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ABSTRACT

After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and
the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto
the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular
momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a
mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially
distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly
bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of
such “zero-Bernoulli accretion” flows as a model for the super-Eddington phase of TDEs. We argue that such flows
cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated,
any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions
of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce
some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from
collapsars and the growth of SMBH seeds inside quasi-stars.
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1. INTRODUCTION

Tidal disruption events (TDEs), encounters between a star
and a massive (=>10° M) black hole in which the star passes
within the tidal radius of the hole r, = R.(M;/M.,)"/3, where
R, is the stellar radius, M, is its mass, and M), is the mass of the
supermassive black hole (SMBH), have interested the astronom-
ical community for decades. Initial studies of TDEs focused on
their potential for generating the luminosities observed in ac-
tive galactic nuclei (Frank & Rees 1976; Frank 1978). While
this pursuit fell by the wayside (but see Milosavljevi¢ et al.
2006), TDEs continue to be useful for determining the pres-
ence of black holes within galactic centers (Lacy et al. 1982;
Rees 1988). Many investigations, both computational and an-
alytical, have been undertaken over the last 40 yr to elucidate
the dynamics of the interaction between a star and a black hole
and the luminosities associated with the resultant TDE (Carter
& Luminet 1983; Evans & Kochanek 1989; Loeb & Ulmer
1997; Kim et al. 1999; Tchekhovskoy et al. 2014; Guillochon
& Ramirez-Ruiz 2013).

The earliest studies of the physics of the disruption noted
that due to the difference in the gravitational potential across
the star, nearly half of the progenitor mass is ejected from the
system on hyperbolic orbits (Lacy et al. 1982; Carter & Luminet
1982; Hills 1988). The other half remains bound to the black
hole, with the orbits initially Keplerian (meaning that pressure
forces have not yet altered particle trajectories). After a few
revolutions of the innermost material, which occurs shortly after

1" Also at Department of Astrophysical and Planetary Sciences, University of
Colorado, UCB 391, Boulder, CO 80309, USA.

the disruption, hydrodynamical effects begin to modify the flow.
These interactions result in the heating of the debris.

One heating agent arises from the pressure distribution of the
tidally disrupted star, which causes some of the orbits to possess
a substantial inclination angle to the orbital plane of the center
of mass of the star. When the material on these orbits intersects
the midplane of the disk, occurring roughly at periapsis, shock
heating will simultaneously increase the internal energy of
the gas and damp the inclination angle of the orbit. Because
the innermost orbit has specific energy & ~ GMR,/r? =
GM;,/2R;, we see that R; ~ (R./2)(M;/M,)*? is its semi-
major axis. For a solar-mass star and a million-solar-mass hole,
the advance of periapsis at this orbit can amount to degrees.
Because the innermost debris has the highest velocity within
the disk, after one revolution it will impact the slower-moving,
outer material, generating a shock. The shock heating further
increases the thermal energy of the material and circularizes
the orbits. Finally, material continues to fall back at a rate that
can greatly exceed the Eddington limit for some time (Evans
& Kochanek 1989; Strubbe & Quataert 2011). This accretion
stage pumps a significant amount of energy into the flow.

Many authors have modeled the disks of bound material pro-
duced by TDEs (e.g., Cannizzo et al. 1990; Cannizzo 1992)
using the standard « parameterization of the viscosity and con-
sidering the disk to be radiatively efficient and geometrically
thin (Shakura & Sunyaev 1973). However, the processes out-
lined in the previous paragraph add a large amount of thermal
energy to the debris, which consequently “puffs up” the disk
in the vertical direction. The super-Eddington accretion also
means that radiative diffusion is not effective in cooling the disk.
We therefore believe that the thin disk model is incapable of
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describing the bulk properties of the flow during the super-
Eddington phase.

Loeb & Ulmer (1997) invoked the low specific angular
momentum of the debris to enable them to describe the gas as
roughly spherical; they then assumed that the black hole accretes
at a rate to match its Eddington luminosity. To make this model
self-consistent, they assumed that the spherical envelope, with
an isentropic equation of state and a steep density profile p ~
r—3, surrounded a rotating inner accretion flow, which would
have to have a much flatter (and possible even inverted) density
profile to obtain the required accretion rate. The boundary
between these regions was assumed to lie at roughly the tidal
disruption radius, where the mean specific angular momentum
of the debris is approximately Keplerian. While this model
requires substantial angular momentum transport within the
inner accretion flow, it offers no explanation as to why angular
momentum should not be transferred to the outer envelope. If
this happened, the boundary between the two zones would move
to smaller radii, requiring the density profile of the inner flow
to become even flatter (or more inverted), while the effect of
rotation on the outer envelope would remain small. It is difficult
to see how such a configuration could continue to regulate its
accretion rate to remain at the Eddington limit. On the contrary,
it seems likely that the energy generation rate would become
supercritical, with the envelope absorbing the excess energy
until it became unbound.

In an alternate approach, Strubbe & Quataert (2009) forced
the material to conform to a “slim disk,” (Abramowicz 1988) and
supposed that an outflow carried away unbound debris (see also
Shen & Matzner 2013). However, a slim disk also necessitates
that the rate at which matter reaches the black hole is only
mildly super-Eddington, and therefore a fair amount of mass
must be contained at large radii—in this case, far outside the
tidal radius. The assumption of nearly Keplerian orbits, built
into the slim disk model, then implies that the total angular
momentum required to support the flow is larger than the angular
momentum available.

The past 20 yr have seen the emergence of direct observational
evidence to support the existence of TDEs and their associated
accretion disks (Piro et al. 1988). ROSAT discovered the first
potential candidates for TDEs in the X-ray (Bade et al. 1996;
Komossa & Bade 1999). Despite the fairly small set of statistics,
astronomers used the ROSAT data to tentatively validate the
rate of 107> events per galaxy per year (Donley et al. 2002).
Chandra, GALEX, and XMM-Newton surveys have followed
up on the events discovered by ROSAT, demonstrating that the
luminosity—decay relation scales roughly as /3, as expected
from early theoretical studies of TDEs (Phinney 1989, but see
Lodato et al. 2009 and Guillochon & Ramirez-Ruiz 2013 for
arguments against this scaling; also see Section 4); they also
found a few new potential candidates (Komossa et al. 2004;
Halpern et al. 2004; Gezari et al. 2008). Most recently, a flurry
of analyses has followed the discovery of the y-ray, X-ray, and
radio transient Swift J164449.3+573451 (hereafter J1644+57),
which is popularly believed to be the result of a TDE (Burrows
et al. 2011; Bloom et al. 2011; Cannizzo et al. 2011). These
studies, in particular the X-ray and radio observations, not
only demonstrated the existence of a roughly t=>/3 power-law
decline of the undoubtedly super-Eddington luminosity, but also
confirmed the novel association of a relativistic jet with the TDE
(Zauderer et al. 2011; Tchekhovskoy et al. 2014).

The combination of super-Eddington luminosity and a pow-
erful jet suggests that accretion onto the black hole is not self-
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regulated, in contrast to previous models. Here we adopt a differ-
ent approach to modeling the super-Eddington accretion phase
of the geometrically thick disks produced by TDEs. We assume
that the structure of the flow is regulated by its ratio of angular
momentum to mass, which is quite sub-Keplerian between the
vicinity of the black hole and the photospheric radius. Such a
flow loses the ability to regulate its accretion luminosity, and
absorbs energy liberated near the black hole until it becomes
very weakly bound. Instead of blowing itself apart, however,
we conjecture that these marginally bound envelopes can per-
sist, with the excess accretion energy emerging as a jet through
the narrow rotational funnel. We propose that such a model is
consistent with the existence of a jet in Swift J1644+57; it also
may be relevant (with gas self-gravity included) to the formation
of gamma-ray burst (GRB) jets in collapsars and to the rapid
growth of black holes inside quasi-stars.

In Section 2, we illustrate the model that describes the fallback
disks in super-Eddington TDEs and promote reasons as to why
this model is appropriate. In Section 3, we use the results of
Section 2 to analyze a disk whose parameters (mass, angular
momentum, etc.) are those of a typical TDE and we show that
the internal structure of the disk depends only on those bulk
parameters. In Section 4, we consider the inner regions of the
disk, where general relativity is important, discuss the properties
of the jet, delineate the temporal evolution of the disk properties,
and compare our model directly to the case of Swift J1644+57.
We conclude and review the results in Section 5.

2. ZERO-BERNOULLI ACCRETION MODEL

The disk of stellar material created by a super-Eddington
TDE should be thick in the sense that its scale height is some
substantial fraction of its radial extent. Narayan & Yi (1994)
were among the first to discover self-similar solutions for the
vertically averaged density, pressure, and angular momentum in
which the velocity distribution was proportional to Keplerian.
One interesting consequence of their models was that the
Bernoulli parameter, given by B = Q%*r?/2 — GM,/r + H,
where Q is the angular velocity and H is the enthalpy, was
shown to be greater than zero. Because the Bernoulli function
is a measure of the specific energy of the gas, this result implies
that any parcel of gas given an initial kick away from the SMBH
would have energy at infinity.

The latter point motivated Blandford & Begelman (1999) to
describe a flow consisting of an advection-dominated accretion
flow (with M a function of radius) and a pressure-driven
wind, calling these states “adiabatic inflow—outflow solutions”
(ADIOS). The inflowing gas maintains a negative Bernoulli
parameter by transferring mass, angular momentum, and energy
to the wind. The model, however, requires some unspecified
mechanism—presumably some dissipative process—to drive
the outflow. Moreover, the inflow zone shares the characteristic
of slim disks that the specific angular momentum must be very
close to Keplerian—more than 87% of the Keplerian value
for the case of y = 4/3. To avoid a highly super-Eddington
accretion luminosity, this angular momentum distribution must
extend to radii far beyond the tidal disruption radius. The gas
returning to the vicinity of the black hole following a TDE,
however, has too little angular momentum to permit this.

