
The Astrophysical Journal, 780:144 (10pp), 2014 January 10 doi:10.1088/0004-637X/780/2/144
C© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

PROPERTIES OF MAGNETIC HELICITY FLUX IN TURBULENT DYNAMOS

Ethan T. Vishniac1 and Dmitry Shapovalov2
1 Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada; ethan.vishniac@usask.ca
2 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; dmsh@jhu.edu

Received 2013 March 28; accepted 2013 October 28; published 2013 December 19

ABSTRACT

We study the flux of small-scale magnetic helicity in simulations of driven statistically homogeneous magneto-
hydrodynamic turbulence in a periodic box with an imposed large-scale shear. The simulations show that in the
regime of strong dynamo action the eddy-scale magnetic helicity flux has only two significant terms: advective
motion driven by the large-scale velocity field and the Vishniac–Cho (VC) flux which moves helicity across the
magnetic field lines. The contribution of all the other terms is negligible. The VC flux is highly correlated with
the large-scale electromotive force and is responsible for large-scale dynamo action, while the advective term is
not. The VC flux is driven by the anisotropy of the turbulence. We derive analytical expressions for it in terms of the
small-scale velocity or magnetic field. These expressions are used to predict the existence and strength of dynamo
action for different turbulent anisotropies and tested against the results of the simulations.
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1. INTRODUCTION

It is increasingly clear that magnetic helicity plays an impor-
tant role in turbulent dynamos and the generation of large-scale
cosmic magnetic fields (see Brandenburg 2005, for a review).
The evolution of magnetic fields is tightly constrained by the
conservation of magnetic helicity, which is a good approxima-
tion even in the presence of nonzero resistivity (Taylor 1974).
Magnetic helicity is a measure of the links and twists in mag-
netic field B and is given by the volume integral of A · B (where
A is the vector potential, B = ∇ × A). Since the energy corre-
sponding to a given magnetic helicity scales inversely with the
scale of the twists, the magnetic helicity tends to accumulate
at the largest scales, exhibiting an inverse cascade (Frisch et al.
1975). In astrophysical objects it decays on resistive time scales,
much more slowly than magnetic energy, and is consequently
almost independent of time (Berger 1984). The conservation of
magnetic helicity, and the inverse cascade, are the underlying
mechanism of the large-scale dynamo process, explaining the
growth of magnetic field scale from eddy scales to the system
scale.

Regions of nonzero magnetic helicity are created in cosmic
objects by both small-scale turbulence and large-scale differ-
ential rotation and are readily observed (Démoulin et al. 2002;
Lynch et al. 2005; Subramanian et al. 2006). Large-scale astro-
physical magnetic fields have both poloidal and toroidal parts
(Brandenburg & Subramanian 2005a), i.e., are necessarily heli-
cal. Turbulent motions transfer magnetic helicity between writhe
and twist helicities and create many small-scale twists in the
magnetic field. The Lorentz force due to these twists grows to
suppress dynamo action (Sur et al. 2007). This process is called
α-quenching and is a direct consequence of total magnetic he-
licity conservation. The magnitude of the large-scale magnetic
fields limited by α-quenching has been estimated in several clo-
sure models (Pouquet et al. 1976; Kleeorin & Ruzmaikin 1982;
Gruzinov & Diamond 1994; Blackman & Field 2002) and is or-
ders of magnitude weaker than observed fields. Thus, at the very
least this implies a need for small-scale magnetic helicity fluxes,
which can remove helicity from the active dynamo regions and

allow large-scale magnetic field to grow to observed magni-
tudes (Kleeorin et al. 2000). A more ambitious role for these
fluxes was proposed by Vishniac & Cho (2001) who proposed
that these fluxes drive the dynamo process directly through the
accumulation of small-scale helicity with the required sign.

In the MHD limit, the conventional approach to the large-
scale dynamo problem is through mean-field theory (MFT;
Steenbeck et al. 1966). All quantities are divided into the mean
(large-scale) and fluctuating (small-scale) parts, while various
closure schemes provide estimates for the influence of small-
scale quantities on the mean field. The goal of every closure
scheme is to find the large-scale electromotive force (e.m.f.)
E = v × b, whose curl gives the time derivative of the large-
scale magnetic field.

In our previous paper (Shapovalov & Vishniac 2011, hereafter
SV11), we used periodic box simulations with a sinusoidal
shear on the largest scale, a weak seed magnetic field and
turbulence randomly and non-helically forced at small scales.
In a periodic box (with no constant magnetic field), the volume
integrated magnetic helicity is gauge invariant (Berger 1997).
For a set of parameters close to the galactic dynamo, we
observed a strong large-scale dynamo. Using these simulations
we demonstrated that in differentially rotating object with
strong large-scale dynamo the e.m.f. is highly correlated with
accumulation of small-scale magnetic helicity, indicating that
the turbulence drives a magnetic helicity flux, which then
determines the parallel component of the e.m.f. (Equation (6)
below). Furthermore, this correlation happens even in the
absence of any large-scale magnetic field. This suggests that
it would be interesting to study the magnetic helicity flux in
more detail. At the same time, we found that the scale and
orientation of the forcing (i.e., turbulence anisotropy) greatly
influence the dynamo action, making the dynamo stronger or,
alternatively, completely suppressing it. Consequently, it would
be interesting to find how the magnetic helicity flux at small
scales responds to changes in the location and orientation of the
turbulent forcing.

