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ABSTRACT

In order to understand the rates and properties of Type Ia and Type Ib/c supernovae, X-ray binaries, gravitational
wave sources, and gamma-ray bursts as a function of galactic environment and cosmic age, it is imperative that we
measure how the close binary properties of O- and B-type stars vary with metallicity. We have studied eclipsing
binaries with early B main-sequence primaries in three galaxies with different metallicities: the Large and Small
Magellanic Clouds (LMC and SMC, respectively) and the Milky Way (MW). The observed fractions of early
B stars that exhibit deep eclipses 0.25 < Δm (mag) < 0.65 and orbital periods 2 < P (days) < 20 in the MW,
LMC, and SMC span a narrow range of (0.7–1.0)%, which is a model-independent result. After correcting for
geometrical selection effects and incompleteness toward low-mass companions, we find for early B stars in all three
environments (1) a close binary fraction of (22 ± 5)% across orbital periods 2 < P (days) < 20 and mass ratios
q = M2/M1 > 0.1, (2) an intrinsic orbital period distribution slightly skewed toward shorter periods relative to a
distribution that is uniform in log P, (3) a mass-ratio distribution weighted toward low-mass companions, and (4) a
small, nearly negligible excess fraction of twins with q > 0.9. Our fitted parameters derived for the MW eclipsing
binaries match the properties inferred from nearby, early-type spectroscopic binaries, which further validates our
results. There are no statistically significant trends with metallicity, demonstrating that the close binary properties
of massive stars do not vary across metallicities −0.7 < log(Z/Z�) < 0.0 beyond the measured uncertainties.
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1. INTRODUCTION

Spectral type O (M1 � 18 M�) and B (3 M� � M1 �
18 M�) primaries with close binary companions evolve to pro-
duce a plethora of astrophysical phenomena, including mil-
lisecond pulsars (Lorimer 2008), Type Ia (Wang & Han 2012)
and possibly Type Ib/c (Yoon et al. 2010) supernovae, X-ray
binaries (Verbunt 1993), Algols (van Rensbergen et al. 2011),
short (Nakar 2007) and perhaps long (Izzard et al. 2004) gamma-
ray bursts, accretion-induced collapse (Ivanova & Taam 2004),
and gravitational waves (Schneider et al. 2001). Telescopic sur-
veys dedicated to discovering luminous transients and/or high-
energy sources have identified some of these binary star phe-
nomena in low-metallicity host environments such as dwarf and
high-redshift galaxies (Kuznetsova et al. 2008; McGowan et al.
2008; Berger 2009; Frederiksen et al. 2012). Recent observa-
tions have demonstrated that the rates and properties of certain
channels of binary evolution vary with metallicity (Dray 2006;
Cooper et al. 2009; Sullivan et al. 2010; Kim et al. 2013). To
explain these observed trends, it has been postulated that the
physical processes that affect stellar and binary evolution are
metallicity-dependent (Bellazzini et al. 1995; Kobayashi et al.
1998; Ivanova 2006; Fryer et al. 2007; Kistler et al. 2013).
However, the initial conditions of the progenitor main-sequence
(MS) binaries may change with metallicity (Machida 2008),
which may also account for the observations. In order to dis-
tinguish between these two hypotheses, it is imperative that
we measure the close binary properties of massive stars at low
metallicity.

In the Milky Way (MW), the fraction of primaries that har-
bor close companions dramatically increases with primary mass
(Abt 1983; Raghavan et al. 2010; see also Section 4), reach-
ing ≈70% with orbital periods P < 3000 days for massive
O-type stars (Sana et al. 2012). Yet the effect of metallicity

on the close binary fraction of massive stars has not been ro-
bustly measured from observations. This is primarily due to the
paucity of short-lived, low-metallicity early-type stars within
our own MW, forcing us to explore external galaxies to investi-
gate metallicity dependence. Evans et al. (2006) utilized multi-
epoch spectroscopic observations of massive stars in the Large
and Small Magellanic Clouds (LMC and SMC, respectively)
to derive a lower limit of ≈30% for the close binary fraction.
Their cadence was insufficient to fit orbital periods to their ra-
dial velocity data for many of their systems, so they were unable
to account for incompleteness. Sana et al. (2013) searched for
spectroscopic binaries among O-type stars in the starburst re-
gion of the Tarantula Nebula, also known as 30 Doradus, within
the LMC. After correcting for observational biases, they com-
puted a binary fraction of ≈50% across orbital periods 0.15 <
log P (days) < 3.5. This extremely active and dense environ-
ment may not be representative of all O-type stars. Moreover,
with slightly subsolar abundances of [Fe/H] ≈ [O/H] ≈ −0.2
(Peimbert & Peimbert 2010), 30 Doradus offers little leverage to
gauge the effect of metallicity. Finally, Mazeh et al. (2006) uti-
lized observations made during the second phase of the Optical
Gravitational Lensing Experiment (OGLE-II) to identify eclips-
ing binaries with B-type primaries in the LMC. After correcting
for geometrical and other selection effects, they estimated that
only ≈0.7% of B stars have a companion with orbital periods
P = 2–10 days, nearly an order of magnitude lower than the
value for MW counterparts inferred from spectroscopic radial
velocity observations. However, Mazeh et al. (2006) did not
account for incompleteness toward low-mass secondaries, so it
is conceivable that many small companions are hiding by ex-
hibiting shallow eclipses below the threshold of the OGLE-II
sensitivity.

In this paper, we analyze catalogs of eclipsing binaries in the
MW, LMC, and SMC to determine the close binary fraction
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Table 1
Eclipsing Binary Statistics of Early-B MS Stars in the Milky Way and Magellanic Clouds

Galaxy 〈log(Z/Z�)〉 Survey NB NEB Nmed Fmed Ndeep Fdeep Refs

MW 0.0 Hipparcos 1,596 51 31 (1.94 ± 0.35)% 16 (1.00 ± 0.25)% 1, 2

LMC −0.4 OGLE-II 20,974 308 263 (1.25 ± 0.08)% 145 (0.69 ± 0.06)% 3, 4

LMC −0.4 OGLE-III 69,616 2,024 1,301 (1.87 ± 0.05)% 477 (0.69 ± 0.03)% 5, 6

SMC −0.7 OGLE-II 21,035 298 277 (1.32 ± 0.08)% 147 (0.70 ± 0.06)% 7, 8

Notes. The first three columns give the host galaxy, mean metallicity of early-type stars (see the text for details), and survey from which the eclipsing
binaries were identified. Column 4 lists the total number NB of relatively unevolved early B primaries in the samples, while Column 5 gives the number
NEB of eclipsing binaries with orbital periods P = 2–20 days. Columns 6 and 7 list the numbers Nmed and fractions Fmed = Nmed/NB of systems with
eclipse depths Δm = 0.10–0.65 mag and orbital periods P = 2–20 days. Columns 8 and 9 give similar numbers Ndeep and fractions Fdeep = Ndeep/NB,
but for those systems displaying deep eclipses Δm = 0.25–0.65 mag only. Shown in boldface are the cases for which the samples are relatively complete,
i.e., when the photometric accuracy of the survey is sensitive to the specified eclipse depths. (1) Perryman et al. 1997; (2) Lefèvre et al. 2009; (3)
Udalski et al. 2000; (4) Wyrzykowski et al. 2003; (5) Udalski et al. 2008; (6) Graczyk et al. 2011; (7) Udalski et al. 1998; (8) Wyrzykowski et al. 2004.

of early B stars as a function of metallicity. We organize the
subsequent sections as follows. In Section 2, we discuss the cri-
teria we developed to compile our samples of eclipsing binaries
from various catalogs, and we compare the observed properties
of the eclipsing systems among the different environments. In
Section 3, we utilize sophisticated light-curve modeling soft-
ware and perform detailed Monte Carlo simulations to cor-
rect for observational selection effects and incompleteness. In
Section 4, we compare our results derived from eclipsing bi-
naries to spectroscopic radial velocity observations of O- and
B-type binaries in the MW. We summarize and discuss our con-
clusions in Section 5.

2. THE ECLIPSING BINARY SAMPLES

We utilize catalogs of eclipsing binaries in the MW based
on Hipparcos data (Lefèvre et al. 2009), in the LMC identified
by OGLE-II (Wyrzykowski et al. 2003) and OGLE-III observa-
tions (Graczyk et al. 2011), and in the SMC discovered by the
OGLE-II survey (Wyrzykowski et al. 2004). These surveys iden-
tified eclipsing systems with varying sensitivity and complete-
ness. In order to make accurate comparisons among these cat-
alogs, we must first apply selection criteria to create a uniform
data set.

First, we select relatively unevolved M1 ≈ 7 M�–18 M� pri-
maries, corresponding to spectral types ≈B0–B3.5 and lumi-
nosity classes ≈III–V. By selecting a narrow range of spectral
types and stages of evolution, we can more robustly correct for
geometrical selection effects and other observational biases (see
Section 3). Because the mass function of early B stars is strongly
skewed toward lower mass objects, the median primary mass in
our selected samples is M1 = 10 M� (see Section 3.1).

Second, we restrict our samples to eclipsing binaries with
orbital periods P = 2–20 days. We do not consider shorter
period binaries with P < 2 days because a large fraction of
these systems are contact binaries (EW eclipsing types/W Ursae
Majoris variables) that may have substantially evolved from
their primordial configurations. Eclipsing binary identification
algorithms typically fail to detect MS binaries when the eclipse
duration is �5% the total orbital period (Söderhjelm & Dischler
2005). For our early B primaries with MS companions, the
eclipse widths fall below 4% the total orbital period when the
orbital period exceeds P = 20 days (see Section 3.1).

Finally, we select eclipsing binaries within a particular range
of primary eclipse depths Δm. For spherical MS stars, the max-
imum eclipse depth possible is Δm = 0.75 mag, corresponding

to a twin system with equal mass components observed edge-on
at inclination i = 90o. In a real stellar population, eclipsing bina-
ries with Δm � 0.65 are significantly contaminated by systems
that have undergone binary evolution, e.g., Algols (Söderhjelm
& Dischler 2005, see their Figure 5) and/or are substantially
tidally distorted, so we only consider systems with Δm < 0.65.
Because we selected eclipsing binaries with relatively unevolved
primaries and P > 2 days, most systems with Δm < 0.65 in our
samples are not filling their Roche lobes (see also Section 3.1).
Depending on the photometric accuracy, the catalogs become
less sensitive toward shallow eclipse depths Δm � 0.10–0.25.
We consider two subsamples: deep eclipses with 0.25 < Δm <
0.65 where all the surveys are sensitive, and an extension that
also includes medium eclipse depths with 0.10 < Δm < 0.65
where only some of the samples are still complete.

Nearby early B stars in the MW within ≈2 kpc of our
Sun cover a narrow range of metallicities centered on solar
composition (Gummersbach et al. 1998, [O/H] = −0.2 ±
0.2, [Mg/H] = 0.0 ± 0.2; Daflon & Cunha 2004, [O/H] =
−0.1 ± 0.2, [Mg/H] = −0.1 ± 0.2; Lyubimkov et al. 2005,
[Mg/H] = 0.1 ± 0.2). Although most catalogs of eclipsing
binaries in the MW focus on lower mass, solar-type primaries,
Lefèvre et al. (2009) recently classified a list of variable O
and early B stars based on Hipparcos data. They identified
NEB = 51 eclipsing binaries with P = 2–20 days, median
Hipparcos magnitudes 〈HP〉 < 9.3, and primaries displaying
either spectral types B0–B2 and luminosity classes III–V or
spectral types B2.5–B3 and luminosity classes II–V. From these
systems, Nmed = 31 exhibited eclipse depths 0.10 < ΔHP <
0.65, while only Ndeep = 16 had deep amplitudes 0.25 < ΔHP <
0.65. In the Hipparcos database (Perryman et al. 1997), there
are NB = 1596 early B stars that satisfy the same magnitude,
spectral type, and luminosity class criteria, where we have
included objects without a specifically listed luminosity class but
excluded B0–B2 spectral types with a hybrid II–III designation.
This results in Fmed = Nmed/NB = (1.94 ± 0.35)% and Fdeep =
Ndeep/NB = (1.00 ± 0.25)%, where the errors derive from
Poisson statistics.1 We summarize these results in Table 1.

1 Throughout this work, we use N to represent an absolute number, F for a
fraction, either observed or intrinsic, O to represent an observed distribution
that integrates to the specified fraction, S for a simple approximation to the
observed distribution, M for a detailed model distribution based on our Monte
Carlo simulations, U for an intrinsic distribution that describes the underlying
close binary population, C for a correction factor, P for the probability that a
close binary is observed as an eclipsing system, and p for either a probability
density distribution that integrates to unity or a probability statistic from a
hypothesis test.
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The LMC provides our first testbed to investigate the effects
of metallicity on the frequency of close early B binaries.
Young massive stars and Cepheids, which recently evolved from
B-type MS progenitors, have a mean metallicity of 〈log(Z/
Z�)〉 = −0.4 in this nearby satellite galaxy (Luck et al. 1998,
[Fe/H] = −0.3 ± 0.2; Korn et al. 2000, [Fe/H] ≈ −0.4;
Rolleston et al. 2002, [O/H] = −0.3 ± 0.1, [Mg/H] = −0.5 ±
0.2; Romaniello et al. 2005, [Fe/H] = −0.4 ± 0.2; Keller &
Wood 2006, [Fe/H] = −0.3 ± 0.2), where Z� = 0.015 (Lodders
2003; Asplund et al. 2009). The LMC has a distance modulus
of μ = 18.5, typical reddening of E(V − I ) = 0.1, and average
extinction of AV = 0.4 toward younger stellar environments
(Zaritsky 1999; Imara & Blitz 2007; Haschke et al. 2011;
Wagner-Kaiser & Sarajedini 2013). We therefore use MI =
mI − 18.8 to convert apparent magnitudes to intrinsic absolute
magnitudes for the LMC. We select relatively unevolved early B
stars with observed colors V − I < 0.1 and absolute magnitudes
−3.8 < MI < −1.5 (Cox 2000; Bertelli et al. 2009; see also
Section 3.1.1).

