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ABSTRACT

Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and
Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole
self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the
formulation presented in this article. The first source of error is due to the numerical approximation that effectively
places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in
a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing
gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the
expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a
high—and expensive—value of multipole cutoff lmax. By introducing a global measure of angular power in the
gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean
location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework,
to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse
supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-
neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity,
and the accuracy of their computation is greatly improved by our reformulated solver.
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1. INTRODUCTION

Gravity is a key phenomenon in many astrophysical contexts,
and, in particular, plays an essential role in the explosions of
core-collapse supernovae (CCSNe). Accurate computation of
self-gravity is therefore an important objective for astrophysical
simulation codes. For self-gravitating Newtonian systems this
requires solving Poisson’s equation. Poisson’s equation is an
elliptic partial differential equation, which couples every part of
the domain at each time step. The optimal solver strategy for an
astrophysical Poisson problem in which gravity is coupled to a
hydrodynamic flow depends on the typical mass configuration
in the domain. Multigrid algorithms (e.g., Huang & Greengard
2000; Trottenberg et al. 2001; Ricker 2008) are popular for
cosmological structure-formation and star formation simula-
tions with Newtonian gravity (e.g., Yang et al. 2009; ZuHone
et al. 2010; Latif et al. 2011; Federrath & Klessen 2012), since
these algorithms work well with mass configurations spread out
over a computational domain. In problems where a single, large
condensation of mass arises, however, a multipole expansion
using spherical harmonics is more appropriate. Solving Pois-
son’s equation using spherical harmonic expansions is a com-
mon approach for computing the self-gravity of nearly-spherical
mass distributions. Multipole approximations have been used in
a number of astrophysical applications including N-body cal-
culations (see Sellwood 1987) and grid-based hydrodynamics
(Müller & Steinmetz 1995). The unstable collapse of the core
of a massive star that precedes a CCSN is particularly sensitive
to a highly dynamic gravitational potential. Many approaches
have been adopted for treating self-gravity in CCSN simula-
tions ranging from full general relativity (e.g., O’Connor &
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Ott 2010; Ott et al. 2007, 2013; Müller et al. 2010) to simplified
one-dimensional (1D) “monopole” approximations (e.g., Hanke
et al. 2012; Dolence et al. 2013; Couch 2013a).

The Newtonian potential of a spherically symmetric self-
gravitating mass is trivial, of course, and is represented by the
monopole term of the expansion. However, as departures from
spherical symmetry accumulate, the mass distribution must be
represented by an expansion of spherical harmonics beyond
l = 0, the accuracy of which depends on the degree of non-
sphericity of the mass distribution and the number of terms used
in the expansion (Müller & Steinmetz 1995). Such multipole
approaches for self-gravity have been used in a number of
multidimensional CCSN simulations (e.g., Livne et al. 2004;
Buras et al. 2006; Bruenn et al. 2013). Multipole approaches
are suited for CCSNe because the gravitational potential is
dominated by the monopole contribution, but the higher-order
contributions due to significant non-spherical motions in the
post-shock region can be important. Additionally, in non-
spherical geometries wherein the central proto-neutron star is
allowed to move, the physical kick imparted on the star by the
requirement of momentum conservation—a model-constraining
observable—is critically dependent on an accurate, momentum-
conserving self-gravity computation (Wongwathanarat et al.
2010, 2012).

In this article, we investigate the multipole expansion ap-
proach to solving Poisson’s equation numerically for the self-
gravity of an approximately spherical mass distribution. We
identify, and correct, two heretofore neglected sources of sig-
nificant errors that arise in implementations of multipole self-
gravity for non-spherical coordinates:

1. The numerical approximation that effectively places grid
cell mass at the central point of a computational cell, then
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computes the gravitational potential at that point, resulting
in a convergence failure of the multipole expansion, so that
larger choices of multipole cutoff value lmax actually make
the potential computation less accurate.

2. Sub-optimal choice of location for the expansion center,
which results in angular power at high multipole l values in
the gravitational field, requiring a high—and expensive—
value of lmax.

We show here that source 1 of error can be eliminated
by a collocation scheme that effectively staggers point mass
placement and potential computation; and source 2 of error
can be minimized by a careful, unique choice of expansion
center, which we derive. We demonstrate that CCSN simulations
are particularly sensitive to these details of the multipole
approximation for gravity and show that our improvements
result in dramatic improvements in important metrics such as
momentum conservation and convergence with number of terms
in the multipole expansion.

This paper is organized as follows. In Section 2.1 we briefly
present the discretized multipole equations and exhibit the
intrinsic error that can afflict solutions to these equations due
to the singularity in the Green’s function of Poisson’s equation.
We show that this error is eliminated by computing gravitational
potentials on cell faces rather than at cell centers. In Section 2.2
we derive the optimal location for centering the expansion
for general mass distributions, based on the minimization of
an angular “spectral compactness” measure that characterizes
the extent in l-space of the spherical-harmonic spectrum. In
Section 3 we describe our implementation of fast, efficient
multipole gravity solver in the FLASH simulation framework.
We test our new solver, which includes the improvements we
discuss, on static potentials in Section 4 and exhibit the effects
of the errors described above, as well as the result of their
correction. In Section 5 we test our new implementation with
highly dynamical CCSN simulations in two dimensions and
show that the results are highly sensitive to the centering of the
multipole expansion and to the relative collocation of the mass
and potential evaluation points. We discuss our conclusions in
Section 6.

2. DISCRETIZED MULTIPOLE EXPANSIONS

2.1. The Self-potential Error

The gravitational potential of an isolated distribution of mass
with density ρ(x) is given by the well-known Green’s function
of the Poisson equation

Φ(x) = −G

∫
d3x′ ρ(x′)

|x − x′| . (1)

Direct numerical implementation of this formula in a simulation
is inefficient, often necessitating approximate approaches. For
mass distributions that can be described as spherical to lowest-
order, multipole expansions of Equation (1) can be used to
efficiently compute solutions. The multipole expansion version
of the potential is given by the equally well-known formula

Φ(x) = −G

∞∑
l=0

l∑
m=−l

4π

2l + 1

×
∫

d3x′ ρ(x′) Ylm(n)Ylm(n′)∗gl(r, r
′), (2)

where r ≡ |x|, n ≡ x/|x|, and

gl(r, r
′) ≡ Θ(r − r ′)

r ′l

r l+1
+ Θ(r ′ − r)

rl

r ′l+1
. (3)

Here, Θ(x) is the usual Heaviside function.
In Eulerian hydrodynamic codes, a standard discretization

strategy for this expansion (Müller & Steinmetz 1995) begins
with a subdivision of the domain into NR spherical shells
bounded by radii Rt, t = 1, . . . , NR , chosen to suit the problem
(and not necessarily uniformly spaced). A cell centered at the
position xq is ascribed a radius rq that is the mean radius of the
spherical shell containing xq , where q is an index running over
mesh cells. The discretized potential is then computed as

Φ(xq) = − G

lmax∑
l=0

l∑
m=−l

4π

2l + 1
Ylm(nq)

∑
q ′

Δ3
q ′ρ(xq ′ )Ylm(n′

q ′)∗

×
{

Θ̃qq ′
rl
q ′

rl+1
q

+ Θ̃q ′q
rl
q

rl+1
q ′

+ δ̃qq ′
1

rq

}
, (4)

where lmax is some chosen cutoff value for the expansion, Δ3
q ′ is

the volume of the cell centered at xq ′ , and where

Θ̃qq ′ ≡
{

1 rq > rq ′

0 rq � rq ′
; δ̃qq ′ ≡

{
1 rq = rq ′

0 rq �= rq ′
.