Thus, the gas distribution during the super-Eddington phase
of a TDE is likely to resemble the quasi-spherical envelope
of the Loeb & Ulmer (1997) model, but without the ability to
regulate its accretion luminosity to a value close to the Eddington
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limit. The shock heating of different parts of the disk and the
energy input of the accreting black hole both raise the internal
energy of the material, with turbulence, convection and internal
shocks distributing that energy fairly evenly throughout the disk.
Eventually there will come a point in time where the Bernoulli
parameter approaches zero, leaving a marginally bound, highly
inflated envelope.

Any further augmentation of the energy would start to unbind
material. The question is whether this unbound material is
launched from a wide range of radii or from close to the black
hole, where the energy is injected. In the case of an ADIOS, the
large angular momentum contained in the flow allows the system
to maintain a disk-like geometry, with a large “free” surface
along which a wind can develop. However, in the present case,
for which B approaches zero, the disk closes up to a vanishingly
narrow funnel, leaving the outer, quasi-spherical surface as the
only plausible location for the development of a wide-angle
wind.

However, the injection of energy from the accreting black hole
occurs deep in the interior of the envelope, where timescales
are much shorter than those throughout the bulk of the flow.
The accretion energy, pumped into the gas at a rate that is
highly supercritical, is thus unlikely to be able to be efficiently
advected to the outer regions where a wind could regulate the
super-Eddington luminosity. The only viable exhaust route left
for the excess energy is then along the poles, where the surface
of the inflated envelope closes. We thus propose that at this
point in the evolution of the fallback disk, where the accretion
luminosity augments the binding energy of the envelope to the
point where a wind would develop if there were a free surface,
a jet carries away the excess energy.

In the situations we are considering, the mass of the black
hole dominates the total mass of the system. We can therefore
approximate the gravitational potential by ¢ = —GM,/r, where
M, is the mass of the SMBH and r is the radial distance from the
hole (we are neglecting any contribution from post-Newtonian
gravity; see Section 4.1 for a discussion of relativistic effects).
In spherical coordinates with this potential and the Bernoulli
parameter equal to zero, the momentum equations and the
Bernoulli equation are, respectively,

19p  GM,  (*csc?6 W
pdr 12 3
19p  £>cotfcsc’h
- =, 2
p 060 r
GM;, (*csc? 6
S =2 Y P (3)
r 2r2 y—1p

where ¢ is the specific angular momentum of the gas. In the
final line, we used a specific form for the enthalpy and assumed
that the azimuthal velocity is much greater than the poloidal or
radial velocity. Here y is the adiabatic index of the gas, generally
between 4/3 and 5/3 depending on the relative contributions
from radiation pressure and gas pressure. For most of what
follows we will assume that y = 4/3, as radiation pressure
dominates the support of TDE debris against gravity during the
super-Eddington phase. This fluid description is appropriate to
a ZEro-BeRnoulli Accretion (ZEBRA) flow.

2.1. Gyrentropic Flow

In Blandford & Begelman (2004), the authors described
ADIOS disks as marginally stable to the Hgiland criteria.
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This assumption, verified numerically (Stone et al. 1999),
demanded that the surfaces of constant Bernoulli parameter,
angular momentum, and entropy all coincide; these surfaces
are termed gyrentropes. While the Hgiland criteria determine
a disk’s stability to convection in the absence of magnetic
fields, even a vanishingly small poloidal field can completely
destabilize a differentially rotating disk that is stable to those
criteria (Balbus & Hawley 1991, 1992; Stone & Norman 1994).
We will now show, however, that the zero-Bernoulli assumption
ensures the gyrentropicity of the flow, even in the presence of
the magnetorotational instability (MRI).

One can show that VB = HVIn S + QV{, where H is the
enthalpy, S is the entropy, and €2 is the angular velocity of the gas
(Blandford & Begelman 2004). Thus, since B = 0, V.S o« —V£.
This relationship implies that surfaces of constant S are also
those of constant £, which must then be surfaces of constant B.
This type of disk is therefore also gyrentropic, the constancy of
B being the only assumption which led to that conclusion. Thus,
while MRI may invalidate the assumption of gyrentropicity on
the grounds of the Hgiland criteria, a constant-Bernoulli disk
retains gyrentropic flow (assuming that the magnetic energy
density is not large enough to substantially alter the dynamical
equilibrium).

2.2. Self-similar Solutions

From an analysis of Equations (1)—(3), one can show that
the general solution of £(r, #) could have any functional form
that depends on r and € only through the combination r sin’ 8
(see Appendix A, notably Equation (A10)). When the envelope
subtends a large range in radii, however, we expect the solution
to have a roughly self-similar structure between the inner
and outer boundaries of the disk. Blandford & Begelman
(2004) derive the gyrentropic solutions for arbitrary Bernoulli
parameter B(6)/r; the ZEBRA solutions are the special case
with B = 0. We will simply quote their findings here, and
adapt our notation to one which is consistent with theirs. For
the density, pressure, and specific angular momentum (squared),
respectively, we find

7 —q
p(r,0) = Po(-) (sin® 0)°, )
ro
—-q
p(r.6) = M0 <1) (sin? 0)" )
r ro
22(r, 0) = aGM,r sin* 0, (6)
where
g=3/2—n, (7)
o = M 8)
y —1
y —1
= 9
P I+y —gq(y — 1) ©
a= QM (10)

l+y —qy = 1)
ro 1s some characteristic inner radius, and pg is the density
at that radius (and at the disk midplane). The parameter n is
defined by Blandford and Begelman so that the accretion rate is
proportional to *; mass-conserving accretion has n = 0.
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One interesting aspect of these solutions is that n, and
therefore g, which describes how steeply the density and
pressure fall off as functions of r, is not specified a priori,
which introduces another degree of freedom into the models.
In general, however, we require that the exponent of sin6
remain positive, ensuring that the density and pressure do not
go to infinity at the poles. We also expect that the energy
produced in the disk should be a decreasing function of radius.
From the energy equation, we know that the luminosity is
given by L ~ Mv?, and assuming that the power is produced
by gas in regions with velocity appropriate to that for free-
fall, we find that L o« r"~'. These two restrictions then
impose that 3/2 — 1/(y — 1) < n < 1, which translates
to 1/2 < g < 1/(y — 1). We see that since the exponent
of sin?@ is always greater than or equal to zero in our self-
similar expressions, the density goes to zero only exactly at the
poles. These solutions thus represent quasi-spherical envelopes.
The angular momentum distribution is modified from that of
Keplerian by the factor a, which is always less than unity for
permissible values of n.

Blandford & Begelman (2004) noted the additional degree
of freedom contained in their solutions. They then went on to
describe the physical scenarios appropriate to different values of
n. In particular, different n give rise to larger or lesser amounts
of outflow, accretion rates, energy generation rates, etc. For
our present considerations, however, a wind is unnecessary.
The question of the value of n therefore merits some careful
consideration. In the next section, we will see how the properties
of the disrupted star and the black hole in a TDE determine this
as-yet-undetermined parameter in our analysis. Interestingly,
the ZEBRA models admit a wider range of n-values than the
range (0 < n < 1) consistent with ADIOS models.

3. ZEBRA MODELS OF TDE DEBRIS DISKS

The structure and evolution of a ZEBRA model for a TDE
are governed by the total mass and angular momentum of the
envelope, which change as matter falls back and is accreted or
expelled in a jet. The total angular momentum and mass of the
fallback disk are, respectively, = [ pdV and # = [ pdV,
where d'V is an infinitesimal volume element and the integral is
taken over the whole fluid. Using the formalism and notation of
the previous section, these can be written as

4 po/aGM;, [ (7
g= TONVETT / / ra452(sin® 0)**! dr o),
roq 0 ro
a1
4 )2 oK
M= ”_’Z“ / f F=4*2(sin2 9)7*V/2 dr d, (12)
Ty 0 ro

where rq is simultaneously the radius at which we specify the
density and the inner radius of the disk, and & denotes the outer
radius. Due to the influence of the black hole, we expect ry to
be on the order of the Schwarzschild radius (or, more precisely,
the location of the innermost stable circular orbit Bardeen et al.
1972), and so we will write ry = x 2GMh/cz, with x a pure
number of the order of a few. To determine the outer radius, we
compare the ability of the disk to transport energy via advection
to its ability to transport energy via radiative diffusion.
Although the photosphere of the envelope may be radiating
at close to the Eddington limit, the amount of energy generated
in the interior of the disk will generally be much greater than
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that able to be carried via diffusion; specifically, the luminosity
carried into the polar regions exceeds the Eddington limit by
a factor of the order of In(%/ry) (Jaroszyriski et al. 1980;
Paczynski & Wiita 1980; Sikora 1981). The dominant mode
of energy transport will therefore be turbulent advection. The
advective flux can be written F,, = ypv, where p is the pressure,
v is the local sound speed, and y is a number less than or
of the order of one that describes the efficiency of advection
(since we are really concerned with the flux of enthalpy, which
is 4p for a radiation-dominated gas, y could conceivably be
greater than 1). Since p ~ pv? and the advective luminosity
is L, ~ 4nr’F,, we have that L, ~ 4nyr2,0v3. When the
saturated advective luminosity becomes roughly equal to the
Eddington limit, radiative diffusion will become the dominant
mode of energy transport, allowing the disk to cool and become
thin. Symbolically, we have 47 ynor2pv® ~ 4w GeM,/k,
where k is the relevant opacity. In this case, we will use the
opacity for electron scattering, given by « ~ 0.34 cm?/g for
cosmological abundances. This definition is equivalent to that
which defines the trapping radius—the point in the flow at
which the diffusion timescale equals the advective timescale
(Begelman 1978). Fluid interior to this radius entrains photons,
rendering them incapable of escaping.