For the LMC, we compare the regularly monitored
OGLE-II fields, which covered 4.6 deg2 in the central portions
of the galaxy, to the recent OGLE-III data, which extended an
additional 35 deg2 into the periphery. We expect these two pop-
ulations to be similar since there is no significant metallicity
gradient in the LMC (Grocholski et al. 2006; Piatti & Geisler
2013). In the central fields of the OGLE-II LMC photometric
catalog (Udalski et al. 2000), NB = 20,974 stars have 15.0 <
I < 17.3 and V − I < 0.1. Wyrzykowski et al. (2003) utilized an
automated search algorithm to discover eclipsing binaries in the
OGLE-II LMC data and found NEB = 308 systems that meet
our magnitude and color cuts and have orbital periods between 2
and 20 days. Of these systems, Nmed = 263 have primary eclipse
depths 0.10 < ΔI < 0.65, resulting in Fmed = (1.25 ± 0.08)%,
while Ndeep = 145 have 0.25 < ΔI < 0.65, giving Fdeep =
(0.69 ± 0.06)%. In the larger OGLE-III LMC footprint of
35 million objects (Udalski et al. 2008), NB = 69,616 stars re-
main after we apply the same magnitude and color cuts. Graczyk
et al. (2011) used these observations to identify eclipsing bina-
ries, being careful to exclude non-eclipsing phenomena such as
ellipsoidal variables, pulsators, etc. They found NEB = 2,024
eclipsing binaries with primary eclipse periods P = 2–20 days
and photometric properties that satisfy our selection criteria.
From these eclipsing binaries, Nmed = 1,301 have 0.10 < ΔI <
0.65 and Ndeep = 477 have 0.25 < ΔI < 0.65, giving Fmed =
(1.87 ± 0.05)% and Fdeep = (0.69 ± 0.03)%, respectively. We
display these LMC results for both the OGLE-II and OGLE-III
samples in Table 1.

Young B stars and massive Cepheids in the SMC exhibit
even lower metallicities of 〈log(Z/Z�)〉 = −0.7 (Luck et al.
1998, [Fe/H] = −0.7 ± 0.1; Korn et al. 2000, [Fe/H] ≈ −0.7;
Romaniello et al. 2005, [Fe/H] = −0.7 ± 0.1; Keller & Wood
2006, [Fe/H] = −0.6 ± 0.1), providing even greater leverage to
test the effects of metallicities. Compared to the LMC, the SMC
is farther away with μ = 19.0 and experiences similar reddening
and extinction of E(V − I ) = 0.1 and AV = 0.4 (Zaritsky
et al. 2002; Haschke et al. 2012). We therefore use MI = mI −
19.3 and apply the same color and absolute magnitude cuts that
we implemented above for the LMC. There are NB = 21,035
stars with 15.5 < I < 17.8 and V − I < 0.1 in the 2.4 deg2

OGLE-II SMC field (Udalski et al. 1998). From these primaries,
Wyrzykowski et al. (2004) found NEB = 298 eclipsing binaries
with P = 2–20 days. A total of Nmed = 277 of these systems
have 0.10 < ΔI < 0.65, giving Fmed = (1.32 ± 0.08)%, and

Figure 1. Observed primary eclipse depth distribution OΔm with orbital periods
P = 2–20 days for early B stars in the Hipparcos MW (orange), OGLE-II
LMC (blue), OGLE-III LMC (green), and OGLE-II SMC (red) samples. The
observed slopes and overall normalizations to Fdeep = ∫ 0.65

0.25 OΔm(Δm) d(Δm) =
(0.7–1.0)% of all four samples are consistent with each other across the interval
for deep eclipses 0.25 < Δm < 0.65, demonstrating that the eclipsing binary
properties do not substantially change with metallicity. The OGLE-II data for
both the LMC and SMC become incomplete toward shallower eclipses Δm �
0.25, while the OGLE-III LMC distribution is relatively complete down to Δm =
0.10 and is well approximated by a simple power-law SΔm (dashed black).

(A color version of this figure is available in the online journal.)

Ndeep = 147 have 0.25 < ΔI < 0.65, resulting in Fdeep = (0.70 ±
0.06)%. We tabulate these SMC results in Table 1.

We first compare the deep eclipsing binary fractions Fdeep of
the different populations listed in Table 1. All four surveys were
sensitive to these deep eclipses, so thatFdeep should be complete.
Remarkably, the three OGLE Magellanic Cloud values match
each other within the observational uncertainty of ≈10%. The
MW fraction is ≈40% larger, but consistent at the 1.2σ level.
The uniformity of Fdeep demonstrates that the eclipsing binary
fraction of early B stars does not vary with metallicity beyond
the observational uncertainties.

Extending toward medium eclipse depths, the values of
Fmed in Table 1 are not as undeviating. Although the MW
and LMC OGLE-III samples match within the uncertainty of
≈20%, the OGLE-II fractions for both the LMC and SMC
are statistically lower. We can resolve this discrepancy by
investigating the observed primary eclipse depth distributions
OΔm(Δm) d(Δm), which we display in Figure 1. The distributions
are normalized to the total number of early B stars so thatFdeep =∫ 0.65

0.25 OΔm(Δm) d(Δm), and the plotted errors σOΔm (Δm) derive
from Poisson statistics. The OGLE-II LMC and SMC data
become incomplete at Δm < 0.25 due to the lower photometric
precision of the survey, which leads to the underestimation of
Fmed. However, OΔm for all four samples are consistent with
each other across the interval for deep eclipses 0.25 < Δm <
0.65, demonstrating again that the close binary properties of
early B stars do not strongly depend on metallicity. Using the
large and complete LMC OGLE-III sample for eclipse depths
0.10 < Δm < 0.65, we fit a simple power law to the eclipse
depth distribution. We find SΔm d(Δm) ∝ (Δm)−1.65±0.07 d(Δm),
which we display as the dashed black line in Figure 1. If
this distribution extends toward shallower eclipses, then many
additional eclipsing systems may be hiding with Δm < 0.1. We
return to our discussion of incompleteness corrections in the
next section when we conduct Monte Carlo simulations.
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Figure 2. Observed orbital period distribution of systems exhibiting deep
eclipses Odeep(P) (top panel) for the OGLE-II LMC (blue), OGLE-III LMC
(green), and OGLE-II SMC (red) samples, and a larger population of medium
through deep eclipses Omed(P) (bottom panel) for the complete MW (orange)
and OGLE-III LMC (green) samples. The distributions are normalized to the
total number of early B stars so that Fdeep = ∫ log20

log2 Odeep(P) d(log P) ≈
0.7% and Fmed = ∫ log20

log2 Omed(P) d(log P) ≈ 1.9%. By making simple

approximations and assuming that close binaries follow Öpik’s law, we would
expect Sdeep(P ) d(log P) ∝ Smed(P ) d(log P) ∝ P −2/3 d(log P) for the
eclipsing binary period distribution (dashed black in both panels). The observed
distributions are weighted toward shorter periods compared to Öpik’s prediction,
especially the OGLE-II SMC sample.

(A color version of this figure is available in the online journal.)

In Figure 2, we plot the observed period distributions of
eclipsing binaries exhibiting deep eclipses Odeep(P ) d(log P)
for the three OGLE samples (top panel). We also display the ob-
served period distributions of systems with medium through
deep eclipses Omed(P ) d(log P) for the complete MW and
LMC OGLE-III populations (bottom panel). Again, we nor-
malize the observed period distributions to the total number
of early B stars so that Fdeep = ∫ log20

log2 Odeep(P) d(log P) and

Fmed = ∫ log20
log2 Omed(P) d(log P). The number of eclipsing bi-

naries dramatically increases toward shorter periods, primar-
ily because of geometrical selection effects. If we ignore limb
darkening and tidal distortions, then the probability of eclipses
would scale as P ∝ P −2/3 based on Kepler’s third law. If the
binaries were distributed uniformly with respect to log P ac-
cording to Öpik’s law (Öpik 1924; Abt 1983), we would then
expect Sdeep(P ) d(log P) ∝ Smed(P ) d(log P) ∝ P −2/3 d(log P).
We display these theoretical curves as the dashed black lines
in Figure 2, where the normalization is chosen to guide the
eye. The distributions are shifted slightly toward shorter pe-
riods relative to Öpik’s prediction, especially the OGLE-II
SMC data.

Although the Odeep(P ) distributions for the OGLE-II and
OGLE-III LMC data are consistent with each other, the OGLE-II
SMC distribution is discrepantly skewed toward shorter periods.
A K-S test between the OGLE-II LMC and SMC unbinned

Odeep(P ) distributions reveals a probability that they derive from
the same parent population of only pKS = 0.004. Similarly,
the probability of consistency between the OGLE-II SMC and
OGLE-III LMC unbinnedOdeep(P ) data is pKS = 0.01. However,
the SMC eclipsing binaries are systematically 0.5 mag fainter, so
it is conceivable that some long-period systems with shallower
eclipses and eclipse durations ≈5% of the total orbital period
may have remained undetected in this survey (see Söderhjelm &
Dischler 2005). In fact, we find that all three OGLE samples are
consistent with each other, i.e., pKS > 0.1, if we only consider the
parameter space of eclipsing binaries with P = 2–10 days and
Δm = 0.30–0.65. We investigate this feature with more robust
light-curve modeling and Monte Carlo calculations in the next
section.

3. CORRECTION FOR SELECTION EFFECTS

We have determined that Fdeep ≈ 0.7% for all three OGLE
samples of eclipsing binaries in the Magellanic Clouds. The
Hipparcos MW value is ≈40% higher, but consistent at the
1.2σ level. Also, both the MW and OGLE-III LMC samples
have an observed eclipsing binary fraction with medium eclipse
depths of Fmed ≈ 1.9%.

In order to make a more stringent comparison, we need to
convert the observed eclipsing binary fractions into actual close
binary fractions Fclose. We define Fclose to be the fraction of
systems that have a companion with orbital period 2 days �
P � 20 days and mass ratio 0.1 � q ≡ Mcomp/M1 � 1. We
must therefore correct for geometrical selection effects and
incompleteness toward low-mass companions. Our ultimate
goal is to utilize the observed propertiesO of the eclipsing binary
systems, e.g.,Fdeep orFmed,Odeep(P ) orOmed(P ), andOΔm(Δm),
to derive the underlying properties U of the close binary
population, e.g., Fclose, intrinsic period distribution UP(P), and
mass-ratio distribution Uq(q). Although the observational biases
of eclipsing binaries have been investigated in the literature
(e.g., Farinella & Paolicchi 1978; Halbwachs 1981; Söderhjelm
& Dischler 2005), we wish to conduct detailed modeling
specifically suited to our samples in order to accurately quantify
the errors.

For a given binary with primary mass M1, mass ratio q,
age τ , metallicity Z, and orbital period P, there is a certain
probability P that the system has an orientation that produces
eclipses. There are even smaller probabilities Pmed and Pdeep
that the system has an eclipse depth Δm that is large enough to
be observed in the Hipparcos and OGLE data. We determine
these probabilities by first implementing detailed light-curve
models to compute the eclipse depths Δm of various binary
systems as a function of inclination i (Section 3.1). Using
a Monte Carlo technique (Section 3.2), we simulate a large
population of binaries and synthesize models of the eclipse
depth distribution MΔm(Δm) and the eclipsing binary period
distributions Mdeep(P ) and Mmed(P ). We perform thousands
of Monte Carlo simulations by making different assumptions
regarding the intrinsic period distribution UP and mass-ratio
distribution Uq. By minimizing the χ2 statistic between our
Monte Carlo models M and observed eclipsing binary data O,
we can determine the probabilities of observing eclipses Pdeep
and Pmed and the underlying binary properties U for each of
our populations (Section 3.3). We then account for Malmquist
bias in our magnitude-limited samples (Section 3.4) and present
our finalized results for Fclose and corrected intrinsic period
distribution UP (Section 3.5).
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3.1. Light-curve Modeling

To simulate eclipse depths Δm, we use the eclipsing bi-
nary light-curve modeling software nightfall.2 We incorpo-
rate many features of this package, including a square-root
limb-darkening law, tidal distortions, gravity darkening, model
stellar atmospheres, and three iterations of mutual irradiation be-
tween the two stars. For the majority of close binaries with P =
2–20 days, tides have partially or completely synchronized the
orbits and dramatically reduced the eccentricities (Zahn 1977),
so we assume synchronous rotation and circular orbits in our
models. Nonetheless, several early B primaries with companions
at P = 2–20 days have measurable non-zero eccentricities, some
as large as e ≈ 0.6 (Pourbaix et al. 2004). We therefore estimate
the systematic error in our determination of Fclose due to the few
binaries with these moderate eccentricities (Section 3.1.3). Mag-
netic bright spots on the surface of massive stars are expected to
produce small 10−3 mag variations over short durations of days
(Cantiello & Braithwaite 2011). Because OGLE and Hipparcos
observed the eclipsing binaries over a much longer time span of
years with less photometric precision, we can ignore the effects
of starspots. We compute the nightfall models without any
third light contamination, but consider the effects of triple star
systems and stellar blending in the crowded Magellanic Cloud
OGLE fields using a statistical method (Section 3.1.4). We now
synthesize eclipse depths Δm for the OGLE Magellanic Clouds
(Section 3.1.1) and Hipparcos MW (Section 3.1.2) samples.