If one were directly implementing the potential using the
expression of Equation (1), discretization in the presence of the
singular Green’s function |x−x′|−1 might give rise to misgivings
having to do with the delicate handling of gravitational self-
interaction within a mesh cell. This issue of self-gravity appears
superficially to magically cure itself in the passage to the discrete
multipole expansion of Equation (4), wherein no short-distance
singularities are explicitly visible. This miracle cure is illusory,
unfortunately: the singularity still lurks in the expression, and
manifests itself in the failure of the self-interaction terms in the
expression to converge as lmax → ∞.

To see this, consider the self-interacting term q ′ = q in
Equation (4):

ΦSelf(xq) ≡ −GΔ3
qρ(xq)

rq

lmax∑
l=0

4π

2l + 1

l∑
m=−l

Ylm(nq)Ylm(nq)∗.

(5)

The addition theorem of spherical harmonics states that

l∑
m=−l

Ylm(n1)Ylm(n2)∗ = 2l + 1

4π
Pl(n1 · n2), (6)

where Pl(x) is a Legendre polynomial. We therefore have that

ΦSelf(xq) ≡ −GΔ3
qρ(xq)

rq

lmax∑
l=0

Pl(1)

= −GΔ3
qρ(xq)

rq

lmax∑
l=0

1

= −GΔ3
qρ(xq)

rq

× (lmax + 1). (7)
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It follows that the discrete expression for ΦSelf(xq) is not
convergent with multipole order, and that the accuracy of
the discrete scheme described above cannot be improved by
increasing lmax. We note that Sellwood (1987) remarked upon
related difficulties in the context of N-body simulations, but did
not give the explicit form of this self-potential error nor expound
on its origins in the discrete multipole expansion. In numerical
simulations, this pathology manifests itself as a dramatic failure
in accuracy of the potential calculation, which gets worse with
increasing lmax. We also note that due to the factor rq in
the denominator of Equation (7) this error is worst near the
origin of the multipole expansion. This error is also larger for
computational zones containing large masses, Δ3

qρ(xq). Both of
this conditions are met in the extreme for CCSN simulations
containing a proto-neutron star near the center of the domain.

A more deft handling of self-interaction is required if the
scheme is to be rescued. We may begin by observing that the
physical origin of the difficulty is that the scheme in effect
treats all masses as points at the cell centers, then computes
potentials at those same cell centers. If the points of potential
computation were offset from the cell centers, the problem
would go away. This is akin to the idea of a gravitational
softening length. Mathematically, in the limit lmax → ∞, the
self-gravity expression calculated at an offset point xoff near xq

is

ΦSelf(xoff) = −GΔ3
qρ(xq)

rq

∞∑
l=0

Pl(noff · nq)

= −GΔ3
qρ(xq)

rq

[2(1 − noff · nq)]−1/2, (8)

where we have used the generating function of the Legendre
polynomials, (1 − 2xt + t2)−1/2 = ∑∞

l=0 t lPl(x) (Arfken &
Weber 2005) with t = 1. This expression is obviously finite, so
the expansion converges. Of course, we need the potential at cell
centers to compute gravitational forces—momentum and energy
fluxes—at cell faces. So we modify the basic scheme above by
computing potentials at all cell faces, and ascribing to each cell
center the average of the potentials on the faces bounding the
cell. This should be a very accurate operation as the gravitational
potential is generally a smooth function in space. As shown
below, this scheme works well: it converges with multipole
order, and provides excellent momentum conservation.

It is important to note that the self-potential error described
above is a product of the discrete evaluation of Equation (2).
In spherical coordinates, it is possible to compute Equation (2)
analytically, assuming constant density within the zone (Müller
& Steinmetz 1995). Such an approach is not subject to the self-
potential error (A. Wongwathanarat 2013, private communica-
tion). Analytic evaluation of Equation (2) in general coordinate
systems is more difficult, particularly in non-spherical curvilin-
ear systems. Thus, in order to retain uniformity amongst differ-
ent coordinate systems while avoiding the self-potential error,
we choose to evaluate the potentials discretely at cell faces, as
discussed above.

2.2. Optimal Centering of a Multipole Expansion

The issue of where a multipole expansion should be centered
has received surprisingly little analytic attention, given its im-
portance to accurate computation of the gravitational potential.
A possible reason for this is that in many cases, a spherical coor-
dinate system is adopted, obviating the ambiguity in the choice

of expansion center. For other coordinate geometries, such as
cylindrical and Cartesian, the optimal location of the expansion
origin is not so obvious, and a careless choice can be costly to
the accuracy of the gravity solve.

There exist intuitive arguments for different choices of
expansion center. The center of the grid is the obvious choice
in spherical coordinate meshes. The center of mass (CoM)
is indicated, perhaps a little indirectly, on the basis of the
importance that it plays as a diagnostic of linear momentum
conservation, since motion of the CoM directly indicates a
failure of momentum conservation. The CoM is also a good
choice as centering the expansion there eliminates the l =
1 dipole term (e.g., Müller & Steinmetz 1995). McGlynn (1984)
working in an N-body context, advocates an expansion center
location a minimizing the sum

∑
n |xn−a|2k , with the parameter

k chosen empirically to balance the relative weighting of inner
and outer particles. McGlynn (1984) also points out that the
truncated multipole expansion is not translationally invariant, a
point that has significant consequence for the conservation of
linear momentum in calculations relying on multipole gravity
solvers. This feature of multipole expansions underscores the
criticality of optimally centering the expansion so as to best
maintain momentum conservation.

