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ABSTRACT

We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the
theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with
a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that
the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of
angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the
binary and a strong nonaxisymmetric density perturbation that is produced in the disk, in response to the presence
of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one
that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat
spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts
which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by
the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value
in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a
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circumbinary gap is unlikely.
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1. INTRODUCTION

A binary embedded in a gaseous disk is a configuration
that is repeatedly found in astrophysics at a variety of scales.
Some examples are the interaction between planetary rings
and satellites (Goldreich & Tremaine 1982), the formation of
planets in protoplanetary disks and their migration (Goldreich &
Tremaine 1980; Ward 1997; Armitage & Rice 2005; Baruteau &
Masset 2013), the evolution of stellar binaries (Shu et al. 1987,
McKee & Ostriker 2007), the interaction of stars and black holes
in active galactic nuclei (Goodman & Tan 2004; Miralda-Escude
& Kollmeier 2005; Levin 2007), and the expected interaction
of massive black hole (MBH) binaries at the center of merging
galaxies. In all these cases, it is fundamental to have a proper
understanding of the main dynamical processes that drive the
evolution of a binary—disk system.

MBH binaries that interact with gaseous disks are expected to
form in the context of hierarchical structure formation (White &
Frenk 1991; Springel 2005). In this scenario, the formation and
evolution of galaxies is a complex process, in which their final
states will be sculpted by a sequence of mergers and accretion
events. If the galaxies involved in these mergers are rich in gas,
there is theoretical (Barnes & Hernquist 1992, 1996; Mihos &
Hernquist 1996; Barnes 2002; Mayer et al. 2007, 2010) and
observational (Sanders & Mirabel 1996; Downes & Solomon
1998) evidence that a large amount of the gas will reach the
central kiloparsec of the newly formed system. Also, there is
observational evidence for the existence of an MBH at the
center of practically all observed galaxies with a significant
bulge (Richstone et al. 1998; Magorrian et al. 1998; Gultekin
et al. 2009). Therefore, it is expected that the MBH in the
center of each galaxy follows the gas flow to form a MBH
binary embedded in a gas environment in the central parsec
of the newly formed galaxy, as seen in a variety of numerical
simulations (Kazantzidis et al. 2005; Mayer et al. 2007; Hopkins
& Quataert 2010; Bournaud et al. 2011).

Although numerical simulations suggest the formation of
MBH binaries, the only conclusive evidence of pairs of black
holes comes from the observation of quasar pairs with sepa-
rations of ~100 kpc (Hennawi et al. 2006; Myers et al. 2007,
2008; Foreman et al. 2009; Shen et al. 2011; Liu et al. 2011)
and some accreting black holes with separations on the order
of or smaller than 1 kpc (Komossa et al. 2003; Fabbiano et al.
2011; Comerford et al. 2012). On the other hand, there is ev-
idence of at least one MBH binary with a separation of a few
parsecs (Rodriguez et al. 2006), but in general, observational
evidence for bound MBH binaries remains elusive, and most
candidates have observational signatures that can be explained
by other configurations and processes different from a MBH
binary (Valtonen et al. 2008; Komossa et al. 2008; Boroson &
Lauer 2009; Tsalmantza et al. 2011; Eracleous et al. 2011; Dotti
et al. 2012; references therein).

Considering the lack of observational evidence, it is crucial to
obtain more insight into the dynamical process of binary—disk
interaction, to determine in what type of merger remnants it
is more probable to find these binaries and how the binary
separation of these systems depends on the characteristics of
the central parsec of the merger remnants.

A considerable amount of work and progress on understand-
ing the interaction of a MBH binary with a gas environment has
been made since Escala et al. (2004, 2005) showed, with nu-
merical simulations, that “when the binary arrives at separations
comparable to the gravitational influence radius of the black hole
(Rint = 2GMpp/(v* + c2)),” (Escala et al. 2005, p. 158) the bi-
nary stars locally dominate the total gravitational field and the
gas tends to follow the gravitational potential of the binary, form-
ing a nonaxisymmetric density perturbation that interacts grav-
itationally with the binary and drives a decrease of the binary
separation. Because of the self-similar nature of the gravitational
potential, the nonaxisymmetric density perturbation is also self-
similar in nature in the regime where the gravitational potential
is dominated by the MBH binary. This suggests that although in
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the simulations of Escala et al. (2004, 2005) the shrinking of the
binary stops at the gravitational resolution, the fast decay will
continue down to scales where the gravitational wave emission
is effective enough to bring the binary to coalescence.