Guided by results of SV11 and using the same numerical
setup, this paper is devoted to further study of the properties of
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the magnetic helicity flux, especially to isolating the components
responsible for dynamo action and dynamo suppression. In
Section 2 we introduce the small-scale magnetic helicity flux
and derive expressions for the potentially important components
in terms of small-scale magnetic or velocity fields. In Section 3
we explain our numerical method for driving MHD turbulence,
set initial conditions, and show how we compute magnetic
helicity flux terms. In Section 4 we discuss the results of our
simulations. First, we analyze which terms contribute most
to the dynamo action. This allows us to greatly simplify
the small-scale magnetic helicity flux. Then we return to
the analytical expressions from Section 2 and use them to
predict approximately how the particular turbulence anisotropy
(orientation of small-scale forcing) will influence the dynamo
action. These predictions are compared with simulation results
in Section 5. In Section 6 we give a summary of results and our
conclusions. The Appendix is devoted to detailed derivations of
certain terms of the small-scale magnetic helicity flux.

2. MAGNETIC HELICITY FLUX

In an incompressible conducting fluid the magnetic helicity
flux is

JH = (A · B) V + B (Φ − A · V) − η(A × J)

≡ BΦ + A × (V × B) − η(A × J), (1)

where V is the velocity, B is the magnetic field divided by
(4πρ)1/2, i.e., the Alfvén velocity. ρ is the density, Φ is the
electric potential electric potential, A is the vector potential
(B = ∇ × A), J = ∇ × B is the current density, and η is the
magnetic diffusivity. The magnetic helicity density Hm = A · B
satisfies the equation:

∂tH
m + ∇ · JH = −2ηJ · B. (2)

V and B satisfy the Navier–Stokes and induction equations,
while the evolution of A is given by

∂tA = (V × B) − ∇Φ − ηJ. (3)

To remove the gauge ambiguity in A we use the Coulomb gauge
∇ · A = 0. When combined with the requirement that vector
potential vanishes at infinity this implies

A(r) ≡
∫

J(r′)
4π |r − r′| d3r′. (4)

This choice provides a direct connection between the magnetic
helicity A ·B and the current helicity J ·B, which is a physically
measurable quantity. The unique advantage of this choice is that
it maximizes the correlation between the two. Since the current
helicity helps drive v × b, this means that this gauge choice is
the only one which allows us to predict dynamo action from the
evolution of the magnetic helicity. Taking the divergence of (3)
leads to a constraint equation for Φ: �Φ = ∇ · (V × B).

The goal of this work is to follow the evolution of large-
scale field quantities. With this in mind, let us denote the low-
pass filtering operation with overbar (or angular brackets 〈 〉 for
longer expressions), so that B ≡ 〈B〉 is a large-scale quantity
(here – large-scale magnetic field) and b = (B − B) is a small-
scale quantity. The operation can be defined arbitrarily; however,

we will assume that X y ≈ 0 for any double products and

X Y z ≈ 0 for any triple products, i.e., the vector fields V and B

should have the “separation of scales” property. Similarly, we

also assume that X Y − X Y ≈ 0. Realistically, these relations
will not be exactly satisfied for any choice of filters, but when
the eddy scale is much smaller than the system size, they will
be approximately satisfied for any reasonable filter definition.

The “large-scale magnetic helicity” is defined as HLS = A ·B
and corresponding large-scale flux is defined as JHLS = BΦ +
A × (V × B + E) − η(A × J), where E is the turbulent e.m.f.:
E = v × b and �Φ = ∇ · (V × B + E). Then the conservation
equation for HLS will be

∂tHLS + ∇ · JHLS = 2E · B − 2ηJ · B. (5)

Although an important quantity in its own right, HLS is largely
driven by the behavior of the “small-scale magnetic helicity”
h = a · b and the inverse cascade. Regions of positive or
negative magnetic helicity are created as systematic twists in
structures at the scale of the turbulence. These twists are then
moved around and transferred upward to the largest scales
available, where the magnetic helicity is retained and dissipates
slowly (Frisch et al. 1975; Brandenburg 2005). Subtracting (5)
from the large-scale part of (2), we obtain the conservation
equation for h:

∂th + ∇ · j
H


 −2E · B − 2ηj · b (6)

with the flux

j
H

= (a · B)v + bφ1 − (a · v)B + (a · b)V + bφ2 − b(a · V)

+ bφs + a × (v × b) − η(a × j), (7)

where �φ1 = ∇ · (v × B), �φ2 = ∇ · (V × b), and �φs =
∇ · (v × b − v × b).

Equation (6) shows that in the absence of resistivity and for
a stationary concentration of small-scale magnetic helicity the
parallel component of the e.m.f. is proportional to the divergence
of the magnetic helicity flux. It means that supposed quenching
of the e.m.f. and the growth of large-scale magnetic field lies
in the particular properties of the flux (7). The validity of (6),
i.e., the strong correlation between left- and right-hand parts
of the equation was verified earlier in numerical simulations
(SV11). An expression with the same terms as in (7), but
split in a different way, was also obtained by Subramanian &
Brandenburg (2006).

The first two terms in (7) were originally evaluated by
Vishniac & Cho (2001); they form the Vishniac–Cho (VC) flux,
additionally studied by Brandenburg & Subramanian (2005b)

and Sur et al. (2007). The third term, (a · v)B, is generally
less interesting in mean-field dynamos, since it involves motion
of magnetic helicity along the large-scale magnetic field lines.