Sellwood (1987) stresses that the origin of the multipole
expansion should be placed at the location of peak density,
because failure to do so can result in errors in the gravitational
force, and in energy non-conservation. The intuitive reason that
the peak density makes sense as the expansion origin is that
condensations at large radii subtend small angles at the origin,
and, if massive, can show up as power in higher-l regions of the
angular momentum spectrum than would be the case were they
placed near the center. It is important that the angular power
spectrum of the potential be concentrated to as low values of
l as is practicable, because discrete multipole Poisson solvers
truncate the expansion in spherical harmonics at some lmax. This
cutoff should be as low as possible, for the sake of computational
efficiency (the computational cost of the Poisson solve grows as
O(lmax

2) in three dimensions), but higher than any substantial
power in the spectrum.

In this section we give more rigorous arguments than have
been offered to date for the choice of expansion center. We use
angular spectral “compactness,” as described informally above,
as the criterion for making the choice. We show that the choice
advocated by Sellwood (1987) is, for all intents and purposes,
very close to optimal when there is a significant fraction of total
mass in a condensed object.

2.2.1. Spectral Compactness Minimization

As adumbrated above, we need a way to characterize the
global angular spectral distribution in the gravitational field,
so as to have some way to discuss how well the spectrum is
concentrated to low values of l.

The multipole expansion of the potential Φ(x), given in
Equations (2) and (3), is not ideal for this purpose, since its
spectral content varies in space. We may, however, average Φ(x)
spatially, weighted by the density ρ(x), to obtain the binding
energy,

E = − 1

2

∫
d3x Φ(x)ρ(x)

=
∞∑
l=0

El , (9)
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where

El ≡ G

2

4π

2l + 1

l∑
m=−l

∫
d3x d3x′ ρ(x)ρ(x′)

× Ylm(n)Ylm(n′)∗gl(r, r
′), (10)

and gl(r, r ′) is the function given in Equation (3).
We propose to use fl ≡ El/E as a global angular spectral

density in what follows. In order for this to make sense, it
is of course necessary to establish that El � 0 for all l. We
demonstrate that this is the case in Appendix A.

How can we measure the concentration to low l of the
distribution fl? A reasonable approach is to use a moment
measure, such as the mean 〈l〉 ≡ ∑

l lfl , and examine its
behavior as a function of expansion center location a. It is clear
that as a moves very far away from the region where most of the
mass resides, the mass distribution acquires very small angular
scales, and the moment measure must increase without bound.
The moment measure is also obviously bounded below by 0. We
require that the choice of the expansion center location a should
result in a value of that moment that is as small as possible.

From the point of view of practical computation, it turns out
that the most convenient moment for this purpose is

μ(a) ≡ 〈l(l + 1)〉(a)

=
∞∑
l=0

l(l + 1)fl(a). (11)

In order to find the ideal expansion origin, we seek to minimize
this “spectral compactness parameter” with respect to expansion
origin, a. In Appendix B we show that the location that
minimizes μ(a) is approximately

a ≈
∫

d3x xρ(x)2∫
d3x ρ(x)2

≡ 〈x〉ρ2 . (12)

It is clear that this “square-density-weighted mean location
(SDML)” is more biased toward large condensations of mass
than the ordinary CoM. It is instructive to consider a simple
example to illustrate the behavior of 〈x〉ρ2 . We imagine a cubic
box of side L, centered at a location xD and containing a uniform
diffuse density ρD corresponding to a diffuse mass MD =
L3ρD . The box also contains a sphere of condensed mass of
radius r � L and uniform density ρC (and hence of mass
MC = 4πr3/3ρC) centered at a location xC . It is straightforward
to show that with this mass configuration, the square-density-
weighted CoM is

〈x〉ρ2 = MC (ρC + 2ρD) xC + MDρDxD

MC (ρC + 2ρD) + MDρD

. (13)

If, for example, we assume the situation that prevails in CCSN
simulations—that is, MC ∼ MD , ρC � ρD , then this expression
becomes

〈x〉ρ2 = xC +
ρD

ρC

MD

MC

(xD − xC) + O
([

ρD

ρC

]2
)

. (14)

We can see that when the density contrast between ρD and ρc is
of many orders of magnitude, the square-density-weighted CoM

basically takes up residence at the center of the condensation.
This is the reason that the peak-density prescription for the
expansion center is so effective. By contrast, the usual CoM
location is the mass-weighted average of xD and xC , which can
be well-separated from xC if MD ∼ MC . Any such separation
can obviously lead to troublesome angular power at high values
of l.

3. IMPLEMENTATION OF MULTIPOLE
POISSON SOLVER IN FLASH

We use the FLASH hydrodynamic simulation framework
(Dubey et al. 2009) to exhibit the effects of the self-potential
correction and the expansion centering schemes described
above. In this section, we outline the implementation of the
multipole gravity solver in FLASH. A more complete technical
description of the algorithm is supplied in the FLASH User’s
Guide.2

The discretized potential computation expressed in Equation
(4) may be separated into two distinct computations: the
computation of an array of moments, and the computation of the
potential itself using the moments. For notational convenience,
we introduce the solid harmonic functions

Rlm(x) =
√

4π

2l + 1
rlYlm(n) (15)

Ilm(x) =
√

4π

2l + 1

Ylm(n)

rl+1
. (16)

We will define multipole moments using a grid of concentric
spheres of increasing radii rμ, μ = 1, 2, . . .. These radii
are chosen at runtime depending on the nature of the mass
distribution, and are not necessarily uniformly spaced. The
spacing between radii is always more than one grid cell width, so
that the shells between successive spheres encompass multiple
spherical layers of cells. Given this grid, we may define the
“inner” and “outer” multipole moment functions

MR
lm(rμ) =

∑
|xq′ |�rμ

Rlm(xq ′ )m(q ′) (17)

MI
lm(rμ) =

∑
|xq′ |>rμ

Ilm(xq ′ )m(q ′), (18)

where m(q ′) = Δ3
q ′ρ(xq ′ ) is the mass of the cell indexed by q ′.

We further define μ+(r) as the index μ of the smallest of the
rμ exceeding r, and μ−(r) as the index μ of the largest of the
rμ not exceeding r, so that μ+(r) − μ−(r) = 1. We may then
linearly interpolate the multipole moments:

M̃
R,I
lm (r) ≡ r − rμ−(r)

rμ+(r) − rμ−(r)
M

R,I
lm (rμ+(r))

+
r − rμ+(r)

rμ−(r) − rμ+(r)
M

R,I
lm (rμ−(r)) (19)

2 http://flash.uchicago.edu/site/flashcode/user_support/
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Using the interpolated moments, we write the discretized
potential as

Φ(xq) =

− GRe

[∑
lm

M̃R
lm(|xq |))I ∗

lm(xq) +
∑
lm

M̃I∗
lm(|xq |))Rlm(xq)

]
.

(20)

The potential evaluation strategy is to first compute the
multipole moments from Equations (17) and (18) using the
chosen grid of concentric spheres of radii rμ; then, at the second
stage, use this array of moments to compute the potential using
Equation (20).