For systems such as those explored by Escala et al. (2004,
2005), where the gas mass of the disk is much greater than the
binary mass, it is expected that the time the binary takes to merge
will be on the order of a few initial orbital times (Escala et al.
2005; Dotti et al. 2006), unless a dramatic change happens in
the nearby gas of the binary where the strong nonaxisymmetric
density perturbation forms (such as gap formation or gas ejection
by the black hole accretion luminosity). This contrasts with the
results of simulations of disks with masses that are negligible
compared with the binary mass, where the coalescence time is
found to be several thousands of local orbital times (Artymowicz
& Lubow 1994; Ivanov et al. 1999; Armitage & Natarajan 2002;
Milosavljevi¢ & Phinney 2005), which for Mgy > 107 Mg is
even longer than the Hubble time (Cuadra et al. 2009).

This fast—slow (a few orbital times versus several thousand)
migration duality can also be found in simulations of proto-
planetary disks that harbor planets (e.g., extreme mass ratios;
Ward & Hourigan 1989; Ward 1997; Bate et al. 2003; Armitage
& Rice 2005; Baruteau & Masset 2013; Kocsis et al. 2012a,
2012b). In this type of simulation, the planet—star binary is an
extreme mass ratio binary (¢ < 1) and the fast and slow migra-
tion regimes are defined as type I and type II migration. In the
type I regime, the protoplanetary disk experiences a perturbation
due to the small gravitational potential of the planet. This allows
a fast migration of the planet (on the order of a few f.,) with a
characteristic timescale that scales as the inverse of the planet
mass (fmigration X Mp’ . Type II (slow) migration is experienced
by a planet when its Hill radius is greater than the local pressure
scale height of the protoplanetary disk (R > £). In this case,
the disk perturbation due to the presence of the planet becomes
important, and the planet begins to excavate a gap in the disk.
This leads to coupled evolution of the planet and the disk on a
viscous timescale, making the migration time much longer.

For the case of a comparable-mass binary embedded in a disk,
as in the extreme mass ratio case of a star—planet—disk system,
the threshold between fast and slow migration is also determined
by the formation of a gap or cavity in the disk. Therefore, if we
can determine for which systems a gap will be opened, we
can determine in which systems a fast or slow migration will
occur. For this reason, in a previous work (del Valle & Escala
2012; hereafter Paper I) we derived a gap-opening criterion that
we tested with numerical simulations of equal-mass binaries
embedded in gas disks. We found that the gap-opening criterion,
and hence the threshold between the fast and slow regimes, is
determined by the relative strength between the gravitational
and viscous torques. In this paper, our aim is to extend the study
of gap-opening criteria to the case of binaries with moderate
mass ratio (0.1 < g < 1).

This paper is organized as follows: In Section 2, we extend
the analytic gap-opening criterion derived in Paper I to the case
of moderate mass ratio binaries (0.1 < g < 1). In Section 3,
we present the setup of the numerical simulations that we use to
test the extended analytic gap-opening criterion. In Section 4,
we describe how we identified the formation of a gap in our
numerical simulations, and we test the extended analytic gap-
opening criterion against the simulations. In Section 5, we study
why the formation of a gap in some simulations is not well
predicted by the extended gap-opening criterion and derive
a new gap-opening criterion that is consistent with all our
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numerical simulations. In Section 6, we study the limits for
the final evolution of a binary embedded in a gas disk that
are predicted by this successful analytic gap-opening criterion.
Finally, in Section 7 we discuss the implication of our results
for real astrophysical systems and present our conclusions.

2. GAP-OPENING CRITERIA FOR
UNEQUAL-MASS BINARIES

The most widely studied case of binary—disk interaction is
that of a binary embedded in a gas disk with much smaller
mass than the mass of the primary. This limiting case of a
low-mass disk (Mgisk/ Mprimary << 1) is typically found in the
late stages of star or planet formation (Lin & Papaloizou 1979;
Goldreich & Tremaine 1982; Takeuchi et al. 1996; Armitage
& Rice 2005; Baruteau & Masset 2013). In these studies,
when the binary has an extreme mass ratio (¢ < 1), the
gravitational potential produced by the secondary is treated as
a perturbation to the axisymmetric gravitational potential of the
primary—disk system, allowing a linear approximation for the
equations of motion of the secondary. From this approximation,
studies have found that the sum of the torques arising from the
inner and outer Lindblad and corotation resonances drive the
interaction between the secondary and the disk. This approach
leads to predictions of gap structure that are consistent with
simulations within the same regime of validity (¢ <« 1 and
Misk / Mprimary << 1) (Ivanov et al. 1999; Armitage & Natarajan
2002; Nelson & Papaloizou 2003; Haiman et al. 2009; Baruteau
& Masset 2013).

Motivated by the success of this approach in the planetary
regime (¢ < 1), some authors have extrapolated this analysis
to other cases where ¢ ~ 1 (Artymowicz & Lubow 1994,
1996; Gunther & Kley 2002; MacFadyen & Milosavljevié¢ 2008)
regardless of the strong nonlinear perturbation that is produced
by the nonaxisymmetric gravitational field of the binary, which
breaks the validity of the linearization of the equation of motion
in this regime (¢ ~ 1; Shi et al. 2012).

