FGL Name R.A. decl. LRF LNN (1) (2)
(◦) (◦)

J0004.2+2208 1.056 22.137 0.98 0.97 A
J0014.3-0509 3.581 −5.153 1.00 1.00 A
J0031.0+0724 7.775 7.414 0.99 1.00 A b
J0032.7-5521 8.179 −55.356 1.00 1.00 A
J0048.8-6347 12.218 −63.79 0.90 0.92 A b
J0102.2+0943 15.553 9.726 1.00 1.00 A b
J0103.8+1324 15.953 13.401 0.96 1.00 A b
J0116.6-6153 19.174 −61.887 1.00 1.00 A ab
J0133.4-4408 23.364 −44.142 0.99 1.00 A ab
J0143.6-5844 25.917 −58.745 0.98 1.00 A abc

Notes. (1) Class predicted by Mirabal et al. (2012); A: AGN, -: Uncertain.
(2) Counterparts: a: infrared counterpart in Massaro et al. (2013a), b: X-ray
counterpart in Paggi et al. (2013), c: AGN candidate in Acero et al. (2013).

(This table is available in its entirety in a machine-readable form in the online
journal. A portion is shown here for guidance regarding its form and content.)

6. LIST OF AGN CANDIDATES

The classification algorithm (RF & NN) was applied to the
sample of unassociated 2FGL sources to produce the list of
high-confidence AGN candidates shown in Table 3, which is
the main result of this study. A total of 231 AGN candidates are
found among the 576 unassociated sources that were studied.
The sky distribution of the AGN candidates, together with
the unassociated sources that were not conclusively labeled,
is shown in Figure 5.

The 231 AGN candidates constitute 40% of the 2FGL
unassociated sources. This is in line with estimates from similar
works, that predicted 35%–55% of unassociated gamma-ray
sources detected by Fermi-LAT to be AGNs (Ackermann et al.
2012; Ferrara et al. 2012). Out of 159 AGN candidates at
|b| � 10◦, 156 are also listed as likely AGNs according to a
previous work by Mirabal et al. (2012) that focused only on
2FGL sources outside the galactic plane.

Sources potentially confused with interstellar emission
(flagged with a “c” designator in the 2FGL catalog) were treated
as regular sources throughout the analysis. Those constitute 22%
of the unassociated sample, and have typically low detection sig-
nificances. The list of 231 AGN candidates contains 22 sources
with “c” designator (9%), showing that confused sources were
less likely to be labeled as high-confidence AGNs, as expected
for weak sources where the spectral and variability properties
are less certain.

The classification algorithm finds 11 sources at |b| � 10◦ with
no significant similarities with known AGN (LAGN,RF < 0.5
& LAGN,NN < 0.5). These could potentially be interesting,
as searches for dark matter annihilation or decay signals from

Figure 5. Sky distribution in Galactic coordinates of all unassociated 2FGL
sources. AGN candidates are shown as red circles, while blue crosses indicate
sources that were not labeled as AGNs. Adapted from Doert & Errando (2013).

(A color version of this figure is available in the online journal.)

dark subhalos target high-latitude unassociated sources with no
obvious counterparts (Nieto et al. 2011; Zechlin & Horns 2012).
However, all but 2FGL J0538.5-0534c are pulsar candidates
(Ackermann et al. 2012; Mirabal et al. 2012; Lee et al. 2012) or
have known X-ray counterparts (Takeuchi et al. 2013).

7. DISCUSSION AND CONCLUSIONS

This work studied the sample of unassociated gamma-ray
sources in the Fermi-LAT 2FGL catalog, finding 231 AGN can-
didates based on their gamma-ray properties. Two independent
machine-learning algorithms (random forest and neural net-
works) were used to assess the likelihood of each source to be
an AGN, and intersected to add robustness to the classification
method and reduce the number of false associations.

The study includes for the first time an estimate of the false-
association rate that takes into account the differences between
associated and unassociated gamma-ray sources. By evaluating
the performance using a test sample weighted in significance
and Galactic latitude, the obtained 11% false-association rate
can be considered a realistic estimate of the fraction of spurious
sources present in the AGN-candidate list. Ackermann et al.
(2012) obtained a lower false-association rate directly evaluated
on the test sample, which is likely an optimistic performance
estimate as discussed in Section 5. Similarly, Mirabal et al.
(2012) used cross-validation on the training sample, which is
known to give an optimistic performance, as the same sources
used to optimize the classification method are used to calculate
the false-association rate.

The list of AGN candidates (Table 3) covers the whole sky,
studying for the first time the strip that covers the Galactic
plane, where more than 50% of the unassociated 2FGL sources
are located. About 210 AGNs are expected at |b| � 10◦
extrapolating from high-latitude observations (Ackermann et al.
2011), while only 104 are listed in the 2FGL catalog. Even
though low-latitude sources are harder to classify, 72 AGN
candidates were found at |b| � 10◦ (see Figure 6), which
could be a significant fraction of the missing AGNs close to
the Galactic plane. At |b| � 10◦, the list of AGN candidates is
in good agreement with previous work by Mirabal et al. (2012).
Their study found 60 additional AGN candidates, which could
be a combination of their method being more sensitive, as it was
trained on a cleaner sample of high-latitude sources, and a lower
confidence threshold to identify AGN candidates.