In addition to having a magnitude, the advective flux has a
directionality. Writing F, = F, 7, the advective luminosity is
obtained by integrating the dot product of this vector over an
area. Because we are concerned with the energy escaping from
the hole, the relevant area is the two-sphere, and hence the only
component of the flux relevant to the luminosity is that in the
r-direction. The quantity 7 - 7 will, in general, depend on 6, and
in fact we expect it to be less than one as much of the flux is
transported into the polar regions. Because we are unaware of
the specifics of the directional dependence of the flux, we will
simply incorporate those uncertainties into our efficiency factor
y, letting [ypvi -7dS = § [ pvdS, where S is the two-sphere
and y is an effective efficiency. Performing the integrations, we
find that the outer radius is given by

g _ 26 T@+3/2)  rp?
KT Ta+1) poyB/aGM,

The T'-functions resulted from our integration of the angular
dependence of p over the two-sphere, and for simplicity we
replaced y with y. Numerically, we find that 1 < (2//7)(T (e +
3/2)/T(x + 1)) < 2 over permissible values of «, so that its
inclusion in our expression does not significantly alter our
results. We will include the I'-functions here, however, because
they will simplify (visually) some of the relationships we will
describe in later sections. To offer some insight into the meaning
of the previous expression, note that it may be written as

B~ <ﬂ)q”2 ro. (14)
¢/t

where 7( is the optical depth and v is the local Keplerian
velocity, both evaluated at ry. From this form of the equation,
it is evident that photons must be trapped at r(, namely, the
inequality vy > c¢/to must hold, to ensure that our assumption
about the radiative inefficiency of the flow be upheld.

Recall that 1/2 < g < 1/(y — 1), a restriction that resulted
from requiring the density to be finite at all angles and the
energy generation rate to increase inward. The adiabatic index
of the gas will generally be between 4/3 and 5/3, meaning that

13)
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1/(y — 1) < 3, and consequently 1/2 < g < 3. Returning
to Equations (11) and (12), we see that this range of g will
always leave the lower bound on the radial integration, namely,
ro, relatively unimportant (unless ¢ is exactly 3, a case that we
will have to consider separately) if Z > ry, an assumption that
we can check. With these considerations, we find for the total
angular momentum and mass

P 2732 po/aGM T(a +3/2) #1172

rg ! T +2) —q+7/2°

s)

_2mpy Ta+1) #717

ro? T(a+3/2) —q+3 (16)

Solving for the radius of the disk in terms of the mass of the
disk and the mass of the black hole, we find

B 2/5
B = (W/%/GM;,) (17)

W\ M 1/5
~9x 10" == — cm. (18)
Mo 105 Mg,

This relation yields 2 ~ 10’ ry, r, being the Schwarzschild
radius of the black hole, for M;, = 10° M and .# = 1 M.
Because we expect that ryp =~ few x r,, we see that neglecting
the lower bound in the integrations of ./ and . was justified.

Our goal is to use the total mass and angular momentum,
calculable from initial conditions, to determine g. This value
will then inform us of how a larger progenitor star, a larger
black hole, or more angular momentum will influence how
steeply the density or pressure falls off with distance from
the hole. By performing a bit of algebra, we can rearrange
Equations (13), (15), and (16) to yield

1/6
¥k M~/ GM,,
f(///,ZMh)=<4ﬂc) A6

T+ 1)°T(a +2)/° (7/2 — ¢)*/°
- BYSall2T(a +3/2)57 3 — )

19)

The left-hand side of this expression, denoted f(.#, %, M},),
depends only on the total mass of the disk, the total angular
momentum of the disk, and the black hole mass (in addition
to a few physical constants; note that its dependence on y,
the parameter we introduced to describe the efficiency of
convection, is to the 1/6th power, and therefore only affects
our answers very weakly). The right-hand side, on the other
hand, is only a function of ¢, which we could in principle invert
to isolate ¢ itself. The gross properties of the progenitor star
and the black hole therefore determine the density, pressure,
and angular momentum profiles of the fallback disks associated
with super-Eddington TDE:s.

In order to calculate g for a given TDE, we need to parame-
terize the total mass and angular momentum in terms of those
values appropriate to a certain event, both of which will depend
on the progenitor star. In order to be tidally disrupted, the star
must pass within the tidal radius r, &~ R,(M,/M.,)'/? of the
black hole, where R, is the stellar radius and M., is its mass
(the precise point of disruption clearly depends on the details of
the stellar composition, rotation, and other complications, but
numerical results indicate that the true location does not vary
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Figure 1. Value of ¢ obtained for y = 4/3 (blue, solid) and y = 5/3 (red,
dashed) as we vary the left-hand side of Equation (19).

(A color version of this figure is available in the online journal.)

from that given by more than a factor of ~1.5 for realistic in-
teriors; Ivanov & Novikov 2001). Due to the tidal force on the
star and the tidal potential, nearly half of the stellar debris is
ejected from the black hole on hyperbolic orbits (Lacy et al.
1982). The other half remains bound to the SMBH. The initial
mass of the disk should therefore be on the order of .#Z ~ M, /2,
though the actual amount should be slightly less than this when
we account for material that has already been accreted and the
still-raining-down debris outside & (see Section 4). At the tidal
radius, conservation of energy dictates that the star has a ve-
locity of v, = /2GM},/r,, and hence the disk material has a
total angular momentum of . ~ M,/GM, R./2(M,/M,)"/°
(again, this is a slight overestimate). By parameterizing the mass
and angular momentum as such, Equation (19) becomes

11/36
16 Mo

Do+ 1)’°T(a +2)%/° (/2 — q)¥/f
M6l/18R*5(é12 :

- BYalPT(a+3/2)7  3—¢q

(20)
Here M, is the progenitor’s mass in units of solar masses,
R, is its radius in units of solar radii, and My is the black
hole mass in units of 10°® M. Interestingly, the left-hand side
is virtually independent of the black hole mass, meaning that
the density and pressure distributions of TDE fallback disks are
almost exclusively determined by the progenitor star.

Figure 1 illustrates the value of g obtained as we vary the
function f (A, £, M}). As we increase f (.4, £, M},), the value
of g approaches ¢ — 1/(y — 1). By analyzing Equation (8),
we can show that « = 0 for this value of g; recalling that
p o (sin? )%, we see that the flow is spherically symmetric.
This result makes sense when we realize that in order for
f (A, £, My,) to approach large values, the angular momentum
must be very small.

The value of g rapidly decreases as we decrease f. Recalling
our lower limit on ¢, namely, that ¢ > 1/2, we see that
there is a lower limit on the value of the left-hand side of
Equation (19) which is, after further investigation of Figure 1,
nearly independent of the adiabatic index. Numerically, we find

S5y

A6 ~ 1163 fory =4/3° 2D

where we have used the opacity for Thomson scattering and
the units are cgs. If one violates these lower bounds, our
model ceases to describe the disk adequately. We can show

yl/G%V GM > {179 fOI']/ 25/3
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that if the inequality is not satisfied, then % < R., where
R. = £ /(GM, W) is the circularization radius, which is
obtained by balancing gravity and the centrifugal force. When
[, £, My,), defined in Equation (19), falls below this critical
value, pressure forces play a negligible role in the dynamics of
the system, and the disk becomes thin. It is therefore no surprise
that our model breaks down in this limit.

The total mass and angular momentum of the disk thus
determine the large scale properties of the envelope, which in
turn determine the density and pressure profiles. Extrapolating
these profiles to the region of the disk near the black hole,
we can estimate conditions in the vicinity of the innermost
stable circular orbit, which then quantify the accretion rate and
rate of energy generation. Because any further absorption of
energy would lead to a positive Bernoulli parameter and unbind
the envelope (see Appendix B for notions concerning non-zero
Bernoulli parameter), we conjecture that the accretion energy
must escape through the funnel in the form of a fast jet.

We would like to be able to say something about the properties
of this jet. Also, the accretion of the black hole and the continual
fallback of material outside the envelope (at a rate roughly
proportional to /3 for later times) are changing the mass and
angular momentum of the system; the values of ¢ resulting from
this section should therefore be interpreted as initial, or bulk,
parameters. By modeling the mass and angular momentum of
the disk in a time-dependent manner, we will be able to gain
some insight into possible observational diagnostics one could
use to infer the presence of a ZEBRA flow.

4. JET PROPERTIES AND TEMPORAL EVOLUTION
4.1. Inner Regions of the Accretion Disk

In the above analysis, we assumed that ignoring the inner
regions of the accretion disk, where general relativistic effects
become important, was permissible. In those regions, however,
we know that the angular momentum must exceed its Keplerian
value, i.e., that with ¢ = —GM,/r, to account for the stronger
gravitational acceleration. This excess of angular momentum at
smaller radii and its interplay with the pressure gradient could,
in principle, significantly alter the flow at larger radii and change
our results.

Models that investigated the inner regions of thick disks
around black holes, termed ‘“Polish doughnuts,” were developed
in the late 1970s and early 80s, and research along these
lines continues to the present day (Abramowicz et al. 1978;
Koztowski et al. 1978; Paczynski & Wiita 1980; Jaroszynski
et al. 1980; Paczyniski & Abramowicz 1982; Komissarov 2006;
Qian et al. 2009; Abramowicz & Fragile 2013; Pugliese et al.
2013). In these models, authors assume ad hoc forms for both
the specific entropy and angular momentum, and from these
functional forms one may infer the pressure and density from
the relativistic energy and momentum conservation equations.
The portion of the ZEBRA envelope closest to the black hole
should in many respects resemble a Polish doughnut, with the
extra constraint that the flow has zero Bernoulli function. Instead
of pursuing the lines followed by many authors in examining the
consequences of the relativistic conservation equations, we will
follow a slightly different route which incorporates our model.

To analyze the specifics of the flow near the black hole
and its impact on the outer regions of the envelope, we will
restrict our attention to the case where the space-time metric is
that of Schwarzschild. With this assumption, we then replace
the standard point-mass potential with the “pseudo-Newtonian”
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potential of Paczyriski & Wiita (1980), so ¢ — —GM},/(r —r;),
where r, = 2GM,,/c* is the Schwarzschild radius. While
this potential tends to produce inaccurate numbers for some
quantities (Tejeda & Rosswog 2013), its prediction of the
innermost stable circular orbit and the marginally bound orbit
suffice for our treatment.