3.1.1. Magellanic Clouds

To model the OGLE eclipsing binaries, we utilize the Z =
0.004, Y = 0.26 stellar tracks from the Padova group (Bertelli
et al. 2008, 2009), which correspond to a metallicity between
the SMC and LMC mean values. In addition to basic parameters
such as radii R(τ ) and photospheric temperatures T(τ ) as a
function of stellar age τ , we also extract the surface gravities
g(τ ) from the stellar tracks in order to select appropriate
model atmospheres in nightfall. We convert stellar radii to
Roche-lobe-filling factors according to the volume-averaged
formula given by Eggleton (1983). Although nightfall defines
the Roche-lobe-filling factor along the polar axis, it is more
appropriate to use the Eggleton (1983) approximation in cases
where the star fills a large fraction of its Roche lobe and is
therefore distorted along this potential. In any case, the volume-
averaged Roche lobe radius is only ≈7% larger than the polar
Roche lobe radius for systems in our sample, so any systematics
due to using the Eggleton (1983) formula as input are small.
Based on the numerical calculations performed by Claret (2001)
and his comparison to empirical results, we choose an albedo
of A = 1.0 for our primary and secondaries hotter than T >
7500 K with radiative envelopes (M2 � 1.3 M�), and A = 0.75
for low-mass secondaries (M2 < 1.3 M�) at lower temperatures
with convective atmospheres.

Because we selected the OGLE samples from a narrow
range of absolute magnitudes, we can assume that all eclipsing
binaries have the same primary mass. If the luminosity of the
primary is dominant, then the median absolute magnitude of
MI ≈ −2.1 in the OGLE samples corresponds to a primary
mass of M1 = 12 M�, where we have interpolated the stellar
tracks from Bertelli et al. (2009) at half the MS lifetimes
and utilized bolometric corrections and color indices from
Cox (2000). However, if the typical secondary in the observed

2 http://www.hs.uni-hamburg.de/DE/Ins/Per/Wichmann/Nightfall.html

eclipsing systems increases the brightness by ΔMI ≈ 0.3 mag
(see Section 3.4.2), then the primary’s absolute magnitude of
MI ≈ −1.8 corresponds to M1 = 10 M�. We therefore adopt
M1 = 10 M� for all primaries in our simulations.

We must still consider the systematic error in Fclose due to this
single-mass primary approximation. The sample distributions of
absolute magnitudes MI have a dispersion of σMI ≈ 0.4 mag,
which implies a dispersion in M1 of ≈25%. According to the
mass–radius relation R ∝ M0.6 and Kepler’s law a ∝ M1/3, the
probability of observing eclipses Pdeep ∝ Pmed ∝∼ R/a ∝∼ M0.3

1
due to geometrical selection effects is only weakly dependent on
M1. The systematic error in our derived Fclose =Fdeep/〈Pdeep〉 =
Fmed/〈Pmed〉 is therefore only a factor of 7% due to the observed
dispersion in primary absolute magnitudes σMI ≈ 0.4 mag.
Similarly, the extinction distributions toward young stars in
the Magellanic Clouds have a dispersion of σAV ≈ 0.3 mag
(Zaritsky 1999; Zaritsky et al. 2002), and the I-band excess
distributions from the eclipsing companions have a dispersion
of σΔMI ≈ 0.2 mag (see Section 3.4.2). These effects contribute
additional systematic error factors in Fclose of 6% and 4%,
respectively. By adding these three sources of uncertainty in
quadrature, we find that the total systematic error inFclose is only
a factor of 10% due to our single-mass primary approximation.
In our estimate for Pdeep ∝ Pmed ∝∼ M0.3

1 , we have assumed
that the mass-ratio distributions, and therefore the slopes of the
eclipse depth distributions, do not substantially vary across our
narrowly selected interval of primary masses. In fact, for the
OGLE-III LMC medium eclipse depth sample, we find SΔm ∝
(Δm)−1.54 ± 0.12 for the 563 eclipsing binaries brighter than MI =
−2.3, and SΔm ∝ (Δm)−1.74 ± 0.11 for the 738 systems fainter than
MI = −2.3. The consistency of these two slopes justifies our
approximation, and therefore our assessment of the systematic
error in Fclose is valid.

Because we restricted our samples to observed colors V − I <
0.1, i.e., T1 � 10,000 K once reddening is taken into account,
most primaries are relatively unevolved on the MS. For example,
a Z = 0.004, M1 = 10 M� primary evolves from R1 = 3.3 R�,
T1 = 28,000 K on the zero-age MS (luminosity class V) to R1 =
8.5 R�, T1 = 22,000 K at the top of the MS by age τMS = 23 Myr
(technically luminosity class III). The star then rapidly expands
and cools, passing from R1 = 9.0 R� to T1 = 10,000 K in δt ≈
30,000 yr. Considering δt/τMS ∼ 10−3, the contamination by
the few, short-lived bona fide giants with τ > τMS is negligible.

We calculate the I-band light curve at 1% phase intervals
across the orbit, where we include the effects of fractional
visibility of surface elements computed by nightfall. Because
the OGLE eclipsing binary catalogs reported eclipse depths in
the I band as the difference between the dimmest and mean
out-of-eclipse magnitudes, we set the zero-point magnitude
in the nightfall models to the mean value across the phase
interval 0.2–0.3. We display some example light curves in
Figure 3. The three panels represent orbital periods of P = 2, 6.3,
and 20 days, while the colors distinguish various mass ratios q =
M2/M1. We compute the light curves at inclinations i = 77.◦3,
84.◦1, and 87.◦3 from left to right so that the projected separations
aproj ∝ P 2/3cos i = constant. For spherical stars, the eclipse
depths should therefore be identical across these three panels
for the same mass ratios. We evaluate these example models
at age τ = 17 Myr when the primary reaches an intermediate
radius of R1 = 5.3 R�.

The left panel of Figure 3 with P = 2 days corresponds to
primaries filling 60%–80% of their Roche lobes, depending on
the mass ratio. The light curves of these close binaries exhibit
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Figure 3. Simulated I-band light curves as a function of orbital phase computed by nightfall for various mass ratios q = M2/M1 (distinguished by colors). The
left, middle, and right panels correspond to orbital periods of P = 2, 6.3, and 20 days, respectively, and at the listed inclinations i that satisfy P 2/3cos i = constant.
All models are evaluated with primary mass M1 = 10 M� at age τ = 17 Myr when R1 = 5.3 R�. We compare the detailed nightfall light curves to simplistic
estimates of the maximum eclipse depths that ignore tidal distortions, limb darkening, and color dependence (horizontal dotted lines centered on primary eclipse). The
detailed nightfall models differ from the simple estimates by 0.00–0.04 mag for these systems, but can reach up to 0.16 mag for older, short-period binaries nearly
filling their Roche lobes.

(A color version of this figure is available in the online journal.)

Figure 4. Maximum eclipse depths Δm as a function of inclination i > icrit ≡ cos−1([R1 + R2]/a) computed using nightfall for various mass ratios q = M2/M1
(distinguished by colors) and three orbital periods (different panels). We compute the models with the same primary mass M1, age τ , and three orbital periods P
as in Figure 3, where the vertical dotted lines represent the inclinations of the systems used to display the light curves. We also indicate our adopted definition for
deep eclipses and the extension toward medium eclipse depths (horizontal dashed lines). The range of inclinations that produce observable eclipses decreases with
increasing P simply due to geometrical selection effects.

(A color version of this figure is available in the online journal.)

pronounced ellipsoidal modulations, while the out-of-eclipse
magnitudes of systems at longer orbital periods are relatively
constant. In the right panel with P = 20 days, the narrow eclipse
widths of 4% are just at the detectability limit of eclipsing binary
identification algorithms (Söderhjelm & Dischler 2005).

A simple estimate for the eclipse depths can be derived by cal-
culating the bolometric flux in the eclipsed area of the primary
assuming spherical stars and no limb darkening. We compare
the nightfall models to this simple approximation for the max-
imum eclipse depth (horizontal dotted lines centered on primary
eclipses). For P = 2 days, the actual eclipse depths determined
by nightfall are generally deeper than the simple approxima-
tions because tidal distortions and reflection effects enhance the
light-curve amplitudes. Alternatively, the nightfall results for
longer period systems at P = 6.3 and 20 days are typically shal-
lower than the simple approximations because the actual flux
eclipsed along grazing angles is less due to the effect of limb
darkening.

Because the OGLE eclipsing binary catalogs exclude el-
lipsoidal variables that did not exhibit genuine eclipses,
we consider only systems with inclinations i > icrit ≡
cos−1([R1 + R2]/a). We use nightfall to produce a dense grid

of eclipse depths Δm(τ , q, P, i) in our parameter space of stellar
ages τ = [0, τMS = 23 Myr], mass ratios q = [0.1, 1], orbital
periods P(days) = [2, 20], and inclinations i = [icrit, 90o]. In the
three panels of Figure 4, we plot our simulated Δm as a function
of inclination i for the same three orbital periods, various mass
ratios indicated by color, and for the same τ = 17 Myr that gives
R1 = 5.3 R�.

The short-period systems in the left panel of Figure 4 are
significantly affected by tidal distortions. The twin system with
q = 1 observed edge-on at i = 90o exceeds the maximum
eclipse depth limit for spherical stars of Δm = 0.75. Ellipsoidal
variables that barely miss eclipses with i = icrit all have light-
curve amplitudes of Δm < 0.05 for this set of parameters (see
where curves terminate at bottom left). For systems that do not
fill their Roche lobes, all ellipsoidal variables with i = icrit have
amplitudes Δm < 0.09. Granted, some systems with i > icrit
may not have strong enough eclipse features to be included in
the catalog of eclipsing binaries. Nevertheless, this transition
between ellipsoidal variability and genuine eclipses occurs at
Δm � 0.1, so we can be assured that very few eclipsing systems
with measured amplitudes Δm > 0.1 have been excluded from
the catalogs.
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Figure 5. Similar to Figure 4, but for the same orbital period of P = 2.9 days and for three different ages τ on the MS of a 10 M� primary. Note that the range of
inclinations that produce observable eclipses increases with increasing age, while for q � 0.9 the eclipse depths diminish with age.

(A color version of this figure is available in the online journal.)

The middle and right panels of Figure 4 represent pro-
gressively longer orbital periods where tidal distortions and
reflection effects become negligible. Note the smaller range
of inclinations that produce observable eclipses, simply due to
geometrical selection effects. We display with horizontal dashed
lines our adopted intervals for deep eclipses and extension to-
ward medium eclipse depths. Assuming that the middle panel
is most representative of close binaries with P = 2–20 days, i >
85o and q > 0.55 are required to observe deep eclipses. Given
random orientations, the correction factor for geometrical se-
lection effects alone is Cdeep,i ≈ 1/ cos(85◦) ≈ 11. Assuming a
uniform mass-ratio distribution over the interval q = [0.1, 1.0],
the correction factor for incompleteness toward low-mass com-
panions alone is Cdeep,q ≈ ((1–0.1)/(1–0.55)) ≈ 2. The overall
probability of observing a system with a deep eclipse is there-
fore 〈Pdeep〉 = (Cdeep,i × Cdeep,q)−1 ≈ 0.04. Similarly, i > 83o and
q > 0.3 are required to observe eclipses with medium depths,
implying Cmed,i ≈ 8, Cmed,q ≈ 1.3, and 〈Pmed〉 ≈ 0.09. These
two overall probabilities imply similar close binary fractions of
Fclose = Fdeep/〈Pdeep〉 = 0.7%/0.04 ≈ 16% and Fclose = Fmed/
〈Pmed〉 = 1.9%/0.09 ≈ 20%. We obtain more precise values
in Section 3.3 by fitting the observed eclipse depth and period
distributions to constrain the actual binary properties.

In Figure 5, we display simulated eclipse depths
from nightfall similar to Figure 4, but for constant P =
2.9 days and three different stages of evolution. The left panel
corresponds to zero-age MS systems where the primary radius
is R1 = 3.3 R�, the middle panel represents an intermediate-age
binary when R1 = 5.3 R�, and the right panel is for the top of
the primary’s MS with R1 = 8.5 R�. For young systems, q = 0.1
is just at the detectability threshold in our medium eclipse depth
samples, which is the primary reason we set the lower limit of
our mass-ratio interval to this value. With increasing τ and R1,
the range of inclinations that produce visible eclipses increases
due to geometrical selection effects. However, the depths of
eclipses for q � 0.9 become smaller because the fractional area
of the primary that is eclipsed decreases with increasing primary
radius. Therefore, our samples of eclipsing binaries are rather
incomplete toward smaller, low-mass companions. For young
systems, the probability of observing a low-mass secondary is
low, while for older systems the eclipse depths produced by
low-mass companions are below the sensitivity of the surveys.

There is a narrow corner of the parameter space with P �
2.6 days and R1 � 7.0 R� where the primary overfills its Roche

lobe. We assume that either merging or onset of rapid mass
transfer causes these systems to evolve outside the parameter
space 0.1 < Δm < 0.65. In our Monte Carlo simulations
(Section 3.2), we include their contribution toward the close
binary fraction but remove these systems as eclipsing binaries
when fittingOΔm(Δm) and eitherOdeep(P ) orOmed(P ). A 10 M�
star spends 8% of its MS evolution with R1 > 7.0 R�, and
(20–30)% of the eclipsing binaries in our samples have orbital
periods P < 2.6 days, depending on the survey. Therefore, the
systematic error in our evaluation of the close binary fraction
due to these few evolved, close, Roche-lobe-filling binaries is
only 2%.

For systems that produce eclipse depths Δm > 0.25 and
are not filling their Roche lobes, the rms deviation between
the detailed nightfall simulations and simple approximations
that ignore limb darkening and tidal distortions is 〈δ(Δm)〉 =
0.05 mag. The difference reaches a maximum value of 0.16 mag
for a close-period, evolved twin system with q = 1 that nearly
fills its Roche lobes. Because of these measurable systematics,
it is important that we incorporate the nightfall results instead
of relying on the simple estimates.

