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ABSTRACT

A growing fraction of simple stellar population models, in an aim to create more realistic simulations capable of
including stochastic variation in their outputs, begin their simulations with a distribution of discrete stars following
a power-law function of masses. Careful attention is needed to create a correctly sampled initial mass function
(IMF), and here we provide a solid mathematical method, called MASSCLEAN IMF Sampling, for doing so. We
use our method to perform 10 million MASSCLEAN Monte Carlo stellar cluster simulations to determine the most
massive star in a mass distribution as a function of the total mass of the cluster. We find that a maximum mass
range is predicted, not a single maximum mass. This range is (1) dependent on the total mass of the cluster and
(2) independent of an upper stellar mass limit, Mlimit, for unsaturated clusters and emerges naturally from our IMF
sampling method. We then turn our analysis around, starting with our new database of 25 million simulated clusters,
to constrain the highest mass star from the observed integrated colors of a sample of 40 low-mass Large Magellanic
Cloud stellar clusters of known age and mass. Finally, we present an analytical description of the maximum mass
range of the most massive star as a function of the cluster’s total mass and present a new Mmax–Mcluster relation.
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1. INTRODUCTION

It is indeed fortunate that one of the most fundamental of
astrophysical distribution functions, the initial mass function
(IMF), is described by such a simple equation as a power law.
Yet this power law, describing the number of stars formed as a
function of mass, or the stellar mass spectrum, is central to a
broad set of fields in astrophysics. It is applicable to studies of
our solar neighborhood and estimating the number of habitable
planets as well as to estimating the mass of the most distant
galaxies. This is possible not just because it is so easily expressed
mathematically, but because its functional form is virtually
universal and, thus, applicable for studies near and far, past
and present. Currently, Salpeter’s (1955) original paper first
reporting the relationship garners over 300 citations per year,
making it among the most cited historical publications in all of
astronomy. Kroupa (2001), which provides the most accurate
present-day values for the exponents used in that power law as a
function of mass range, yields another 200 references per year.
The IMF touches, and is deeply fundamental to, virtually all
fields of astrophysics. If our use or the analysis of the IMF were
in some way wrong or biased, it would have a profound impact
on our science.

The apparent simplicity of a power-law equation can be
deceiving. For instance, when attempting to derive the IMF for
a population of stars, biases can be introduced in the calculation
of the IMF slope for a population of stars because of the use of
constant bin sizes. In such an analysis, the bins for high-mass
stars may have very few stars, while bins counting lower mass
stars may have tens, hundreds, or even thousands of stars. The
bias occurs as a result of inappropriate weighting of the bins
when χ2 minimization is used to fit the slope. This has has been
pointed out by many, starting over a decade ago (Kroupa 2001;
Elmegreen 2004; Maı́z Apellániz & Úbeda 2005).

What has only more recently been fully recognized is the
bias introduced when the IMF is used to derive a distribution
of stars, such as when creating simulations of a stellar cluster
or a galaxy. In some of the earliest models, broadly referred
to as simple stellar population (SSP) models (e.g., Bruzual &
Charlot 2003), bin size was not a problem because all bins
were deemed equal. These models assumed an infinite mass was
available for their stellar distribution. In this kind of analysis, the
bins represented the fractional, probabilistic portion compared
with the entire stellar distribution. The amount of light or total
mass coming from those bins was simply proportional based
on this fractional distribution as dictated by stellar evolutionary
isochrones. A bias due to variable weighting was not an issue,
because discrete stars were not being created. However, such an
analysis cannot be extended to model the observed properties of
low-mass or even mid-mass clusters. Such models will predict
nonphysical values for cluster magnitudes and colors with age,
for example, calling for a fractional O star.

If one wishes to simulate a more realistic stellar cluster,
down to the tracking of individual stars, and if that cluster is
of moderate to low mass (less than 104 M�), then assigning
stars statistically from a power-law distribution will require real,
whole stars. This also means that bin size must be considered,
and possible forms of bias need to be identified and addressed.

In this contribution, we explore the challenges faced with
ensuring that we create stellar cluster simulations that produce
discrete samples of whole stars that fully obey a power-law IMF,
but that also assign masses in such a way that the binning does
not lead to any biases in IMF slope or stellar mass range. This
latter quality will be critical for investigating whether observed
clusters in the Large Magellanic Cloud (LMC) show evidence
for a upper mass stellar limit Mlimit, or if stellar cluster mass
imposes a genuine and biased limit on the most massive star,
Mmax, it can form.
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We begin by describing our method to fill the IMF, called
MASSCLEAN IMF Sampling. In Section 2, we describe the
differences between our method and two others: random sam-
pling and optimal sampling (Kroupa et al. 2011). In Section 3,
we describe how MASSCLEAN generates the most massive star
in the mass distribution of stellar clusters and compare it with
previous work in the field. In Section 4, we present the range
of variation of the mass of the most massive star as a func-
tion of cluster’s mass determined from 10 million Monte Carlo
simulations. We present our new method of deriving the mass
of the most massive star using the integrated colors and mag-
nitudes and 25 million Monte Carlo simulations in Section 5.
This method is used to estimate the mass of the most massive
star for 40 LMC clusters. In Section 6, we present an analytical
description of the mass range for the most massive star, as well
as for the Mmax–Mcluster relation. Concluding remarks are given
in Section 7.

2. MASSCLEAN IMF SAMPLING

The original theory for the IMF was created, developed, and
tested using observational data. When they were available, the
masses of the stars, which form a discrete distribution, were
used to fit a continuous power law (or multi–power law). The
most convenient way for this to be achieved was to use constant-
mass bins. Another method for measuring the IMF is based on
obtaining the K-band luminosity function. Here, the convenient
way of calculating such a function requires setting up constant-
magnitude bins, which then translate into variable-mass bins.
So, from the observational point of view, fitting a discrete
distribution to a continuous power law can be independent of
the choice of bins.

However, doing the opposite, filling the continuous IMF
function to obtain a discrete distribution of stars, comes with
a whole new set of challenges. Traditional population synthesis
models (e.g., Bruzual & Charlot 2003; Marigo et al. 2008) were
computed in the infinite mass limit, by assigning a different
probability to the stars filling the isochrone. While this works
for very massive stellar clusters, for clusters of more typical
mass this corresponds to unphysical, fractional stars, mostly
at the upper end of the IMF (e.g., Popescu & Hanson 2010b;
Popescu et al. 2012). An alternative method is to randomly
populate the IMF. This method will clearly produce a discrete
distribution. However, as with the binning problem identified
in measuring the IMF in clusters, this method will lead to
incorrectly populating the cluster, as was shown by Kroupa
et al. (2011) and we demonstrate here.

For our IMF sampling, we will use our analysis package,
MASSCLEAN1 (Popescu & Hanson 2009). A thorough descrip-
tion of the code is available from our earlier papers (Popescu &
Hanson 2009, 2010a, 2010b; Popescu et al. 2012), but perhaps
most unique is that it allows for a realistic representation of
the stochastic fluctuations that occur in real clusters, which is
increasingly important as the mass of the cluster decreases. We
provide an outline of the critical aspects of the simulation that
apply to this investigation below.

The mass distribution of stars in stellar clusters is described
by the IMF, so the number of stars formed in the M ± dM
range is

dN = ξ (M)dM , (1)

1 See http://www.physics.uc.edu/∼popescu/massclean/. The MASSive
Cluster Evolution and ANalysis package is publicly available under GNU
General Public License ( c© 2007–2013 by Bogdan Popescu and Margaret
Hanson).

where ξ (M) is the Kroupa–Salpeter IMF (Kroupa 2001, 2002;
Kroupa et al. 2011; Salpeter 1955):
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with mass expressed in units of M�. For this work, we used

α1 = +0.30, 0.01 � M/M� < 0.08 ,

α2 = +1.30, 0.08 � M/M� < 0.50 ,

α3 = +2.35, 0.50 � M/M� < m3 ,

(3)

and m3 = Mcluster (the total mass of the cluster) or m3 = Mlimit
(for an IMF with upper mass cutoff; e.g., Oey & Clarke 2005;
Kroupa et al. 2011). Note that for α1 = α2 = α3 = 2.35, ξ (M)
becomes the Salpeter (1955) IMF.