Similarly, the fourth term, (a · b)V, is responsible for moving
magnetic helicity with the large-scale velocity. However, this
term may provide advection of small-scale magnetic helicity
beyond the boundaries of dynamo region via large-scale outflow,
e.g., galactic fountain or wind (Shukurov et al. 2006). The terms
bφs and a × (v × b) can be ignored in this study, because their
dominant contribution to the magnetic helicity flux is a function
only of the local properties of the turbulence. In a homogeneous
system, like the one we study here, this implies that they do not
contribute to the magnetic helicity flux divergence. They may
play an important role in vertically stratified systems.
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The first two terms in (7) can be rewritten as an integral over
correlations, i.e.,

〈(a · B)v〉 + 〈bφ1〉 =
〈 ∫

d3r′

4πr ′ (v(r)B(r) · j(r + r′)

− b(r)∇ · (v(r + r′) × B(r + r′)))
〉
. (8)

Strong scale separation allows us to neglect terms with deriva-
tives of the large-scale field since such terms will be smaller
by the ratio of the eddy scale to the large scale to some power.
Consequently we drop terms with derivatives of the large-scale
field. Rewriting the expression above we obtain

〈(a · B)v〉 + 〈bφ1〉 =
〈 ∫

d3r′

4πr ′ (v(r)B(r) · j(r + r′)

− b(r)B(r + r′) · ω(r + r′))
〉
. (9)

Following the treatment of Vishniac & Cho (2001), we can
substitute τc(B · ∇)v for b, where τc is the eddy correlation
time. This is a reasonable first approximation, but it privileges
the velocity field over the magnetic field (we will ultimately
include the terms obtained by substituting −(B · ∇)bτc for v in
the Appendix). Additionally for an α − Ω dynamo, we can take
B ≈ Bθ θ̂ (cylindrical coordinates ρ, θ , z), and replace v with its
Fourier image. Then we integrate over r′, followed by averaging
over r. For a ẑ-component of (9), this will result in

〈(a · B)vz〉 + 〈bzφ1〉 = −2τcB
2
θ

∫
d3k

(2π )3k2

(
kzv

∗
ρ − kρv

∗
z

)
kθvz,

(10)
where “*” means complex conjugate. Using incompressibility
we obtain

〈(a · B)vz〉 + 〈bzφ1〉 = 2τcB
2
θ

∫
d3k

(2π )3k2

× (
kθkρ

[∣∣v2
z

∣∣ +
∣∣v2

ρ

∣∣] + k2
θ Re

(
v∗

ρvθ

))
.

(11)

This expression is the largest-scale term and does not depend
on r. Equation (11) remains mostly unchanged if we go to
a shearing system (Cartesian coordinates), since the vertical
magnetic field perturbations are not affected by shear (Ω =
∇ × V) in the horizontal plane.

As discussed by Vishniac & Cho (2001), in order to get a
growing magnetic field when ∂ρΩ < 0 (as in an accretion disk)
we need a positive vertical magnetic helicity flux. The first term
in (11) at least is guaranteed to have the correct sign in a strongly
shearing flow and will reverse sign if the shear is reversed. The
second term will have the correct sign if angular momentum
transport is outward in accretion disk, and inward in systems
with ∂ρΩ > 0.

Similarly, the vertical component of 〈b(φ2 −a ·V)〉 (term 5+6
in Equation (7)) is evaluated in the Appendix with the following
result:

〈bz(φ2 − a · V)〉 = − 2(r∂ρΩ)
∫

d3k
(2π )3k4

× [
k2
θ (|bz|2 + |bθ |2) − k2

ρ(|bρ |2 + |bz|2)
]
.

(12)

The overall sign of this term is not obvious, but almost
certainly depends on how the turbulence is driven. In a strongly
shearing flow, where kρ > kθ , increasing b2

z may decrease
the effectiveness of the dynamo and lead to the antidynamo
behavior. With the opposite sign we get that driving vertical
motions, and a stronger vertical field, can add up to the driving
forces of the dynamo. For accretion disks (Ω ∝ r−q with
q = 3/2), this term presumably has a negative sign.

We will continue the analysis of expressions (11) and (12)
in Section 5, after describing our numerical experiment and its
results. So far we can conclude that particular terms of the mag-
netic helicity flux are sensitive to anisotropy in the turbulence
both in real and wave vector spaces. If the information about
the relative magnitude of helicity flux terms is initially known,
together with degree of turbulence anisotropy, then one can pre-
dict whether there is going to be a large-scale dynamo in the
system, and whether the dynamo action will be strong or weak.

3. NUMERICAL METHOD

A pseudospectral code is used to solve the incompressible
MHD equations in a periodic box of size 2π :

∂V/∂t = (∇ × V) × V − (∇ × B) × B + ν�V + ∇P ′ + f (13)

∂B/∂t = ∇ × (V × B) + η�B (14)

together with ∇ · V = 0, ∇ · B = 0. Here P ′ ≡ P + V · V/2,
where P is pressure, f is forcing, and ν is viscosity. We set ν = η.
The code was originally written by J. Cho and is described in
(Cho & Vishniac 2000). We briefly discuss the details of the
simulations below. A fuller description can be found in SV11.

The small-scale turbulence is driven by external forcing term
f in (13), which satisfies ∇ · f = 0 and consists of 22 random
components. Each of these components has both linearly and
circularly polarized parts, the latter can be switched off. Then the
forcing becomes non-helical, and the angle of linear polarization
of each component performs an independent one-dimensional
random walk. The helicity injected into the turbulence in this
way is randomly fluctuating with average very close to zero.
The forcing correlation time is of the order of the turbulence
eddy turnover time at the forcing scale.