Close to the Galactic plane, AGNs are difficult to identify
due to optical extinction and the bright foreground in radio and
soft X-rays. Counterpart catalogs are usually incomplete at low
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Figure 6. Galactic latitude distribution of the 2FGL sources. Shown separately
are associated and unassociated sources, known AGNs, and AGN candidates
identified in this work.

(A color version of this figure is available in the online journal.)

latitudes or skip the Galactic plane altogether (e.g., Healey et al.
2008; Massaro et al. 2009). Galactic absorption for gamma
rays is negligible below 10 TeV (Moskalenko et al. 2006),
making low-latitude AGNs detectable in the gamma-ray band
but difficult to catalog at lower frequencies. In fact, numerous
identifications of AGNs behind the Galactic plane have been
triggered by gamma-ray detections at GeV (Mukherjee et al.
2000; Mirabal & Halpern 2009; Kara et al. 2012) and TeV
energies (Abramowski et al. 2011; Archambault et al. 2013).

The list of 231 candidate AGNs presented here cannot be
considered source associations, but only objects likely to be
associated with an AGN. In case of gamma-ray-emitting AGNs,
detectable levels of non-thermal emission in radio, optical, and
X-ray frequencies are expected, and follow-up observations in
those bands are needed to unambiguously identify the nature
of the gamma-ray emission. Observations in the X-ray band
(0.2–10 keV) have been successful in finding counterparts of
unidentified gamma-ray sources (e.g., Mukherjee et al. 2000).
The angular resolution of X-ray telescopes (∼0.′3 for Swift/
XRT) can resolve individual sources inside the typical ∼5′ error
box of unassociated 2FGL sources. Follow-up observations in
radio and optical spectroscopy of candidate X-ray counterparts
can then provide a solid AGN identification and spectral class
(e.g., Halpern et al. 2001).

The Swift X-ray satellite has observed a good fraction
of the 2FGL unassociated sources. A complete summary of
these observations can be found in http://www.swift.psu.edu/
unassociated/ (Stroh & Falcone 2013). So far, 135 out of the
231 candidate AGNs have at least 2 ks of Swift/XRT exposure.
A good fraction of these have also been analyzed in Paggi
et al. (2013), finding 85 sources with at least one point-like
X-ray counterpart. Infrared counterparts with AGN-like spectra
have been identified for 56 of the AGN candidates in the WISE
all-sky survey (Massaro et al. 2013a). Recently, Acero et al.
(2013) presented a multiwavelength study of seven unassociated
sources where four AGN candidates were investigated and
confirmed to have AGN-like properties in the radio and X-ray
bands. These counterparts are listed in Table 3.

Counterpart catalogs of gamma-ray-emitting AGN candi-
dates are mostly based on the population of AGNs detected by
EGRET (Mukherjee et al. 1997), that contained a large number
of flat-spectrum radio quasars (FSRQ; 71%) and fewer BL-Lac-
type objects (27%). Similar FSRQ/BL Lac ratios are found in

counterpart catalogs such as CGRaBS (84% FSRQ / 10% BL
Lac; Healey et al. 2008) or BZCAT (54%/39%; Massaro et al.
2009). However, BL Lacs are more numerous than FSRQ in the
2FGL catalog (34%/40%; see Table 1). LAT-detected BL Lacs
have a median radio flux density of 86 mJy (Ackermann et al.
2011), with a low-flux tail extending well below the complete-
ness limit of the CRATES/CGRaBS catalog (65 mJy, Healey
et al. 2007). The potential deficit of BL Lacs in counterpart
catalogs suggests that a fraction of unassociated 2FGL sources
might indeed be BL-Lac-type blazars that have not yet been cata-
loged. This could become relevant in searches for TeV-emitting
AGN with present ground-based observatories (e.g., Massaro
et al. 2013b), and prospects for future installations like CTA
(Sol et al. 2013), as the harder gamma-ray spectra of BL Lacs
favor their detection at TeV energies over FSRQ.

Follow-up studies on the AGN candidates presented here
will reduce the number of unassociated gamma-ray sources and
yield a more complete picture of the characteristics of gamma-
ray-loud AGNs. Additionally, future observations could prove
whether the population of gamma-ray-emitting BL Lacs extends
to sources with low radio flux density. If confirmed, gamma-ray
emission from BL Lacs with luminosities �1044 erg s−1 will
give additional information on the low end of BL Lac luminosity
function in the gamma-ray band (Ajello et al. 2013), which is
a key ingredient to estimate their contribution to the isotropic
diffuse gamma-ray background (Abdo et al. 2010a).
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