Using ξ (M)/k = ξi(M) (with i = 1, 2, 3), the IMF can be
simplified to

ξ (M) = k ξi(M) . (4)

Then the total mass of the cluster can be written

Mcluster =
∫ Nmax

0
M(N )dN , (5)

Mcluster =
∫ m3

m0

M
dN

dM
dM =

∫ m3

m0

ξ (M)MdM , (6)

Mcluster =
3∑

i=1

(
k

∫ mi

mi−1

ξi(M)MdM

)
. (7)

The normalization constant is

k = Mcluster∑3
i=1

(∫
mi−1

mi ξi(M)MdM
) . (8)

From Equations (1), (2), (4), and (8), we obtain an equation
that describes each bin:

Ni(M, ΔM) = Mcluster
∫ M+ΔM

M−ΔM
ξi(M)dM∑3

i=1

(∫ mi

mi−1
ξi(M)MdM

) . (9)

Note that the sum of integrals is a constant,

C =
3∑

i=1

(∫ mi

mi−1

ξi(M)MdM

)
, (10)

so Equation (9) can be written

Ni(M, ΔM) = Mcluster

C

∫ M+ΔM

M−ΔM

ξi(M)dM. (11)

Equation (11) could be used to compute the number of
stars in any mass interval, as described in Popescu & Hanson
(2009). It could also be used to compute the probabilities or the
multiplicative factors corresponding to isochrone stars used in
traditional SSP models computed in the infinite mass limit (e.g.,
Marigo et al. 2008; Girardi et al. 2010).
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Figure 1. Stellar IMF. (a) The diagonal line represents the Kroupa–Salpeter IMF as given in Equation (2). The segmented horizontal lines represent the variable-mass
bins created using our MASSCLEAN IMF Sampling (MIMFS) method, assuming a total cluster mass of 500 M�. Discrete stars are shown by red dots, with one per
MIMFS mass bin. (b) Same as (a), but overlaid in blue is the result of a stellar distribution created using a randomly populated IMF, leaving numerous gaps. (c) The
mass-dependent bins of the MIMFS method.

(A color version of this figure is available in the online journal.)

However, if we wish to create a discrete distribution of stars in
a cluster, it cannot include a fractional number of stars. Thus, the
challenge is to compute the Mj−1 and Mj mass limits such that
Ni(Mj−1,Mj ) will always give an integer value. Kroupa et al.
(2011) describe a similarly derived set of equations and force
each bin to contain precisely 10 stars. They call this optimal
sampling, where the IMF is perfectly sampled without any gaps
in the distribution and the stellar masses are ideally spaced.
They suggest that this is a more realistic approach to populating
the IMF as compared with the more traditionally used random
sampling of the IMF (Kroupa et al. 2011).

Using Equation (11), MASSCLEAN also computes an in-
teger value of stars per variable-mass bin. However, for our
simulations, we define each bin to include exactly one star. In
other words, we set Ni(Mj−1,Mj ) = 1. We call this method
MASSCLEAN IMF Sampling (MIMFS). The expanded utility
of this choice over the Kroupa et al. (2011) optimal sampling
method will become apparent soon.

Let us switch to the notation Mj = M − ΔM and Mj−1 =
M + ΔM , with j = 1 to Nmax. When

Ni(Mj,Mj−1) = Mcluster

C

∫ Mj−1

Mj

ξi(M)dM = 1 , (12)

the choice of j shows that bin (Mj,Mj−1) contains the jth most
massive star. In this notation, the most massive star in the cluster
will be found in the (M1,M0) bin.

For another set of constants, let us use the notation γi =
ξi(M)/M−αi (with i = 1, 2, 3). From Equation (12), we can
compute Mj:

Mj =
(

Mj−1 − C

Mcluster

1 − αi

γi

) 1
1−αi

. (13)

Consequently, the interval (Mj−1+N,Mj−1) will contain N
stars, with

Mj−1+N =
(

Mj−1 − CN

Mcluster

1 − αi

γi

) 1
1−αi

. (14)

In Figure 1(a), we show an example demonstrating the
MIMFS method for distributing stars, for a stellar cluster with
Mcluster = 500 M�. The Kroupa (2001) IMF is presented as
the diagonal black line, and the (Mj,Mj−1) MASSCLEAN
variable-mass bins are displayed as horizontal gray lines. The
mass values for all of the stars created as part of this cluster
from a sample MASSCLEAN run are shown as red dots. This
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sample mass distribution is consistent with the continuous IMF
power law. However, it also includes very real fluctuations, as the
stellar mass M is allowed to fall anywhere in the (Mj,Mj−1)
bin. Although the fluctuations of the red dots from the line
representing the Kroupa (2001) IMF value may appear small,
they can generate a large dispersion in the integrated magnitudes
and colors of simulated clusters and are consistent with available
observational data (Popescu & Hanson 2010a, 2010b; Popescu
et al. 2012). This is because the fluctuations (allowed mass
range) within each bin is proportional to the bin mass, with the
highest mass fluctuations occurring among the most massive
stars in the cluster. The MIMFS method correctly simulates the
largest variation in integrated magnitude and color as being seen
among the low-mass clusters, as they have relatively few, very
large bins at the high-mass end.

In Figure 1(b), we present an example mass distribution
generated using the traditional random sampling of the IMF with
the same 500 M� stellar cluster. To compare with the MIMFS
method, we also plot the same grayscale lines representing
MASSCLEAN bins as presented in Figure 1(a). As already
pointed out by Kroupa et al. (2011), the traditional method of
random sampling shows large variations from the IMF, with
many large gaps. As discussed above, these unnatural variations
will not disappear simply by virtue of using a different choice
of bin size. While random sampling will work in the realm of
deriving relative fractional stars in the limit of an infinite mass
distribution, it cannot be used to populate an IMF properly when
a discrete stellar distribution is needed, such as when simulating
low-mass clusters (Maı́z Apellániz 2009).

Note that in both Kroupa et al.’s (2011) optimal sampling
and our own MIMFS method, the bin size will be mass
dependent. The size of the bins as a function of mass is presented
in Figure 1(c). The bin size ΔMbin = Mj−1 − Mj is expressed
on the vertical axes as black dots. The limits of the bins are
represented along the horizontal axis by the gray lines. The plot
shows that log(ΔMbin) ∝ log(M). Moreover, as described by
Equation (13), the bin size also depends on the mass of the
cluster, Mcluster. This is an obvious result if one recalls that we
are forcing each bin to hold just one star. More massive clusters
will have proportionally more bins over the same stellar mass
range.

Figure 2 is an example of a K-band luminosity function
derived using our MIMFS method. The sample cluster presented
in Figure 2 was simulated with MASSCLEAN and is 1 million
years old, with M = 500 M�. The slope in the histogram
depends on the mass-to-light ratio and on the α3 value. It can also
be used to constrain the stellar IMF. The constant-magnitude
bins in the histogram (labeled on the bottom axis) correspond
to logarithmic, age-dependent bins in mass (labeled on the top
axis).

3. THE MOST MASSIVE STAR IN A STELLAR CLUSTER

There are strong similarities between Kroupa et al.’s (2011)
optimal sampling and our MIMFS method for discretely
populating stellar clusters: the bins are mass dependent, and
the number and bin sizes are dependent on the cluster mass.
This leads to a stellar mass distribution that truly obeys the IMF.
But there is one significant difference in the two methods. By
forcing our bins in the MIMFS method to contain no more than
one star, we are able to go one step further and make analytical
predictions for the mass of the most massive star in a cluster.