The coordinates of each forcing component in k-space are set
by a vector kf . All 22 kf are chosen to have equal absolute
values |kf | = kf and one of the ratios |kf i

/kf | = ki/kf (i =
x, y, z; |ki/kf | ∈ [0; 1]). This means that 22 random forcing
components are uniformly applied along the two spherical
segments of k-space with radius kf and fixed ki/kf , e.g., for
kf = 15 with kz/kf = 0.8 and kz/kf = −0.8.

This forcing with a fixed orientation drives an anisotropic
turbulence. For each forcing point, the vector f belongs to a
plane orthogonal to kf . In the 2563 simulations below we use
kf = 25 with kx/kf = 1. In this case the turbulence is forced
in YOZ plane with only a weak component in X-direction. At
the same time forcing applies highly variable waves along the
X-direction, while being almost uniform in the Y- and
Z-directions. Thus all three components of the small-scale veloc-
ity field (vx, vy, vz) will have strong gradients in the X-direction,
but not along the other two axes (except as a consequence of
nonlinear interactions). The explicit expression for f and further
examples of forcing action are given in SV11.

The initial conditions for the simulations are sinusoidal large-
scale shear and a weak seed magnetic field: Vx = V0e

iy ,
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Figure 1. Evolution of the kinetic energy components. Here “large scale” means k ∈ [0; 6], “small scale” — k ∈ [19; 42]. The shear is supplied by the large-scale Vx,
and the eddy turnover time Te = 5–7 (at k = 25).

(A color version of this figure is available in the online journal.)

Bx = B0e
iy . B0 ∼ 10−3, V0 � B0. V0 is chosen to satisfy

Rossby number Ro = kf vkf
/V ≈ 1 and is kept near this value

by additional large-scale constant forcing, which supports the
shear against dissipation.

For the purposes of this paper we need to compute various
triple products, the terms of (6) and (7). Their full spectra
exceed the available Fourier space by a factor of three and are
truncated. However, these truncations occur several times during
the intermediate stages of the computation, and independently
for each product. In order to compare various triple products, we
have to cut the spectra of initial variables at kmax/3. For 2563, the
resolution of our simulations, kmax/3 = 42. The forcing scale kf
also has to be kept under kmax/3, to include the largest eddies of
the turbulence in the data available for triple products. Having
forcing under k = 42 allows both inertial and dissipative ranges
to exist in the interval [kf ; kmax] of the main 2563 simulation.
However, the dynamo action depends only on the largest eddies
of the turbulence and resolving the dissipation range is desirable,
but generally unimportant.

4. RESULTS

We begin with a simulation of the evolution of the magnetic
and velocity fields. This is done once for a particular set
of parameters in order to compute the terms of the small-
scale magnetic helicity flux (7) and to estimate their relative
importance. We choose ν = η = 7.4 × 10−4, an injection
scale of the turbulence at kf = 25, kx/k = 1, and with
“non-helical” forcing. The Rossby number Ro ≈ 0.7–1.2,
while the eddy turnover time Te ≈ 5–7, and the Reynolds
number is Re = 2πvkf

/kf ν ≈ 20–40 (all measured from
the simulation). The evolution of velocity and magnetic field
amplitudes at various scales is shown in Figures 1 and 2. It was
discussed in SV11 in great detail. Here we only note that this
set of parameters produces a strong large-scale dynamo in the
simulation.

Figure 3 shows the particular terms of divergence of magnetic
helicity flux (7). This figure, together with Figures 4 and 5 allows

us to analyze various terms based on the averaged absolute
values of their totals. “Large scale” means k ∈ [0; 6], “small
scale” means k ∈ [19; 42] for Figures 1 and 2 only, and we use
a sharp split at kl = 6.5 for all other figures: B = B(k � kl)
and b = B(k > kl); the particular choice of filtering does
not significantly influence our results (see SV11 for details).
All terms in Figure 3 are rather well correlated with each
other and with the total ∇ · j

H
: all of the values of Pearson

correlation coefficient r lie in the [0.86; 0.995] interval. We
use data only from the time interval [70; 360] to compute r,
avoiding its increase during the initial rapid growth of all large-
scale quantities. The [70; 360] time interval allows us to study
the large-scale dynamo stage without contamination from the
earlier small-scale dynamo stage.

The three smallest terms are ∇ · bφs (term 7), ∇ · a × (v × b)
(term 8), and −∇ ·η(a × j) (term 9). They can be easily ignored,
because their sum contributes less than 3% to the |∇ · j

H
|: the

sum of terms 1–6 is equal to the sum of terms 1–9 in Figure 4.
The largest (more than 80% of ∇ · j

H
magnitude) single

contribution is given by the fourth term ∇ · (a · b)V, due to
the large value of the large-scale shear. This term can be
approximated by ∇ · (hV) with a 15% accuracy. Although this
term is large, its relevance to the dynamo process is doubtful.
The large-scale shear is not imposed in this simulation, but
driven, and consequently fluctuates. This term captures the
effect of the large-scale fluctuations in the shear, which creates
inhomogeneities along the streamlines. These do not play a
significant role in the mean field dynamo. The next largest terms

are ∇ · bφ2 and −∇ · b(a · V) (5 and 6). They are equal by
magnitude (40% of the |∇ · j

H
| each), but their sum is only

about 15% of the |∇ · j
H
| and it does not contribute to the sum

with other terms: |1 + 2 + 5 + 6| ≈ |1 + 2| (Figure 4), because
the terms 5 and 6 are antiparallel almost everywhere. This is a
consequence of the Galilean invariance of the magnetic helicity
flux, which leaves only a contribution proportional to the shear,
rather than the streaming velocity. We also see that the sum
of terms 1–6 is equal to the sum of terms 1–4 in Figure 5. It
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Figure 2. Evolution of the magnetic energy components. Here “large scale” means k ∈ [0; 6], “small scale” — k ∈ [19; 42].