3.1.2. Milky Way

We repeat our procedure to model eclipse depths Δm for the
Hipparcos MW sample of eclipsing binaries, but with some
slight modifications. We still assume that all primaries have
M1 = 10 M� because the mean spectral type of our sample is
B2, but we implement the solar metallicity Z = 0.017, Y =
0.26 tracks from the Padova group (Bertelli et al. 2008, 2009).
A solar-metallicity 10 M� star has a slightly longer lifetime of
τMS ≈ 25 Myr, and more importantly it is (15–25)% larger
depending on the stage of evolution. The primary radius is
R1 = 3.8 R� on the zero-age MS versus R1 = 3.3 R� for
the Z = 0.004 model and reaches R1 = 10.5 R� at the top
of the MS compared to R1 = 8.5 R� for the low-metallicity
track. For the same close binary properties, we actually expect
Fdeep in the MW to be 20% higher because the probability of
eclipses scales asP ∝ (R1 + R2). This radius–metallicity relation
diminishes the already small 1.2σ difference between the MW
and Magellanic Cloud statistics inferred from Fdeep. Finally,
we evaluate the eclipse depth Δm based on the V-band light
curves computed by nightfall, which closely approximates
the Hipparcos passband.
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3.1.3. Eccentric Orbits

Because we attempt to address all sources of error, we account
for systematics due to eccentric orbits in our determination
of the close binary fraction. Unfortunately, the extent of tidal
distortions and mutual irradiation continually change in an
eccentric orbit, so that all the binary properties in nightfall
must be recalculated at each phase of the orbit instead of solely
varying the orientation. It would become computationally too
expensive if we were to add dimensions of eccentricity e and
periastron angle ω to our original grid of models Δm(τ , q, P, i).

Since the eccentricities of close binaries are relatively small
due to tidal circularization, we can determine the average error
〈δ(Δm)〉 of a representative eclipsing binary and propagate
the uncertainty into our evaluation of Fclose. We consider an
eclipsing binary with τ = 17 Myr, q = 0.6, P = 4 days, and
i = 90o as our test example, which gives Δm = 0.30 for a
circular orbit (see Figure 4). For the 101 systems in the ninth
catalog of spectroscopic binary orbits (Pourbaix et al. 2004)
with measured eccentricities, orbital periods P = 2–20 days,
and primaries with spectral types B0–B3 and luminosity classes
III–V, the average eccentricity is only 〈e〉 = 0.17. For the 56
systems with P = 2–5 days, which is more representative of our
eclipsing binary sample, the mean eccentricity is even lower at
〈e〉 = 0.11. Using nightfall, we calculate the eclipse depths
for our test example at an intermediate value of e = 0.15 and
an upper ≈1σ value of e = 0.30, each at varying periastron
angles ω.

For e = 0.15, we find that the eclipse depths vary by δ(Δm) <
0.004 mag compared to a circular orbit, with an average value
of 〈δ(Δm)〉 = 0.002 mag if we weight uniformly with respect to
ω. The error is slightly higher at 〈δ(Δm)〉 = 0.005 mag for e =
0.30. We found in Section 3.1.1 that the average error between
the detailed nightfall models and simple estimates ignoring
tidal distortions and limb darkening is 〈δ(Δm)〉 = 0.05 mag.
We show in Section 3.3 that this would have propagated into a
systematic error factor of 20% in our determination of Fclose.
Since the error in eclipse depths due to eccentric orbits is an
order of magnitude smaller, we expect the uncertainty in Fclose
due to non-circular orbits to be only a factor of 2%.

3.1.4. Third Light Contamination

A third light source can have a much larger effect on the
observed eclipse depth Δm of an eclipsing binary, depending
on the luminosity of the contaminant. We first consider wider
companions in triple star systems. About 40% of early-type
primaries have a visually resolved companion (Turner et al.
2008; Mason et al. 2009). More importantly, most close binaries,
such as our eclipsing systems, are observed to be the inner
components of triple star systems (Tokovinin et al. 2006).
Specifically, this study found that 96% of binaries with P <
3 days have a wider tertiary companion. Assuming that the
typical eclipsing secondary increases the brightness by ΔM =
0.3 mag (see Section 3.4), a tertiary companion with q = M3/
M1 > 0.5 is capable of increasing the system luminosity by
�10%. The wider companions around early-type primaries are
observed to be drawn from a mass-ratio distribution weighted
toward lower mass, fainter stars (Abt et al. 1990; Preibisch et al.
1999; Duchêne et al. 2001; Shatsky & Tokovinin 2002). These
observations find that only (10–30)% of wide companions have
mass ratios q > 0.5. Even if every eclipsing binary has one wider
component, we would expect that only ≈20% of tertiaries have

large enough luminosities to measurably affect our light-curve
modeling.

We also consider third light contamination due to stellar
blending in the crowded Magellanic Cloud fields. Based on the
OGLE photometric catalogs, there are 4.2 million (Udalski et al.
2000), 12 million (Udalski et al. 2008), and 1.5 million (Udalski
et al. 1998) systems with MI > 1.2 in the OGLE-II LMC,
OGLE-III LMC, and OGLE-II SMC footprints, respectively.
The median absolute magnitude of these sources is MI ≈ 0.4,
which is 10% the I-band luminosity of our median early B
eclipsing binary with MI ≈ −2.1. The average space densities
of stars with MI > 1.2 are 0.07, 0.03, and 0.05 objects per
square arcsecond in the OGLE-II LMC, OGLE-III LMC, and
OGLE-II SMC fields, respectively. Given a median seeing
of 1.′′2–1.′′3 during the OGLE observations, we expect only
(5–12)% of early B eclipsing binaries to be blended with sources
brighter than MI = 1.2. The probability of stellar blending
with a background/foreground source is slightly smaller than
the probability of contamination in a triple star system, where
in both cases we included third light components �10% the
luminosity of the eclipsing system.

Because a sizable fraction of eclipsing binaries are affected
by third light contamination from stellar blending and triple star
systems, we model the third light sources in the eclipsing binary
populations using a statistical method. When we conduct our
Monte Carlo simulations in the next section, we synthesize
distributions of eclipse depths Δm based on our nightfall
models, but we assume that a 20% random subset of eclipsing
systems have reduced eclipse depths Δmmeasured = 0.8 Δmtrue.
These values approximate the probabilities and representative
luminosities of the third light contaminants. By comparing our
model fits with and without the third light sources, we can gauge
the effect on our derived close binary properties.

3.2. Monte Carlo Simulations

The eclipsing binary samples provide the distributions of
observed orbital periods and eclipse depths. We would like to use
this information to learn as much as possible about the properties
of the close binary populations in the different environments. To
do this, we use the fact that the eclipse depths Δm(M1, q, Z, τ , P,
i) are determined by six physical properties of the binary. Based
on our single-mass approximation discussed in Section 3.1.1,
we only consider M1 = 10 M� primaries and propagate the
systematic error from this approximation into our finalized
results for the close binary fraction. We also evaluate our models
for two main metallicity groups: one using the Z = 0.004 stellar
tracks and I-band eclipse depths to be compared to the three
OGLE Magellanic Cloud samples, and one using the Z = 0.017
stellar tracks and V-band eclipse depths to be compared to
the Hipparcos MW data. The four remaining binary properties
τ , i, P, and q are characterized by the distribution functions
below, some of which have one or more free parameters x. To
simulate a population of binaries, we use a random number
generator to select systems from these distribution functions.
We then conduct a set of Monte Carlo simulations, where each
simulation is characterized by a particular combination of model
parameters x.

Because the star formation rates of the Magellanic Clouds
(Indu & Subramaniam 2011) and local solar neighborhood in
the MW (de la Fuente Marcos & de la Fuente Marcos 2004) have
not dramatically changed over the most recent τMS ≈ 24 Myr,
we select 10 M� primaries from a uniform age distribution
across the interval τ = [0, τMS]. The close binary fraction Fclose
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is one of the free parameters x. For each binary, we assume
random orientations and select cos i from a uniform distribution
in the range cos i = [0, 1]. We select an orbital period from the
distribution:

UP(P ) d(log P ) = KP P γP d(log P ) (1)

across the interval log 2 � log P (days) � log 20. For a given
Monte Carlo simulation, we fix the period exponent γP, but con-
sider 21 different values in the range −1.5 � γP � 0.5 evaluated
at ΔγP = 0.1 intervals when synthesizing different populations
of binaries. Note that Öpik’s law gives γP = 0. The normaliza-
tion constant KP satisfies Fclose = ∫ log20

log2 UP(P ) d(log P).
Although the mass-ratio distribution is typically described

as a power law, there is evidence that close binaries harbor
an excess fraction of twins with mass ratios approaching
unity (Tokovinin 2000; Halbwachs et al. 2003; Lucy 2006;
Pinsonneault & Stanek 2006). We therefore implement a two-
parameter formalism:

Uq(q) dq = Kq

[
1 − Ftwin

15
eγq qγq + Ftwin q15

]
dq (2)

over the interval 0.1 � q � 1. We consider 36 values for the
mass-ratio exponent in the range −2.5 � γq � 1.0 evaluated at
Δγq = 0.1 intervals, and 16 values for the excess twin fraction
in the range 0 � Ftwin � 0.3 at ΔFtwin = 0.02 intervals. Again,
the normalization constant Kq satisfies Fclose = ∫ 1

0.1 Uq(q) dq.
The coefficients in the above equation approximate the relative
contribution of the two terms so that the integrated fraction of
close binaries in the peak toward unity is Ftwin while the total
fraction of close binaries in the low-q tail is 1 − Ftwin.

Once we have selected a binary with age τ , inclination i,
period P, and mass ratio q, we determine its eclipse depth by
interpolating our grid of models Δm(τ , i, P q). We simulate
106 binaries for each combination of parameters γP, γq, and
Ftwin, resulting in 21 × 36 × 16 = 12,096 sets of Monte Carlo
simulations. The fourth free parameter Fclose determines the
overall normalization, and we consider 71 different values in
the range 0.05 � Fclose � 0.4 evaluated at ΔFclose = 0.005
intervals.

For each combination of parameters x = {γP, γq, Ftwin,
Fclose}, we synthesize our model distributions MΔm(Δm, x),
Mdeep(P, x), and Mmed(P, x). For our primary results, we
have incorporated the detailed nightfall models where a
20% random subset have eclipse depths reduced by 20% in
order to account for third light contamination (Section 3.1.4).
For comparison, we also evaluate the eclipse depths using
the nightfall models without third light contamination, as
well as using the simple bolometric estimates that ignore tidal
distortions and limb darkening.

3.3. Fitting the Data

3.3.1. Mass-ratio Distribution Uq

We initially fit the observed eclipse depth distribution OΔm
only, which primarily constrains the mass-ratio distribution Uq
and the normalization to Fclose according to Equation (2). We
determine the best-fit model parameters x = {γP, γq, Ftwin,
Fclose} by minimizing the χ2

Δm(x) statistic between the observed
eclipse depth distributionOΔm(Δm) and our Monte Carlo models
MΔm(Δm, x):

χ2
Δm(x) =

NΔm∑
k

(
OΔm(Δmk) − MΔm(Δmk, x)

σOΔm (Δmk)

)2

. (3)

Figure 6. Observed primary eclipse depth distributions OΔm (solid) as displayed
in Figure 1 for Hipparcos MW (orange), OGLE-II LMC (blue), OGLE-III LMC
(green), and OGLE-II SMC (red) populations. We determine the best-fit Monte
Carlo models MΔm (dotted) by minimizing the χ2

Δm statistic across the Fdeep
interval for the OGLE-II LMC and SMC data and over the Fmed interval for the
MW and OGLE-III LMC populations, but we display the full histograms for
reference.

(A color version of this figure is available in the online journal.)

We sum over the bins of data displayed in Figure 6 that
are complete, specifically the NΔm = 8 bins across 0.25 <
Δm (mag) < 0.65 for the OGLE-II LMC and SMC populations,
the NΔm = 5 bins across 0.10 < Δm < 0.65 for the MW,
and the NΔm = 11 bins across 0.10 < Δm < 0.65 for the
OGLE-III LMC sample. In Figure 6, we display the best-fit
models MΔm(Δm) for each sample, together with the data.
Although we have excluded eclipsing binaries with Δm >
0.65 mag, which derive from nearly edge-on twin systems and
evolved binaries that have filled their Roche lobes, twins are
most likely to have grazing trajectories that produce eclipse
depths in our selected parameter space (see Section 3.1.1). For
the OGLE Magellanic Cloud samples that have large sample
statistics in the interval 0.40 mag < Δm < 0.65 mag, we therefore
have sufficient leverage to constrain the excess twin fraction.

The observed eclipse depth distributions can only constrain
Fclose, γq, and Ftwin, which effectively gives ν = NΔm − 3
degrees of freedom. We report in Table 2 the minimized reduced
χ2

Δm statistics, degrees of freedom ν, and probabilities to exceed
χ2

Δm. We calculate a grid of joint probabilities px(x) ∝ e−χ2
Δm(x)/2

and then marginalize over the various parameters to calculate
the probability density functions pxi

(xi) for each parameter xi.
In Table 2, we list the average values μxi

= ∫
xi pxi

(xi) dxi
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Figure 7. Probability contours at the 1σ (thick) and 2σ (thin) confidence levels of model parameter combinations constrained only by the observed eclipse depth
distributions OΔm for the Hipparcos MW (orange), OGLE-II LMC (blue), OGLE-III LMC (green), and OGLE-II SMC (red) populations. In the top panels, the
OGLE-III LMC data clearly demonstrate a distribution weighted toward lower mass secondaries compared to a uniform distribution with γq = 0, and the other
populations also favor negative values for the mass-ratio distribution exponent γq. For the three OGLE Magellanic Cloud samples, we find a small excess twin
population with q � 0.9 of only Ftwin ≈ (4–10)%. In the bottom panels, all four samples are consistent with a close binary fraction of Fclose ≈ 25% and a mass-ratio
distribution exponent of γq ≈ −1.0.