Following the formalism and notation presented in Section 2,
the most massive star in the mass distribution can be described
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Figure 2. K-band luminosity function derived using MIMFS for a M = 500 M�
cluster, 106 yr old.

(A color version of this figure is available in the online journal.)

using Equation (12):

Mcluster

C

∫ M0

M1

ξ3(M)dM = N3(M1,M0) = 1, (15)

Mcluster
γ3

C

∫ M0

M1

M−α3dM = N3(M1,M0) = 1. (16)

For the upper limit, we will start with three choices: M0 = ∞
(e.g., Elmegreen 2000; for the convenience of the computation
and description); M0 = Mcluster (since the most massive star
obviously cannot have a mass larger than the entire cluster
mass); and M0 = Mlimit (the maximum stellar mass; e.g., Oey
& Clarke 2005).

When M0 = ∞, M1 can be determined from Equation (16):

M1 =
(

γ3

C

1

α3 − 1

) 1
α3−1

M
1

α3−1

cluster . (17)

Adding numbers, this simplifies to

M1 = 0.2375 M
1

1.35
cluster . (18)

This is virtually identical to the relation found by Elmegreen
(2000), who used a similar formalism but a different IMF:

Mmax = 100

(
Mcluster

3 × 103

) 1
1.35

. (19)

Both M1 and Mmax given by Equations (18) and (19),

respectively, are proportional to M
1

1.35
cluster.

When the upper mass limit is changed to M0 = Mcluster, from
Equation (16) we instead have

M1 =
(

M
1−α3
cluster − C

Mcluster

1 − α3

γ3

) 1
1−α3

. (20)

Again, adding numbers this simplifies to

M1 =
(

M−1.35
cluster − 6.9653

Mcluster

)− 1
1.35

. (21)
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Figure 3. Graphical representations of the most massive star possible in a cluster versus the cluster total mass, using the different expressions discussed in Section 3.
(a) For modest cluster masses, Mcluster < 1000 M�, the limit chosen for the most massive star has a somewhat minor effect on the predicted most massive star observed
in the host cluster. (b) Once the cluster mass becomes fairly large, and beyond 10,000 M�, an increasingly large divergence is seen in the predicted maximum mass
and between expressions that allow an infinite stellar mass and those limiting the stellar mass. (c) A closer look at the predicted maximum stellar mass, based on
differing upper mass limits, from Mmax = 150 M� through 1000 M�.

(A color version of this figure is available in the online journal.)

Although it seems reasonable to use Mcluster as an upper
mass limit instead of ∞, the difference between Equations (18)
and (21) is indeed very small. Figure 3(a) shows the shapes of
these two functions. They are virtually identical, with M0 = ∞
predicting only a slightly more massive star formed in the
corresponding cluster.

Changing the upper mass limit to a specific upper mass
maximum value Mlimit in Equation (16) gives

M1 =
(

M
1−α3
limit − C

Mcluster

1 − α3

γ3

) 1
1−α3

. (22)

After simplifying the numbers, this leads to

M1 =
(

M−1.35
limit − 6.9653

Mcluster

)− 1
1.35

. (23)

This expression is close to Kroupa et al. (2011), who found

log(Mmax) = 2.56 log(Mcluster)

× [3.829.17 + log(Mcluster)
9.17]−

1
9.17 − 0.38

(24)

and applied a canonical upper mass limit of Mlimit =
150 M�.

The M1 variation described by Equations (18), (20), and (21),
along with the Mmax variation from Elmegreen (2000) and
Kroupa et al. (2011), given by Equations (19) and (24), respec-
tively, are presented in Figure 3. In Figure 3(a), the maximum
mass of the cluster is 1000 M�. In this mass range, there is a
fairly small difference between all of the mentioned variations
for setting the upper mass limit. In the case of M1, as noted
above, there is a negligible difference when switching from
M0 = ∞ to M0 = Mcluster.

In Figure 3(b), the mass range is now expanded to
100,000 M�. It is now easy to see that Mmax from Elmegreen
(2000) and M1 as given by our Equations (18) and (20) con-
tinue to agree yet quickly diverge from the other functions.
As expected, Kroupa et al. (2011) and Equation (23), with
Mlimit = 150 M�, remain in good agreement over this entire
range.

In Figure 3(c), the y-axis range is expanded to show the
variation found in deriving M1, given by Equation (23), for
differing values for the upper mass maximum value, using
limiting values of Mlim = 150, 300, 500, and 1000 M�.
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Both Elmegreen (2000) and Kroupa et al. (2011) use the
notation Mmax in Equations (19) and (24), respectively. Using
a similar formalism, we introduced M1 in Equations (18), (21),
and (23). Obviously, the most massive star, with mass Mmax, is
most likely to be in the interval (M1,M0). M1 is only a measure
of the lower mass limit of the most massive star. Mmax, the most
massive star, could have a mass as high as M0. When the mass
of the cluster is high enough, M0, the highest mass possible for
the star, will hit the limit of the upper mass maximum value,
Mlimit. These clusters are referred to as saturated (Kroupa et al.
2011). For lower mass clusters, when Mlimit is not reached, M0
will have a range of variation depending on the total mass of the
cluster, Mcluster, as discussed in the following sections.

How does the MIMFS method differ from the optimal
sampling of Kroupa et al. (2011)? In both cases, the IMF is filled
properly (Figure 1(a)), and the bins, for one star (MIMFS) or
some constant integer number of stars (optimal sampling), are
both mass dependent and cluster mass dependent (Figures 1(a)
and (c)). However, the treatment of the most massive star is
different. With optimal sampling, a limit on the mass of
the most massive star is used, a single-valued Mmax–Mcluster
relation, computed for Mlimit = 150 M� (the canonical limit,
Equation (24)).

The MIMFS method does not use a predefined, canonical,
maximum mass limit for the most massive star, even for those
clusters with too low a mass to expect a star to be found above the
physical limit (unsaturated clusters). Instead, each star’s mass
Mk is simply assigned randomly in the interval (Mj,Mj−1)
(Equations (12) and (13)). The upper limit of the mass of the
most massive star in the cluster will be given by

M0 = Mcluster −
Nmax−1∑

k=1

Mk . (25)

M0 is the maximum available mass for the most massive star
and depends on the entire distribution of stars. Our 10 million
Monte Carlo simulations show that Mmax could be significantly
higher than the canonical limit used by Kroupa et al. (2011),
which is well approximated by M1 (Equation (23)).

However, as a consequence of the stochastic fluctuations in
each mass bin, Mmax could also be lower than M1. This is because
the remaining mass for the most massive star (Equation (25))
could be lower than M1 for unsaturated clusters. This is related
to the way the bins are filled with the MIMFS method. Nearly
all of the bins, particularly for a small cluster, will populate
the distribution with very low mass stars. That any bin would
be assigned a star is equally likely (the size of the bin has
been specifically created to match the form of the IMF). In
unsaturated clusters, if the highest mass bin is not filled until
after most of the low-mass bins have been populated, it may not
be possible to fill that bin, because the mass left for stars is less
than M1. In this situation, Equation (14) shows that the interval
(M2,M0 = Mlimit) contains N = 2 most massive stars:

M2 =
(

Mlimit − 2C

Mcluster

1 − α3

γ3

) 1
1−α3

. (26)

Although this is a rare event, the two most massive stars
could instead be located in the combined (M2,Mlimit) bin. So,
M2 could also be used as a measure of the lower limit of Mmax
for low-mass, unsaturated clusters.