By manipulating the momentum and Bernoulli equations with
this potential, we can show that the most general form of the
angular momentum must satisfy £2(r, 0) = £2(¢ r*sin” 6), i.e.,
the angular momentum is only a function of the combination
¢ r? sin? § (note that this result is consistent with Equation (A10)
in which a specific basis set for the functions is used). In the
self-similar limit, we showed that £2 = ap r2 sin? 6. However,
in addition to approaching the self-similar value in the r — oo
limit, the angular momentum must also match that of the
pseudo-Newtonian distribution (that with the Paczyriski—Wiita
potential but without a pressure gradient) at some inner radius
where the pressure gradient goes to zero. Because the self-
similar solution will not necessarily satisfy the second condition,
we must search for non-self-similar distributions. The specific
form we will adopt is ¢> = A + D GM,, r?/(r — r,), where
A and D are constants and we are restricting our attention
to the equatorial plane. In general, the angular momentum
distribution could be more complicated. However, it must
monotonically increase with radius throughout—a decrease in
the specific angular momentum with radius is highly unstable to
convection (Goldreich & Schubert 1967; Seguin 1975), unless
it is accompanied by a strong increase in entropy, which is
unlikely. It must also approach the self-similar solution in the
asymptotic limit. The previous form is the simplest that satisfies
both of these criteria.

Requiring that the angular momentum approach its self-
similar value for large r yields D = a, where a is given
by Equation (10). With our specific form for the angular
momentum, we can manipulate the momentum equations to
find exact expressions for both the density and the pressure.
Setting the pressure gradient equal to zero at some radius r,,
where £%(r,,) = E%,N(rm), where E%N = 2GMur(r/(r — ry))?
is the pseudo-Newtonian angular momentum, yields A =
8GMyry(1 —a/2) and r,, = 2ry, which is the marginally bound
orbit. Our solution for the self-consistent angular momentum is
thus

5 ar?
5= GM, | 4rs2 —a) + — ) (22)

Figure 2 illustrates three different angular momentum distri-
butions for a given set of parameters: that given in Equation (22),
the self-similar solution, and the pseudo-Newtonian distribution.
As we can see, the self-consistent model flattens out in the inner
region to exceed both the pseudo-Newtonian distribution and
the self-similar angular momentum.

It may seem like this excess of specific angular momentum
could alter significantly our estimates of g, %, and other prop-
erties of the envelope. However, the two conserved quantities in
a TDE are the total angular momentum and total mass, and it is
not clear how much these differ from those in the self-similar
limit. Therefore, to answer whether or not this modified potential
truly affects our results, we must also determine how the density
varies in the self-consistent limit. After evaluating the density,
we can form the integrals fr 4wr?pdr and fr 4r2e pdr to
obtain the enclosed mass and angular momentum as functions
of r, respectively (the lower bound will not significantly affect
the result in either case). By comparing these functions to their
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Figure 2. Self-consistent model (Equation (22)) for the angular momentum
(blue, solid), the self-similar model (red, dashed), and the psuedo-Newtonian
distribution (black, dotted). Here we have set ¢ = 1.5, y = 4/3, the abscissa
is in units of Schwarzschild radii, and the angular momentum is normalized by
VGMyrs.

(A color version of this figure is available in the online journal.)
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Figure 4. Mass contained within r for the angular momentum given in
Equation (22) (blue, solid) and that for the self-similar model (red, dashed).
The parameters are the same as those in Figure 3, with the same normalization
for the density.

(A color version of this figure is available in the online journal.)
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Figure 3. Solutions for the density in the non-self-similar (blue, solid) and
self-similar (red, dashed) limits. Here ¢ = 1.5, y = 4/3, the x-axis is in
units of Schwarzschild radii, and the density is measured in units such that
po (rs/ro)~1 = 1, i.e., the red, dashed curve is simply (r/rs)’z‘z.

(A color version of this figure is available in the online journal.)

analogs in the self-similar limit, we can assess how significantly
the pseudo-Newtonian potential affects our conclusions.
Figure 3 displays the density for both the self-consistent
(using Equation (22) for the angular momentum) and self-
similar solutions. At small radii, strong gravity reduces the
density from that in the self-similar limit, while at large radii
they are indistinguishable. Figure 4 illustrates the total mass
contained within r for the self-similar and non-self-similar
models, while Figure 5 shows the total angular momentum
contained within r for both models. The self-consistent model
predicts an increased amount of mass and angular momentum
at larger radii, which is due to a slight increase in its density,
relative to the self-similar solution, at intermediate radii. This
means that the use of the Pascynski—Wiita potential makes a
more compact ZEBRA (in other words, we would enclose the
same amount of mass and angular momentum, fixed by the
TDE, at a smaller radius). However, we do not believe that
this alteration will change our results much, as the physics is
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Self—similar

S
S 60000
40000

20000

Figure 5. Angular momentum contained within r for the self-consistent model
(blue, solid) and the self-similar solution (red, dashed). The parameters and
normalization are the same as those in Figure 3.

(A color version of this figure is available in the online journal.)

largely dictated by the ratio of the total angular momentum to
mass, which is conserved from the TDE. Thus, while relativity
can alter significantly the behavior of the density, pressure,
and angular momentum at small radii, its effects on the bulk
properties of the ZEBRA are minimal. We therefore expect that
its inclusion in our models will not significantly change the
results.

If the Bernoulli parameter were very small (compared to
GM;,/r) all the way to the black hole, the gas would release
little energy in the form of a jet. However, we expect that this
is not realistic, and that fluctuations in the inner part of the
flow will lead to the root-mean-squared value of the binding
energy being some significant fraction of that for the innermost
stable circular orbit ISCO; = 6GM,, /c2 for a Schwarzschild
black hole). To quantify this statement, recall that for a non-
steady flow, an additional term must be added to the Bernoulli
function:

B—>B+/z—:~dr, 23)
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where the integral is taken over the flow line of the fluid element.
In terms of scalings, this term is on the order of

av Avr

— -dr ~ —. 24)

dt T4
Here Av is the change in the velocity over the dynamical
timescale, t;, and r is the radius at which we are considering the
(predominantly circular) flow line. Using t; ~ r/v and Av ~ v,
we find Av r/t; ~ v? (there is also a term, of the order of ~ v?,
that arises from the inclusion of the v- Vv term in the momentum
equation; however, because it is of the same order as the time
derivative, it suffices to consider only this term). At the ISCO
and regions interior to that radius, this fluctuation term can reach
substantial fractions of ¢?. Because the change in velocity can be
either positive or negative, the average will cancel out over the
whole flow. The root-mean-squared of the additional term will
not cancel, however, and will lead to fluctuations that lead to
both positive and negative Bernoulli parameter. The fluctuations
to the negative side give rise to bound flows, which then release
that energy in the form of a very energetic jet.

As in the case of ADIOS models (Blandford & Begelman
2004), the mechanism responsible for this energy dissipation is
not specified—its existence and nature will have to be verified
later. Once this energy is injected, however, its escape will most
likely be in the form of a jet due to the rotational funnel. Inside
the radius at which the material becomes bound, our previous
model breaks down. Because this region constitutes a minute
fraction of the disk, we do not expect that its presence will have
much of an impact on our results.

4.2. Accretion Rate and Jet Power

We derived the density, pressure, and angular momentum
distributions for ZEBRA envelopes under the assumption that
the poloidal and radial velocities were significantly less than
that in the azimuthal direction. While this proposition is upheld
in the bulk of the flow, it must break down in regions near the
SMBH, specifically in those regions where relativity prevents
the existence of stable circular orbits. It follows that the
radial velocity in this region should be appropriate to that of
gravitational free-fall, or v, ~ /GM},/r.

To make contact with the self-similar region of the flow,
we will take ry to be the radius at which gravitational infall
becomes substantial, and we have v,, = §4/GM,,/ry, where § is
anumber less than one. With this assumption, the mass accretion
rate onto the black hole should be on the order of that in the
spherically symmetric regime, or My, = 47[r§ pVy,. Plugging
in our expressions for relevant quantities, we find

Mice = 478p0/GMyry”. (25)

We can solve for pg in terms of the inner radius, the total mass
of the disk and the mass of the black hole. Doing so and putting
the expression into the equation for M, yields

. - 26M, \ ¥
Moo = 8 332 q///\/GMh< 5 h)

yor -%3—9)
x( M GM;,) hq),  (26)

4mem,,

where
2 T(@+3/2)3—¢q)

_ -33-9)
N T+1) (3 —q)Ba) D27

h(g) =
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which is a function only of g and y. We have also parameterized
the inner radius in terms of the Schwarzschild radius, viz.
ro = x 2GM,,/c*. _

The jet luminosity is given by L; = € Myc.c?, where € is the
accretion efficiency of the black hole. To arrive at this result, it
was necessary to introduce a number of factors that relate to our
uncertainty of the details of the flow, namely, €, the radiative
efficiency, yx, the inner edge of the disk, &, the fraction of free-
fall of the velocity, and y, the advective efficiency. However, we
expect that €, 8, and y are somewhere in the range of 0.01-1.0,
and we know that x should be on the order of a few (strictly,
this value and the radiative efficiency depend on the spin of the
hole and its orientation relative to the disk). Therefore, although
we have a number of unknowns, their range in parameter space
is rather small. Explicitly, we find for the jet power

2GM;, \*1
L; =M///c2\/GMh< 5 h)
c

-3G6-9)
><< or %@) ha).  (28)
4ncmp

where we set i = € 8 x3/>77 y=23=9/5 for compactness. For a
solar progenitor, a million-solar-mass black hole, y = 0.5, 6 =
0.05,ande = 0.1, wefind L; ~ 5x 10" erg s™' &~ 4x10°L g4
for the jet luminosity, where Lgyy = 4nGcMym,/or is
the Eddington luminosity of the black hole assuming ionized
hydrogen (here we have solved Equation (20) to determine the
value of ¢, which, for these numbers, is g ~ 2.4).