(A color version of this figure is available in the online journal.)

Table 2
Results of Our Monte Carlo Simulations and Fits to the

Observed Eclipse Depth Distributions OΔm Only

Sample χ2
Δm/ν ν PTE Ftwin γq Fclose

MW 0.43 2 0.65 0.16 ± 0.10 −0.9 ± 0.8 0.22 ± 0.06

OGLE-II LMC 0.48 5 0.79 0.10 ± 0.07 −0.6 ± 0.7 0.21 ± 0.08

OGLE-III LMC 0.71 8 0.68 0.04 ± 0.03 −1.0 ± 0.2 0.27 ± 0.05

OGLE-II SMC 0.42 5 0.83 0.08 ± 0.06 −0.9 ± 0.7 0.24 ± 0.08

Notes. For each of the eclipsing binary samples, we list the minimized reduced
χ2

Δm statistics, degrees of freedom ν = NΔm − 3, probabilities to exceed χ2
Δm

given ν, and the mean values and 1σ uncertainties of the three model parameters
constrained by OΔm.

and uncertainties σxi
= [

∫
(xi − μxi

)2 pxi
(xi) dxi]1/2 of the

three parameters constrained by OΔm for each of the eclipsing
binary samples. Some of the parameters are correlated and
have asymmetric probability density distributions, so we display
two-dimensional probability contours pxi,xj

(xi, xj ) for some
combinations of parameters in Figure 7.

The higher quality OGLE-III LMC population, with its
larger sample size and completeness down to Δm = 0.10, best
constrains the model parameters. We find a negligible excess
fraction of twins Ftwin = (4 ± 3)%, a mass-ratio distribution
weighted toward low-mass companions with γq = −1.0 ± 0.2,
and a close binary fraction of Fclose = (27 ± 5)% (before
corrections for Malmquist bias—see Section 3.4). Based on
our Monte Carlo simulations, a uniform mass-ratio distribution
would have produced SΔm d(Δm) ∝∼ (Δm)−1.0 d(Δm), not as steep
as the observed trend SΔm d(Δm) ∝ (Δm)−1.65±0.07 d(Δm).

The less complete and/or smaller MW, OGLE-II LMC, and
OGLE-II SMC samples do not permit precise determinations of
γq. Nonetheless, the fitted mean values for these three samples
span the range γq = −0.9 to −0.6, suggesting that these

binary populations also favor low-mass companions. For these
populations, our solutions for the model parameters Fclose and
γq are anti-correlated (see bottom panels of Figure 7). This
is because a larger fraction of low-mass secondaries below
the threshold of the survey sensitivity implies a higher Fclose
given the same Fdeep. All four samples are consistent with a
close binary fraction of Fclose ≈ 25%, slightly higher than our
initial estimate of (16–20)% in Section 3.1. The precise values
will decrease slightly once we correct for Malmquist bias (see
Section 3.4).

Even though γq is not well known for the OGLE-II data,
we can still constrain the excess twin fraction to be Ftwin ≈
(4–10)% for all three OGLE Magellanic Cloud samples (see
top panels of Figure 7). A dominant twin population would
have caused the eclipse depth distribution OΔm to flatten or even
rise toward the deepest eclipses Δm > 0.4. Instead, the observed
eclipse depth distributions for the three OGLE Magellanic Cloud
samples continue with the same power-law SΔm ∝ (Δm)−1.65.
Because there are very few eclipsing binaries with Δm > 0.4
in the MW data, we cannot adequately measure Ftwin for this
population, but see our well-constrained estimate of Ftwin ≈ 7%
based on spectroscopic observations of early-type stars in the
MW (Section 4).

We have reported fitted parameters based on the nightfall
models where a 20% random subset have eclipse depths reduced
by 20% to account for third light contamination (Section 3.1.4).
Because shallower eclipses systematically favor lower mass
companions, the fitted mass-ratio distributions would have been
shifted toward even lower values, albeit slightly, had we not
considered this effect. Specifically, we find that the excess twin
fraction would have decreased by ΔFtwin = 0.01–0.03 and the
mass-ratio distribution exponent would have decreased by Δγq =
0.0–0.2, depending on the sample. The close binary fraction
would have changed by a factor of (3–6)%, i.e., ΔFclose ≈
0.01, with no general trend on the direction. Hence, third light
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Figure 8. Probabilities that a companion with q > 0.1 exhibits deep Pdeep
(top) and medium Pmed (bottom) eclipses using our fitted solutions to the
overall mass-ratio distribution Uq for the MW (orange), OGLE-II LMC (blue),
OGLE-III LMC (green), and OGLE-II SMC (red). We also display Pdeep
and Pmed determined by incorporating the low-metallicity Z = 0.004 stellar
tracks and assuming a uniform mass-ratio distribution (black). The probabilities
Pmed based on the Söderhjelm & Dischler (2005) solar-metallicity results
(magenta) are consistent with our MW values. The probability of observing
eclipses decreases with increasing P due to geometrical selection effects
and also decreases with mass-ratio distributions that favor low-mass, smaller
companions.

(A color version of this figure is available in the online journal.)

contamination only mildly affects the inferred close binary
properties.

3.3.2. Probabilities of Observing Eclipses Pdeep(P ) and Pmed(P )

The probabilities Pdeep(P ) and Pmed(P ) are defined to be
the ratios of systems exhibiting deep (0.25 < Δm < 0.65)
and medium (0.10 < Δm < 0.65) eclipses, respectively, to the
total number of companions with q > 0.1 at the designated
period. These probabilities obviously decrease with increasing
orbital period P due to geometrical selection effects. In addition,
Pdeep(P ) and Pmed(P ) depend on the metallicity Z, which
determines the radial evolution of the stellar components,
and also on the underlying mass-ratio distribution Uq. Mass-
ratio distributions that favor lower mass, smaller companions
result in lower probabilities of observing eclipses because a
larger fraction of the systems have eclipse depths below the
sensitivity of the surveys. Because we have constrained Uq for
each of the four eclipsing binary populations, we have already
effectively determined these probabilities from our Monte
Carlo simulations. We use these more accurately constrained
probabilities when we account for Malmquist bias in Section 3.4,
as well as to visualize the corrected period distribution in
Section 3.5.

Using our solutions for Uq for each of the four eclipsing
binary samples, we display the resulting Pdeep(P ) and Pmed(P )
in Figure 8. We propagate the fitted errors in γq and Ftwin, as
well as their mutual correlation as displayed in the top panels of
Figure 7, to determine the uncertainties in the probabilities. For

comparison, we calculate Pmed(P ) and Pdeep(P ) assuming the
low-metallicity Z = 0.004 stellar tracks and a uniform mass-ratio
distribution Uq, i.e., γq = 0 and Ftwin = 0.

In the top panel of Figure 8, the probabilities Pdeep for the
OGLE Magellanic Cloud samples, which all have fitted values
of γq that are negative, are systematically lower than the prob-
abilities that assume a uniform mass-ratio distribution. Based
on our back-of-the-envelope estimates in Section 3.1.1 where
we assumed a uniform mass-ratio distribution, we determined
that the correction factor between Fdeep and Fclose due to incom-
pleteness toward low-mass companions alone was Cdeep,q ≈ 2.
The fact that the fitted mass-ratio distributions favor more low-
mass companions increases this correction factor to Cdeep,q ≈
3. Therefore, the overall probability of observing deep eclipses
at intermediate periods of log P = 0.8 is Pdeep = 0.03, slightly
lower than our estimated average in Section 3.1 of 〈Pdeep〉 =
0.04. Finally, note the intrinsically small probability of observ-
ing deep eclipses at long periods, e.g., only Pdeep ≈ 1% of all
binaries at P = 20 days are detectable as eclipsing systems with
0.25 < Δm < 0.65.

In the bottom panel of Figure 8, the variations in Pmed are
significantly smaller. This is because the probability of observ-
ing eclipses becomes less dependent on the underlying mass-
ratio distribution as the observations become more sensitive to
shallower eclipses. Essentially, the correction factor for incom-
pleteness toward low-mass companions alone is only Cmed,q =
1.5, slightly larger than our original estimate of Cmed,q = 1.3 in
Section 3.1.1, but still very close to unity. The MW correction
factor Cmed,i for geometrical selection effects is 20% smaller
than the OGLE-III LMC values, and therefore the overall prob-
abilities Pmed are 20% larger. This is consistent with our in-
terpretation of the radius–metallicity relation in Section 3.1.2.
Söderhjelm & Dischler (2005) calculated the probabilities of
observing solar-metallicity eclipsing binaries with Δm > 0.1 as
a function of spectral type and period. Because the fraction of
systems with Δm > 0.65 is negligible compared to the frac-
tion with 0.1 < Δm < 0.65, we can compare the Söderhjelm
& Dischler (2005) results to our Pmed(P). We interpolate the
probabilities in their Table A.1 for OB stars with 〈MV〉 = −3.04
and B stars with 〈MV〉 = −0.55 for our sample’s median value
of MV ≈ −2.3. The resulting Pmed, which we display in the
bottom panel of Figure 8, is consistent with our MW distribu-
tion. At log P = 0.8, the OGLE-III LMC value of Pmed = 0.06
is only slightly lower than the uniform mass-ratio distribution
value of Pmed = 0.08 and our initial estimate in Section 3.1.1
of 〈Pmed〉 = 0.09.

3.3.3. Intrinsic Period Distribution UP

We now fit the observed eclipsing binary period distributions
Odeep(P ) or Omed(P ) only, which constrain the intrinsic period
distributions UP and the normalizations to Fclose according to
Equation (1). We minimize the χ2

P (x) statistics between the
measured eclipsing binary period distributions Odeep(log P) and
our Monte Carlo models Mdeep(log P, x):

χ2
P (x) =

NP∑
k

(Odeep(log Pk) − Mdeep(log Pk, x)

σOdeep (log Pk)

)2

. (4)

We calculate similar statistics for the medium eclipse depth
samples. We sum over the logarithmic period bins of data
displayed in Figure 9, specifically the NP = 10 bins of Odeep(P )
for the OGLE-II LMC and SMC populations, the NP = 3 bins
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Table 3
Results of Our Monte Carlo Simulations and Fits to the Observed Eclipsing Binary Period Distributions Odeep(P ) or Omed(P ) Only

Sample Eclipse Depths χ2
P/ν ν PTE γP Fclose

MW Medium and Deep 0.50 1 0.48 −0.4 ± 0.3 0.22 ± 0.06

OGLE-II LMC Deep 1.10 8 0.36 −0.3 ± 0.2 0.22 ± 0.08

OGLE-III LMC Medium and Deep 0.89 8 0.53 −0.1 ± 0.2 0.24 ± 0.05

OGLE-II SMC Deep 1.02 8 0.42 −0.9 ± 0.2 0.21 ± 0.09

Notes. For each of the eclipsing binary samples, we list whether the deep eclipse Odeep(P ) or extension toward medium eclipse depth
Omed(P ) samples were used to fit the period distribution, minimized reduced χ2

P statistics, degrees of freedom ν = NP − 2, probabilities
to exceed χ2

P given ν, and the mean values and 1σ uncertainties of the two model parameters constrained by Odeep(P ) or Omed(P ).

Figure 9. Observed eclipsing binary period distributions (solid) for deep eclipses
Odeep(P ) (top two panels) and extension toward medium eclipse depthsOmed(P )
(bottom two panels) as displayed in Figure 2 for the Hipparcos MW (orange),
OGLE-II LMC (blue), OGLE-III LMC (green), and OGLE-II SMC (red)
populations. We determine the best-fit Monte Carlo models Mdeep(P ) and
Mmed(P ) (dotted) by minimizing the χ2

P statistic across the logarithmic period
bins of data.

(A color version of this figure is available in the online journal.)

of Omed(P ) for the MW, and the NP = 10 bins of Omed(P ) for
the OGLE-III LMC sample. The measured period distribution
constrains γP and Fclose, which effectively gives ν = NP − 2
degrees of freedom. As in Section 3.3.1, we report the χ2

P
statistics and fitted model parameters in Table 3 and display
the two-dimensional probability contour of Fclose versus γP in
Figure 10.

By making simple approximations in Section 2, we showed
that all four eclipsing binary samples were skewed toward
shorter periods relative to Öpik’s prediction of Sdeep(P ) d(log P)
∝ Smed(P ) d(log P) ∝ P −2/3 d(log P). We confirm this result
with our more robust light-curve modeling and Monte Carlo
simulations, where we find fitted mean values of γP that are neg-
ative for all four main samples. However, the OGLE-III LMC
value of γP = −0.1 ± 0.2 is still consistent with Öpik’s law
of γP = 0, while the OGLE-II SMC population is significantly
skewed toward shorter periods with γP = −0.9 ± 0.2. These
two values for γP are discrepant at the 2.4σ level. This is similar
to our K-S test in Section 2 between the OGLE-II SMC and
OGLE-III LMC unbinned Odeep(P ) data, which gave a proba-
bility of consistency of pKS = 0.01.