The FLASH implementation of this strategy relies on explic-
itly real (sine and cosine) versions of these formulae, which are
described in the FLASH User’s Guide. The real solid harmonic
functions that arise are computed by recurrence relations that
follow from the Legendre function recurrence relations (Arfken
& Weber 2005). The radial arguments of the solid harmonic
functions are carefully scaled before the recursion relations are
applied, to prevent over- and underflows in large, highly resolved
domains.

The implementation allows for different choices of spacing
functions for the sphere radii in different radial zones, so that,
for example, the spacing could be linear in an inner zone and
logarithmic in an outer zone. The range of possible choices is
described in the FLASH User’s Guide.

As discussed in Section 2.1, the potential evaluation described
by Equation (20) is always carried out at cell faces. The cell-
centered potential is then computed by averaging the potential
of the faces bounding a cell. Again, for multipole gravity
algorithms based in spherical coordinates that compute the
cell-centered potentials analytically (Müller & Steinmetz 1995),
rather than discretely, the self-potential error mitigated by our
staggered computation approach should not be an issue.

The center of the multipole expansion is chosen by the
FLASH solver to be the cell corner nearest the square-density-
weighted mean position, Equation (12). This choice minimizes
the spectral compactness, as described in Section 2.2.1, and also
prevents any problematic potential evaluations at zero radius.

4. STATIC POTENTIAL TEST: MACLAURIN SPHEROIDS

The analytic form of the gravitational potential of a stable,
rotationally symmetric, hydrostatic, uniform-density spheroid
is due to MacLaurin (see Chandrasekhar 1987, p. 77). Such
“MacLaurin” spheroids are useful for the validation of self-
gravity solvers as they provide an exact analytic solution against
which to compare the approximate calculated potentials. Here
we consider the accuracy of the multipole gravity solver for
static MacLaurin spheroids. We compare the accuracy of the
method using cell-centered potential solves to that of using face-
centered solves.

The exact gravitational potential for a point within a MacLau-
rin spheroid of density ρ is

Φ(x) = πGρ
[
2A1a

2
1 − A1(x2 + y2) + A3

(
a2

3 − z2
)]

, (21)

where a1, a2, and a3 are the semi-major axes of the spheroid and
a1 = a2 > a3. Here

A1 =
√

1 − e2

e3
sin−1 e − 1 − e2

e2
, (22)

0 50 100 150 200 250 300 350 400
lmax

4.5

5.0

5.5

6.0

6.5

L
2
−

no
rm

[×
10

−
7
]

Face − centered
Cell − centered

Figure 1. L2-norm error for the 2D MacLaurin spheroid problem with e = 0.9.
The blue line and boxes are for potential solvers at cell centers, the red line
and boxes are for face-centered potential solves. The expected approximate
linear growth in the error due to the potential self-energy [cf. Equation (7)].
This growth in the error is absent for face-centered potential calculations and
the error continues to decrease with lmax. Note also that the magnitude of the
L2-norm error is smaller for the face-centered calculation at every lmax.

(A color version of this figure is available in the online journal.)

A3 = 2

e2
− 2

√
1 − e2

e3
sin−1 e , (23)

where e is the ellipticity of a spheroid:

e =
√

1 −
(

a3

a1

)2

. (24)

For a point outside the spheroid, potential is

Φ(x) = 2a3

e2
πGρ

[
a1e tan−1 h − 1

2

(
(x2 + y2)

×
(

tan−1 h − h

1 + h2

)
+ 2z2(h − tan−1 h)

)]
, (25)

where
h = a1e√

a2
3 + λ

, (26)

and λ is the positive root of the equation

x2

a2
1 + λ

+
y2

a2
2 + λ

+
z2

a2
3 + λ

= 1. (27)

For the present tests we consider a spheroid of uniform density
ρ = 1 g cm−3 embedded in a background of vanishing density,
ρ ≈ 0. We use an eccentricity 0.9 in 2D cylindrical geometry
and compare the L2-norm error of the cell-centered potential
calculation with that of the face-centered potential calculation.
Figure 1 shows the results. These tests span a very large range in
lmax, from 0 to 384. We find that at every value of lmax the face-
centered calculation yields a smaller L2-norm error, i.e., it is
more accurate. And at high values of lmax, beyond about 24, the
cell-centered calculation error increases with higher lmax. The
character of this increase is very nearly linear, just as we would
expect based on Equation (7). The face-centered calculation, on
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Figure 2. Comparison of normalized errors in the gravitational potential for a MacLaurin spheroid of eccentricity e = 0.9. The left panel compares the error for
face-center potential evaluation (left) to cell-centered evaluation (right) for lmax= 24. In the right panel we show the same comparison but for lmax= 256. Using
face-centered potential calculations results in reduction in both the peak error and the L2-norm error. Using cell-centered calculation results in an error near the center
of the multipole expansion that grows with lmax, just as we would predict based on Equation (7).

(A color version of this figure is available in the online journal.)

the other hand, results in an error that continues to decrease with
lmax, i.e., the accuracy of the calculation converges with lmax.

Further evidence that the self-potential error isolated and
exhibited in Equation (7) is real and present in the cell-centered
potential calculation is given by inspection of the normalized
error in the potential. In Figure 2 we show pseudocolor plots of
the normalized error in the potential for a MacLaurin spheroid
with e = 0.9 for two different values of lmax, and compare
cell-centered and face-centered potential calculations. The self-
potential error of Equation (7) predicts that the largest errors
occur near the center of the multipole expansion. In the case of
the 2D cylindrical spheroid of Figure 2 this is R = 0, z = 0.5.
We see that this is precisely the case. For the cell-centered
calculation there is a large normalized error at the center of
the spheroid that is absent in the face-centered calculation.
Additionally we see that the magnitude of this error increases
for larger lmax in the cell-centered case.

5. DYNAMIC POTENTIALS: CORE-COLLAPSE
SUPERNOVAE

Static potentials for which analytic solutions are known
are useful in verifying the accuracy of the self-gravity solver
but we also seek to test if our novel handling for the errors
present in multipole approximations have a positive impact
on dynamical simulations that hinge critically on self-gravity.
For this we turn to CCSN simulations. Having established in
Section 4 that face-centered potential calculations avoid the
self-potential error, resulting in greater accuracy of the potential
and convergence with increasing lmax, we focus only on the
face-centered potential calculation approach for the CCSN
simulations. We test the impact of different multipole expansion
centering on the CCSN problem by running simulations with
different values of lmax for three different expansion centers: the
CoM, fixed at the coordinate origin, and the SDML.