4.3. Time-dependent Analysis

In order to be tidally disrupted, the stellar progenitor must
pass within a pericenter distance of r, = xr,, where r, =
R.(M;,/M,)'/? is the tidal radius and x is a number that is less
than or about one. Here we will restrict our attention to the
case where x = 1. Our motivation for doing so is that other
authors have shown, using hydrodynamical simulations, that
the complexities of the encounter for smaller and larger x render
an analytical treatment insufficient for describing the physics of
the TDE (Guillochon & Ramirez-Ruiz 2013). Because running
anumerical simulation to determine the exact feeding rate to the
ZEBRA is outside the scope of this paper, we will only consider
those disruptions which occur exactly at the tidal disruption
radius and maintain that the analytical approach is accurate
enough for our purposes.

After the star is disrupted, the most tightly bound ma-
terial is placed on an orbit with semi-major axis R; =
(R*/2)(M;,/M*)2/3 (see Section 1 for a derivation). Because
the point of disruption occurs at the tidal disruption radius, the
eccentricity of this orbit is very large. Other less-bound gas
parcels (those with larger semi-major axes) are thus on nearly
parabolic orbits as they recede from the hole. The initial config-
uration of the tidally stripped material that is going to fall back
is therefore a thin, highly elliptical disk, confined roughly to the
plane occupied by the disrupted star.

When the innermost gas undergoes one complete orbit, shock
heating and other effects (see Introduction) begin to circularize
the orbits and alter the structure of the debris disk. After a
certain amount of time has passed, on the order of a few orbits
of the innermost material, the heating causes the disk to puff
up into a spheroid of radius Zy—this is the ZEBRA. In the
previous sections, we assumed, for simplicity, that the entire
mass that is bound to the black hole (nearly half the stellar
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progenitor) comprised the ZEBRA. However, because tidally
stripped material is continually falling back onto the accretion
region, it is not clear that this assumption is valid.

To determine how much mass is contained in the initial
ZEBRA and the rate at which material is falling back onto
the accretion region, we will pursue a line of analysis similar
to that in Lodato et al. (2009), and consider the star at the time
of disruption. At this point in time, the center of mass is at the
tidal radius, and, assuming the star is on a parabolic orbit, the
binding energy of the center of mass is zero. Denote the position
of a gas parcel contained in the star by rg =r; — nR,;n =11is
the edge of the star closest to the hole, n = —1 is that farthest
from the hole, and we are restricting our attention to the plane
of the orbit. The specific gravitational energy of a gas parcel is
then given by

. _GMy __GM, 29)
P It ry — 77R*
GMyR,
~ T, (30)
Ty

where in the final line we approximated the tidal radius as
being much greater than the stellar radius, valid for the SMBHs
we are considering. After disruption, the gas parcels fly apart,
cooling adiabatically and occupying roughly Keplerian orbits.
The energy-period relation for Keplerian orbits yields the semi-
major axes of these orbits:

2/3 T~ 2/3
R, = & % — ﬂ t2/3, 31)
P o \ M, 2w

where ¢ is the fallback time. Note that by inserting n = 1,
this expression reproduces the correct orbit for the most tightly
bound debris.

The rate at which material returns to pericenter is found by
using the chain rule, specifically dM /dt = (dM /dn)(dn/dt).
From Equation (31), we can readily determine dn/dt. To
calculate d M /dn, we will assume that the stellar progenitor is
well-approximated by a polytropic equation of state; a number
of authors have shown that the equation of state of the star
has important consequences for the rate of return of material,
and so it is not adequate simply to consider a constant-density
profile (Lodato et al. 2009; MacLeod et al. 2012; Bogdanovic
et al. 2013; Guillochon & Ramirez-Ruiz 2013). In this case,
p(R) = A0/~ where A is the density at the center of the
star, y, is the polytropic index of the gas that comprises the
star, and 6(R) is the solution to the Lane-Emden equation. R
is spherical distance measured from the center of the stellar
object. We will parameterize the location of a gas parcel within
the star in terms of the variables R, r, and z, where r is the
distance from the center of the star in the plane of the orbit
and z is the distance perpendicular from the plane of the orbit
(see Figure 6 for clarification). Using the fact thatdM = pdV,
where dV = 2mzdzdr is the volume element, and making
simple geometric substitutions, we can show that

am R
— =27 PRAR (32)
d’? nR,

I
M OrTEds
_ A& - : 33)
2 [y origras
where £ is the dimensionless radius defined through the
Lane-Emden equation and & is the first root of 6(§) (see, e.g.,
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Figure 6. Schematic of the star at the time of disruption to illustrate the geometry.
Note that r = nR,.

(A color version of this figure is available in the online journal.)

Hansen et al. 2004). Putting everything together, we obtain for
the mass rate of return

2/3 & o
M M*R*él( 2 M, )/t_5/3 g, 0716 dE M

dr 6 M./ GM,, fOE] gﬁgzdé -
(34)
This expression gives the rate at which material is drained from

the tidally disrupted debris cloud and added to the ZEBRA. Note
that Equation (34) only holds for n < 1, or for times t > #,,

where 32
R, 2 M
= () T (35)
2 M./GM,

is the time taken for the innermost material to undergo one
complete orbit. Noting that the original mass contained in the
bound tidally disrupted material is roughly M, /2, we can write
an expression for the remaining mass that is still raining down
onto the ZEBRA after a time :

M, tdM

M (t) = - Wdt , 36)
t

where d M /dt’ is given by expression (34) with ¢ — ¢’.

The jet and black hole are also extracting angular momentum
from the disk. However, it is necessary for the disk material
to transport a large amount of its angular momentum outward,
via viscous or magnetic processes (neither of which we have
attempted to include in this model) in order to be accreted by
the black hole. The angular momentum of the disk material is
thus nearly unaffected by the presence of the hole. However, as
we noted previously, natal stellar material is still falling back
onto the envelope. As we have assumed that hydrodynamic
effects have only influenced the particles in the region of the
ZEBRA envelope, this material still approximately retains its
specific angular momentum from the time of disruption, adding
this angular momentum to the disk as it falls back. Using
Equation (36), we find for the total angular momentum as a
function of time

1/6
f:s/ZGMhR*(Mh) <%—be<:>). 37)

M, 2

After the ZEBRA has inflated to a radius %, the envelope
will not only lose mass to the black hole at the rate described by
Equation (26), but it will also gain mass at the expense of the
tidally stripped debris that is still falling back. We can solve for
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Figure 7. Solution for ¢(#) with a solar progenitor (M, = 1 Mg, R, = 1 Rp,
¥« = 5/3), a radiation pressure-dominated gas (y = 4/3), M;, = 10° Mg,y =
1,6 = 0.05, x =5, and three different g, indicated by the legend. As one can
see, the initial conditions quickly become irrelevant to the long-term behavior
of the solutions.

(A color version of this figure is available in the online journal.)
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Figure 8. ¢(¢) for a radiation-dominated gas (y = 4/3) and a variety of black
hole masses. Here y = 0.5,8 = 0.05, x = 5,90 =3/2, v« =5/3, M, = 1 Mg,
and R, = 1R. The legend displays the black hole mass in units of solar masses.
We see that initially g falls off very rapidly, which is a consequence of initial
conditions. However, the initial conditions stop having a major effect early in
the evolution of the system, and g then decreases less rapidly.

(A color version of this figure is available in the online journal.)

A in terms of other quantities by rearranging Equation (19),
and our differential equation for ¢ is then .# = dM/dt —
M., where dM/dt is given by Equation (34) and M, by
Equation (26). To solve this differential equation, we need an
initial value for g. This initial condition can be determined
by assuming that the ZEBRA takes some time to inflate, at
which point it has some mass and angular momentum, which
in turn yield an initial g. However, the time to inflate depends
sensitively on the heating rates and other physical processes, for
which we do not have a reliable model. We also expect that any
knowledge of the initial conditions should be lost after a certain
amount of time, and that they should only reflect a transient
initial behavior. We will therefore leave the initial value of ¢,
which we will denote gg, as an unspecified parameter, and only
when systems with different gy converge on a single solution will
we consider our models accurate. After numerically integrating
the differential equation for ¢(¢), we can go on to compute .Z(t),

At)and Lj(1).
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Figure 9. Mass contained in the ZEBRA as a function of time for the same
parameters as those in Figure 8. The mass quickly increases initially, owing to
the fact that the fallback rate exceeds the accretion rate. However, as both rates
decrease for later times, the mass levels off to a nearly constant value.

(A color version of this figure is available in the online journal.)
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Figure 10. Jet luminosity, normalized to the Eddington luminosity of the black
hole, for the same parameters as those in Figure 8 with an efficiency ¢ = 0.1.
Initially, the luminosity is very super-Eddington, decaying to only mildly super-
Eddington at later times.

(A color version of this figure is available in the online journal.)

Figure 7 demonstrates how ¢ (¢) changes as we alter g, for a
solar progenitor, a 10° M, black hole, and a number of other
input values. As expected, the initial conditions strongly influ-
ence the behavior of ¢(¢) for early times, but, after about 0.1 yr,
which is about 2.5 ¢, for this configuration, the different values
become indistinguishable. We can thus say with confidence that
after this time our models represent the fully inflated ZEBRA.
This timescale, namely, a few revolutions of the innermost ma-
terial, is also consistent with our expectations concerning the
amount of time needed for the shock heating to add enough
energy to the system. Figure 8 shows ¢(¢) for various black hole
masses and a set of fiducial parameters. The initial conditions
cause ¢ (?) to decrease rapidly. However, the knowledge of such
initial conditions is quickly lost, and the system settles into a
state in which g(¢) decreases less rapidly. Figure 9 shows the
mass contained in the envelope as a function of time. Because
the fallback rate exceeds the accretion rate, the mass initially
increases rapidly. For later times, the accretion rate and the
fallback rate both drop significantly enough to leave a roughly
constant mass. Figure 10 plots the jet luminosity; as we can
see, the luminosity predicted by our model is super-Eddington
for a significant amount of time, though the amount of time for
which that statement is true decreases as the black hole mass
increases. The fact that the jet power is supercritical is a good
consistency check on our model. The time at which the accretion
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Figure 11. Black hole accretion rate, given by Equation (26), in solar masses
per year for go = 1 (blue, solid curve) and for gy = 2 (red, dashed curve) to

illustrate where the solutions have converged; the parameters are the same as
those in Figure 8 and the black hole has a mass M), = 10° M. We have also
plotted the fallback rate, shown by the black, dotted curve, to illustrate how the
two accretion processes compare. It is apparent from this figure that they match
each other closely, and that after about four years, the black hole accretion rate
exceeds the fallback rate.