In this paper, we study the case of binaries with moderate
mass ratio (0.1 < ¢ < 1) interacting with a gaseous disk of
comparable mass (Mgixx/Mpin ~ 1) without any assumption
of linearity. We consider the tidal nature of the binary—disk
interaction to model the torques between the binary and the disk
instead of a resonant process such as the one that appears in the
linear approximation. This tidal torque approach is motivated by
the work of Escala et al. (2004, 2005), where it was found that the
exchange of angular momentum between an equal-mass binary
and a disk is driven by the gravitational interaction between
a strong nonaxisymmetric density perturbation on the disk and
the equal-mass binary. Using this approach, Paper I successfully
tested an analytical criterion for the formation of a gap in the case
q = 1, assuming that the gravitational interaction between this
strong nonaxisymmetric density perturbation and the binary was
the main process driving the exchange of angular momentum
between the disk and the binary. We extend our gap-opening
criterion to the case of binaries of unequal but comparable mass
(0.1 < g < 1), for which the nonaxisymmetric potential of
the binary is still sufficiently strong to drive the formation of a
strong global nonaxisymmetric density perturbation in the disk.

The shape and size of the strong nonaxisymmetric density per-
turbation is determined by the dominant gravitational potential
of the binary, whose typical scale length is the binary separa-
tion. Therefore, as in Paper I, we can assume that the torque
produced by the nonaxisymmetric density perturbation on the
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binary can be writtenas T = —a’upGK, 4> Where p is the density
of the perturbation, a is the binary separation, which determines
the scale length of the nonaxisymmetric density perturbation,
W = mimy/(my + my) is the reduced mass of the binary, and
K, is a parameter that depends on the geometry of the density
perturbation. In principle, K, can depend on the mass ratio of the
binary, because the shape of the nonaxisymmetric density per-
turbation is determined by the nonaxisymmetric gravitational
potential of the binary.

To derive the criterion for the opening of a gap in the disk,
we follow the same procedure used in Paper I. We compare the
gap-opening timescale Afopen (determined by the torque that the
binary exchanges over the disk) with the gap-closing timescale
Atciose (Goldreich & Tremaine 1980). Gap formation requires
that Afopen < Afclose, and therefore it is straightforward to find
that the binary will open a gap in the disk if

Alopen _ 1 (6_)3 ( v )2 <1, (1)

Atclose f q vV Ubin
where f; = 2K, /oy with o being the dimensionless viscosity
parameter of Shakura & Sunyaev (1973), v the rotational speed
of the binary—density perturbation system, vy, the Keplerian
velocity of the binary, and ¢ the sound speed of the gas in
the disk. In this form, the gap-opening criterion depends on the
relative strength between the gravitational and viscous torques
(Kg4/as), the thermal and rotational support of the disk (¢;/v),
and the relative strength between the total mass of the system
and the mass of the binary (v/vpiy)-

3. INITIAL CONDITIONS AND NUMERICAL METHOD

We ran smoothed particle hydrodynamics (SPH) simulations
to study the binary—disk interaction and test the generalization
of our gap-opening criterion. All our simulations consist of a
coplanar unequal-mass binary of mass ratio g, initial separation
agp, and mass My, embedded in an isothermal and stable (Q > 1)
gas disk of radius Rgy;sx and mass M. In these simulations, we
use a natural system of units where [mass] = 1, [distance] = 1,
and G = 1. In these units, we set the initial radius of the disk
as Ry = 30 and the mass of the disk as Mgy = 30 for all
the runs. The disk of gas is initialized with the same density
profile that we used in Paper I: a constant surface density for
R < R.and xR~ ! for R > R., where R, = 0.1 Rgisx« = 3,and a
vertical density profile that has the functional form cosh(z/ Hy),
where Hy is constant for R < R, and «R for R > R.. With
this setup, the mass of the disk in the inner region (R < R.) is
Mgas(<Rc) =1

The parameter space that we explore with our numerical
simulations is determined by the variation of four parameters,
ag, Myin, he, and g, in the ranges ag € [2, 6], My, € [1, 33],
h. € [0.8,3], and ¢ € [0.1, I]. We ran 16 simulations (see
Table 1) with different combinations of these parameters.

Following the numerical setup used in Paper I, we include
a fixed Plummer potential (Plummer 1911) with a total mass
~0.12 M- This external potential helps stabilize the disk and
will mimic the existence of an external stellar component when
we apply our result to the study of supermassive black hole
(SMBH) binaries.