(A color version of this figure is available in the online journal.)

Figure 3. Evolution of particular terms of the divergence of magnetic helicity flux ∇ · j
H

(averaged absolute values). For convenience both notations “〈 〉” and “ ”
are used for large-scale filtering. j

H
is defined in Equation (7). Here and in the all following figures “large scale” means k ∈ [0; 6.5], “small scale” — k ∈ (6.5; 42].

(A color version of this figure is available in the online journal.)

means ∇ · b(φ2 − a · V) can be neglected, at least in the given
parameter region, i.e., for consideration of the efficient large-
scale dynamo. In other situations, e.g., when kf is much smaller
than our kf = 25, the relative importance of this term is expected
to increase due to the extra k−2 factor in Equation (12), and may
be important for antidynamo behavior.

Terms ∇ · (a · B)v, ∇ · bφ1, and ∇ · (a · v)B form the next
group in Figure 3. They are also equal by magnitude (20% of
|∇ · j

H
| each). The sum of the first two terms (VC flux) is as

large as it can be: |div(1 + 2)| ≈ |div(1)| + |div(2)|, i.e., the
terms 1 and 2 are parallel to each other almost everywhere. This
result was discussed in Section 2, after using the approximation
b ≈ τc(B · ∇)v. Now the simulations support the validity of

this conclusion. The sum of the first two terms (1 + 2) is the
most important contribution to ∇ · j

H
after the advective term

∇ · (a · b)V (ca. 15% of |∇ · j
H
|; see Figure 5). This agrees with

the simulations of Arlt & Brandenburg (2001), where the VC
flux, driven by the correlation between velocity gradients, was
the strongest contributor to the magnetic helicity flux. Also we

see that (a · v)B (term 3) can be ignored when compared to the

sum of (a · B)v + bφ1: partial sums (1–6), (1–4), and (1 + 2 + 4)
are about the same. Term 3 contributes less than 20% to the
partial sum (1 + 2 + 3); the partial sum (3 + 4) approximately
equals term 4. Even if term 3 is aligned with the shear, in
about half of the points it is antiparallel to it, thus giving no
contribution to the sum (3 + 4). However, this term 3 may be

5



The Astrophysical Journal, 780:144 (10pp), 2014 January 10 Vishniac & Shapovalov

Figure 4. Evolution of particularly interesting combinations of terms in the small-scale magnetic helicity flux ∇ · j
H

. Both notations “〈 〉” and “ ” are used for
large-scale filtering.

(A color version of this figure is available in the online journal.)

Figure 5. Evolution of another group of combinations of small-scale magnetic helicity flux terms.

(A color version of this figure is available in the online journal.)

oriented differently in other regions of parameter space, but if
the B is small, then this term is also small.

Our results show that in efficient large-scale dynamos (more
precisely, in the parameter region close to the galactic or solar
dynamos) the action of the small-scale magnetic helicity flux j

H

(via its divergence in Equation (6)) can be approximated by

j
H

= (a · B)v + bφ1 + (a · b)V, (15)

with a very good accuracy (±5% of magnitude), or with a
reduced accuracy (±20%), by

j
H


 2(a · B)v + hV. (16)

The term (a · b)V moves magnetic helicity along the large-scale

streamlines, while the VC flux (a · B)v + bφ1 is responsible for
moving magnetic helicity in all other directions, and ultimately
for evading the dynamo quenching mechanism.

The importance of the latter term in dynamo process becomes
obvious if we compare it with 2E · B. Figure 6 demonstrates a
very strong correlation between the divergence of the VC flux
and 2E ·B: Pearson r(1+2; 2E ·B) = 0.98. The partial correlation
is equally strong; see Table 1. At the same time, Figures 7 and 8
show noticeably worse correlation between term (1 + 2) and

both ∂th and ∇ · (a · b)V (term 4). The latter two terms happen
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Table 1
Degree of Linear Correlation between Various Terms of Equation (6)

∇ · (a · B)v ∇ · bφ1 Term (a · v)B ∇ · (a · b)V ∇ · (hV) ∂th ∇ · bφ2 ∇ · b(a · V) Term
(Term 1) (Term 2) (1 + 2) (Term 3) (Term 4) (Term 5) (Term 6) (5 + 6)

2E · B 0.98 0.98 0.98 0.97 0.90 0.90 0.90 0.91 0.91 0.91

∂th 0.87 0.88 0.86 0.87 0.97 0.99 1 0.97 0.97 0.93

∇ · (a · b)V 0.87 0.86 0.86 0.88 1 0.98 0.97 0.99 0.99 0.95

Notes. Degree of linear correlation between various terms of Equation (6). We use data from the [70; 360] time interval to compute
Pearson’s r.

Figure 6. 2E · B (X-axis) plotted against the divergence of the VC flux (term

1 + 2) ∇ · (a · B)v + ∇ · bφ1 (Y-axis).