4. MASS RANGE OF THE MOST MASSIVE STAR AS A
FUNCTION OF CLUSTER MASS

It is reasonable to assume there is a genuine, maximum mass
of a star, Mlimit, based on the physical processes that allow for
a structurally stable star (Stothers 1992; Baraffe et al. 2001;
Massey 2011). At present, models of stellar structure are not
able to provide a strong constraint on this limit. However,
using star counts and statistical arguments, a canonical value
of Mlimit ∼ 150 M� has been claimed (e.g., Weidner & Kroupa
2004; Oey & Clarke 2005). This limit has also been argued
based on observations made of the most massive stars in the
very young, high-mass clusters R136 in the LMC (Selman et al.
1999) and the Arches cluster near the center of the Milky Way
(Figer 2005).

However, there have recently emerged some refinements
concerning the accepted masses of the most massive stars
in these clusters. Crowther et al. (2010) applied a modified
spectral analysis to several stars in NGC 3603, the Arches,
and R136 and conclude that the stellar mass for some of
these stars exceeds the canonical limit of 150 M�. Obtaining
masses of high-mass stars from atmospheric analysis is a tricky
business, particularly at extremely high mass. Moreover, there
is considerable evidence to suggest that stellar masses derived
using spectroscopic analysis may underestimate the mass of
high-mass stars, the so-called mass discrepancy problem first
pointed out by Herrero et al. (1992). Regrettably, there are few
high-mass binaries with extreme masses of 120 or even 150 M�
to help calibrate these analyses (but note the recent identification
that R144 in 30 Doradus is a binary of combined mass nearing
400 M�; e.g., Sana et al. 2013).

We have used MASSCLEAN to perform 10 million Monte
Carlo simulations in order to determine Mmax as a function of
Mcluster. We investigate the properties of stellar clusters with the
stellar mass limit Mlimit set to 150, 300, 500, and 1000 M�, and
as part of a cluster of mass between 10 and 100,000 M�. The
mass distribution was computed using the MIMFS algorithm,
described in Sections 2 and 3, and thus the IMF is always
filled properly without any gaps. However, because of natural,
stochastic fluctuations in the IMF, the mass of the most massive
star, Mmax, is not single valued. Instead, because of the use of
the MIMFS method, we derive the expected mass range for the
most massive star in a cluster.

Our results from the 10 million Monte Carlo simulations are
presented in Figures 4–6. The mass range of the most massive
star, Mmax, as a function of the cluster mass, Mcluster, is presented
in Figure 4(a) as the gray-shaded area. This figure shows the
stellar mass range when adhering to the canonical upper mass
limit of Mlimit = 150 M�. As described above, the Elmegreen
(2000) maximum mass (green line; Equation (18)) and our
Equation (21) (black line) will diverge at large enough cluster
mass. In blue we plot Equation (23), with M1(Mlimit = 150 M�).
This resembles very well the canonical form of Kroupa et al.
(2011), displayed as the cyan line. Note the blue line is not
aligned with the bottom of the gray-shaded Mmax region. This is
because, as already described, sometimes the most massive star
does not fall inside the massive-star bin. We show M2(Mlimit) as
the red line. This represents the rare, but very real, situation in
which the two most massive stars share the two top mass bins
(Equation (26)). This line lies just below the lower limit of the
Mmax gray-shaded range.

In Figure 4(a), we present as the magenta line the latest
fit of data from literature presented by Weidner et al. (2013)
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Figure 4. Mass of the most massive star, Mmax, versus the total mass of a stellar cluster. Several analytical limits are given as solid lines. The gray-shaded regions
represent MASSCLEAN simulations predicting the mass range of the most massive star expected as a function of stellar cluster mass with upper limit cutoffs of
(a) 150 M�, (b) 300 M�, (c) 500 M�, and (d) 1000 M�. The observed maximum stellar mass for three clusters (in mass order: NGC 3603, the Arches, and R136)
as derived by Crowther et al. (2010) are shown as red squares. The clusters from Weidner et al. (2010) and Weidner et al. (2013) are shown as green and red dots,
respectively. Other clusters from the literature (listed in Table 1) are presented as cyan dots.

(A color version of this figure is available in the online journal.)
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Figure 5. (a) Similar to Figure 4, but all four upper mass limits are given in a single figure with progressive gray tones. (b) Same as (a), but on a logarithmic scale.
Crowther et al. (2010) clusters are shown as red squares. The clusters from Weidner et al. (2010) and Weidner et al. (2013) are shown as green and red dots, respectively.
Other clusters from the literature are presented as cyan dots.

(A color version of this figure is available in the online journal.)

assuming the 150 M� canonical limit (their Equation (1)). This
line is significantly lower than all of the other variation presented
in Figure 4(a) because of the overestimation of Mcluster at the
high-mass end. For example, the Arches cluster is listed at

over 77,000 M� in Weidner et al. (2013), while the extensive
study from Clarkson et al. (2012) determined only 15,000 M�.
(This is also the value used in our plots; see below.) Similarly,
Crowther et al. (2010) present 55,000 M� for R136, which is
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Figure 6. ΔMmax = Mmax,up − Mmax,lo versus the total mass of the cluster, Mcluster . For unsaturated clusters (up to 1000 M�), ΔMmax is independent of a stellar upper
mass limit. (a) Linear scale. (b) Logarithmic scale. (c) ΔMmax as a percentage of Mcluster .

(A color version of this figure is available in the online journal.)

significantly lower than the over 200,000 M� in Weidner et al.
(2013).

Figures 4(b)–(d) are similar to Figure 4(a), but for
Mlimit = 300, 500, and 1000 M�, respectively. The canonical
Mmax–Mcluster relation of Kroupa et al. (2011) is only available
for Mlimit = 150 M�, but its variation is described well by the
blue line (our Equation (23)) in these three figures, with the
respective Mlimit.

What should be immediately obvious from Figure 4 is that
despite millions of simulations, there is a hard upper limit on the
most massive star expected to be formed, and it is a function of
cluster mass. Even if a million 500 M� clusters were sampled,
our simulations indicate that a 100 M� star would never be
formed. Yet, 100 M� stars are predicted to form in clusters with
just 1000 M�, although these clusters cannot form 150 M� stars,
and so forth. What is coming out naturally from our simulations
is that the lack of very high mass stars in low-mass clusters is not
a sample-size effect. The upper limit on the mass of the most
massive star seen being tied to the mass of the initial cluster
is entirely predicted from our simulations when we properly
populate the cluster’s IMF.

In Figures 4(a)–(d), as a critical observational reference, we
also present the locations of the most massive stars for the
three massive clusters as given by Crowther et al. (2010). The

three stars are shown as red squares representing 166 ± 20 M�
(NGC 3603), 185+75

−45 M� (Arches), and 320 ± 40 M� (R136).
We also show the clusters with mass less than 1000 M� from
Weidner et al. (2010; green dots). Additional low-mass clusters
and young clusters (1 Myr) above 1000 M� from Weidner et al.
(2013) are presented as red dots. Additional clusters from the
literature (Ascenso et al. 2007; Bonatto et al. 2006; Chené et al.
2012; Crowther 2012; Davies et al. 2012; Deharveng et al. 2009;
Hur et al. 2012; Martins et al. 2010) are shown as cyan dots. All
of these clusters are listed in Table 1.