(A color version of this figure is available in the online journal.)

rate becomes sub-Eddington is roughly the same time at which
q = 0.5, where our model begins to break down.

One of the popularly cited hallmarks of a TDE is that the
accretion luminosity is proportional to ¢~>/3. However, this
result only holds for a constant-density star. Our models account
for the mass distribution in the original progenitor, placing more
mass on orbits with larger semi-major axes, and they are also
consistent with the initial rise in the fallback rate. Our accretion
rate also takes into account fluid interactions, meaning that our
black hole accretion rate, and consequently the jet luminosity,
does not necessarily mimic exactly the mass fallback rate.

In Figure 11, we plot the accretion rate onto the black hole
for two different gy (we chose two different gy to demonstrate
when the solutions converge), given by Equation (26), and the
fallback rate onto the accretion region, which is the solution
to Equation (34), for the same set of fiducial parameters as
those in Figure 8 and the black hole has a mass M, = 103 M.
It is apparent from the figure that the accretion rate onto the
black hole follows the fallback rate rather tightly, but there exist
notable differences. The first difference is that the accretion
rate is less than the fallback rate for the times shown; this
finding is consistent with Figure 9, as the mass is increasing
for all times shown. The second is that there exists a temporal
lag between the qualitative features shared by the two rates;
the most salient example of this characteristic is the difference
in the time taken to reach the maximum, which is evident in
the figure. Specifically, the fallback rate reaches its maximum
at t+ ~ 0.094 yr, while the black hole accretion rate peaks at
t ~ 0.11 yr. The third difference is that the accretion rate of
the black hole follows a less-steep power law than the fallback
rate for later times. By fitting the fallback rate as My, o< t7'®
between 1 and 2 yr, we find that the power law is mg, ~ 1.63;
by inspecting Equation (34), we expect that the fallback power
law should asymptotically approach myg, = 5/3. By fitting the
accretion rate for the same amount of time and by the power-law
form M,.. oc t "=, we find that m,.. ~ 1.49. As one can see
in the figure, at a time of about 4 yr the black hole accretion
rate exceeds the fallback rate, corresponding to a decrease in the
mass contained in the ZEBRA. This result makes sense, as we
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Figure 12. Effective temperature as a function of time for different black hole
masses. The fiducial parameters are the same as those in Figure 8.

(A color version of this figure is available in the online journal.)

expect accretion to occur even if there is no fallback of material
onto the envelope.

Another property of the envelope that we can calculate is
its effective temperature. As we have argued in Section 3, the
surface should occur roughly at the trapping radius, and so the
temperature is given by

1/4
T <GcMhm,,> /

EE——— 8
GTO’SB%Z (3 )

1/4 —1/2
~osx 10t ) (2 YTk e
10° Mg, 10%cm

where ogg = 5.67x 107 cgs is the Stefan—Boltzmann constant.
ZEBRA envelopes produced by TDEs thus tend to peak in the
far-UV or soft X-ray band. We can also solve for the effective
temperature as a function of time, as shown in Figure 12.
Because % is proportional to .#*° (see Equation (17)),
the temperature decreases initially as mass is gained from the
fallback of tidally stripped material. However, for later times
when the black hole accretion rate and the fallback rate both
decrease substantially, the temperature remains nearly constant.
Owing to the fact that the photons are trapped interior to
%, we expect there to be a high degree of coupling between
the particles comprising the ZEBRA envelope and the photons
produced at the photosphere. The spectrum should therefore
be very well-matched by a blackbody distribution. Depending
on the temperature of the envelope and the composition of the
disrupted star, however, there may also be present a number
of absorption and emission features. With these temperatures,
electron scattering may also produce a color-corrected spectrum.

4.3.1. Power-law Fallback Rate

As one can see in Figure 11, the black hole accretion
rate closely matches the fallback rate of the tidally disrupted
material. An interesting question is whether this close equality
is always true, or if it just happens to be the case for the
specific analytic model that we chose. To analyze the effects
of altering the fallback rate, we will let My, scale as a power-
law, specifically

Mg, = Mo(m — 1)t (40)

where the proportionality constant has been chosen to be
consistent with the fact that at #,, the orbital period of the
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Figure 13. Black hole accretion rate (blue, solid curve) and the fallback rate
(red, dashed curve) for My = 0.1 x Mg /2, M = 10° Mg, m =2, and otherwise
the same parameters as in Figure 8, plotted on a log—log scale. The accretion
rate follows a shallower power-law than the fallback rate, causing the former to
exceed the latter for times greater than about 0.5 yr.

(A color version of this figure is available in the online journal.)

innermost material, My, = M, where M, is the mass of the
material that has yet to be accreted (note, however, that we
are not considering the equation accurate until much later than
t,, as the fallback rate must first peak and then decline to the
power-law decay). From the initial work of Phinney (1989), it
was thought that m should always be on the order of 5/3. Our
Figure 11 also indicates that this scaling holds for later times.
More recently, however, it has been shown that this power-law
decay may not be followed, even for times much later than that
at which the peak fallback occurs. In particular, Guillochon
& Ramirez-Ruiz (2013) demonstrated that variations in the
impact parameter, which we defined as x, can lead to partial
disruptions that, owing to the continued gravitational influence
of the surviving stellar core, cause m to deviate significantly
from 5/3. We will therefore leave this quantity as a variable
and inquire as to the effects of its variation on the black hole
accretion rate.

One might expect that My = M, /2, as the TDE leaves roughly
half of the progenitor bound to the black hole. However, partial
disruptions, which result from grazing encounters with the black
hole, leave an intact stellar remnant. In these instances, the total
mass bound to the hole is always less than M, /2. We will
therefore leave M as a free variable, typically on the order of a
fraction of M, /2.

As we argued previously, the material that comprises the
ZEBRA must lose its angular momentum before being accreted
by the black hole. By following the same line of reasoning, we
can show that the angular momentum contained in the envelope
is given by

e ()" (- ())

* I @D
With this expression, we can go through the same analysis
as in the previous subsection and numerically solve for g(z)
and all other time-dependent quantities. However, instead of
reproducing all of the plots in the previous subsection for
different values of m, we will concentrate on how the accretion
rate onto the black hole compares to the fallback rate, which
will inform us of the way in which the jet luminosity relates to
the fallback rate.
Guillochon & Ramirez-Ruiz (2013) demonstrated that m
varies between roughly 1.5 and 2.2, depending on the value of
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Figure 14. Power-law of the accretion rate, which we defined as m,, as a
function of the power-law index of the fallback rate is shown by the blue, solid
curve. The value of m . is determined by performing a best-fit to the black hole
accretion rate between ¢t = 0.2 and 1.5 yr, during which time the accretion rate,
for all values of m, is well-described by a power-law. We have also plotted m for
comparative purposes (red, dashed curve). We see that m, is always less than
m. For small values of m, the relationship between m,c. and m is roughly an
offset, linear one. As m becomes larger, however, m,¢. displays a more nonlinear
behavior, and the difference between the two power-law indices becomes larger.

(A color version of this figure is available in the online journal.)

the impact parameter (see their Figure 7). They also showed that
steeper fallback rates follow from shallower impact parameters,
as a result of the gravitational influence of the surviving
stellar remnant. Consequently, the values of m and M, are not
completely independent. We can show, however, that there exists
a nearly linear scaling between M, and the magnitude of the
black hole accretion rate. Since the fallback rate is also linear
in My, we will simply consider M a constant and note that the
true value of the accretion rate for a given m may be higher or
lower.

Figure 13 illustrates, on a log—log scale, the accretion rate
and the fallback rate for My = 0.1 x My /2, M), = 10° M,
m = 2, and the parameters adopted in Figure 8. We see that the
accretion rate also follows a power-law decline, but one that is
shallower than that for the fallback. Defining M., o t =", we
find, in this case, that m,.. ~ 1.70.

For other power-law fallback rates, a qualitatively similar
behavior is exhibited by the accretion rate. In particular, the rate
at which mass is accreted by the hole falls off as a power-law, but
one that is less steep than the rate at which material impacts the
ZEBRA. To illustrate how the value of m affects m .., Figure 14
shows the value of 1, given the value of m. To determine m1 ¢,
we have performed a best-fit over the timescale of t = 0.2-1.5
yr, during which time all of the accretion rates follow power-law
decays. As one can see, the relationship between the two power-
laws is approximately linear for low values of m, becoming
increasingly nonlinear as m increases. Thus, while the difference
between the two is approximately Am = m — nm,. & 0.15 for
m = 1.4, the disparity becomes Am = 0.50 for m = 2.2.

4.4. Swift J1644+57

The object Swift J1644+57 was found as both a source of
X-rays and y-rays by the Swift satellite, and thought initially to
be a GRB (Markwardt et al. 2011). However, the variability and
longevity of the source soon proved that such an association
was unlikely, and the proximity of the event to the nucleus
of a host galaxy at redshift z = 0.354 led to the belief
that the event was triggered by a TDE (Levan et al. 2011).
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By modeling the spatially and temporally coincident radio
emission by the interaction of fast-moving ejecta with the
circumnuclear environment, it was demonstrated that a mildly
relativistic jet was likely generated during the TDE (Zauderer
et al. 2011; Metzger et al. 2012). Here we investigate the
consistency of our ZEBRA models with the observations of
Swift J1644+57.