Figure 7. ∂th (X-axis) plotted against ∇ · (a · B)v +∇ ·bφ1 (term 1 + 2, VC flux;
Y-axis).

to be very well correlated and even equal each other by overall
magnitude (see Figure 9 and Table 1). However, their sum—the
Lagrangian derivative of the small-scale magnetic helicity in
the large-scale flow Dh/Dt = ∂th + V · ∇h ≈ ∂th + ∇ · (hV)
—is not small. This follows from the indirect observation that
∂th + ∇ · j

H
is much larger than the term (1 + 2 + 3 + 5 + 6); see

Figure 10.
At the same time, terms 5 and 6 together with their sum

〈b(φ2 − a · V)〉 happen to be well correlated with both term 4

Figure 8. ∇·(a · b)V (term 4, advective term; X-axis) plotted against ∇·(a · B)v+
∇ · bφ1 (term 1 + 2, VC flux; Y-axis).

and ∂th, while being less correlated with 2E ·B and term (1 + 2);
see Table 1.

We can summarize our results by stating that all the important
terms of the small-scale magnetic helicity flux can be placed
into one of two separate groups: terms 4, 5, and 6 are very
well correlated with ∂th (and each other) and are not likely to
significantly influence the dynamo action, while terms 1, 2, and
3 are very well correlated with 2E · B and, therefore, may be
responsible for the large-scale dynamo activity.

5. PREDICTION OF DYNAMO ACTIVITY BASED ON
SMALL-SCALE TURBULENCE ANISOTROPY

Considering the apparent importance of the VC flux (term
1 + 2) in the “efficient dynamo” parameter region, and the pos-
sible importance of term (5 + 6) in other regions of parameter
space, it may be possible to predict the strength of dynamo ac-
tion using Equations (11) and (12) and some imposed forcing
anisotropy. We will compare our results to a set of 643 simula-
tions.

Let us consider the term (1+2) first. Equation (11) was derived
for an α − Ω dynamo with cylindrical symmetry (B ≈ Bθ θ̂ ),
while in our simulations B ≈ Bxx̂ = B0e

iy x̂. Re-deriving terms
(1 + 2) from Equation (9), we obtain

〈(a · B)v〉 + 〈bφ1〉 = 2τcB
2
x

∫
d3k

(2π )3(k − k0)2

× (
kzv

∗
y − kyv

∗
z + v∗

z /2
)
kxv, (17)

where k0 = (0, 1, 0). This expression is the largest-scale term,
which has a spatial dependence only through Bx = B0e

iy .
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Figure 9. ∂th (X-axis) plotted against ∇ · (a · b)V (term 4, advective term;
Y-axis). Straight line is y = x. The inset shows the time evolution of both
quantities.

(A color version of this figure is available in the online journal.)

The largest-scale term of its divergence would then depend on
(1 + 2)y , which can be transformed using incompressibility:

〈(a · B)vy〉 + 〈byφ1〉 = τcB
2
x

∫
d3k

(2π )3(k − k0)2

× (
kxkz

[∣∣v2
y

∣∣ +
∣∣v2

z

∣∣] + k2
xRe(v∗

z vx)

+ kxRe(v∗
z vy)/2

)
. (18)

We clearly see from either (11) or (18) that the magnitude of
the term depends on a small-scale velocity anisotropy, both
in real and Fourier spaces, providing an analytical answer to
the question of how forcing anisotropy, or more generally—the
anisotropy of the MHD turbulence influences dynamo action.
However, it is not straightforward to relate (18) to the forcing
function used in our simulations. The small-scale velocity is 0
by definition at large scales, i.e., the factor (k − k0)−2 ≈ k−2

is not strongly influencing the overall expression. If we force
the small-scale velocity field only at particular points in k-
space, the other points will have smaller magnitude and may
be neglected. Then the integral over k-space in (18) can be
approximated by the sum just over the forcing points. If the
forcing is oriented in some direction then this means that the
velocity is highly periodic in this direction (e.g., for kx/kf = 1
along X) and near-uniform functions are applied in the other two
directions. At the same time, the chosen orientation means that
forcing amplitude in this direction is much smaller than in the
orthogonal directions. For instance, kx/kf = 1 would result in
vx � vy, vz. Also we can suppose that term k2

xRe(v∗
z vx) in (18)

is more important than kxkz[|v2
y | + |v2

z |], because we choose
forcing points symmetrically around the origin of k-space, and
the equal quantities of terms with opposite signs are likely to
mostly cancel each other.

Consequently, different forcing orientations would translate
via Equation (18) into the strongest large-scale dynamo for a
kz/kf = 1 (due to the contribution of the first term in (18)),
strong to moderate dynamo for kx/kf = 1 (due to third term
in (18)) and a weaker dynamo for ky/kf = 1. Intermediate
forcing orientations (one of kx/kf , ky/kf , kz/kf ≈ 0.5) will
also produce a dynamo, due to all three components of velocity
being far from zero and about equal in magnitude. For kx/kf =

Figure 10. Evolution of the terms of Equation (6). For comparison, the
dissipative term −2ηj · b is also shown. If the Lagrangian derivative ∂t h+∇·(hV)
is small, then ∂th+∇·j

H
= ∂th+1+2+3+4+5+6 should be close to 1+2+3+5+6.

(A color version of this figure is available in the online journal.)

0.5 the dynamo would be stronger than for kx/kf = 1, due to the
large k2

x factor at k2
xRe(v∗

z vx). A forcing orientation kx/kf = 0
will produce no dynamo, because of the kx = 0 factor in front
of every term in (18), but ky/kf = 0 will result in a moderate
dynamo (both the third term and |v2

y | are quite large). kz/kf = 0
will produce a weaker dynamo, because only the third term will
be large. This analysis is oversimplified, but it is an adequate
illustration of how the forcing anisotropy may work.