In Figure 5(a), we present all of the grayscale ranges from
Figures 4(a)–(d) on the same plot, using four different shades
of gray. Clusters from the literature are presented similarly
to Figure 4. Figure 5 shows that the Crowther et al. (2010)
clusters are consistent, within the error bars, with an upper
stellar mass limit Mlimit in the 300–1000 M� range. But Kroupa
et al. (2011), citing results from Banerjee et al. (2012a, 2012b),
claim these very massive stars could be so-called supercanonical
stars, formed by the collision of massive binary stars. They
use this to claim that an Mlimit in the range of 150 M� cannot
be excluded despite the presence of these supermassive stars.
Regrettably, this is a classic circular argument. Moreover, there
is no observational evidence that stars more massive than
150 M� must form differently, such as from mergers.
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Table 1
Clusters with Values of Mmax

Name M Mmax Referencea

(M�) (M�)
1 2 3 4

NGC 3603 10000 166+20
−20 1

Arches 15000 185+75
−45 1, 2

R136 55000 320+100
−40 1

IRAS 05274+3345 14+15
−7 7.0 ± 2.5 3

Mol 139 16 ± 8 2.9 ± 2.0 3

Mol 143 21 ± 10 3.1 ± 2.0 3

IRAS 06308+0402 24+25
−13 11.0 ± 4.0 3

VV Ser 25+27
−13 3.3 ± 1.0 3

VY Mon 28+29
−15 4.1 ± 1.0 3

Mol 8A 30 ± 15 3.8 ± 2.0 3

IRAS 05377+3548 30+32
−15 9.5 ± 2.5 3

Ser SVS2 31+31
−16 2.2 ± 0.2 3

Tau-Aur 31+36
−18 7.0 ± 2.5 3

IRAS 05553+1631 31+33
−16 9.5 ± 2.5 3

IRAS 05490+2658 33+36
−17 7.0 ± 2.5 3

IRAS 03064+5638 33+36
−17 11.0 ± 4.0 3

IRAS 06155+2319 34+35
−18 9.5 ± 2.5 3

Mol 50 36 ± 18 3.5 ± 2.0 3

Mol 11 47 ± 20 3.8 ± 2.0 3

IRAS 06058+2138 51+54
−27 7.0 ± 2.5 3

NGC 2023 55+58
−28 8.0 ± 2.0 3

Mol 3 61 ± 20 3.7 ± 2.0 3

Mol 160 63 ± 20 4.3 ± 2.0 3

NGC 7129 63+104
−33 9.2 ± 3.0 3

IRAS 06068+20303 67+70
−35 11.0 ± 4.0 3

IRAS 00494+5617 71+74
−37 9.5 ± 2.5 3

V921 Sco 71+429
−36 14.0 ± 4.0 3

IRAS 05197+3355 72+75
−38 11.0 ± 4.0 3

IRAS 05375+3540 73+78
−38 11.0 ± 4.0 3

IRAS 02593+6016 78+81
−41 15.0 ± 5.0 3

Cha I 80+91
−46 5.0 ± 3.0 3

Mol 103 80 ± 20 4.0 ± 2.0 3

NGC 2071 80+89
−44 4.0 ± 2.0 3

MWC 297 85 ± 60 8.3+13.7
−1.3 3

IC 348 89+92
−46 6.0 ± 1.0 3

BD 40◦ 4124 90+106
−49 12.9+2.0

−6.0 3

IRAS 06056+2131 92+97
−49 7.0 ± 2.5 3

IRAS 05100+3723 98+103
−51 15.0 ± 5.0 3

R CrA 105+114
−55 4.0 ± 2.0 3

NGC 1333 105+111
−54 5.0 ± 1.0 3

Mol 28 105 ± 20 9.9 ± 2.0 3

IRAS 02575+6017 111+116
−57 9.5 ± 2.5 3

W40 144+576
−80 10.0 ± 5.0 3

σ Ori 150+155
−76 20.0 ± 4.0 3

NGC 2068 151+169
−86 5.0 ± 3.0 3

NGC 2384 189+192
−95 16.5 ± 1.5 3

Mon R2 225+236
−117 15.0 ± 5.0 3

IRAS 06073+1249 239+242
−120 11.0 ± 4.0 3

Trumpler 24 251+291
−131 14.5 ± 2.5 3

IC 5146 293+305
−226 14.0 ± 4.0 3

HD 52266 400 ± 350 28.0 ± 3.5 3

Table 1
(Continued)

Name M Mmax Referencea

(M�) (M�)
1 2 3 4

HD 57682 400 ± 350 28.0 ± 3.5 3

Alicante 5 461+516
−234 12.0 ± 4.0 3

Cep OB3b 485+497
−243 37.7 ± 5.0 3

HD 153426 500 ± 350 40.0 ± 6.5 3

NGC 2264 525+537
−267 25.0 ± 5.0 3

Sh2-294 525+540
−267 12.5 ± 2.5 3

RCW 116B 536+557
−276 21.0 ± 5.0 3

NGC 6383 561+563
−281 37.7 ± 5.0 3

Alicante 1 577+583
−290 45.0 ± 5.0 3

HD 52533 621+1077
−417 26.7 ± 3.0 3

Sh2-128 666+736
−342 37.7 ± 5.0 3

NGC 2024 690+706
−350 20.0 ± 4.0 3

HD 195592 725+757
−364 40.0 ± 10.0 3

Sh2-173 748+901
−395 25.4 ± 5.0 3

DBSB 48 792+1126
−416 56.6 ± 15.0 3

NGC 2362 809+823
−409 43.0 ± 7.0 3

Pismis 11 896+938
−448 40.0+40.0

−0.0 3

Taurus-Auriga 5 16 2.5 4

Taurus-Auriga 2 16 3.0 4

Taurus-Auriga 4 18 2.5 4

Lupus 3 18 2.8 4

Cha I 2 20 3.0 4

IC 348 1 126 4.0 4

LkHα 101 195+295
−123 12.3+5.7

−5.3 4

RCW 36 591+619
−305 20.9+8.1

−6.9 4

[BDSB2003] 164 842+1065
−429 32.2+20.8

−8.2 4

[FSR2007] 777 949+2166
−758 17.0 ± 5.0 4

NGC 6530 1118+1132
−564 55.5+13.5

−12.5 4

[FSR2007] 734 1175+1202
−833 95.0 ± 30.0 4

[DBSB2003] 177 1265+1266
−633 55.5+13.5

−12.5 4

[DB2000] 52 1416+1591
−724 25.1+9.9

−8.1 4

[DB2000] 26 1705+1721
−852 50.4+12.6

−12.4 4

RCW 38 2251+2276
−1132 39.9+13.1

−11.9 4

Mercer 23 3687+3793
−1859 100.0+50.0

−20.0 4

NGC 2103 3853+3905
−1937 85.8+34.2

−21.8 4

NGC 6231 4595+4676
−2312 42.0+41.0

−8.0 4

Westerlund 2 8845+9009
−4456 121.0+29.0

−43.8 4

Danks 2 2900 70+15
−10 5, 6

Danks 1 7900 120+30
−20 5, 6

RCW 79 3000 46.1+13.3
−12.7 5, 7

Trumpler 14 10000 127+13
−27 8, 9

ρ Oph 100 9 10

ONC 1800 39 ± 6 10

NGC 6611 1630 61+14
−10 11, 4

RCW 120 1650 29.9+5.9
−6.8 7, 12

References. (1) Crowther et al. 2010; (2) Clarkson et al. 2012; (3) Weidner et al.
2010; (4) Weidner et al. 2013; (5) Chené et al. 2012; (6) Davies et al. 2012; (7)
Martins et al. 2010; (8) Ascenso et al. 2007; (9) Hur et al. 2012; (10) Crowther
2012; (11) Bonatto et al. 2006; (12) Deharveng et al. 2009.
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A very interesting feature of the dispersion in Mmax deter-
mined using the MASSCLEAN simulations should be noted
in Figures 5(a) and (b). The range of Mmax is independent of
Mlimit as long as the mass of the cluster is smaller than the value
where the upper stellar mass limit could be reached, i.e., what
Kroupa et al. (2011) define to be unsaturated clusters. This is
a result that would be expected, and we consider it a valida-
tion of the MIMFS method. For example, from our 10 million
Monte Carlo simulations, the mass of the most massive star of
a 1000 M� cluster is less than 120 M�. There is no reason the
dispersion in Mmax for clusters with masses lower than 1000 M�
should depend in any way on an Mlimit, if the limit is higher than
120 M�.