The gaseous disk is modeled as a collection of 5 x 10° SPH
particles with gravitational softening of 0.1. This resolution is
2.5 times greater that used in Paper I. In Appendix B of Paper I,
we proved that our conclusions are the same for simulations with
2 x 10° SPH particles and 1 x 10° SPH particles. Therefore, the

DEL VALLE & EscaLa

Table 1
Run Parameters

RUN q ao/ Raisk M(<r)/Myin (Cs/Vbin)? Omin
Al 0.1 0.100 0.0125 3.110 2.62
A2 0.1 0.133 0.0222 1.780 2.20
A3 0.1 0.133 0.0133 2.220 2.20
Ad 0.1 0.200 0.0500 4.650 2.19
Bl 0.3 0.100 0.0125 1.037 2.62
B2 0.3 0.133 0.0222 0.593 2.20
B3 0.3 0.133 0.0133 0.740 2.20
B4 0.3 0.200 0.0500 1.550 2.19
Cl 0.5 0.100 0.0125 0.622 2.62
Cc2 0.5 0.133 0.0222 0.365 2.20
C3 0.5 0.133 0.0133 0.444 2.20
C4 0.5 0.200 0.0500 0.930 2.19
D1 1.0 0.100 0.0125 0.311 2.62
D2 1.0 0.133 0.0222 0.178 2.20
D3 1.0 0.133 0.0133 0.222 2.20
D4 1.0 0.200 0.0500 0.465 2.19

number of particles that we use to model the disk in this paper is
large enough to numerically test the gap-opening criterion. For
the binary, we use two collisionless particles with gravitational
softening of 0.1.

In all simulations, the disks are stable. In Table 1, we
specify the minimum value of the Toomre parameter Q for
each simulation. At the beginning of all our simulations,
the gravitational potential of the binary—disk—Plummer system
has a nonnegligible nonaxisymmetric component due to the
contribution of the binary. Therefore, the disk lacks a well-
defined velocity profile vg(r). For this reason, we calculate the
initial rotational velocity of the system using the same procedure
as in Paper I. A symmetric representation of the gravitational
potential of the binary is used to compute the initial velocity of
the gas. We use the initial orbital radius of the secondary as the
radius of this symmetric representation. We refer the reader to
Appendix A of Paper I for more details of this implementation.

4. STUDYING THE GAP-OPENING CRITERION FOR
UNEQUAL-MASS BINARIES

To test the analytic gap-opening criterion against the SPH
numerical simulations described in the previous section, we first
need to define what a gap is. For this purpose, we use the same
numerical criterion as in Paper I (see Section 2 for details) to
determine in which of our simulations the binary opens a gap in
the disk. We will only outline the key aspects of this numerical
criterion.

To determine if a gap is formed in a certain time ¢, we seek
two characteristics: (1) a density peak in the perimeter of the
gap, whose maximum has to be greater than 0.015 (in internal
units of the code), and (2) that the semimajor axis a of the
binary does not decrease by more than 10%. With these two
characteristics, we define a numerical threshold to determine in
which simulations a gap is formed. We define disks with a gap
as all those where conditions 1 and 2 are fulfilled, and disks
without a gap as all those where neither condition 1 nor 2 is
fulfilled. We refer to every simulation where a gap is formed
as an opened simulation and every simulation where there is no
gap as a closed simulation. The times at which we analyze our
simulations are the times in which the binary completes 2, 3, 5,
7, 10, and 15 orbits. For more details on these conditions and
their justification as traits of gap formation, we refer the reader
to Section 2 of Paper 1.
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Figure 1. Cubic ratio between the sound speed of the gas and the rotational
velocity of the binary—disk system, (cs/v)>, plotted against the quadratic ratio
between the rotational velocity of the isolated binary and the rotational velocity
of the binary—disk system, (vpin/ v)2. The red circles indicate simulations where
the binary has opened a gap in the disk (opened simulations), and the blue
circles are simulations where the disk does not have a gap (closed simulations).
We plot together all the simulations with different values of the mass ratio ¢
that we explore. The straight line is the linear g-independent threshold between
the opened simulations and the closed simulations predicted by our analytic
gap-opening criterion. Below the line are the opened simulations and above are
the closed simulations. The slope of the interface is the function f.

(A color version of this figure is available in the online journal.)

In Figure 1, we plot the opened (open circles) and closed
(filled circles) simulations. In this plot, the horizontal axis is
(vpin/v)? and the vertical axis is (c;/v)>. Each point corresponds
to a given time at which we analyzed a simulation. We use the
secondary’s orbital speed as the speed of the binary—density
perturbation system (v) because the strong nonaxisymmetric
density perturbation is formed by the gas that tends to follow
the gravitational potential of the binary and therefore corotates
with it.

It can be seen from Figure 1 that the groups of opened and
closed simulations populate two different regions of parameter
space. The region that is populated by the opened simulations is
the region for which the opening time of a gap is shorter than the
closing time (Afopen < Afciose), and the region populated by the
closed simulations is the region for which the closing time of a
gap is shorter than the opening time (Afopen > Afciose). Therefore,
the threshold between these two regions is where the gap-
closing time is equal to the gap-opening time. We can find the
expected shape of this interface by evaluating our gap-opening
criterion [Equation (1)] for the limiting case Atopen = Afcioge-
For this limit, in the parameter space ((vpin/v)>, (cs/v)°),
the gap-opening criterion predicts that the interface between
these two set of simulations has a linear shape with slope
mq= fq=2Kq/as.