In our finite-volume Eulerian approach, gravity is coupled to
the hydrodynamic calculation via source terms on the right-hand
sides of the momenta and energy equations. In FLASH, these
source terms are included in the Riemann solver as corrections
to the intermediate cell face states that are used in calculating
time-centered face fluxes of conserved quantities. We have
modified the coupling of gravity and hydro in FLASH in the
following way. Previous versions of FLASH extrapolated the
gravitational acceleration to the time step midpoint (n + 1/2)
using the current (n) and previous (n−1) time step accelerations.
This approach is formally only first-order accurate in time.
We have adopted instead the second-order accurate approach
of interpolating the acceleration to the time step midpoint
by first updating the density field via the continuity equation,
then reevaluating the gravitational potential, then finishing the
finite-volume update of momenta and energy with time-centered
gravitational accelerations interpolated to n + 1/2 using the n
and n + 1 state accelerations. This is the approach used in, e.g.,
CASTRO (Almgren et al. 2010). Since this approach still utilizes
source terms, the scheme is not expected to conserve momenta
and energy perfectly. Such conservation can be achieved by
using the method of, e.g., Jiang et al. (2013).

For these simulations we use the approach of Couch (2013a,
2013b). We follow the evolution from the collapse phase through
core bounce and into shock revival by neutrino heating. We
assume simple local neutrino heating/cooling as introduced
by Murphy & Burrows (2008) with an exponential cutoff of
the neutrino source terms at high density. Deleptonization is
accounted for using the density-dependent parameterization
of Liebendörfer (2005), both pre- and post-bounce. The only
modification we make to the method of Couch (2013a, 2013b)
is to weight the density-dependent neutrino source term cutoff so
that we achieve a critical luminosity for explosion closer to that
of Murphy & Burrows (2008), as was also done in Hanke et al.
(2012). All of our simulations are carried out in 2D cylindrical
geometry with a maximum resolution of 0.5 km and we use the
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Figure 3. Various simulation diagnostics for the CCSN simulations as functions of post-bounce time for the three multipole expansion centering approaches we
test. The columns represent multipole expansion centering on the SDML (left), CoM (middle), and coordinate origin (right). The rows show, from top to bottom,
z-momentum, CoM z coordinate, 〈x〉ρ2 z coordinate, and the average shock radii.

(A color version of this figure is available in the online journal.)

15 M� progenitor of Woosley & Weaver (1995). We use a fixed
neutrino luminosity of 2.2 × 1052 erg s−1.

In Figure 3 we graphically present the results of the CCSN
simulations for several values of lmax and multiple expan-
sion origins. We show as function of post-bounce time the
z-coordinate of both the 〈x〉ρ2 and the CoM along with the total
z-momentum and average shock radius. For these 2D axisym-
metric calculations initialized from spherically symmetric initial
conditions the CoM should remain fixed at the coordinate ori-
gin, which is simply a restatement of the conservation of total
z-momentum. We find that for lmax> 0 centering the multi-
pole expansion on the SDML results in dramatically improved
conservation of z-momentum. For other choices of expansion
center the z-momentum non-conservation can be in excess of
400 M� km s−1. This spurious momentum is about the same
as what is observed for typical neutron stars! The magnitude of
the momentum non-conservation is indiscernible for the case
of centering on 〈x〉ρ2 , though conservation is not perfect as re-
flected by the slight drift in the CoM.

These simulations result in non-symmetric explosions and
so we expect that the proto-neutron star (PNS) will receive a
kick. The 〈x〉ρ2 tracks very well the center of the PNS and so its
motion can be regarded as that of the PNS. Much larger kicks
are imparted to the PNS for the CoM and x = 0 cases, for
which we measure large non-conservations of momenta. The
PNS also begins its motion much earlier than the SDML case.

The kick of the PNS is obviously affected by the momentum
non-conservation. It is worth noting that for CoM centering, the
conservation of momentum improves with increasing lmax, but
even for lmax= 16 the CoM still moves by about 3 km, or six
numerical zones while the CoM barely moves by one zone for
any lmax for SDML centering.

The SDML centering is obviously superior to other centering
choices for lmax> 0, but equally obvious is its utter failure for
lmax= 0. In the case of monopole gravity centering the expansion
on SDML allows the PNS to move too easily away from the
CoM while not correctly accounting for the strong dipole term
that would result and pull the PNS back. We also see that for
centering at the coordinate origin and lmax= 0, the PNS is held
fixed in place and does not receive a kick. The CoM still moves in
this case, reflecting non-conservation of momentum. Centering
on the coordinate origin also displays divergent behavior with
increasing lmax: higher values result in greater non-conservation
of momentum and greater spurious motion of the PNS.

The average shock radius histories for coordinate origin
centering are also highly variable with respect to changes in
lmax. The other expansion centering approaches yield highly
consistent shock radius histories for all values of lmax, save for
lmax= 0 in the SDML case.

Our choice of the SDML for the multipole expansion center-
ing is motivated by our minimization of the spectral compact-
ness, μ, introduced in Section 2. This metric, defined as 〈l(l+1)〉,
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Figure 4. Normalized potential energy spectra at three different times for the
three different multipole expansion centering approaches. In the top panel, the
red and green lines are indistinguishable.

(A color version of this figure is available in the online journal.)

measures the concentration of total gravitational potential en-
ergy at low multipole orders. Our analysis in Section 2 indicates
that centering the expansion on the SDML should maximize
the amount of total potential energy from low orders, i.e., yield
the most spherical representation of the gravitational potential.
To test this for the CCSN simulations we compute the normal-
ized potential energy spectra, fl ≡ El/E , for the three different
expansion centering approaches at three different times, shown
in Figure 4. All of the simulations in Figure 4 were run with
lmax= 16 but we compute the spectra out to l = 64 and indi-
cate l = 16 by the vertical dashed line. Prior to core bounce
(tpb = −2 ms) the spectra are highly concentrated at l = 0, as
expected for the spherically-symmetry mass distribution, and
the odd multipoles are much reduced due to the symmetry. By
200 ms post-bounce the spectra remain very similar except for
the slightly reduced power in l = 1 and greater power in l = 0
for the SDML case. The shock radii are also very similar at this
time (see Figure 3). The differences in the centering approaches
are more obvious at 500 ms after runaway shock expansion has
begun. The reduced power at multipoles greater than 0 is evi-
dent for the SDML case while centering on the coordinate origin
results in a spreading of the spectrum to larger multipoles.