The peak, isotropic X-ray luminosity of Swift J1644+57
reached 4 x 10* ergs~!, with an average value appropriate
to ~few x 10% erg s~! (Burrows et al. 2011). When corrected
for beaming effects, we recover a true luminosity of Ly ~
10% — 10% erg s~! for a jet opening angle of 5° (Bloom et al.
2011). The mechanism responsible for the generation of the
X-rays is still unclear, though its origin is consistent with inverse
Compton scattering of photons near the launching point of the
jet (Markoff et al. 2005; Bloom et al. 2011). It is difficult to
constrain directly the mass of the black hole that resides in the
host galaxy, but empirical galaxy luminosity relations imply
10° My < M, < 10° My, (Saxton et al. 2012 and references
therein). The energy generation rate is therefore highly super-
Eddington (even if we increase the upper limit of the black hole
mass to 107 My).

The prompt evolution of the X-ray emission was highly
chaotic. However, after about 10 days from the initial trigger, the
flux followed a decline that was well-approximated by a power-
law (see Figure 1 in Tchekhovskoy et al. 2014). Therefore,
if our model is to adequately describe the evolution of Swift
J1644+57, the first constraint it must satisfy is that the X-ray
flux follow a power-law decline for later times. The exact value
of the power-law index is uncertain owing to the large degree
of intrinsic scatter in the X-ray data, but it is consistent with
the range predicted in Guillochon & Ramirez-Ruiz (2013; also
see Tchekhovskoy et al. 2014).

The second constraint on our model comes from the fact
that the X-ray flux of Swift J1644+57 dropped precipitously
after about 500 days, most likely indicating the shut-off of
the jet (Zauderer et al. 2013). Because our model requires the
accretion rate to be super-Eddington during the jetted phase, our
jet luminosity should be roughly the Eddington limit of the hole
at t ~ 500 days. However, because the initial behavior of the
X-ray flux was highly chaotic, it is unclear at what point from
the time of disruption the Swift satellite began observing the
source, and the timeline of 500 days is therefore ambiguous.

For the analytical models described in the previous subsec-
tion, the luminosity of the jet depends not only on the black hole
mass, but also on a number of other parameters which describe
the details of the flow, e.g., y, 8, etc. However, the results are
largely insensitive to those parameters, and hence we will adopt
the values that produced Figures 8—10. Moreover, if the impact
parameter differs significantly from x = 1, making the power-
law model the most valid description of the fallback process, the
values of m and M\ must also be incorporated into the model.

The flux we observe is altered by the Lorentz factor and
opening angle of the jet, both of which are uncertain and could
change with time. However, if we assume that both of these
quantities are constant, the flux we observe and the accretion
luminosity of the hole are linearly related. Thus, while the
magnitude of the observed flux cannot be determined exactly
with our model (without performing a more in-depth analysis of
the jet), its qualitative appearance can be reproduced. The value
of My, which is a relevant quantity if the TDE occurs outside the
tidal radius, also affects the magnitude of the jet luminosity. The
time of disruption is also unknown, as the initial chaotic behavior
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of the event is not predicted by any model, making the time
at which the observed flux reached a maximum incalculable.
However, since there is a steady decline after a timescale on
the order of days with no recurring rise, it is probable that the
maximum fallback rate occurred somewhere near in time to the
triggering event.

With all of these considerations, we will restrict our attention
to times greater than roughly 15 days after the trigger, where the
observed flux approximately follows a power law. Given this
restriction and our uncertainty in the exact value of the intrinsic
flux, the first constraint on our model is that the power-law
index of the jet luminosity should be between 1.5 and 2.2. The
second constraint is that the accretion luminosity produced by
the hole should be near the Eddington limit of the hole after
about 500 days from the time of the triggering. The luminosity
of the jet must also change by about an order of magnitude
during this length of time, evident in Figure 1 of Tchekhovskoy
et al. (2014).

If we adopt the model discussed in the beginning of Sec-
tion 4.3, which places the periapsis of the disrupted star exactly
at the tidal radius, and we choose the set of fiducial parameters
that produced Figure 8, the only free parameter left is the mass
of the black hole. Because the power-law index for later times is
around 1.5, there will exist a qualitatively good fit between the
model and the data. Our models predict that smaller black holes
produce a greater change in the jet luminosity over the duration
of the super-Eddington event, and an order-of-magnitude change
in the luminosity requires a black hole of mass M), ~ 105 M.
For black holes with masses in this range, the accretion lumi-
nosity of the hole is on the order of its Eddington limit around
500 days after the maximum fallback. This prescription is thus
broadly consistent with Swift J1644+57.

If the tidal disruption occurs at a distance such that the star is
only partially destroyed, the power-law rate of return is the most
appropriate method by which we can analyze the fallback onto
the ZEBRA. Since the power-law associated with the accretion
luminosity is always between about 1.5 and 1.7, there will exist
qualitatively good agreement between the observations of Swift
J1644+57 and the ZEBRA prediction. For these models, the
change in flux being an order of magnitude again requires that
M, ~ 10° M, consistent with the description that places the
periapsis of the star at the tidal disruption radius. For these
fallback rates, the accretion luminosity is near the Eddington
limit of the hole after 500 days from the maximum, though the
precise number depends on M.

5. DISCUSSION AND CONCLUSIONS

We have outlined a novel approach to describing the super-
Eddington accretion disks generated during TDEs. Following
Loeb & Ulmer (1997), we used the low specific angular
momentum of the tidally disrupted material to place the material
in a nearly spherically symmetric configuration around the hole.
However, instead of forcing a strictly spherical envelope to
enclose a thick disk, which we believe to be unstable due to the
absorption of energy and transfer of angular momentum, we self-
consistently account for the distribution of angular momentum
throughout the material.

In our models, the accretion energy released by the black
hole and shock heating pump a significant amount of energy
into the debris, puffing up the disk. We encounter a point
where the Bernoulli parameter approaches zero, leaving a quasi-
spherical envelope that is marginally bound. Further energy
input would unbind the material, most likely resulting in a wind
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(see Appendix B). Instead of creating a wind, we posit that
the accretion energy of the black hole is instead redirected to
the poles, resulting in the formation of a jet that serves as the
exhaust route for the excess energy. The resulting configuration
is a ZEBRA flow, threaded by a bipolar jet. This type of object
is specifically relevant to the recently observed X-ray transient
Swift J1644+57.

The creation of the jet is a natural consequence of the fact
that ZEBRA envelopes are closed up all the way to the poles,
leaving no disk surface from which one could launch a wind and
remove the super-Eddington accretion luminosity. Because the
liberated gravitational energy would have to propagate through
the entire system to be released at the photosphere, which is not
possible owing to the supercritical nature of its generation rate,
it is forced to exit along the poles. Another consequence of the
super-Eddington luminosity is the inability of the flow to cool
efficiently, forcing it to maintain its zero-Bernoulli nature. The
supercritical accretion luminosity thus forms the cornerstone of
the consistency of our model.

Following the analysis of Blandford & Begelman (2004),
we demonstrated the existence of self-similar solutions to the
momentum and Bernoulli equations with B = 0, which form
a particular subset of the gyrentropic flows discussed by those
authors. The gyrentropic nature of our flows is a result only
of our assumption of the globally zero Bernoulli parameter,
independent of any stability considerations, such as the presence
or absence of MRI. The ZEBRA flows were shown to close up
only exactly at the poles, indicating the quasi-spherical nature
of the envelopes.

We showed that there exists an unspecified parameter, denoted
by g (linearly related to the parameter n of Blandford &
Begelman 2004), which characterizes the radial gradients of
the density and pressure and the sub-Keplerian nature of the
flow. For TDEs, the total mass and angular momentum of the
progenitor star, coupled to our specification of the trapping
radius as the edge of the envelope, determine the value of ¢g. For
low specific angular momentum, the gradients of the density
and pressure increase, approaching the isentropic value of a
non-rotating star as the angular momentum goes to zero.

ZEBRA envelopes have a radial extent of hundreds to
thousands of Schwarzschild radii, validating our neglect of
general relativistic effects over the bulk of the flow. However,
the excess of angular momentum at small radii to account for
the relativistic gravitational field could play a significant role in
our determination of the gross properties of the configuration.
By using the pseudo-Newtonian potential of Paczynski &
Wiita (1980), we demonstrated that, while the specific angular
momentum, pressure, and density can deviate significantly from
their Newtonian values in regions close to the hole, the total mass
and angular momentum of the envelope are largely unaffected.

These models apply to the super-Eddington phase of accre-
tion, namely, when the flow is unable to cool via radiative losses.
We were able to predict the accretion and jet luminosities as-
sociated with ZEBRA flows, and found that, indeed, the rates
are highly supercritical, providing a self-consistency check on
our assumptions. Another aspect of our flows that is asserted a
priori is that the Bernoulli parameter is precisely zero, which we
know must break down close to the hole. The implications of a
non-zero, but constant, B are addressed in Appendix B. The re-
sults derived in the previous sections are shown to be insensitive
to this assumption provided that |B| < GM},/r.

Because of the very high accretion rates, an appreciable
amount of mass is lost on a dynamically relevant timescale.
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This consideration allowed us to determine the time-dependent
nature of the properties of the accretion flow and the jet. By using
an analytic model closely following that of Lodato et al. (2009)
to describe the fallback rate of tidally stripped material, it was
shown that the jet luminosity roughly follows the rate at which
material returns to pericenter, but with a few notable differences.
In addition to using the model for which the pericenter distance
of the disrupted star equals the tidal radius, we investigated the
consequences of letting the fallback onto the ZEBRA scale as a
power-law. This model serves as a proxy for the late evolution
of TDEs for which the pericenter of the stellar progenitor lies
outside the tidal radius. In these cases, the accretion rate onto
the hole also follows a power-law decline, but with a power-
law index that is less steep than that of the fallback rate. We
also demonstrated that ZEBRA envelopes produced by TDEs
should have approximately constant effective temperatures of
T ~ 5 x 10* K, placing the peak of their bolometric luminosities
in the far UV to soft X-ray.

We compared our models with the observed properties of
the transient X-ray source Swift J1644+57. Because of the
uncertainties in the opening angle of the jet, its Lorentz factor,
and the time at which the X-ray flux reached its peak magnitude,
we were unable to place many direct constraints on our model.
However, we found broad consistency with our models and the
observations if the black hole has a mass on the order of 103 Mg,
assuming a disrupted star of solar type and a constant jet Lorentz
factor and opening angle.