We first explore whether the linear threshold can be assumed
to be g-independent (i.e., my, = f), even though the geometry
of the density perturbation (Kj) is expected to be g-dependent.
This assumption implies that in Figure 1 a line of slope f will be
sufficient to model the threshold between the opened and closed
simulations. We find that the slope of this lineis m = f = 0.1.

Figure 1 shows that although this line separates fairly well
the distributions of closed and opened simulations, there are
some simulations (17% of the total number) that are inconsistent
with this threshold line. This discrepancy is even greater for
the simulations with mass ratio ¢ = 0.1, 40% of which have
positions in parameter space that cannot be explained by this
g-independent threshold line. This suggests that the value of f
cannot be assumed to be g-independent.
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In Figure 2, we test whether a g-dependent slope for the
threshold line is a better assumption. We separate the simulations
into four different plots for different values of ¢. In each, the axes
are the same as in Figure 1 and we use a different slope m, = fg
for the threshold line. The g-dependent thresholds increase the
number of simulations that are consistent with the gap-opening
criterion, in comparison with the g-independent line: we find
that the values of the g-dependent slopes that better separate
the closed simulations from the opened ones are f,—; = 0.098,
Jfq=05 =0.100, f;—03 = 0.110, and f,—o.; = 0.180.

For the case g = 1 [Figure 2(a)], we find that all the simu-
lations are well separated by this g-dependent linear threshold,
in agreement with our previous results (Paper I). For the other
mass ratios, the g-dependent linear thresholds separate almost
all our simulations well, but there are still some simulations
that are not consistent with the threshold lines. These deviations
are most important for the simulation with mass ratio ¢ = 0.1
[Figure 2(d)], but even for this extreme case, fewer than 10% of
the simulations deviate from the prediction of our g-dependent
gap-opening criterion. In the next section, we explore possible
causes for these deviations.

5. DEVIATIONS AND THEIR CAUSES

In the previous section, we tested the analytic gap-opening
criterion and found that, despite its simplicity, it successfully
predicted the distribution of opened and closed simulations
in most cases. However, some simulations, at certain times,
have positions in the space of parameters (Figure 2) that are
inconsistent with this criterion. For example, for ¢ = 0.3 and
q = 0.1 [Figures 2(c) and (d), respectively], it is clear that a
linear threshold is not the best curve to explain the separation
of closed and opened simulations, even if the slopes are not the
same for all the values of g that we explore. In order to explain
these deviations, we focus on the approximations that we used
to derive this gap-opening criterion.

In Section 2, for the derivation of our analytic gap-opening
criterion we restricted the geometry of the nonaxisymmetric
density perturbation to an ellipsoid with a scale length equal
to the binary separation a. For this geometry, the gravitational
torque produced on the binary by the density perturbation has
a quadratic dependence on the binary separation and can be
expressed as T = azG,qu.

The assumption of an ellipsoidal geometry is based on the
work of Escala et al. (2004, 2005), where it was found that for
the majority of the numerical simulations, the response of the gas
to the gravitational potential of a binary has an ellipsoidal shape.
However, the numerical simulations of Escala et al. (2004, 2005)
in which the formation of such ellipsoidal density perturbations
is present are far from the regime where a gap can be formed.

In our numerical simulations, we explored the parameter
space in the vicinity of the gap-forming regime, and we
find that the density perturbation has a spiral shape instead
of an ellipsoidal one (Figure 3). Such spiral-shaped density
perturbations were also found by Escala et al. (2005) in two of
their simulations (Figures 10 and 12), which are in the same
gap-forming regime as our simulations.

The torque produced on the binary by such spiral-shaped
density perturbation will have the same quadratic dependence
on the binary separation a only if the vertical scale of the spiral is
comparable to its radial scale (the thick-spiral limit). Therefore,
the torque given by T ox a? that we used in the derivation of our
analytic gap-opening criterion will be valid only for the cases
where the spiral density perturbation is in the thick-spiral limit.
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Figure 2. Same as Figure 1, but with g-dependent thresholds for our ellipsoidal gap-opening criterion. The dashed curves are the threshold between the opened
simulations and the closed simulations predicted by our flat spiral gap-opening criterion (see Section 5). For all panels, the flat spiral gap-opening criterion successfully
separates the closed simulations from the opened simulations. In (a), for the equal-mass binaries (¢ = 1) both the flat spiral gap-opening criterion and the ellipsoidal

gap-opening criterion successfully separate the closed from the opened simulations.

(A color version of this figure is available in the online journal.)