As discussed in Section 2, it is possible that long-period
systems P > 10 days with moderate eclipse depths Δm =
0.25–0.30 mag have remained undetected in the OGLE-II SMC
sample because their members are systematically 0.5 mag
fainter. If we only use the OGLE-II SMC data with P =
2–10 days and Δm = 0.30–0.65 mag to constrain our fit, then we
find γP = −0.7 ± 0.4, which is more consistent with the LMC
result. In any case, whether the slight discrepancy is intrinsic or
due to small systematics, the best-fitting period exponent for the
MW of γP ≈ −0.4 is between the LMC and SMC values. We
confirm this intermediate value based on spectroscopic radial
velocity observations of nearby early-type stars (see Section 4).
Although there is a strong indication that the SMC period
distribution is skewed toward shorter periods compared to the
LMC data, there is no clear trend with metallicity. Moreover,
the MW, SMC, and LMC samples are all mildly consistent,
i.e., less than 2σ discrepancy, with the intermediate value of
γP ≈ −0.4.

3.3.4. Close Binary Fraction Fclose

The close binary fractions Fclose are not well constrained
by fitting the observed eclipse depth and period distributions
separately. For example, the 1σ errors in the close binary
fractions from only fitting OΔm were δFclose ≈ 0.05–0.08,
depending on the sample (see Table 2), while the errors from
only fitting Odeep(P ) or Omed(P ) were δFclose ≈ 0.05–0.09
(Table 3). To measure Fclose most precisely, we now fit OΔm
and either Odeep(P ) or Omed(P ) simultaneously by minimizing
χ2 = χ2

Δm + χ2
P . For each sample, we sum over the same bins of

eclipse depths and orbital periods that are complete as reported
in Sections 3.3.1 and 3.3.3, respectively. This combined fit
gives ν = NΔm + NP − 4 degrees of freedom since all four
model parameters are constrained. In Table 4, we report the
fitting statistics as well as the means and 1σ uncertainties for
Fclose only because this combined method does not alter our
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Figure 10. Probability contours at the 1σ (thick) and 2σ (thin) confidence levels of Fclose vs. γP constrained only by the observed eclipsing binary period distributions
Odeep(P ) or Omed(P ) for the Hipparcos MW (orange), OGLE-II LMC (blue), OGLE-III LMC (green), and OGLE-II SMC (red) populations. Although the OGLE-II
SMC population favors a distribution that is skewed toward shorter periods while the OGLE-III LMC population is consistent with Öpik’s law of γP = 0, all four
samples are mildly consistent with Fclose ≈ 20% and γP ≈ −0.4.

(A color version of this figure is available in the online journal.)

Table 4
Results of Our Fits to the Observed Eclipse Depth Distributions OΔm and

Observed Eclipsing Binary Period Distributions Odeep(P ) or Omed(P )

Sample Eclipse Depths χ2/ν ν PTE Fclose

MW Medium and Deep 0.44 4 0.76 0.22 ± 0.04

OGLE-II LMC Deep 0.89 14 0.58 0.21 ± 0.06

OGLE-III LMC Medium and Deep 1.02 17 0.39 0.28 ± 0.02

OGLE-II SMC Deep 0.81 14 0.68 0.23 ± 0.06

Notes. For each sample, we list whether the deep or extension toward medium
eclipse depth samples were used to simultaneously fit the eclipse depth and
period distributions. We also report the minimized reduced χ2 = χ2

Δm + χ2
P

statistics, degrees of freedom ν = NΔm + NP − 4, probabilities to exceed χ2

given ν, and the mean values and 1σ uncertainties of the close binary fractions
Fclose before correcting for Malmquist bias and propagating systematic errors.

previous estimates of γq, Ftwin, and γP. The χ2/ν values are
all close to unity, and the probabilities to exceed are in the 1σ
range 0.16–0.84, demonstrating that our models are sufficient
in explaining the data.

In order to fit OΔm and either Odeep(P ) or Omed(P ) simul-
taneously, we have assumed that Δm and P are independent
so that p ∝ e−χ2

Δm/2 × e−χ2
P /2 = e−(χ2

Δm+χ2
P )/2 = e−χ2/2. For all

four samples of eclipsing binaries, the Spearman rank correla-
tion coefficients between Δm and P are rather small at |ρ| <
0.15 across the eclipse depth intervals that are complete. These
small coefficients justify our procedure for fitting the eclipsing
binary period and eclipse depth distributions together in order
to better constrain Fclose. Moreover, the probability of observ-
ing medium eclipses Pmed(P) determined in Section 3.3.2 only
marginally depends on the underlying mass-ratio distribution
Uq. Therefore, any trend between mass ratios and orbital peri-
ods will not affect the fitted close binary fractions beyond the
quantified errors.

If we had used simple prescriptions for eclipse depths instead
of the detailed nightfall light-curve models, our fitted values
for Fclose would have been a factor of (10–20)% different, i.e.,
ΔFclose ≈ 0.02–0.04 depending on the sample with no general
trend on the direction. This would have been a dominant source
of error, especially for the OGLE-III LMC data, so it was
imperative that we implemented the more precise nightfall
simulations. Before we comment further on our measurements
of Fclose in the different environments, we must first correct for
Malmquist bias.

3.4. Malmquist Bias

3.4.1. Milky Way

Unresolved binaries, including eclipsing systems, are sys-
tematically brighter than their single star counterparts. For a
magnitude-limited sample within our MW, more luminous bi-
naries are probed over a larger volume than their single star
counterparts, which causes the binary fraction to be artificially
enhanced. This classical Malmquist bias is sometimes referred
to as the Öpik (1923) or Branch (1976) effect in the context of
binary stars.

Of the Nmed = 31 eclipsing binaries in our medium eclipse
depth MW sample with 〈HP〉 < 9.3, only four systems are fainter
than 〈HP〉 > 8.8 (Lefèvre et al. 2009). One of these systems,
V2126 Cyg, has a moderate magnitude of 〈HP〉 = 9.0 and
shallow eclipse depth of ΔHP = 0.13. This small eclipse depth
indicates a faint, low-mass companion, although the less likely
scenario of a grazing eclipse with a more massive secondary
is also feasible. The remaining three systems, IT Lib, LN Mus,
and TU Mon, all have fainter system magnitudes 〈HP〉 > 9.1
and deeper eclipses ΔHP > 0.18, suggesting that their primaries
alone do not fall within our magnitude limit of 〈HP〉 < 9.3. If we
remove this excess number ofNex = 3–4 eclipsing binaries from
both our eclipsing binary sample Nmed and the total number of
systems NB, then the eclipsing binary fraction with medium
eclipse depths Fmed = Nmed/NB would decrease by a factor
of ≈11%, i.e., ΔFmed ≈ −0.002.

However, we must also remove from the denominator NB
other binaries with luminous secondaries that have primaries
that fall below our magnitude limit. These include close binaries
that remain undetected because they have orientations that do
not produce observable eclipses. Based on the correction factor
Cmed,i = 9 ± 2 for geometrical selection effects alone for the MW
sample (see Section 3.3.2), we expect a total of Nmed × Cmed,i ≈
30 binaries with P = 2–20 days that should be removed
from NB.

Additional systems that contaminate NB consist of binaries
with luminous secondaries outside of our period range of P =
2–20 days. To estimate their contribution toward Malmquist
bias, we calculate the ratio RP between the frequency of
massive secondaries across all orbital periods and the frequency
of massive secondaries with P = 2–20 days. Spectroscopic
observations of O- and B-type stars in the MW reveal 0.16–0.31
companions with q > 0.1 per decade of orbital period at log
P ≈ 0.8 (Garmany et al. 1980; Levato et al. 1987; Abt et al.
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1990; Sana et al. 2012; see also Section 4). At longer orbital
periods of log P ≈ 6.5, photometric observations of visually
resolved binaries give a lower value of ≈0.10–0.16 companions
with q � 0.1 per decade of orbital period (Duchêne et al.
2001; Shatsky & Tokovinin 2002; Turner et al. 2008; Mason
et al. 2009). Using these two points to anchor the slope of
the period distribution, we integrate from log P = 0.1 to the
widest, stable orbits of log P ≈ 8.5. We find that there are 6.4 ±
1.3 as many total companions as there are binaries with P =
2–20 days. However, longer period binaries with P > 20 days
may have a mass-ratio distribution that differs from our sample
at shorter orbital periods. For example, Abt et al. (1990) and
Duchêne et al. (2001) suggest random pairings of the initial
mass function for wide binaries so that γq ≈ −2.3, while the
distribution of Preibisch et al. (1999) indicates a more moderate
value of γq ≈ −1.5. Shatsky & Tokovinin (2002) give γq ≈
−0.5 for visually resolved binaries, which is consistent with the
values inferred from our close eclipsing binary samples of γq ≈
−1.0–−0.6. Assuming γq = −1.5 ± 0.5 for binaries outside
our period range, there are 2.3 ± 1.1 times fewer binaries with
q > 0.6 relative to the mass-ratio distribution constrained for
our close eclipsing binaries. Since we are primarily concerned
with massive secondaries that contribute toward Malmquist bias,
RP ≈ (6.4 ± 1.3)/(2.3 ± 1.1) = 2.8 ± 1.4.

The eclipsing binary fraction for the MW sample after
correcting for classical Malmquist bias is then

Fmed = Nmed − Nex

NB − NexCmed,iRP
= (1.83 ± 0.38)%, (5)

where we propagated the uncertainties in Cmed,i and RP and
the Poisson errors in Nmed and Nex. Note that removing
non-eclipsing binaries with luminous secondaries that remain
undetected mitigates the effects of Malmquist bias. Specifically,
we find the reduction factor to be CMalm = 0.94 ± 0.05 instead
of the factor of CMalm = 0.89 determined above when we only
removed Nex eclipsing systems. Although these two competing
effects in the numerator and denominator of the above relation
have been discussed in the literature (e.g., Bouy et al. 2003),
the removal of binaries with luminous secondaries that remain
undetected is typically neglected. The inferred close binary
fraction for the MW will also decrease by a factor of CMalm =
0.94, so that the corrected value is only slightly lower at Fclose =
21% (see Section 3.5).

3.4.2. Magellanic Clouds

In the case of the Magellanic Clouds at fixed, known dis-
tances, classical Malmquist bias does not apply. Nonetheless,
our absolute magnitude interval of M I = [−3.8, −1.3] contains
binaries with primaries that are lower in intrinsic luminosity and
stellar mass relative to single stars in the same magnitude range.
Some binaries in our sample have primaries that are fainter
than our magnitude limit of MI = −1.3, while some systems
have primaries in the range we want to consider but are pushed
beyond MI = −3.8 because of the excess light added by the sec-
ondary. Since the number of primaries dramatically increases
with decreasing stellar mass and luminosity, the net effect is
that the binary fractions are biased toward larger values. Hence,
our statistics are affected by Malmquist bias of the second kind
because two classes of objects, e.g., binaries and single stars,
are surveyed to a certain depth down their respective luminosity
functions (Teerikorpi 1997; Butkevich et al. 2005).

For example, Mazeh et al. (2006) used OGLE-II data of the
LMC to identify 938 eclipsing binaries on the MS with apparent

Figure 11. Top panel: the observed fractional decrease δFI in the total number of
MS systems as a function of incremental I-band magnitude ΔMI for the OGLE-II
LMC (blue), OGLE-III LMC (green), and OGLE-II SMC (red) samples. Bottom
panel: based on our best-fit Monte Carlo simulations, the modeled I-band excess
probability distributions pI (ΔMI) d(ΔMI) of binaries exhibiting deep (solid) and
medium (dashed) eclipses due to increased luminosity from the companion. In
order to correct for Malmquist bias of the second kind, we determine the average
fraction 〈δFI〉 of eclipsing binaries that should be removed from our samples
according to 〈δFI〉 = ∫

δFI(ΔMI) pI(ΔMI) d(ΔMI).

(A color version of this figure is available in the online journal.)

magnitudes 17 < I < 19 and periods 2 < P (days) < 10. Instead
of normalizing these eclipsing binaries to the total number of
≈330,000 MS systems with 17 < I < 19, they assumed that the
average eclipsing binary was 〈ΔMI〉 = 0.5 mag brighter than
the primary component alone, and therefore normalized to the
≈700,000 MS systems with 17.5 < I < 19.5. Their correction
for Malmquist bias of the second kind lowered the inferred close
binary fraction by a factor of 2.1, i.e., CMalm = 0.48.

Instead of adding systems below our lower magnitude limit as
done by Mazeh et al. (2006), we remove binaries with luminous
secondaries within our magnitude interval M I = [−3.8, −1.3] as
described above for the MW. To determine the average fraction
〈δFI〉 of eclipsing binaries that should be removed from our
Magellanic Cloud samples, we use the OGLE photometric
catalogs (Udalski et al. 1998, 2000, 2008) to compute the
observed fractional decrease δFI in the total number of MS
systems as a function of incremental I-band magnitude ΔMI.
Quantitatively,

δFI(ΔMI) = 1 − N (M I − ΔMI)

N (M I)
, (6)

where N (M I) = NB is our original total number of MS systems
and N (M I −ΔMI) is the number of systems with colors V − I <
0.1 in the interval MI = [−3.8, −1.3 − ΔMI]. We display δFI
in the top panel of Figure 11 for the three OGLE Magellanic
Cloud samples. We only show the fractional decreases δFI
across the interval 0 < ΔMI < 0.75 because binary companions
can only contribute a luminosity excess in this range. The three
distributions of δFI are similar among the three populations due
to the consistency of the stellar mass function in the different
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environments. The total number of systems is approximately
halved, i.e., δFI = 0.5, at ΔMI ≈ 0.5, consistent with the result
of Mazeh et al. (2006).