The actual simulation data are given in Table 2. For various
forcing orientations we calculated large-scale magnetic field
at T = 250 (100,000 iterations at 643), which is well inside
the large-scale dynamo stage, with magnitude of magnetic field
indicating the overall dynamo strength. In all cases the largest
component of magnetic field was Bx. The theoretical predictions
given above are in general agreement with the simulation results
from Table 2; however, there are some notable discrepancies,
e.g., the actual absence of a large-scale dynamo at kz/kf = 0
and different relative strengths of the dynamo at various ki/kf .

Now let us consider the term 5 + 6 (Equation (12)). This
term of small-scale magnetic helicity flux has an extra k−2

factor in comparison with (11) or (18), i.e., it should be less
significant, especially when the majority of the magnetic energy
is concentrated at small scales. Its magnitude should grow while
increasing the forcing scale toward k = 0. This may be the
reason for antidynamo action becoming stronger for smaller kf
(for accretion disks this term is expected to be negative). Using
similar reasoning as for term (1 + 2), we can predict that in our
simulations forcing with kz/kf = 1 would make term (5 + 6)
relatively small (due to low values of kx, ky), while kz/kf = 0
would lead to an opposite situation, increasing the magnitude of
this term. At the same time our numerical simulations show
that the antidynamo becomes stronger when kz/k → 0 (at
kf ≈ 2–15), while just the small-scale dynamo is observed
when kz/k → 1 for the same range of kf . This phenomenon
may be related to the observation that (for kf ≈ 20 and up) the
strongest large-scale dynamo is at kz/kf = 1 and it vanishes for
kz/kf = 0, due to the negative contribution from term (5 + 6)
to the small-scale magnetic helicity flux.

We conclude that Equations (11), (18), and kf — (12) — lead
for low to qualitatively correct predictions about the presence
of a large-scale dynamo or antidynamo. However, detailed

8
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Table 2
Dependence of Large-Scale Dynamo Strength on Small-Scale Forcing Orientation

Forcing orientation kx/kf = 1 kx/kf = 0.5 kx/kf = 0 ky/kf = 1 ky/kf = 0.5 ky/kf = 0 kz/kf = 1 kz/kf = 0.5 kz/kf = 0

|Bx | at T = 250 0.12 0.33 No LS dynamo 0.2 0.17 0.42 0.87 0.6 No LS dynamo

Notes. Dependence of large-scale dynamo strength on small-scale forcing orientation. The resolution is 643, kf = 25.

predictions of dynamo strength will require a more detailed
and complicated analysis of these equations to be reliable.

6. CONCLUSIONS

In this paper, we have presented theoretical and numerical
analysis of the small-scale magnetic helicity flux in MHD
turbulence leading to a large-scale dynamo. This flux consists
of up to nine distinct terms, but in the simulated region of
parameter space (close to galactic or solar dynamos), only two
of these terms turn out to be important. Together they comprise
more than 95% of the divergence of the flux by magnitude.

The largest term (a · b)V is responsible for advective motion
of small-scale magnetic helicity with large-scale velocity and
does not contribute to the dynamo action. The smaller term

(a · B)v + bφ1, the so-called VC flux, may be directed across
large-scale velocity and magnetic field lines and is very highly
correlated with the parallel component of the turbulent e.m.f.
This term prevents local excess accumulation of magnetic
helicity of the incorrect sign (and dynamo quenching), i.e.,
it is likely be responsible for large-scale dynamo action. All
the other terms of the magnetic helicity flux are negligible.
However, some of them may become important in other regions

of parameter space. The most interesting one is b(φ2 − a · V),
which is likely to be the key for antidynamo action.

To study the influence of MHD turbulence anisotropy on
dynamo and considering the significance of VC flux and “an-
tidynamo term,” we derived analytical expressions for them
solely in terms of small-scale velocity and separately—in terms
of small-scale magnetic field. These expressions clearly show
how the particular anisotropy may change the each term and
possibly—the dynamo action. We were able to predict the ex-
istence of a large-scale dynamo and its strength using straight-
forward estimates of the magnitude of the VC flux for different
orientations of the small-scale forcing. These predictions agreed
with simulation results in most cases. Similarly, for systems
with forcing close to the largest scales we were able to predict
the observed dependence of the antidynamo strength on forc-
ing anisotropy. A more detailed analysis of these terms in the
magnetic helicity flux, tailored for particular system geometry,
would lead to deeper and more accurate predictions of dynamo
action in the future.

We are happy to acknowledge the important role Jungyeon
Cho played in producing the simulations we presented here. This
work was supported by the National Science Foundation under
ITR:AST-0428325 and by the National Science and Engineering
Research Council of Canada and utilized a Linux cluster of the
Physics & Astronomy Department at Johns Hopkins University.