No Gap

Figure 3. Surface densities from eight simulations for two different values of g. The white circles enclose the region r < 2a of the disk, with a the binary separation.
From left to right, the panels show a binary far from the gap-forming regime, a binary with parameters in the vicinity of the gap-forming regime that does not form a
gap in the disk, a binary that begins to excavate a gap on the disk, and a binary that excavates a gap in the disk. The geometry of the density perturbation is spiral for
the simulations within the gap-forming regime ((c), (d), (g), and (h)) and for the simulation in the vicinity of the gap-forming regime ((b) and (f)). In contrast, we can
see that for the simulation that is far from the gap-forming regime, the density perturbation has an ellipsoidal geometry for ¢ = 1 and a pear shape for ¢ = 0.1 [(a)

and (e)].
(A color version of this figure is available in the online journal.)

The spiral density perturbations that are formed in our
simulations tend to be more flat than thick, and therefore the
thick-spiral limit may not be valid for all simulations. For a flat
spiral, the radial scale length of the perturbation is determined
by the binary separation a, and as the flat spiral pattern is
embedded in the disk, its vertical scale height is truncated by

the thickness of the disk (Agpiral ~ Haisk). Therefore, the torque
produced by this flat spiral density perturbation can be written
as ty = aHgigGuK,, where the product a Hgg is associated
with the flat spiral geometry.

From the torque produced by a flat spiral geometry, we derive
anew gap-opening criterion following the same procedure as in
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Section 2:

2
Atopen _ i(ﬁ) ( v > <Hdisk> <1 @
Atclose fq v Ubin a

To test whether the assumption of a flat spiral geometry for
the density perturbation is a better approximation for our
simulations, we compare the shape of the threshold between
the group of closed and opened simulations predicted by
Equation (2) in the limit Afypen = Afcjose With the shape of
the threshold predicted by the ellipsoidal criterion [Equation (1)
in the limit Afopen = Afclose]-

Assuming for simplicity that Hgisx /a = ¢s/v, we compare the
flat spiral gap-opening criterion with the ellipsoidal criterion in
the parameter space ((vyin/v)” , (cs/v)?). In Figure 2, the dashed
lines represent the g-dependent thresholds between the closed
and opened simulations predicted by the flat spiral criterion. For
this criterion, the values of the g-dependent parameter f, that
better describe the threshold between the closed and the opened
simulations are f,—1 = 0.35, fy=05 = 0.45, f,—03 = 0.51, and
fa=0.1 = 1.00.

This threshold has a shape that better separates the closed
from the opened simulations, compared with the linear threshold
predicted by the ellipsoidal gap-opening criterion. In fact, all the
simulations that are not consistent with the linear threshold are
consistent with the flat spiral gap-opening criterion.

For the case of equal-mass binaries [Figure 2(a)], the thresh-
olds predicted by the flat spiral and ellipsoidal gap-opening cri-
teria separate the closed and opened simulations equally well.
In this case, the parameters of the systems that we explore are
in the vicinity of the regime a ~ Hgisx, where the torque asso-
ciated with the flat spiral geometry (v o a Hyisk) and the torque
associated with the ellipsoidal geometry (T o a*) have compa-
rable values, making them indistinguishable. On the other hand,
in our simulations, the unequal-mass binaries [Figures 2(b)—(d)]
are in systems where the thickness of the disk tends to be smaller
than the binary separation, and therefore the ellipsoidal torque
and the flat spiral torque have different values.

6. LIMITS FOR FINAL BINARY EVOLUTION

The nonaxisymmetric density perturbation that is formed
in the disk by the presence of the binary is self-similar in
nature, and hence when the binary shrinks, the nonaxisymmetric
density perturbation also shrinks. Therefore, the gravitational
interaction between the binary and the nonaxisymmetric density
perturbation will continue to reduce the binary separation unless
there is a dramatic change in the nearby gas, such as the
formation of a gap.

From the flat spiral gap-opening criterion, we can evaluate
how likely it is that this decrease of binary separation will lead,
or not, to the formation of a gap. This is particularly important
in the context of the evolution of SMBH binaries, where the
formation of a gap may stop the shrinking of the binary at
separations where the emission of gravitational waves is not
efficient enough to drive the final coalescence of the SMBH.

Assuming for simplicity a disk with a Mestel (1963) density
profile, we can write our flat spiral gap-opening criterion
[Equation (2)] with an explicit dependence on the binary

separation a as
(Cszisk> (Hdisk N Hyis, Mdisk> < (ﬁ)z 3)
G My, qa Raisk Myin ) \ass/)
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where we used the relations » = (1+¢)"'a, & = ¢ Mpin/(1+9)?,
vgm = Gu/a, v: = G((Mgas(r2)/12) + vﬁin(a/rz)), and, for a
Mestel disk, Mgas(rz) = ry Misk/ Raisk-

From Equation (3), it can be seen that the flat spiral gap-
opening criterion is a decreasing function of a if the disk
thickness Hgjsx is constant or does not depend strongly on a.
In this case, the decrease of the binary separation will not drive
the system toward the formation of a gap. In fact, the decrease
in separation will drive the binary away from the regime where
it is possible to form a gap.