The existence of a ZEBRA is contingent on the availability of
an exhaust route for the excess energy produced in the accretion
process. In this account, we have presupposed the existence
of a jet as this conduit, and we demonstrated its consistency
with the source Swift J1644+57. We have foregone, however,
any explicit analysis concerning its generation or its interaction
with the ZEBRA flow. We also neglected any changes in the
Lorentz factor or the beaming angle of the jet, both of which
would have observable effects on the X-ray luminosity. These
aspects of the problem will be addressed in a future paper.

In addition to TDEs, ZEBRA flows may manifest themselves
in other astrophysical systems. One such application is to
failed supernovae, or collapsars (Woosley 1993; MacFadyen
& Woosley 1999). In this model, a highly evolved, rotating star
undergoes a type Il supernova. The core collapses directly to a
black hole, the remaining stellar material creating an accretion
disk and producing a jet. The internal shocks within the jet
provide one mechanism capable of producing the gamma rays
we observe in long GRBs. Outflows farther from the poles
are thought to unbind the envelope and produce the supernova
signature observed in many long GRBs (Woosley & Bloom
2006). However, there have been a few cases in which we
observe a GRB devoid of any supernova afterglow (Fynbo
et al. 2006), even though the location of the GRB should
have provided no impediment (e.g., dust extinction or light
contamination) to our observation of the afterglow. It is possible
that in these instances, the outflows away from the poles were
not sufficient to unbind the envelope, leaving it intact above
the black hole. This environment is precisely that in which a
ZEBRA flow would arise, as a wind is unable to be created due
to the presence of the overlying stellar material. As more energy
is pumped into the material, the entire mass of the progenitor
may come to an approximate equilibrium described by our B=0
prescription. Another application would be in the deep interior
of a quasi-star, a giant proto-galactic gas cloud supported by
black hole accretion (Begelman et al. 2006, 2008). Because the
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black hole accretes at the Eddington limit of the total quasi-star,
whose mass far exceeds that of the hole, the accretion rate is
highly supercritical. The overlying gas prevents the generation
of a wind or any other exhaust mechanism, making a ZEBRA
flow the most appropriate description of the fluid.

In both of the previous examples, the accretion rates and other
physical processes create a natural environment for ZEBRAs.
However, they both differ from TDEs in the gravitational role
played by the black hole: in TDEs, the black hole dominates
the mass of the system, and so the gravitational potential is
given by that of a point mass. In a failed supernova, the black
hole generated by the collapse is on the order of the mass of
the overlying material. Thus, as we move away from the hole
into the ZEBRA envelope, there will come a point where the
enclosed mass roughly equals that of the hole. The point-mass
prescription then becomes invalid. For a quasi-star, the black
hole constitutes only a small fraction of the total mass, and
hence the self-gravitating nature of the flow must be considered
in order to adequately describe the properties of the ZEBRA.

The fluid and Bernoulli equations with an arbitrary gravita-
tional potential may be written down in a straightforward man-
ner, Poisson’s equation being the extra constraint that closes
the system. An analysis of these relations, in which we self-
consistently include both the angular momentum of the gas and
its self-gravitating nature, will be deferred to a later paper.
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and NASA’s Fermi Guest Investigator Program. We thank Phil
Armitage and Greg Salvesen for comments on an early draft. The
authors thank the anonymous referee for useful and insightful
suggestions.

APPENDIX A
NON-SELF-SIMILAR ZEBRA SOLUTIONS

Blandford & Begelman (2004) demonstrated that if the
angular momentum is distributed in a quasi-Keplerian fashion,
ie., ¢ o« GMr sin? 6, then there exist self-similar solutions
for the pressure and the density throughout the disk. Here we
wish to demonstrate that the converse of this statement, namely,
“If the pressure and density fall off in a self-similar manner,
then the angular momentum is quasi-Keplerian,” is also true.
In the process, we will find the general solution for the density,
pressure, and angular momentum distributions of ZEBRA flows
in a Keplerian potential.

As a reminder, the momentum and Bernoulli equations
governing the ZEBRA flow are

1dp GM; (*csc’0
—— == +—, (A1)
p or r? r3
la_pzézcsczé’cot@, (A2)
p 00 r?
GM;, (*csc?o
S 2= Y Py, (A3)
r 2r? y—1p
Now make the following auxiliary definitions:
?csc’d  GM
—— = (. 0), (Ad)
r r
GM
p(r,0) = ——h(r, ). (AS)

r
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Inserting these definitions into Equations (A1)—(A3), we find
the following differential equation for A:

(A6)

The solution to this partial differential equation may be found
most simply by separating variables. Doing so, we obtain

h(r,0) = r~ 7 / c()(r sin2 6 dx. (A7)
0

Here X is the arbitrary constant obtained from the separation of
variables technique, and c(1) is the constant of integration which
is, in general, a function of A. The total solution, capable of being
matched to arbitrary boundary conditions, is then a sum of the
eigensolutions appropriate to a single A (if A takes on a discrete
set of values, the integral becomes a sum and c(A) — c;). The
range of A has been chosen in hindsight to be consistent with
the restriction that the square of the angular momentum and the
density both be positive.

Using Equation (A7), we can readily determine expressions
for the density, pressure, and angular momentum, which we find
to be

o(r, 0) = =7 / S0 Y G sin’ 0)°dA. (A8)
0 Y —
p(r,6) = GMyr— 7 / " O sin? Y-d, (A9)
0
2%(r,0) = 2GM,r sin* 0 f0°° h Q) sinf 0Y )
Je (,\ + ﬁ) c(V)(r sin? 6)-d A
(A10)

We are now in a position to prove the statement at the beginning
of this appendix: if we require the density or pressure to vary
self-similarly, then c¢(A) = ¢’8(A — A'), where ¢’ is a constant
independent of A and 6(x) is the Dirac delta function. Inserting
this relation for c(A) into Equation (A10), we find

21 .
— = GMrsin® 0,
A+ oo

2%(r, 0) = (All)

which agrees with the result in Section 2.2 if we let A =
n—3/2+1/(y — 1). The angular momentum distribution of
a self-similar flow is therefore quasi-Keplerian. Furthermore,
even if c(}) is not a delta function, the functional dependence
of the angular momentum is the Keplerian solution multiplied
by a ratio of integrals, with each of those integrals having the
same leading power of r. For this reason the dominant behavior
of the angular momentum will always be Keplerian.

APPENDIX B
NON-ZERO BERNOULLI PARAMETER

One of the tenets upon which much of our previous analysis
rests is that the Bernoulli parameter is exactly zero. Here we
would like to investigate the consequences of letting B become
negative, meaning that the disk is more than marginally bound;
this situation may occur if the jet turns on before enough energy
is pumped into the debris disk. We will also examine the case
where B > 0, and we will show that this regime is associated
with a wind.
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Assuming that we can still regard B as roughly constant, then
VB = 0, and the gyrentropic nature of the flow in the disk is
preserved (see Section 2). The fluid and Bernoulli equations are
now

1dp GM; (*csc?0
- = —_— (B
p or r2 r3
1adp _ 2% cotd csc20’ (B2)
p a0 r2
GM, 2 csc? o

M e v P _p, (B3)

r 2r2 y—1p

where we have written the Bernoulli parameter as B, with B a
negative number. We can generalize our analysis in the previous
appendix to include non-zero B. The resultant self-similar
solutions for the angular momentum, density, and pressure are

2= GM,,
r

%_'_B a+ﬁ }"2 o 5
P =p()<m> <%) (sin”0)*,

ro

GMh %-'-B DH—ﬁ 7'2 ¢ .2 g\
p:ﬁp()( : +B><Gr_?+3> (%> (sin20)”. (B6)

Here our notation is consistent with that in Section 2, i.e., a,
o, n, and B retain their original definitions. We see that a disk
with finite binding energy differs in its radial structure from that
considered previously only in regions where GM;,/r ~ |B|,
with the angular dependence completely unaltered. Therefore,
our analysis in Sections 2—4 concerning the properties of the
disk is largely incorrect only if GM},/|B| < R.

To determine when and if this inequality is satisfied, let us
assume that the inverse is true, i.e., R < GM},/|B], so that the
results from the preceding sections are almost correct. Then we
can approximate the outer radius by the expression in Section 3.
We then find, in order for our neglect of the Bernoulli parameter
to be permissible, that B must satisfy

+ B>r2 sin® 6, (B4)

(BS)

GM,,

2/5°
(%J//«/GMhﬂ\/EG - q))

|B| < (B7)

For our current models, the right-hand side of Equation (B7)
takes on values that are on the order of ~10!". To see if this
number is consistent with our neglect of finite binding energy,
we can further specify the Bernoulli parameter by recalling the
gravitational potential energy of the disk and its relation to the
star, which implies B = —8(GM,./R,)(M,/M,)'/3, where § is
a numerical factor. Inserting numbers into Equation (B7), we
find that our assumptions in Sections 2—4 are correct if § < 1.
As we have argued, the shock heating and energy generation in
the inner regions of the disk are thought to raise the Bernoulli
parameter, so that § < 1 should be satisfied in nearly all cases.
However, for larger black hole masses or larger progenitors,
the binding energy, and hence the Bernoulli parameter, will
increase, and the assumption of B &~ ( may start to break down.

By changing the sign of B, we obtain the solutions for
positive-Bernoulli disks. As anticipated, these models yield
finite pressure, density, and angular momentum at infinity,
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confirming our suspicions that positive-Bernoulli disks produce
winds. In fact, if B becomes too large, the density again
approaches a power law but with 2« replacing —¢g. In this limit,
we can show that for ¢ that leave the density finite at the poles,
all solutions predict an energy that increases as we go out in
radius. These two physically meaningless conclusions lead us
to the assertion that positive B solutions do not describe wind-
less disks, and hence are not appropriate to our modeling of the
debris disks produced by TDEs.
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