APPENDIX

EVALUATION OF CERTAIN TERMS OF THE MAGNETIC
HELICITY FLUX

In this Appendix, we first evaluate 〈b(φ2 − a · V)〉—the sum
of the fifth and sixth terms in Equation (7)—using the same

approach as for Equations (8)–(11). We rewrite the term as an
integral over correlations:

(φ2 − a · V) =
∫

d3r′

4πr ′ [−∇ · (V(r + r′) × b(r + r′))

− V(r) · j(r + r′)]. (A1)

Here we will not immediately neglect the derivative of the large-
scale velocity, since the leading order term will depend on it.
We write

Vi(r + r′) = Vi(r) + r ′
m∂mVi = Vi(r) + r ′

m

(
σmi +

1

2
εmilWl

)
,

(A2)
where σmi is the symmetrical part of the shear tensor and W
is the vorticity of the large-scale velocity field. Using this,
the integrand in (A1) can be rewritten as −∂j [εjikr

′
m(σmi +

εmilWl/2)bk(r + r′)]/4πr ′, and after integrating by parts further
reduced to [σmiεjik(∂m∂j r

′) − Wl∂l∂kr
′/2]bk(r + r′)/4π . We

expect the last term to vanish, since there is unlikely to be a
contribution from solid-body rotation. This is true after another
integration by parts, since ∇·b = 0. We can rewrite the magnetic
helicity flux from the term 5 + 6 in Equation (7) as

〈b(φ2 − a · V)〉 = 〈∂mb(r)
∫

r ′ d
3r′

4π
σmiji(r + r′)〉. (A3)

The integral operator here is equivalent to −2∇−4. We can use
this fact to rewrite the contribution to the vertical magnetic
helicity flux as

〈bz(φ2 − a · V)〉 = − 2(r∂ρΩ)
∫

d3k
(2π )3k4

× [
k2
θ (|bz|2 + |bθ |2) − k2

ρ(|bρ |2 + |bz|2)
]
.

(A4)

Comparing 〈(a · B)v〉 + 〈bφ1〉 in Equation (11) with (A4),
we see several differences. The Equation (11) depends on
correlations between different directions and includes an ap-
proximate integration over time. The Equation (A4) includes
neither but depends on differences in the mean square field in
different directions at different wavenumbers. The integration
over time in the derivation of Equation (11) is particularly prob-
lematic, with a clear need to redo it to include the effects of
shear.

We also note that expressing b in terms of v, or vice
versa, is badly motivated. We could do either, and in doing
so we use different dynamical equations, and arrive at different
expressions. The more correct approach is to consider the growth
of a quadratic expression from zero, i.e., take the derivative and
multiply by the τc. This is equivalent to adding together the
results of substituting v for b and vice versa. More concretely,
consider the usual expression for the e.m.f., v × b. If this is zero
at some moment in time, we can approximate its value at later
times by retaining only quadratic perturbation quantities, i.e.,

(v × b)i ≈ τc∂t (v × b)i = (−αij + hij )Bjτc, (A5)
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where αij and hij are the kinetic and current helicity tensors,
respectively. This approach is similar to the one employed in
the MFT. Applying the same line of reasoning to evaluating the
magnetic helicity flux, the right part of Equation (9) becomes

− 2

〈 ∫
d3r′

4πr ′ [ω(r + r′) · B(B · ∇)v(r)

− j(r + r′) · B(B · ∇)b(r)]

〉
τc. (A6)

Substituting v for b in the shearing system will result in long
derivations. Leaving them aside, below we provide only the
vertical component of the first two terms of j

H
in Equation (7),

which is supposed to play a critical role in the α − Ω dynamo.
The magnetic back-reaction contribution to the first term in (9)
is 〈Bθjθvz〉 ≈ Bθ 〈jθvz〉 (we again assume B ≈ Bθ θ̂ for the
α − Ω dynamo),

Bθ 〈jθvz〉 = τcB
2
θ

1 + N2τ 2
c

·
[

− (
k2
θ bρbθ + kρkθ

(
b2

ρ + b2
z

))

×
[

1 − k2
z

Q
(κ2 − N2)τ 2

c

]
+

Ωτc

Q

[(
k2
ρ + k2

z

)
(2 − q)k2

θ b
2
ρ

+ kρkθ

( − 2
(
k2
ρ + k2

z

)
+ (2 − q)k2

θ

)
bρbθ − 2k2

ρk
2
θ b

2
θ

]]
, (A7)

where κ2 ≡ 2(2 − q)Ω2, Ω ∝ ρ−q , q = 3/2 (in accretion disk),
N is the buoyancy frequency,

Q = k2
ρ + k2

θ + qΩτckρkθ

1 + κ2τ 2
c

+
k2
z

1 + N2τ 2
c

. (A8)

In the absence of shear, −〈bzBθωθ 〉, the second term in (9) gives
the same contribution.

For a nonzero shear we can integrate by parts, assume
incompressibility, and obtain

− 〈bzBθωθ 〉 = Bθ (jθvz − bρ∂θvθ + bθ∂θvρ). (A9)

The first term in (A9) just gives us a repetition of Equation (A7).
The last two terms are

Bθ [bθ∂θvρ − bρ∂θvθ ]

= B
2
θ k

2
θ τc

[
−bρbθ(

1 + N2τ 2
c

)
Q

(
(4 − q)Ωτckρkθ + N2τ 2

c

(
k2
θ − k2

ρ

))

+
b2

θ

1 + κ2τ 2
c

(
−2Ωτc +

kρ + 2Ωτckθ

Q

×
[

2Ωτckρ − kθ

(κ2 − N2)τ 2
c

1 + N2τ 2
c

])

+
b2

ρ

1 + κ2τ 2
c

(
(q − 2)Ωτc +

kθ − (2 − q)Ωτckρ

Q

×
[
kθ (2 − q)Ωτc + kρ

(κ2 − N2)τ 2
c

1 + N2τ 2
c

])]
. (A10)
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