Although the assumption of a flat spiral geometry for the
density perturbation is more accurate for modeling the transition
from closed to opened simulations, the density perturbation on
systems where a < Hgisk 1S expected to have an ellipsoidal
geometry instead of flat spiral geometry (this can be seen, e.g.,
in the simulations of Escala et al. 2004, 2005). For this reason,
we also studied the ellipsoidal gap-opening criterion. Using the
same relations that we used to derive the Equation (3), we can
write the ellipsoidal gap-opening criterion [Equation (1)] with
an explicit dependence on a as

(CfHdisk) 1 (Hdisk)3+
G Myin g\ a

One can see from Equation (4) that the ellipsoidal gap-
opening criterion (like the flat-gap opening criterion) is a
decreasing function of a if the disk thickness is constant or does
not depend strongly on a. Therefore, the decrease in binary
separation will not drive the system toward the formation of
a gap.

In Equations (3) and (4), we assumed that the disk has a
Mestel density profile, for which the enclosed mass has the
form My,s(r) = Misk(r/ Raisk). If we assume that the disk has
a steeper density profile, the enclosed mass will be a less steep,
or even decreasing, function of r. Accordingly, Equations (3)
and (4) will be more strongly decreasing functions of a. Hence,
although the assumption of a Mestel density profile for the disk
is not based on any expected condition of the density profile in
real systems, the results and conclusions derived assuming such
a profile are also valid for any other steeper profile.

It is important to note that when a < Hgisx We can assume
that the disk thickness does not depend on the binary separation,
because at scales much greater than the binary separation,
the binary gravitational potential looks like the gravitational
potential of a single object of mass My;,. Moreover, the thickness
of the disk will be determined by the total mass of the binary
and disk and the thermal state of the disk. Therefore, we can
conclude that for systems where a gap has never formed, the
decrease of binary separation to the limiting case a < Hgisx
will not lead to the formation of a gap.

From this analysis, we can conclude that in a large variety
of systems a gap will never be opened/formed unless some
other process (other than the formation of a gap due to the
binary—density perturbation gravitational interaction) changes
the distribution of the nearby gas. This supports the idea
that it is likely that the gas will drive the shrinking of the
separation of SMBH binaries down to scales where gravitational
wave emission is efficient enough to allow their subsequent
coalescence.

3 2
Hyo Maisk o <ﬁ) @
a? Raisk Myin O
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7. DISCUSSION AND CONCLUSIONS

In simulations of comparable-mass binaries (g ~ 1) embed-
ded in gas disks, studies have found that the timescale for the
shrinking of the binary separation can be on the order of a
few orbital times (the fast migration regime; e.g., Escala et al.
2004, 2005; Dotti et al. 2006) or a few thousand orbital times
(the slow migration regime; e.g., Artymowicz & Lubow 1994;
Ivanov et al. 1999; Armitage & Natarajan 2002; Milosavljevi¢
& Phinney 2005; Cuadra et al. 2009). The threshold between the
fast and slow migration regimes for comparable-mass binaries,
as in the planet migration case (extreme mass ratio binaries,
g < 1), is determined by the formation of a gap in the disk.
Therefore, in this work, we tested a gap-opening criterion that
would enable us to estimate in what systems fast or slow migra-
tion will proceed.

For the case of equal-mass binaries, Escala et al. (2004,
2005) found that the exchange of angular momentum between
the binary and a gaseous disk is driven by the gravitational
interaction between the binary and a strong nonaxisymmetric
density perturbation with an ellipsoidal geometry. Considering
this gravitational interaction, in a previous publication (Paper I)
we derived a gap-opening criterion that we tested numerically
for equal-mass binaries. In the present work, we studied whether
this ellipsoidal gap-opening criterion is also valid for binaries
with moderate mass ratio (0.1 < g < 1). For this purpose, we
ran 12 SPH simulations of binaries with moderate mass ratio
embedded in gas disks and tested the validity of the analytic
ellipsoidal gap-opening criterion against the simulations.

We find that the analytic ellipsoidal gap-opening criterion
[Equation (1)] successfully predicts that the simulations where
a gap is formed (opened simulations) and the simulations where
there is no gap in the disk (closed simulations) are distributed
into two separate regions in ((Vpin/v)> V/s (cs/v)?) parameter
space (see Figure 1).

However, there are some simulations, at certain times, with
positions in this parameter space that are inconsistent with
the ellipsoidal gap-opening criterion (see Figure 2). These
deviations are most important for the case of binaries with mass
ratio ¢ = 0.1, where roughly 9% of the total number of these
simulations, at certain times, are inconsistent with the ellipsoidal
gap-opening criterion.