6. CONCLUSIONS

We have identified and corrected two sources of error arising
in general discretized multipole approximations to Poisson’s
equation. The first error results from assuming that all the
mass in a computational zone resides at the cell center and

then evaluating the potential at the same point. Inspection
of the Green’s function for the continuous Poisson equation
makes obvious that this error has its origin in the divergent
|x−x′|−1 term. This term is explicitly absent from the discretized
equations but the error it induces is still lurking in the method.
We show that this error is proportional to the mass in a zone,
divided by the distance of the zone center from the origin
of the multipole expansion, multiplied by lmax+1. This error
therefore grows rather than shrinking as the number of terms
retained in the truncated expansion increases. We show that
the “self-potential” error can be corrected by evaluating the
gravitational potential at cell faces, where no mass has been
located, rather than cell centers. The cell-centered potential is
then found by averaging the potential at the cell-bounding faces.
Using MacLaurin spheroids, for which exact analytic potential
solutions are known, we show that this approach improves the
accuracy of the potential calculation and leads to convergence
of the solution with increasing lmax, i.e., the self-potential error
is eliminated.

The second error we identify has to do with a poor selection of
the multipole expansion origin. By suggesting a useful metric,
the spectral compactness μ = 〈l(l + 1)〉, characterizing the
symmetry of the potential we find that the optimal location
for the origin that minimizes μ is the SDML, 〈x〉ρ2 . For
diffuse mass distributions, or distributions in which the total
mass in the computational domain is dominated by a single
condensation, this location is not too different from the CoM,
the common choice for multipole expansion origin. For high-
mass condensations embedded in high-mass diffuse flows, such
as occur in CCSN simulations that include the proto-neutron
star, the 〈x〉ρ2 is close to the peak density of the high-mass
condensate. Using a series of CCSN simulations we demonstrate
the superiority of locating the expansion center at the SDML:
momentum conservation is dramatically improved resulting
in significantly different kicks imparted to the PNS by the
development of asymmetric explosions. CCSN simulations that
include the PNS are especially susceptible the two errors we
discuss because of the enormous mass density in few zones near
the expansion origin.

Our computational approach is embedded in an Eulerian hy-
drodynamic framework. Nevertheless, the multipole approach
to the solution of the Poisson equation is quite general, and its
numerical implementation stands apart from the specific numer-
ical hydrodynamic scheme employed here. It follows that the
improvements we describe above to the discretized multipole
approximation to Poisson’s equation are generally applicable.
In particular, the optimal choice of expansion center is relevant
to all simulations that employ multipole approach for calculating
self-gravity, and the face-centering of the potential calculation
is relevant to all such approaches that are grid-based and do
not evaluate potentials analytically, as can be done in spherical
geometry (Müller & Steinmetz 1995).

It is important to note that the momentum non-conservation,
and concomitant erroneous motion of the PNS, is due to the
movement of the PNS away from the origin of the multipole
expansion. In spherical geometry where the PNS is unable to
move away from the origin, or in CCSN simulations that excise
the PNS, we do not expect to see such bad momentum non-
conservation. We, therefore, do not expect previous studies of
PNS kicks that excise the PNS from the domain in spherical
geometry (Scheck et al. 2004, 2006; Wongwathanarat et al.
2010, 2013) to suffer from the inaccuracies we here uncover
and correct. Likewise our results have no bearing on PNS kick
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studies that do not utilize multipole gravity solvers (Nordhaus
et al. 2010, 2012).

The multipole approach is appropriate for systems wherein
the mass distribution is approximately spherical, so that a
spherical harmonic expansion can be expected to reach high
accuracy after a moderate number of terms. For such problems
it has substantial benefits over other approaches for solving
Poisson’s equation, such as multigrid or tree methods, because
it is comparatively inexpensive. For the time-dependent CCSN
simulations described in Section 5 the multipole implementation
we present in Section 3 requires less than 7% of the time to
calculate the hydrodynamics. More exact multigrid and tree
methods can dominate the computational expense of simulations
utilizing them (cf. Ricker 2008). By incorporating the two
essential reforms of the multipole algorithm we present the
method can deliver on its promise of accurate calculation of self
gravity while also retaining its efficient computation.
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APPENDIX A

GRAVITATIONAL BINDING ENERGY
AS ANGULAR SPECTRUM

Our proposed angular decomposition of the global spectral
of the gravitational field is proportional to El , where

El ≡ G

2

4π

2l + 1

l∑
m=−l

∫
d3x d3x′ ρ(x)ρ(x′) Ylm(n)Ylm(n′)∗gl(r, r

′),

(A1)

and gl(r, r ′) is the function given in Equation (3).
In order for this choice of spectral decomposition of the field

to give rise to a sensible distribution, it is necessary to establish
that El � 0 for all l. To do this, we write Equation (A1) as

El = G

2

4π

2l + 1

l∑
m=−l

∫ ∞

0
r2dr

∫ ∞

0
r ′2dr ′gl(r, r

′) ηlm(r)ηlm(r ′)∗,

(A2)
where we have defined the moments

ηlm(r) ≡
∮

d2n ρ(rn)Ylm(n). (A3)

From Equation (A2), we see that the requirement that El � 0
is equivalent to requiring positive-semi-definiteness of the

integral operator ĝl , whose action on a function η(r) is [ĝl ◦
η](r) = ∫ ∞

0 r ′2dr ′ gl(r, r ′)η(r ′). In other words, we must have
(η, ĝl ◦η) = ∫ ∞

0 r2dr η(r)[ĝl ◦η](r) � 0. But (2l + 1)−1ĝl is the
inverse of the radially-separated Laplacian differential operator
Ll ≡ −1/r2∂/∂r

(
r2∂/∂r

)
+ l(l + 1)/r2, for which gl(r, r ′)

is the Green’s function: [Ll ◦ ĝl](r, r ′) = 2l + 1/r2δ(r − r ′).
Furthermore, we may easily show that Ll is positive-definite,
(η,Ll ◦ η) > 0, for the boundary conditions of interest here
(finite at the origin, zero at infinity) by means of an integration
by parts. Setting ĝl ◦ η ≡ (2l + 1)χ , so that η = Ll ◦ χ we
therefore have

(η, ĝl ◦ η) = (2l + 1) × (Ll ◦ χ, χ ) > 0. (A4)

Since ĝl is a positive-definite integral operator, it follows
immediately from Equation (A2) that El > 0 for all l.

The normalized distribution over l fl ≡ El/E is therefore
a sensible measure of the angular spectrum in a gravitating
mass distribution. The total binding energy E is obviously
independent of the expansion center position a. The individual
terms El in the decomposition are certainly functions of a,
however, so that the spectral distribution is also dependent on
a. We will therefore write this dependence as El(a) explicitly
below.