Everything from Figure 5(a) is displayed in Figure 5(b), but
using a logarithmic scale and including many more observa-
tional points representing real clusters. Here it is borne out:
the most massive star seen never exceeds the range of values
predicted from our simulations over a cluster mass range of
nearly two orders of magnitude. Such a relationship can only be
proved to exist by studying these low-mass, unsaturated clus-
ters, where the maximum stellar mass is not being limited by any
additional, outside stellar physics limit (indicated by an Mlimit
value). Once again, it is obvious that the dispersion in Mmax is
independent of Mlimit for unsaturated clusters and that the up-
per stellar mass limit should be at least 150 M�. Furthermore,
Figure 5(b) confirms that clusters with Mcluster < 1000 M� are
not affected by the choice of Mlimit in the 150–1000 M� range.
For all of these reasons, low-mass clusters are the ideal can-
didates to study Mmax. This is why we included in the figure
the observed values for the low-mass clusters from Weidner
et al. (2010; green dots). Additional clusters from Weidner et al.
(2013) are presented as red dots, and other clusters from the liter-
ature are shown as cyan dots. All of these clusters are consistent
with the dispersion range of Mmax we determined.

The Crowther et al. (2010) clusters are presented as red
squares in Figure 5, but they are outside the low-mass range,
which is our main focus. The canonical Mmax–Mcluster relation
from our M1(Mlimit) and Kroupa et al. (2011) are presented
as the blue lines (with four different values for Mlimit) and the
single cyan line, respectively. We also include 40 MASSCLEAN
clusters, as yellow dots. They will be described in the next
section.

For yet another view of the MIMFS simulation results, we
present the dispersion range, the difference between the upper
and the lower limits of Mmax, ΔMmax = Mmax,up − Mmax,lo,
in Figure 6(a), for all four values of the Mlimit discussed
above versus the cluster total mass. Since the range of Mmax
is independent of Mlimit for unsaturated clusters, ΔMmax is
also independent. Figure 6(b) is the same as Figure 6(a), only
presented on a logarithmic scale. Figure 6(c) is again the same
values, only now we are showing ΔMmax as a percentage of
Mcluster, on a logarithmic scale.

5. THE MOST MASSIVE STAR IN STELLAR
CLUSTERS DERIVED FROM INTEGRATED

MAGNITUDES AND COLORS

The degree to which the integrated colors and magnitudes of
stellar clusters can be expected to vary from the mean SSP model
prediction is strongly anticorrelated with the cluster’s mass (e.g.,
Popescu & Hanson 2010a, 2010b; Popescu et al. 2012). In other
words, the most massive star in a cluster’s mass distribution has
an increasingly prominent influence in the magnitude and colors
of lower mass clusters. It is our goal to exploit this observed

dispersion to estimate the mass of the most massive star in a
sample of low-mass stellar clusters of known age and mass,
using nothing but the integrated broadband magnitudes of the
clusters.

To do this, we investigated the variation of UBV colors
as a function of the mass of the most massive star in the
distribution, Mmax. We performed 25 million MASSCLEAN
Monte Carlo simulations for clusters in the 200–1000 M� range.
We used Mcluster = 1000 M� as the upper limit because in this
range the dispersion in the maximum stellar mass, Mmax, is
independent of the stellar upper mass limit, Mlimit. As described
in Section 4, these clusters are expected to be unsaturated. We
used the Kroupa–Salpeter IMF (Equation (3)) and the Padova
stellar evolutionary models (Marigo et al. 2008; Girardi et al.
2010), for Z = 0.008 metallicity. In this way, we created a
special version of the MASSCLEANcolors database (Popescu
& Hanson 2010b; Popescu et al. 2012) that contains mass, age,
and UBV but now also Mmax for each cluster.2

In Figure 7, we show an example of the variation of MV ,
(B − V )0, and (U − B)0 for Mcluster = 200 M�. In the three left
panels, the small dots are color-coded to indicate the maximum
mass, Mmax. Blue, green, yellow, orange, and red show the value
of Mmax for a cluster with the given absolute magnitude and
age. The gray region of the diagram is filled with small dots
representing clusters that have already lost their most massive
star in the distribution as a result of evolution. The right three
panels are also color-coded but show the ratio between the mass
of the most massive star in the distribution and the canonical
value, Mmax/M1(Mlimit). The canonical value is displayed in
black (ratio = 1.0), and the ±35% values around it are shown
in shades of cyan and orange, respectively. Higher values of
this ratio are presented in different shades from magenta to dark
magenta. All of the clusters that are too old and have already
lost their most massive star are again displayed in gray.

The influence of the most massive star on the integrated
properties of a cluster is most obvious in Figures 7(a) and (b).
For a given age, the integrated magnitude MV of a low-mass
cluster will greatly increase with Mmax.

Also shown in Figure 7 are nine clusters with masses
Mcluster = 200 M� from Popescu et al. (2012). These are
given as cyan dots in the left panels and as green dots in
the right panels. These clusters have well-constrained age and
mass, determined from our mass-dependent SSP MASSCLEAN
models (Popescu & Hanson 2010b; Popescu et al. 2012). They
were selected to be young enough to still contain their most
massive star (i.e., to be on the colored part of the plots presented
in Figure 7). It can be seen that the clusters’ position on the
color–age planes presented in Figure 7 is related to the most
massive star in the cluster. One can see how this might be used to
estimate the value of the most massive star in a cluster of known
mass and age, based on an analysis of its broadband colors.

It is with this goal in mind that we created the newest ap-
plication in the MASSCLEAN package, MASSCLEANmax.
This application uses yet another, newly created MASS-
CLEANcolors database based on 25 million simulated clus-
ters. The newest version of the MASSCLEANcolors database
was built using MASSCLEAN (Popescu & Hanson 2009), the
Kroupa IMF (Kroupa 2001), and Padova stellar evolutionary
models with Z = 0.008 (Marigo et al. 2008). Compared with
the previous version of the database (Popescu & Hanson 2010b;

2 This is the initial mass of the most massive star in the distribution,
unaffected by the stellar evolution.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Subset of our 25 million Monte Carlo simulations, for Mcluster = 200 M�. The cyan (left) and green (right) dots are MASSCLEAN clusters from Popescu
et al. (2012). Left: dots are color-coded to show the integrated color or magnitude of a 200 Mmax cluster with that Mmax, the mass of the most massive star, with time.
The clusters displayed in gray have already lost their most massive star. Right: dots are color-coded to show the ratio Mmax/M1, and the gray clusters have already
lost the most massive star.

(A color version of this figure is available in the online journal.)

Popescu et al. 2012), it contains clusters only in the
200–1000 M� range and ages in the (6.00–10.13) log(age/yr)
range, and the mass of the most massive star in the distribu-
tion, Mmax, is included. MASSCLEANmax then considers the
stellar cluster’s known mass and age (Popescu et al. 2012), MV ,
(B−V )0, and (U−B)0 (Hunter et al. 2003), and using the colors
and magnitudes predicted in the database and through proba-
bilistic inference, it finds the most probable value for Mmax for
each cluster.

Values of Mmax computed by MASSCLEANmax for 40
low-mass clusters (Mcluster in the 200–1000 M� range) are
presented in Figure 8 (yellow dots) and listed in Table 2. The 40
MASSCLEAN clusters were selected from the Popescu et al.
(2012) catalog to be young and low-mass, so their most massive
star will still be present in the mass distribution. The Weidner
et al. (2010) clusters, with their maximum mass as derived by
them, are presented as green dots and the additional clusters from
Weidner et al. (2013) are presented as red dots (unfortunately,
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Figure 8. Maximum stellar mass, Mmax, versus stellar cluster total mass, Mcluster , similar to Figure 5(b) but concentrating on just the low-mass clusters,
Mcluster < 1000 M�, showing (a) a linear plot and (b) a logarithmic plot. The dark gray region identifies the MASSCLEAN solution for the range of variation
of Mmax. The locations of real clusters from Weidner et al. (2010), from Weidner et al. (2013), and calculated using MASSCLEANmax are shown as green, red, and
yellow dots, respectively.