In our simulations, we find that the strong nonaxisymmetric
density perturbation has a flat spiral geometry rather than the
ellipsoidal geometry that we used to derive the ellipsoidal gap-
opening criterion (see Figure 3). Therefore, we have derived
a new gap-opening criterion using a flat spiral geometry for
the density perturbation. We find that this flat spiral gap-
opening criterion [Equation (2)] is g-dependent and successfully
separates the closed from the opened simulations. In fact, all the
simulations that we explored are consistent with this flat spiral
gap-opening criterion (see Figure 2), including the roughly 9%
of simulations with mass ratio ¢ = 0.1 that were inconsistent
with the ellipsoidal gap-opening criterion.

The difference between the geometry of the density perturba-
tion that we found in our simulations and the geometry found in
the simulations of Escala et al. (2004, 2005) is the result of the
different regimes that these simulations explored. In our simula-
tions, we explore the vicinity of the gap-forming regime, while
the simulations of Escala et al. (2004, 2005) are in general far
from the gap-forming regime.

Far from the gap-forming regime, the gravitational torque
that the binary produces on the disk is efficiently absorbed and
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dissipated through the disk (Afciose << Afopen). Therefore, the gas
corotates with the binary in a quasi-equilibrium configuration,
and its structure follows the geometry of the gravitational
equipotential of the binary, which for ¢ = 1 has an ellipsoidal
shape. On the other hand, our simulations have parameters in
the vicinity of the gap-forming regime (Afopen ~ Afclose), fOr
which the angular momentum deposited in the gas through
the gravitational torque exerted by the binary is not efficiently
dissipated through the disk, producing a radial flow of gas.
In this nonequilibrium state, the density perturbation takes a
spiral shape, like that observed in our simulations within the
gap-forming regime (see Figure 3) and in other simulations in
the literature for the gap-forming regime (Hayasaki et al. 2008;
Roedig et al. 2012; Shi et al. 2012).

Regardless of the exact geometry of the density perturbation,
in the variety of simulations that examined the interaction of a
comparable-mass binary with a gas disk, the torque produced
over the binary comes from the same inner region of the disk. For
example, in simulations where the density perturbation has an
ellipsoidal shape, the exchange of angular momentum between
the disk and the binary comes from the gravitational interaction
between the binary and the ellipsoidal density perturbation
formed in the region of the disk, » < 2a [as shown in Figure 3(a)
and the simulations of Escala et al. 2004, 2005]. In simulations
where the binary excavates a gap in the disk, studies have
found that the gravitational torque also comes mainly from the
inner, r < 2a, region and is associated with the gravitational
interaction between the binary and transitory streams of gas
falling toward the gap region (Roedig et al. 2012; Shi et al.
2012). This can be seen directly from Figure 5 of Shi et al.
(2012) and Figure 9 of Roedig et al. (2012), where they show the
surface torque density on the disk associated with the transitory
streams of gas. In our simulations, the nonaxisymmetric density
perturbation is also formed in the inner region r < 2a. This can
be seen in Figure 3, where we show for eight simulations the
inner region r < 2a (white circles).

From our successfully tested gap-opening criterion, we eval-
uated whether the decrease of the binary separation will lead
to the formation of a gap. We find that for a binary embed-
ded in a gas disk with a Mestel density profile (or any steeper
density profile), as the binary separation decreases (a < Hgisk)
the exchange of angular momentum between the binary and the
nonaxisymmetric density perturbation will not lead to the for-
mation of a gap. The fast decay of the binary will then continue
unless some other process changes the distribution of the gas
near the binary.

It is important to note that, in the flat spiral gap-opening
criterion [Equation (2)] and the ellipsoidal gap-opening crite-
rion [Equation (1)], the difficulty that a binary has opening a
gap in a disk increases with larger values of the dimensionless
viscosity parameter oy of Shakura & Sunyaev (1973). For our
SPH simulations, we estimate that o, ~ 0.008-0.016 from
the value of the SPH parameter for artificial viscosity, oph
(Artymowicz & Lubow 1994; Murray 1996; Lodato & Price
2010; Taylor & Miller 2012). In a massive nuclear disk, the
gas will be globally unstable and therefore the torques will
be larger, with an oy of order unity (Krumholz et al. 2007;
Escala 2007). Moreover, studies of magnetohydrodynamic
(MHD) simulations have found that the presence of MHD
stresses can significantly increase the torques, with an effective
dimensionless viscosity parameter o > 0.2 (Shi et al. 2012), a
factor of >20 greater than the estimated value of o in our SPH
simulations.
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From these estimates, we expect that the value of «g in
real gas-rich astrophysical systems, such as the nuclear disks
in ultraluminous infrared galaxies (Downes & Solomon 1998)
and submillimeter galaxies (Chapman et al. 2003, 2005; Takoni
et al. 2006; Swinbank et al. 2010), will be 1 or 2 orders of
magnitude greater than in our simulations. Therefore, in the
nuclear regions of gas-rich merging galaxies it is more likely
that a SMBH binary will not be able to excavate a gap in the
gas, allowing the gravitational torques from the gas to shrink
the SMBH binary separation down to scales where gravitational
wave emission can drive the final coalescence of the binary.
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