Instead of assuming an average value for the magnitude
difference 〈ΔMI〉 = 0.5 mag between a single star and eclipsing
binary with the same primary, we use the OGLE eclipsing
binary data and our Monte Carlo simulations to model an
I-band excess probability distribution pI (ΔMI) d(ΔMI). Using
the best-fit models for each of the three OGLE samples,
we synthesize distributions of secondary masses that produce
observable eclipses, i.e., systems with eclipse depths 0.25 <
Δm < 0.65 for our deep samples and 0.1 < Δm < 0.65 for
our extension toward medium eclipse depths (OGLE-III LMC
only). We then use the stellar tracks of Bertelli et al. (2009), as
well as color indices and bolometric corrections of Cox (2000),
to convert the distribution of secondary masses that produce
observable eclipses into a distribution of secondary absolute
magnitudes in the I band. We can then easily determine the
system luminosity, the luminosity of the primary alone, and
the I-band excess ΔMI between the two for each eclipsing binary.
In the bottom panel of Figure 11, we display our results for the
I-band excess probability distribution pI (ΔMI) d(ΔMI), which
is normalized so that the distribution integrates to unity.

The I-band excess probability distributions pI for the three
OGLE samples exhibiting deep eclipses are all quite similar.
This is because they have similar eclipse depth distributions
OΔm and therefore similar mass-ratio distributions Uq. Very few
low-mass, low-luminosity secondaries with ΔMI < 0.1 mag are
capable of producing deep eclipses with 0.25 < Δm < 0.65.
However, many of these faint secondaries are included in the
OGLE-III LMC medium eclipse depth sample. The median
I-band excess is only 〈ΔMI〉 = 0.35 and 〈ΔMI〉 = 0.20 mag
for the deep and medium samples, respectively, which are lower
than the value of 〈ΔMI〉 = 0.5 used by Mazeh et al. (2006).
Note that these values of 〈ΔM〉 = 0.2–0.5 mag are the reason we
excluded the Nex = 3–4 eclipsing binaries in the MW sample
(Section 3.4.1) that were within 0.2–0.5 mag of our magnitude
limit of 〈HP〉 = 9.3.

We can now compute the average fraction 〈δFI〉 of eclipsing
binaries that should be removed from our samples by weighting
δFI with the I-band excess probability distribution, i.e., 〈δFI〉 =∫

δFI(ΔMI) pI(ΔMI) d(ΔMI). We find 〈δFI〉 = 0.38 ± 0.11 and
〈δFI〉 = 0.35 ± 0.10 for the OGLE-II LMC and SMC deep
eclipse samples, respectively, and 〈δFI〉 = 0.23 ± 0.08 for the
OGLE-III LMC medium eclipse sample. These values are lower
than the estimate of 〈δFI〉 = 0.52 by Mazeh et al. (2006) because
the modeled I-band excess probability distributions are weighted
more toward fainter companions.

Instead of only removing this average fraction 〈δFI〉 of
eclipsing binaries, i.e., assuming CMalm = 1 − 〈δFI〉, we must
also account for the other binaries with luminous secondaries
outside our parameter space of eclipse depths and orbital
periods. Using a similar format as in Equation (5), we derive

CMalm = 1 − 〈δFI〉
1 − Fmed〈δFI〉Cmed,iRP

, (7)

whereFmed = 1.87% is the uncorrected eclipsing binary fraction
in Table 1, Cmed,i = 11 ± 2 is the correction factor for geometri-
cal selection effects alone (see Section 3.3.2) for the OGLE-III
LMC medium sample, and RP = 2.8 ± 1.4 has the same def-
inition as in Section 3.4.1. We calculate similar values for the
OGLE-II LMC and SMC deep eclipse samples, where Fdeep =
0.70% and Cdeep,i = 14 ± 3. We find the overall correction factors

Table 5
Final Corrected Close Binary Fractions

MW OGLE-II LMC OGLE-III LMC OGLE-II SMC

Fclose (21 ± 5)% (16 ± 6)% (25 ± 4)% (17 ± 6)%

Note. For the four different eclipsing binary samples, we list the corrected
fractions of early-B stars with companions q > 0.1 at orbital periods P =
2–20 days after accounting for geometrical selection effects, incompleteness
toward low-mass companions, Malmquist bias, and systematic errors.

for Malmquist bias of the second kind to be CMalm = 0.73 ± 0.16,
0.91 ± 0.12, and 0.76 ± 0.15 for the OGLE-II LMC,
OGLE-III LMC, and OGLE-II SMC samples, respectively.
Because the OGLE-III LMC survey was sensitive to shallow
eclipses that systematically favored low-luminosity companions
with 〈ΔMI〉 ≈ 0.2 mag, the correction for Malmquist bias for
this population is nearly negligible.

3.5. Corrected Results

We have implemented detailed nightfall light-curve mod-
els (Section 3.1) and computed thousands of Monte Carlo sim-
ulations (Section 3.2) in order to correct for geometrical selec-
tion effects and incompleteness toward low-mass companions.
By fitting the observed eclipsing binary distributions using var-
ious methods, we have derived the underlying intrinsic binary
properties for the MW, LMC, and SMC (Section 3.3). Because
our eclipsing binary samples are magnitude limited and there-
fore subject to Malmquist bias, we have determined accurate
reduction factors (Section 3.4) by incorporating the observed
stellar luminosity functions, modeling the I-band excess proba-
bility distributions, and accounting for other binaries outside our
parameter space of eclipsing systems. We have also quantified
many sources of systematic errors in our analysis, including the
single-mass primary approximation (factor of 8% uncertainty
for the MW and 10% for the Magellanic Cloud samples, i.e.,
δFclose ≈ 0.02), the contribution of the few giants and evolved
primaries filling their Roche lobes (factor of 3%), the conversion
of Roche-lobe-filling factors (factor of 7%), effects of eccentric
orbits (factor of 2%), third light contamination due to triple sys-
tems and stellar blending (factor of 6%), and the uncertainties
in the Malmquist bias reduction factors (factors of 5%–16%,
depending on the sample). Assuming Gaussian uncertainties,
we add these systematic errors in quadrature and propagate the
total factor of (14–21)% systematic uncertainty, i.e., δFclose ≈
0.03–0.04 depending on the sample, into our evaluations of the
close binary fraction.

Based on our χ2 fits, correction for Malmquist bias, and prop-
agation of systematic errors, our finalized results for Fclose are
0.21 ± 0.05, 0.16 ± 0.06, 0.25 ± 0.04, and 0.17 ± 0.06 for the
MW, OGLE-II LMC, OGLE-III LMC, and OGLE-II SMC pop-
ulations, respectively. We list these corrected values in Table 5.
All of the close binary fractions Fclose are consistent with each
other at the 1.2σ level. The fact that all four environments have
Fclose = (16–25)% demonstrates that the close binary fraction
does not substantially vary across metallicities log(Z/Z�) ≈
−0.7–0.0.

Instead of inferring the intrinsic period distributions UP from
our fitted model parameters γP and Fclose, we can also visualize
the distributions based on the observed eclipsing binary period
distributions (see Section 2) and our modeled probabilities of
observing eclipses (see Section 3.3.2). For the OGLE-II LMC
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Table 6
Milky Way Comparison of Our Fitted Binary Properties for Early-type Stars Based on Spectroscopic

Radial Velocity Observations to Our Analysis of Hipparcos MW Eclipsing Binaries

Spec. Type Method Ftwin γq γP Fclose Sample Reference

Late B 0.16 ± 0.06
Spectroscopic 0.06 ± 0.03 −1.2 ± 0.4 −0.3 ± 0.4 Levato et al. (1987)

Early B 0.22 ± 0.07

Early B Eclipsing 0.16 ± 0.10 −0.9 ± 0.8 −0.4 ± 0.3 0.21 ± 0.05 Lefèvre et al. (2009)

Early B Spectroscopic 0.06 ± 0.05 −0.9 ± 0.4 0.2 ± 0.5 0.23 ± 0.06 Abt et al. (1990)

O Spectroscopic 0.08 ± 0.06 −0.2 ± 0.5 −0.5 ± 0.3 0.31 ± 0.07 Sana et al. (2012)

Notes. The close binary fraction, i.e., the fraction of systems that have a companion with orbital period P = 2–20 days and mass ratio
q > 0.1, nearly doubles between late B and O spectral type primaries. Other parameters are fairly consistent with a negligible excess
twin fraction Ftwin ≈ 7%, a mass-ratio distribution weighted toward low-mass companions with γq ≈ −0.9, and a period distribution
with γP ≈ −0.3 that is slightly skewed toward shorter periods relative to Öpik’s law.

Figure 12. Corrected intrinsic period distribution UP, i.e., the frequency of
companions with q > 0.1 per full decade of period, for the MW (orange),
OGLE-II LMC (blue), OGLE-III LMC (green), and OGLE-II SMC (red)
populations. All the distributions favor a period distribution that decreases
slightly with increasing period, even after correcting for geometrical selection
effects. The small range in the integrated fractions Fclose = ∫

UP d(log P) =
(16–25)% attests to the uniformity of the early B close binary fraction.

(A color version of this figure is available in the online journal.)

and SMC samples, we useUP(P ) d(log P) = [Odeep(P ) d(log P)/
Pdeep(P )] × CMalm, where CMalm ≈ 0.75 is the slight correction
factor for Malmquist bias (Section 3.4). Similarly, we use
UP(P ) d(log P) = [Omed(P ) d(log P)/Pmed(P )] × CMalm, where
CMalm = 0.91 for the OGLE-III LMC population and CMalm =
0.94 for the MW. We present the results in Figure 12, where we
have propagated in quadrature the errors from each of the three
terms in the relations for UP(P ).

At short periods P = 2–4 days, the populations have UP ≈
0.2–0.3 companions with q > 0.1 per full decade of period. At
longer periods P = 10–20 days, the values are slightly lower at
UP ≈ 0.1–0.2. Even after correcting for geometrical selection
effects and incompleteness toward low-mass companions, the
general trend is that UP decreases with increasing P across the
interval 0.3 < log P < 1.3. This is consistent with our χ2

P
fits that favored negative γP, i.e., distributions skewed toward
shorter periods compared to Öpik’s law of γP = 0. The integrated
fractions cover a narrow range Fclose = ∫

UP d(log P) =
0.16–0.25, again demonstrating that the close binary fraction
does not change with metallicity.

4. COMPARISON TO SPECTROSCOPIC
BINARIES IN THE MW

We have utilized the Lefèvre et al. (2009) catalog of eclips-
ing binaries based on Hipparcos data to constrain the close
binary properties of early B primaries in the MW (summa-
rized in Table 6). We now wish to compare these properties
to spectroscopic observations of early-type stars in the MW.
This will demonstrate consistency between the eclipsing and
spectroscopic methods of inferring the close binary parameters.
As with eclipsing systems, observations of spectroscopic bina-
ries are biased toward systems with edge-on orientations and
massive secondaries. For each of the following spectroscopic
samples, we must consider their sensitivity and completeness
toward low-mass companions so that we can accurately com-
pare Fclose.

In the spectroscopic survey of 78 B-type stars in the
Sco-Cen association, Levato et al. (1987) found 15 systems
with P = 2–20 days. Their sample was complete to velocity
semi-amplitudes of K � 15 km s−1. Assuming a typical primary
mass of M1 ≈ 5 M� for a mid B-type star, a representative incli-
nation of i ≈ 50o, and their mean orbital period of P ≈ 6 days,
the corresponding sensitivity is coincidentally q ≈ 0.10. Since
we do not need to correct for incompleteness down to q = 0.1,
the close binary fraction is Fclose = 15/78 = (19 ± 5)%. If we
divide the sample into late-type (�B5) and early-type (�B4)
groups, then the close binary fractions would be Fclose = (16 ±
6)% and (22 ± 7)%, respectively.

Using these N = 15 systems in the Levato et al. (1987) cata-
log, we fit the orbital period distribution UP based on the theoret-
ical parameterization in Equation (1). To constrain γP, we max-
imize the likelihood function L(γP) = ∏N

k=1 UP(Pk|γP) d(log P),
where we ensure that UP integrates to unity in this instance. We
repeat this procedure N times with delete-one jackknife resam-
plings of the data to quantify the error. We find γP = −0.3 ±
0.4, i.e., a distribution slightly skewed toward shorter periods
but still consistent with Öpik’s law.

We also use these 15 systems to estimate a statistical mass-
ratio distribution Uq. For the three double-lined spectroscopic
binaries with well-defined orbits, we determine q simply from
the ratio of the observed velocity semi-amplitudes. For the
remaining 12 systems, primarily single-lined spectroscopic
binaries, we determine the primary mass M1 from the spectral
type, assume a random inclination in the interval i = 10o–80o for
each system k, and then utilize the listed mass function f (M) to
estimate a statistical mass ratio qk. Using our parameterization
in Equation (2), we then maximize the likelihood function
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L(γq, Ftwin) = ∏N
k=1 Uq(qk|γq,Ftwin) dq, where we only include

systems with statistical mass ratios in the interval qk = 0.1–1.0.
To quantify the error, we repeat this processN times with delete-
one jackknife resamplings of the data, where we evaluate each
of the systems without a dynamical mass ratio at a different
random inclination. We find a mass-ratio distribution weighted
toward low-mass companions with γq = −1.2 ± 0.4 and a small
excess twin fraction of Ftwin = 0.06 ± 0.03. We report these
results in Table 6.

In the magnitude-limited sample of early B stars, Abt et al.
(1990) corrected for classical Malmquist bias and found 16 out
of 109 systems to be spectroscopic binaries with P = 2–20 days.
They were only sensitive down to velocity semi-amplitudes of
K � 20 km s−1, but reported incompleteness factors down to
M2 ≈ 0.7 M� of I ≈ 1.4 for P = 0.36–3.6 days and I ≈ 1.8
for P = 3.6–36 days. Given their nominal primary mass of
M1 ≈ 8 M�, we adopt an intermediate incompleteness factor of
I = 1.6 to correct down to q ≈ 0.1 for our systems of interest
with P = 2–20 days. This results in a close binary fraction of
Fclose = 16 × 1.6/109 = (23 ± 6)%, consistent with the early B
subsample result we derived from the Levato et al. (1987) data.