(A color version of this figure is available in the online journal.)

the majority of them do not include error bars). Also presented
in Figure 8(a), along with our 40 clusters and the Weidner et al.
(2010) clusters, is the range of variation of Mmax as the broad
gray area. The canonical forms given by M1(Mlimit), Kroupa
et al. (2011), and Weidner et al. (2013) are presented as blue,
cyan, and magenta lines, respectively. All sets of yellow, red,
and green clusters show a pretty similar placement within the
Mmax range, determined in Section 4. Figure 8(b) is identical to
Figure 8(a), but shown on a logarithmic scale. Note that these
figures are virtually identical to what was shown in Figure 5(b),
only here we have limited the plot to a smaller stellar and cluster
mass range.

It is important to remember that the MASSCLEANmax
method provides only an estimate of Mmax. Furthermore, it
assumes that we have obtained perfect values for the age and
mass of the cluster under study. However, any age and mass
derived for a stellar cluster will have some associated error,
no matter what method is used to obtain them. We believe the
accuracy with which we can estimate Mmax would be increased
if we were able to include the error bars in age and mass of the
cluster under study in the analysis. This will be the subject of
future work.

6. ANALYTICAL DESCRIPTION OF Mmax RANGE
AND Mmax–Mcluster RELATION

As described in the previous sections, our MASSCLEAN
simulations indicate that the maximum stellar mass in a stellar
cluster, Mmax, covers a range of mass that is dependent on
the mass of the cluster. The well-behaved shape of this range
presented in Figures 4 and 5 and shaded gray lends itself to
finding an analytical form for the upper and lower limits. The
logarithmic plot from Figure 5(b) shows that a power law is a
good fit for both limits in the case of unsaturated clusters.

Optimal sampling (Kroupa et al. 2011) uses a single-valued
Mmax–Mcluster relation, computed with a 150 M� canonical limit
and described in a complicated form by Equation (24). On the
other hand, hydrodynamical simulations (e.g., Bonnell et al.
2004; Peters et al. 2010, 2011; Kroupa et al. 2011) give the
dependence between the mass of the most massive star and

cluster’s mass in the power-law form

Mmax = 0.39M
2/3
cluster. (27)

This form corresponds to the best fit to these hydrodynamical
simulations, although some scatter might still exist around it
(e.g., Bonnell et al. 2004).

From our simulations, we have determined that the
Mmax–Mcluster relation is not single valued. The range of vari-
ation is best described by an upper (Mmax1 ) and lower (Mmax2 )
limit. These two limits can be written as a power law in a similar
form to Equation (27) as

Mmax1,2 = k1,2M
β1,2

cluster (28)

with k1 = 0.66, k2 = 0.17, β1 = 0.755, and β2 = 0.720.
The upper and lower limits given by Equation (28) are pre-

sented in Figure 9(a) as the orange and purple lines, respec-
tively. The Mmax–Mcluster relation determined from hydrody-
namical simulations (Equation (27)) is presented as the white
line. The range of Mmax variation is presented as the gray area.
The MASSCLEAN clusters, Weidner et al. (2010) clusters, and
Weidner et al. (2013) are presented as yellow, green, and red
dots, respectively, similarly to Figure 8(b).

In Figure 9(b), we extend both the Mcluster and Mmax ranges.
Mmax1,2 are presented as green, blue, black, and red lines for
Mlimit = 150, 300, 500, and 1000 M�, respectively. We note that
the Mmax1,2 limits given by Equation (28) stand for unsaturated
clusters, regardless of the Mlimit. In addition to MASSCLEAN
clusters, Weidner et al. (2010) clusters, and Weidner et al. (2013)
clusters, we also show Crowther et al. (2010) clusters as red
squares, and other clusters from the literature as cyan dots.

Based on the fact that Mmax is related to the value of
α3 (Equations (17), (20), and (22)), just to emphasize this
dependence, Equation (28) could be rewritten as

Mmax1,2 = k1,2M

1
α3−1∓δ1,2

cluster (29)

with δ1 = 0.0255, δ2 = 0.0388, and α3 = 2.35.
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Table 2
LMC Clusters with Values of Mmax