When calculating the spectrum fl empirically from a mass
distribution, as we do in Section 5, there is a subtle source of
error to be guarded against, which is traceable to discretization
noise. The effect comes about because, as remarked earlier,
the mass of each cell, which represents a volume integral of
some smooth, nearly constant mass density function over the
cell, is represented in the numeric quadratures of the multipole
algorithm as a Dirac-δ-function at the cell center. Obviously,
an infinitely-narrow density peak is capable of contributing
power to arbitrarily-high multipole orders l, whereas the cell’s
contribution to the angular spectrum due to the underlying,
nearly constant density function should cut off rapidly above
some angular scale. The error therefore manifests itself in the
spectrum fl as a noisy positive direct current (DC)-offset level
at high l-values. In order to exhibit normalizable spectra, it is
necessary to remove this error. This can be done by observing
that a cell with index q, of size Δq , located at a distance rq from
the center of the expansion, subtends an angle θq ∼ Δq/rq at the
center. We should not expect such a cell to contribute anything
but noise to multipoles of order l > 2π/θq . Discarding such
terms from the multipole moment contribution of these cells,
the DC offset is removed, and normalizable spectra such as the
ones shown in Section 5 are recovered.

APPENDIX B

EXTREMIZING SPECTRAL COMPACTNESS

As asserted in Section 2.2.1, from the point of view of prac-
tical computation, it turns out that the most convenient moment
for the purpose of quantifying angular spectrum compactness is

μ(a) ≡ 〈l(l + 1)〉(a)

=
∞∑
l=0

l(l + 1)fl(a). (B1)

The reason this is convenient is because the term l(l + 1) arises
naturally from the application of the Laplacian to the spherical
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harmonic expansion of the Green’s function
∣∣x − x′∣∣−1

:

−4πδ3(x − x′) = ∇2
∣∣x − x′∣∣−1

= ∇2

{ ∞∑
l=0

l∑
m=−l

4π

2l + 1
Ylm(n)Ylm(n′)∗gl(r, r

′)

}

=
∞∑
l=0

l∑
m=−l

4π

2l + 1

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

]
× Ylm(n)Ylm(n′)∗gl(r, r

′)

= 1

r2

∂

∂r

(
r2 ∂

∂r

)
|x − x′|−1

− 1

r2

∞∑
l=0

l∑
m=−l

4π

2l + 1

× l(l + 1)Ylm(n)Ylm(n′)∗gl(r, r
′)

so that

∞∑
l=0

l∑
m=−l

4π

2l + 1
l(l + 1)Ylm(n)Ylm(n′)∗gl(r, r

′)

= ∂

∂r

(
r2 ∂

∂r

)
|x − x′|−1 + 4πr2δ3(x − x′). (B2)

Combining Equations (A1) and (B2) with Equation (B1), and
setting a = 0 temporarily, we obtain

μ(0) = G

2E

∫
d3x d3x′ ρ(x)ρ(x′)

×
{

4πr2δ3(x − x′) +
∂

∂r

(
r2 ∂

∂r

)
|x − x′|−1

}
. (B3)

At the cost of some algebra, we may evaluate the second term
in Equation (B3). We obtain

μ(0) = G

2E

∫
d3x d3x′ ρ(x)ρ(x′)

{
4πr2δ3(x − x′)

+
−(x · x′)2 − 3r2r ′2 + 2(r2 + r ′2)x · x′

|x − x′|5
}

. (B4)

After making the substitution x′ = (x′−x)+x in the numerator
of the second term, some further algebra yields

μ(0) = G

2E

∫
d3x d3x′ ρ(x)ρ(x′)

{
4πr2δ3(x − x′)

+
3∑

i,k=1

xixk

3(x ′
i − xi)(x ′

k − xk) − |x − x′|2δik

|x − x′|5

+ 2
3∑

i=1

xi

(x ′
i − xi)

|x − x′|3
}

. (B5)

To obtain μ(a) from μ(0) all that is required is to make the
replacements x → x − a, x′ → x′ − a inside the braces in
Equation (B5). The result is

μ(a) = G

2E

∫
d3x d3x′ ρ(x)ρ(x′)

{
4πδ3(x − x′)|x − a|2

+
3∑

i,k=1

(xi − ai)(xk − ak)
3(x ′

i − xi)(x ′
k − xk)−|x − x′|2δik

|x − x′|5

+ 2
3∑

i=1

(xi − ai)
(x ′

i − xi)

|x − x′|3
}

. (B6)

The extremization with respect to a of this quadratic expres-
sion in a is straightforward, and leads to a 3 × 3 linear problem,

Ma = b, (B7)

with

[M]ik ≡
∫

d3x d3x′ ρ(x)ρ(x′)
{

4πδ3(x − x′)δik

+
3(xi − x ′

i)(xk − x ′
k) − |x − x′|2δik

|x − x′|5
}

=
∫

d3x d3x′ ρ(x)ρ(x′)

×
{

4πδ3(x − x′)δik +
∂2

∂xi∂xk

1

|x − x′|
}

=
∫

d3x
{

4πρ(x)2δik − ρ(x) G−1 ∂2Φ(x)

∂xi∂xk

}
, (B8)

and

[b]i =
∫

d3x d3x′ ρ(x)ρ(x′)
{

4πδ3(x − x′)xi

+
3∑

k=1

xk

3(xi − x ′
i)(xk − x ′

k) − |x − x′|2δik

|x − x′|5

− xi − x ′
i

|x − x′|3
}

=
∫

d3x d3x′ ρ(x)ρ(x′) ×
{

4πδ3(x − x′)xi

+
3∑

k=1

xk

∂2

∂xi∂xk

1

|x − x′| +
∂

∂xi

1

|x − x′|

}

=
∫

d3x

{
4πρ(x)2xi − ρ(x)

3∑
k=1

xkG
−1 ∂2Φ(x)

∂xi∂xk

− ρ(x)G−1 ∂Φ(x)

∂xi

}
. (B9)

The last term in Equation (B9) yields, upon integration, G−1

times the net self-force of the gravitating mass configuration,
which is necessarily zero. We therefore have for b

[b]i =
∫

d3x

{
4πρ(x)2xi − ρ(x)

3∑
k=1

xkG
−1 ∂2Φ(x)

∂xi∂xk

}
.

(B10)
The integrands in Equations (B8) and (B10) feature the sum

of a term proportional to the square of the density, and a term
proportional to the tidal tensor ∂2Φ/∂xi∂xk . In the next section,
we estimate the relative sizes of the two terms in each of the
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two integrals, and find that it is an acceptable approximation
to drop the tidal terms in comparison with the square-density
terms. Making this approximation, we obtain

M ≈ 1 ×
∫

d3x 4πρ(x)2 (B11)

b ≈
∫

d3x 4πρ(x)2 x, (B12)

so that

a ≈
∫

d3x xρ(x)2∫
d3x ρ(x)2

≡ 〈x〉ρ2 . (B13)

That is to say, the optimal expansion center location is the
average location weighted by the square of the density.