We determine the period distribution UP and mass-ratio
distribution Uq for the Abt et al. (1990) survey using two
methods. First, we fit the 16 observed systems using the same
procedure utilized above for the Levato et al. (1987) sample. We
find γP = 0.1 ± 0.4, γq = −0.8 ± 0.3, and Ftwin = 0.07 ± 0.04.
Second, we use the values in Table 6 of Abt et al. (1990), which
have been corrected for incompleteness. They estimate there to
be ≈5.7 systems with P = 1.7–3.6 days, i.e., ≈17.5 systems per
decade of period at log P ≈ 0.4, and ≈34.4 systems with P =
3.6–36 days, i.e., 34.4 systems per decade of period at log P ≈
1.1. These two data points imply a slope of γP = 0.3. We then
utilize their four bins of secondary masses for the 40.1 systems
with P < 36 days. Minimizing the χ2 statistic between the four
bins of data and our two-parameter formalism Uq, we find γq ≈
−1.0 and Ftwin = 0.05. We adopt the average of the two methods
so that γP = 0.2 ± 0.5, γq = −0.9 ± 0.4, and Ftwin = 0.06 ±
0.05 (see Table 6).

Based on spectroscopic observations of 71 O-type stars in
various open clusters, Sana et al. (2012) found 21 systems with
orbital periods P = 2–20 days. After they corrected down to
q = 0.1, they estimated there to be only ≈1 additional system
that escaped their detection in this period range. This results in
a close binary fraction of Fclose = (31 ± 7)%, which is slightly
higher than the B-type results.

We fit the period and mass-ratio distributions for these 21
systems using the same method as for the Levato et al. (1987)
sample. We find γP = −0.5 ± 0.3, which is consistent with
their result of UP ∝ (log P)−0.55 ± 0.22 d(log P) for all their
spectroscopic binaries (note slightly different parameterization).
We also find γq =−0.2 ± 0.5 andFtwin = 0.08 ± 0.06, consistent
with their fit of γq = κ = −0.1 ± 0.6 to all the systems
in their sample. This result for the mass-ratio distribution is
fairly robust because 18 of the 21 systems were double-lined
spectroscopic binaries with dynamical mass ratios. However,
the formal error bar on the derived γq is quite large, so that the
fit is still consistent with the lower values of γq measured for
the previous populations.

We compare the close binary parameters for the three spec-
troscopic samples and the Hipparcos eclipsing binary sample
in Table 6. The only clear trend is an increasing close binary
fraction with primary mass so thatFclose nearly doubles between
late B- and O-type stars. Assigning 〈M1〉 = 4 M�, 10 M�, and

25 M� to late B, early B, and O spectral types, respectively, the
Pearson correlation coefficient of log M1 versus log Fclose for
the five data points in Table 6 is r = 0.99. This highly significant
correlation implies that M1 and Fclose are related via a simple
power law, which we find to be Fclose = 0.22(M1/10 M�)0.4.
All of the populations are consistent with a small twin fraction
Ftwin ≈ 7%, a mass-ratio distribution that favors low-mass com-
panions with γq ≈ −0.9, and a period distribution with γP ≈
−0.3 that is skewed toward shorter periods compared to Öpik’s
law. The fact that all the derived binary properties derived from
the eclipsing and spectroscopic binary samples are in agreement
is testament to the robustness of our eclipsing binary models and
the validity of Fclose reported for the different environments in
Section 3.

5. DISCUSSION

5.1. Summary

We have analyzed four different samples of eclipsing binaries
with early B primaries: one in the MW with 〈log(Z/Z�)〉 = 0.0,
two in the LMC with 〈log(Z/Z�)〉 = −0.4, and one in the SMC
with 〈log(Z/Z�)〉 = −0.7. The fractions of early B stars that
exhibit deep eclipses 0.25 < Δm (mag) < 0.65 with orbital
periods 2 < P (days) < 20 span a narrow range of Fdeep =
(0.7–1.0)% among all four populations (Table 1). The OGLE-
II LMC and SMC observations become incomplete toward
shallower eclipses, while the OGLE-III LMC and Hipparcos
MW observations are complete to Δm = 0.1. For the latter two
surveys, Fmed = 1.9% of early B stars exhibit eclipses 0.1 <
Δm < 0.65 with P = 2–20 days (Table 1). The consistency
of these results is model independent, demonstrating that the
eclipsing binary fractions do not vary with metallicity.

All four samples have similar eclipse depth distributions OΔm
across the intervals over which their respective surveys are com-
plete (Figure 1). Based on the larger and more complete OGLE-
III LMC sample, we find a simple power-law fit SΔm d(Δm) ∝
(Δm)−1.65 ± 0.07 d(Δm), which is significantly steeper than the
distribution SΔm d(Δm) ∝ (Δm)−1.0 d(Δm) we would expect if
the companions were selected from a uniform mass-ratio distri-
bution. All four samples also have observed period distributions
Odeep(P ) or Omed(P ) that are slightly skewed toward shorter
periods relative to Öpik’s prediction of Sdeep(P ) d(log P) ∝
Smed(P ) d(log P) ∝ P −2/3 d(log P) (Figure 2). The OGLE-II
SMC distribution is especially weighted toward shorter peri-
ods, but this sample may be slightly incomplete for modest
eclipse depths Δm = 0.25–0.30 mag and longer orbital periods
P = 10–20 days. It would be worthwhile to examine this fea-
ture once an OGLE-III SMC eclipsing binary catalog becomes
available.

In order to correct for geometrical selection effects and in-
completeness toward low-mass companions, we employed de-
tailed nightfall light-curve models and performed thousands
of Monte Carlo simulations for various binary populations.
By minimizing the χ2 statistics between the observed distri-
butions O and our models M, we were able to constrain the
underlying properties U of the close binaries in each of our
samples. In our models, we considered a multitude of system-
atic effects including tidal distortions, mutual irradiation, limb
darkening, stellar evolution and Roche lobe filling, third light
contamination due to stellar blending and triple star systems,
eccentric orbits, uncertainties in dust extinction, and Malmquist
bias.
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The four fitted model parameters γq, Ftwin, γP, and Fclose
for all four eclipsing binary samples are fairly consistent with
each other. The mean mass-ratio exponents span γq = −1.0
to −0.6 for the four samples (Table 2 and Figure 7), suggest-
ing that the mass-ratio distribution Uq ∝∼ qγq dq is weighted
toward lower mass companions relative to a uniform distribu-
tion with γq = 0. An excess of twins with q > 0.9 constitute
a small fraction Ftwin = (4–16)% of all companions with q >
0.1 (Table 2 and Figure 7). The period distributions are slightly
skewed toward shorter periods relative to Öpik’s law, giving
γP = −0.9 to −0.1 in the relation UP ∝ P γP d(log P) (Table 3
and Figures 10 and 12). Finally, the close binary fractions with
q > 0.1 and P = 2–20 days span a narrow range of Fclose =
(16–25)% (Table 5 and Figure 12). None of these parameters
exhibited a trend with metallicity, signifying that the close bi-
nary properties do not vary with metallicity across the interval
−0.7 < log(Z/Z�) < 0.0.

We emphasize that these model parameters are only valid for
q > 0.1 and P = 2–20 days and should not be extrapolated toward
lower mass companions or longer orbital periods. Moreover,
these quantities represent the mean values in our parameter
space because we have assumed that the mass-ratio distribution
Uq is independent of the orbital period P. The large OGLE-III
LMC medium eclipse depth sample exhibits a statistically
significant trend between P and Δm, and we will investigate
this feature in more detail in a future study. Nevertheless,
all four samples of eclipsing binaries exhibited weak or no
correlations between P and Δm with Spearman rank coefficients
|ρ| < 0.15. In addition, the probabilities of observing medium
eclipses Pmed(P) are relatively independent of the underlying
mass-ratio distribution Uq (see Section 3.3.2). The close binary
fraction Fclose for the OGLE-III LMC population will therefore
not vary beyond the cited errors, even when we consider a
period-dependent mass-ratio distribution.

5.2. Comparison with Previous Studies

In Section 4, we examined three samples of spectroscopic
binaries in the MW with early-type primaries (Levato et al.
1987; Abt et al. 1990; Sana et al. 2012). These observations
demonstrated that the close binary fraction increased by nearly
a factor of two between late B-type primaries with Fclose ≈ 16%
and O-type primaries withFclose ≈ 31%. The three samples were
consistent with a negligible excess twin fraction Ftwin ≈ 7%, a
mass-ratio distribution weighted toward low-mass companions
with γq ≈ −0.9, and a period distribution with γP ≈ −0.3 that
is slightly skewed toward shorter periods relative to Öpik’s law.
The only outlier beyond the 1σ level was the overall mass-ratio
distribution of the Sana et al. (2012) sample, which we fitted to
have γq =−0.2 ± 0.5. More recently, however, Sana et al. (2013)
found a lower value and tighter constraint of γq = κ = −1.0 ±
0.4 based on spectroscopic observations of O-type stars in 30
Doradus, which is even more consistent with our mean value.
The fact that the close binary fractions and properties inferred
from spectroscopic binaries match the parameters derived from
our eclipsing binary samples is testament to the robustness of
our models.

There may indeed be a narrow peak of twins in the mass-
ratio distribution so that Uq(q ≈ 1) is several times the value
of Uq(q ≈ 0.8). However, this twin contribution represents
a small fraction of the total population of secondaries in the
entire interval 0.1 < q < 1. Based on a sample of 21 detached
eclipsing binaries in the SMC with massive primaries, P <
5 days, and well-determined spectroscopic orbits, Pinsonneault

& Stanek (2006) estimated a modest excess twin fraction of
Ftwin = 20%–25%. However, they assumed that their underlying
uniform mass-ratio distribution could be extrapolated below
their detection limit of q ≈ 0.55, so they expected relatively
few systems below their survey sensitivity. If instead the low-q
tail was replaced with our fitted mean value of γq = −1.0 to
−0.6, depending on the sample, then the twin fraction would
be reduced to Ftwin = (5–10)%, which is consistent with our
results. Because we find the overall mass-ratio distribution to
be weighted toward lower masses with γq ≈ −0.9, the relative
contribution of twin systems with q � 0.9 is small compared to
all secondaries across the interval 0.1 < q < 1.

Mazeh et al. (2006) used OGLE-II LMC eclipsing binary data
to derive a close binary fraction of 0.7%. Our value of Fclose =
(16 ± 6)% for this population is a factor of ≈20 higher for
four reasons. First, Mazeh et al. (2006) only included systems
with orbital periods P = 2–10 days, while we extended our
sample to include orbital periods up to P = 20 days. Assuming
Öpik’s law, we would expect our close binary fraction to be 40%
higher, a minor contribution to the overall discrepancy. Second,
our samples contained early B primaries with −3.8 < MI <
−1.3, while Mazeh et al. (2006) considered late B stars with
−1.8 < MI < 0.2. The close binary fraction rapidly increases
with primary mass (see Section 4), so that Fclose for early B
stars is ≈1.5 times the late B value. Third, although Mazeh et al.
(2006) accounted for geometrical selection effects, they did not
correct for incompleteness toward small, low-mass secondaries.
The increase in the eclipsing binary fraction from Fdeep = 0.7%
to Fmed = 1.9% already suggests that the increased sensitivity
of the OGLE-III survey could find three times more eclipsing
systems. In Section 3.3.2, we showed that correcting for mass-
ratio incompleteness alone increased the inferred close binary
fraction by a factor of Cdeep,q ≈ 3. Finally, our reduction in
Fclose due to Malmquist bias of the second kind by a factor of
CMalm = 0.73 is not as severe as the factor of CMalm = 0.48
implemented by Mazeh et al. (2006). This is partially because
the average luminosity of the eclipsing companions was fainter
than the 〈ΔMI〉= 0.5 mag I-band excess assumed by Mazeh et al.
(2006), but also because we accounted for other binaries with
luminous secondaries outside our eclipsing binary parameter
space of eclipse depths and orbital periods.

5.3. Conclusions

Weighting our four samples of eclipsing binaries and the three
samples of spectroscopic binaries, we find the best overall model
parameters to beFtwin = 0.07 ± 0.05, γq = −0.9 ± 0.3, and γP =
−0.3 ± 0.3. The close binary fraction increases with primary
mass according to Fclose = (0.22 ± 0.05)(M1/10 M�)0.4. None
of these properties exhibited statistically significant trends
with metallicity across the interval −0.7 < log(Z/Z�) < 0.0,
demonstrating that the close binary properties of massive stars
are fairly independent of metallicity. Any observed variations in
the rates or properties of massive star or binary evolution within
this metallicity range must derive from metallicity-dependent
stellar physical processes, and not the initial conditions of the
MS binaries themselves.
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eclipsing binaries and statistics.
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Öpik, E. 1924, PTarO, 25, 1
Peimbert, A., & Peimbert, M. 2010, ApJ, 724, 791
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49
Piatti, A. E., & Geisler, D. 2013, AJ, 145, 17
Pinsonneault, M. H., & Stanek, K. Z. 2006, ApJL, 639, L67
Pourbaix, D., Tokovinin, A. A., Batten, A. H., et al. 2004, A&A, 424, 727
Preibisch, T., Balega, Y., Hofmann, K.-H., Weigelt, G., & Zinnecker, H.

1999, NewA, 4, 531
Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJS, 190, 1
Rolleston, W. R. J., Trundle, C., & Dufton, P. L. 2002, A&A, 396, 53
Romaniello, M., Primas, F., Mottini, M., et al. 2005, A&A, 429, L37
Sana, H., de Koter, A., de Mink, S. E., et al. 2013, A&A, 550, A107
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Sci, 337, 444
Schneider, R., Ferrari, V., Matarrese, S., & Portegies Zwart, S. F. 2001, MNRAS,

324, 797
Shatsky, N., & Tokovinin, A. 2002, A&A, 382, 92
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