Integrated Photometry (Hunter et al. 2003) MASSCLEAN

Name(s) MV (U − B)0 (B − V )0 (V − R)0 Agea Massa Mmax
b

(mag) (mag) (mag) (mag) (log) (M�) (M�)
1 2 3 4 5 6 7 8

BSDL2208 −5.618 ± 0.012 −0.894 ± 0.005 −0.296 ± 0.012 −0.086 ± 0.026 6.73 200 29.24+0.76
−0.74

NGC 1837.SL217 −7.223 ± 0.004 −0.884 ± 0.002 −0.054 ± 0.004 −0.036 ± 0.009 6.81 200 28.76 ± 0.01

KMHK263 −4.671 ± 0.021 −1.079 ± 0.006 −0.191 ± 0.021 −0.167 ± 0.057 6.88 200 19.02+0.38
−3.02

BSDL579 −5.300 ± 0.011 −1.025 ± 0.004 −0.161 ± 0.011 −0.088 ± 0.027 7.03 200 17.54+0.71
−1.34

KMHK612 −6.634 ± 0.005 1.137 ± 0.005 1.232 ± 0.007 0.585 ± 0.008 7.16 200 14.88+3.37
−0.18

BSDL2119 −6.023 ± 0.008 0.867 ± 0.011 1.566 ± 0.013 0.875 ± 0.011 7.36 200 11.43+0.07
−0.43

SL294.KMHK627 −5.914 ± 0.032 0.381 ± 0.024 0.649 ± 0.037 0.182 ± 0.060 7.53 200 8.96+0.14
−0.11

BSDL499 −3.761 ± 0.039 −0.749 ± 0.011 −0.169 ± 0.039 −0.186 ± 0.105 7.54 200 7.80+0.90
−0.30

OGLE-LMC0297 −4.894 ± 0.027 0.264 ± 0.043 1.198 ± 0.047 0.627 ± 0.039 7.61 200 8.04+0.26
−0.05

BSDL137 −5.099 ± 0.014 −1.223 ± 0.004 −0.270 ± 0.014 −0.080 ± 0.033 6.68 250 26.00+2.30
−6.00

BSDL2215 −5.718 ± 0.010 −0.991 ± 0.003 −0.198 ± 0.010 −0.083 ± 0.024 6.95 250 20.58+0.62
−1.98

BSDL2704 −5.473 ± 0.013 −1.029 ± 0.005 −0.140 ± 0.013 −0.035 ± 0.028 7.00 250 18.85+0.35
−2.35

BSDL358 −6.681 ± 0.006 0.872 ± 0.007 1.167 ± 0.009 0.753 ± 0.008 7.18 250 14.84+0.06
−0.64

KMHK900 −4.448 ± 0.018 −0.883 ± 0.006 −0.195 ± 0.018 −0.021 ± 0.047 7.31 250 10.54+1.26
−0.54

BSDL1760 −4.351 ± 0.020 −0.868 ± 0.006 −0.246 ± 0.020 −0.045 ± 0.053 7.34 250 10.40+0.90
−1.00

OGLE-LMC0169 −6.335 ± 0.008 0.607 ± 0.008 0.803 ± 0.011 0.471 ± 0.013 7.36 250 11.22+0.18
−0.22

BSDL917 −6.279 ± 0.007 0.502 ± 0.005 0.878 ± 0.008 0.421 ± 0.012 7.37 250 11.07+0.23
−0.27

BSDL256 −4.329 ± 0.035 −0.811 ± 0.012 −0.227 ± 0.035 −0.170 ± 0.087 7.41 250 9.80+0.52
−0.74

BSDL25 −4.267 ± 0.030 −0.795 ± 0.010 −0.210 ± 0.030 −0.226 ± 0.079 7.42 250 9.94+0.26
−1.34

BSDL295 −6.303 ± 0.008 −0.927 ± 0.003 −0.268 ± 0.008 −0.133 ± 0.018 6.72 300 33.34+5.26
−2.14

BSDL2448 −4.790 ± 0.022 −0.934 ± 0.008 −0.116 ± 0.022 −0.001 ± 0.053 7.20 300 13.52+0.38
−1.72

KMHK237 −6.638 ± 0.006 −0.979 ± 0.002 −0.259 ± 0.006 −0.143 ± 0.014 6.60 350 45.84+1.16
−2.34

BCD1 −5.786 ± 0.016 −0.893 ± 0.007 −0.260 ± 0.017 −0.062 ± 0.032 6.73 350 29.23+2.77
−7.23

BSDL2883 −6.303 ± 0.007 −1.011 ± 0.002 −0.127 ± 0.007 −0.058 ± 0.015 6.84 350 26.45+0.55
−2.45

BSDL349 −5.910 ± 0.010 −0.841 ± 0.003 −0.152 ± 0.010 −0.062 ± 0.015 7.08 350 16.65+0.15
−1.35

BSDL34 −5.936 ± 0.010 −0.835 ± 0.004 −0.123 ± 0.010 −0.038 ± 0.023 7.11 350 15.96+0.04
−0.96

BSDL2487 −5.497 ± 0.023 −0.831 ± 0.008 −0.106 ± 0.023 −0.016 ± 0.043 7.20 350 13.87+0.03
−0.77

HS59.KMHK253 −6.843 ± 0.005 0.597 ± 0.004 0.845 ± 0.006 0.417 ± 0.008 7.20 350 14.40+0.10
−0.60

BSDL1834 −7.016 ± 0.005 −1.040 ± 0.002 −0.072 ± 0.005 0.067 ± 0.010 6.69 400 38.32+6.68
−1.32

BSDL2614 −5.618 ± 0.012 −0.988 ± 0.005 −0.176 ± 0.012 −0.136 ± 0.028 7.00 400 19.11+0.14
−3.11

SL563 −6.113 ± 0.012 −0.810 ± 0.004 −0.137 ± 0.012 −0.047 ± 0.024 7.09 400 16.50+0.10
−0.80

BSDL2725 −6.354 ± 0.006 −0.955 ± 0.002 −0.087 ± 0.006 −0.069 ± 0.013 6.96 450 20.39+0.36
−1.89

BSDL2720 −6.230 ± 0.007 −0.883 ± 0.003 −0.034 ± 0.007 0.006 ± 0.015 7.03 450 18.24+0.06
−1.04

H88-266 −7.077 ± 0.009 −1.055 ± 0.004 −0.206 ± 0.009 −0.064 ± 0.017 6.67 500 39.74+7.96
−1.44

HS245 −8.496 ± 0.002 0.559 ± 0.003 1.172 ± 0.003 0.472 ± 0.004 6.82 500 28.23+2.07
−0.23

BSDL305 −7.801 ± 0.004 −0.941 ± 0.002 −0.083 ± 0.004 −0.015 ± 0.008 6.63 600 47.90+3.30
−2.40

BSDL2721 −6.393 ± 0.008 −0.967 ± 0.003 −0.050 ± 0.008 −0.004 ± 0.017 6.98 600 19.62+0.28
−0.92

BSDL2583 −6.081 ± 0.009 −0.960 ± 0.003 −0.184 ± 0.009 −0.106 ± 0.020 6.98 700 19.66+0.24
−0.96

HS74 −6.560 ± 0.009 −0.844 ± 0.003 −0.210 ± 0.009 0.035 ± 0.020 6.98 700 19.83+0.07
−0.83

KMHK339 −6.396 ± 0.008 −0.952 ± 0.003 −0.158 ± 0.008 −0.068 ± 0.020 6.92 750 22.56+0.04
−2.16

NGC 2102.SL665 −7.509 ± 0.004 −0.879 ± 0.002 −0.118 ± 0.004 −0.080 ± 0.010 6.76 800 32.73+3.27
−1.83

Notes.
a Popescu et al. (2012).
b This work.

Regardless of the way the dependence is written, we find that
the Mmax–Mcluster relation for unsaturated clusters is described
by the upper and lower limits Mmax1,2 . Both of these values
correspond to power laws of the mass of the cluster and are
independent of any particular value for Mlimit when applied to
unsaturated, low-mass stellar clusters.

7. SUMMARY AND CONCLUSION

The IMF is one of the most fundamental of astrophysical dis-
tribution functions, with broad applicability. Traditionally, the
IMF functional form was predominantly used to fit observa-
tional data. However, in current investigations, simulated data
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Figure 9. (a) Same as Figure 8(b), but showing our analytical fit to the gray regions’ upper and lower limits. The white line presents results from hydrodynamical
simulations. (b) Similar to (a), but extending to a larger cluster mass and including the effect of applying an upper mass limit, Mlimit. Crowther et al. (2010) clusters
are presented as red squares, and additional clusters from the literature are shows as cyan dots.

(A color version of this figure is available in the online journal.)

are becoming increasingly important. This warrants careful con-
sideration that the methods used for filling an IMF distribution
in such applications are done correctly. The most often used (and
convenient) way to do this, through random sampling, does not
properly fill an IMF distribution, as described by Kroupa et al.
(2011).

Optimal sampling (Kroupa et al. 2011) does fill the IMF
correctly. But because it allows for multiple stars per mass bin,
it lacks a certain resolution to pursue additional fundamental
questions about the distribution. Moreover, it leads to a single-
valued Mmax–Mcluster relation. Kroupa et al. (2011) attempt to
explain the range observed in this relationship (our Figures 5(b),
8, and 9, and their Figures 4 and 5) as due to observational er-
ror and stochastic variations in the intrinsic precluster cloud
conditions, which may vary a single-valued Mmax–Mcluster rela-
tion. We presented our MASSCLEAN IMF sampling (MIMFS)
method, which is able to properly fill the IMF using just one star
per mass bin and requires no assumption about the Mmax–Mcluster
relation or Mlimit.

From our 10 million MASSCLEAN Monte Carlo simulations,
we determined the expected mass range of the most massive star
in the stellar mass distribution as a function of the mass of the
cluster. As a check on these simulations, we confirmed that this
maximum mass range is independent of Mlimit for unsaturated
clusters. What is particularly validating about our method is
it predicts the Mmax–Mcluster relation to be a range, not single
valued. It even predicts the correct upper and lower mass range
when compared with real clusters.

We described our method to determine Mmax from UBV inte-
grated colors and magnitudes using 25 million MASSCLEAN
Monte Carlo simulations. With it, we estimate the maximum
stellar mass for 40 LMC clusters. These values of maximum
stellar mass, relative to the cluster total mass, are consistent
with previous determinations using different methods on other
similar-mass stellar clusters (e.g., Weidner et al. 2010).

Finally, we provided an analytical, power-law descrip-
tion of the Mmax range, which enabled us to cleanly de-
scribe the Mmax–Mcluster relation. For unsaturated clusters, the
Mmax–Mcluster relation is not single valued. It is described by
an upper and lower limit. Both of these limits correspond to
power-law functions of the stellar cluster mass, Mcluster, and are

independent of Mlimit for unsaturated clusters. Such a relation-
ship is consistent with previous results from hydrodynamical
simulations.
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