A useful result worth setting down is a formula for the
spectral compactness, μ(0) that is convenient for numerical
computation. Starting from Equation (B5), we may replace the
dipole and quadrupole tensors with suitable derivatives of the
Green’s function, as we did in Equations (B8) and (B9). We find
that

μ(0) = G

2E

∫
d3x

{
4π |x|2 ρ(x)2 + ρ(x)G−1

3∑
i,k=1

xixk

∂2Φ(x)

∂xi∂xk

− 2ρ(x)G−1
3∑

i=1

xi

∂Φ(x)

∂xi

}
. (B14)

All the data required to compute this integral over the domain
is available after the potential has been computed.

APPENDIX C

ESTIMATING SPECTRAL COMPACTNESS INTEGRALS

In this Appendix we estimate the relative sizes of the two
terms in Equations (B8) and (B10).

By re-expressing the potential Φ(x) in terms of the density
ρ(x), and making the change of variables x′ → y = x′ − x,
Equations (B8) and (B10) may be written as

[M]ik =
∫

d3x ρ(x)
∫

d3yρ(x + y)

×
{

4πδ3 (y) δik − y2δik − 3yiyk

y5

}
(C1)

[b]i =
∫

d3x ρ(x)
∫

d3yρ(x + y)

×
{

4πδ3 (y) xi −
∑3

k=1 xk

[
y2δik − 3yiyk

]
y5

}
. (C2)

We single out the rational terms in these integrals:

[MR]ik ≡ −
∫

d3x ρ(x)
∫

d3yρ(x + y)
y2δik − 3yiyk

y5
(C3)

[
bR

]
i

≡ −
∫

d3x ρ(x)
∫

d3yρ(x + y)

×
∑3

k=1 xk[y2δik − 3yiyk]

y5
. (C4)

The numerators of the integrands contain the trace-free
symmetric tensor y2δik−3yiyk . We recognize this as quadrupole
tensor, and exploit its nature as a spherical tensor—a spherical
harmonic in tensor guise—to reduce the order of the singularity
in y.

We will require the following spherical integrals:∮
d2n nink = 4π

3
δik (C5)

∮
d2n ninknlnm = 4π

15
(δikδml + δimδkl + δilδmk) . (C6)

These may be obtained by observing that the resulting tensors
must be rotationally-invariant and totally symmetric under index
interchange. Such tensors can only be constructed from the only
tensor at hand—the identity tensor δik—by the combinations
indicated. The coefficients may then be calculated by setting
i = k = l = m = 3 in the resulting expressions and performing
the integrals in spherical coordinates. In addition, we observe
that any similar integral featuring an odd number of components
of n as factors in the integrand is necessarily zero, since it
changes sign under the variable change n → −n. Note also
that Equation (C5) implies that the spherical integral of the
quadrupole tensor δik − 3nink is zero.

Since we are interested in the y → 0 behavior, we expand
ρ(x + y) around x:

ρ(x + y) = ρ(x) +
3∑

l=1

yl

∂ρ(x)

∂xl

+
1

2

3∑
l=1

3∑
m=1

[ylym + O(y3)]
∂2ρ(x)

∂xl∂xm

. (C7)

Inserting this expansion in Equation (C3), we obtain

[MR]ik ≈ −
∫

d3x ρ(x)
1

2

3∑
l=1

3∑
m=1

∂2ρ(x)

∂xl∂xm

∫ ∞

0
y2 dy

×
∮

d2n [ylym + O(y3)]
y2δik − 3yiyk

y5

= −
∫

d3x ρ(x)
1

2

3∑
l=1

3∑
m=1

∂2ρ(x)

∂xl∂xm

∫ ∞

0
[y + O(y2)] dy

×
∮

d2n (δiknlnm − 3ninknlnm)

= −
∫

d3x ρ(x)
1

2

3∑
l=1

3∑
m=1

∂2ρ(x)

∂xl∂xm

∫ ∞

0
[y + O(y2)] dy

× 4π

15
(2δikδlm − 3δilδkm − 3δimδkl)

= − 4π

15

∫
d3x ρ(x)

(
δik∇2ρ(x) − 3

∂2ρ(x)

∂xi∂xk

)
×

∫ ∞

0
[y + O(y2)] dy, (C8)
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where in the first line we summarily dropped from the density
expansion both the O(y0) term—because it results in a spherical
integral of the quadrupole tensor, which is zero—and the O(y1)
term—because it results in a spherical integral with an odd
number of vector factors, which is also zero. In the inner
integrand, we see that the dependence on y as y → 0 is a
very benign O(y1).

We proceed similarly, inserting the expansion of
Equation (C7) into Equation (C4). Again, only one term from
the expansion survives, with the O(y2) term latching on to the
quadrupole, as before. We obtain

[bR]i ≈−4π

15

∫
d3x ρ(x)

{(
xi∇2ρ(x) − 3

3∑
k=1

xk

∂2ρ(x)

∂xl∂xk

)}

×
∫ ∞

0
[y + O(y2)] dy. (C9)

We again find that the “singular” behavior of the integrand is
in fact O(y1) as y → 0. This O(y1) behavior is no different from
the short-distance behavior of the Poisson Green’s function,
which combines a y−1 singularity with the d3y measure to
produce an O(y1) dependence in the integrand.

We now use the expressions just derived to estimate the
relative size of the rational terms and the δ-function terms in
Equations (C1) and (C2). To do this, we assume a distribution
of matter bounded to some region of size R. We estimate the
term

∫
dy[y + O(y2)] ∼ R2/2. We also assume the presence of

a sharp peak in the density, so that the integral measure d3x ρ(x)
places most of the action near the density peak. In this region, the
linear term in the expansion in Equation (C7) is small compared
to the O(y2) term, and may be neglected, and we may estimate
1/2R2|∂2ρ/∂x2| ∼ ρ. We use this estimate for the aggregate
second-derivative terms in brackets in Equations (C8) and (C9).
We also replace the factors x in Equation (C9) by a typical value
R. By these means, we obtain for the size of the matrix elements
of MR

|[MR]ik| ∼ 4π

15

∫
d3x ρ(x)2. (C10)

Since the δ-function term in Equation (C1) is

[Mδ]ik = 4πδik

∫
d3x ρ(x)2, (C11)

we obtain the ratio ∣∣∣∣ [MR]ik
[Mδ]ik

∣∣∣∣ ∼ 1

15
, (C12)

give or take a little slop. By the same means, we obtain

|[bR]k| ∼ 4πR

15

∫
d3x ρ(x)2. (C13)

The δ-function term in Equation (C2) is

[bδ]k = 4π

∫
d3x ρ(x)2 xk

∼ 4πR

∫
d3x ρ(x)2, (C14)

so that the ratio of terms is again∣∣∣∣ [bR]k
[bδ]k

∣∣∣∣ ∼ 1

15
. (C15)

On the basis of these estimates it appears that the neglect of
the rational terms in Equations (B8) and (B10) is a justifiable
approximation.
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