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ABSTRACT

In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us
to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass
measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling
approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors.
We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through
dissimilar distribution peak and mass cutoff values. NSs in double NS and NS—white dwarf (WD) systems show
consistent respective peaks at 1.33 M and 1.55 M, suggesting significant mass accretion (Am ~ 0.22 M) has
occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative
of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through
recycling. We find a mass cutoff at ~2.1 M for NSs with WD companions, which establishes a firm lower bound
for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable
configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed
nature of the inferred mass distribution both enforce the suggestion that the 2.1 M limit is set by evolutionary
constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.
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1. INTRODUCTION

The mass of a neutron star (NS) has been a prime focus
of compact object astrophysics since the discovery of neu-
trons. Soon after Chadwick’s (1932) Letter on the “Possible
existence of a neutron,” heated discussions around the world
started to take place on the potential implications of the dis-
covery. In 1932, during one of these discussions in Copen-
hagen, Landau shared his views with Rosenfeld and Bohr where
he anticipated the existence of a dense, compact star com-
posed primarily of neutrons (e.g., Shapiro & Teukolsky 1983,
p- 242). The prediction was not officially announced until Baade
& Zwicky published their work where the phrase “neutron star”
appeared in the literature for the first time (Baade & Zwicky
1934a). Their following work explained the possible evolution-
ary process leading to the production of an NS and the physics
that simultaneously constrains the mass and radius in more detail
(Baade & Zwicky 1934b, 1934c).

The ensuing discussions were primarily focused on the mass
of these dense objects. In 1931, Chandrasekhar had already
published his original work in which he calculated the upper
mass limit of an “ideal” white dwarf (WD) as 0.91 M, while
the following year, Landau intuitively predicted that a limiting
mass should exist close to 1.5 M, (Landau 1932). Following the
works of Chandrasekhar and Landau, and using the formalism
developed by Tolman, Oppenheimer & Volkoff predicted an
upper mass limit for NSs to be 0.7-3.4 Mg (Tolman 1939;
Oppenheimer & Volkoff 1939).

Since then, continuing discussions on the mass range an
NS can attain have spawned a vast literature (e.g., Rhoades &
Ruffini 1974; Joss & Rappaport 1976; Thorsett & Chakrabarty
1999; Baumgarte et al. 2000; Schwab et al. 2010, and
references therein).

Masses of NSs at birth are tuned by the intricate details
of the astrophysical processes that drive core collapse and
supernova (SN) explosions (Timmes et al. 1996). The birth mass
is therefore of particular interest to those who study these nuclear
processes. An earlier attempt by Finn (1994) finds that NSs
should predominantly fall in the 1.3—-1.6 M mass range. The
most comprehensive work to date by Thorsett & Chakrabarty
(1999) finds that the mass distribution of observed pulsars are
consistent with M = 1.38,)1° M, a remarkably narrow mass
range. The recent work of Schwab et al. (2010), on the other
hand, argues that there is evidence for multi-modality in the NS
birth mass distribution (for a discussion, see Section 6).

The maximum possible mass of an NS has attracted particular
attention because it delineates the low-mass limit of stellar mass
black holes (Rhoades & Ruffini 1974; Fryer & Kalogera 2001).
When combined with measurements of NS radii, it also provides
distinctive insight into the structure of matter at supranuclear
densities (Cook et al. 1994; Haensel 2003; Lattimer & Prakash
2004,2007). Although more modern values theoretically predict
a maximum NS mass of Myx ~ 2.2-2.9 M, (Bombaci 1996;
Kalogera & Baym 1996; Heiselberg & Pandharipande 2000), it
is still unclear whether very stiff equations of states (EOSs) that
stably sustain cores up to the general relativity limit (~3 M)
can exist.

Recent observations of pulsars in the Galactic plane as well
as globular clusters suggest that there may be, in fact, NSs
with masses significantly higher than the canonical value of
1.4 My (e.g., Champion et al. 2008; Ransom et al. 2005;
Freire 2008; Freire et al. 2008a, 2008b). NSs in X-ray binaries
also show systematic deviations from the canonical mass limit
(e.g., van Kerkwijk et al. 1995; Barziv et al. 2001; Quaintrell
et al. 2003; van der Meer et al. 2005; Ozel et al. 2009;
Giiver et al. 2010).
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The most precise measurements of NS masses are achieved
by estimating the relativistic effects to orbital motion in binary
systems. The exquisite precision of these mass measurements
presents also a unique means to test general relativity in the
“strong-field” regime (e.g., Damour & Taylor 1992; Psaltis
2008). As the masses of NSs also retain information about the
past value of the effective gravitational constant G, it may be
even possible to probe the potential evolution of such physical
constants with the determination of the NS mass range (Thorsett
1996).

Comprehensive insight into the underlying mass distribution
of NSs thus provides not only the means to study NS-specific
problems, but also offers diverse sets of constraints that can be
as broad as the high-mass star formation history of the Galaxy
(Gould 2000) or as particular as the compression modulus of
symmetric nuclear matter (Glendenning 1986; Lattimer et al.
1990).

The present work aims to set up a framework by which we
can probe the underlying mass distributions implied by radio
pulsar observations. We develop a Bayesian framework that
not only allows more flexibility for the inferred distribution
but also accommodates asymmetric measurement errors in full
parametric form. Unlike conventional statistical methods, with
a Bayesian approach it is possible to separately infer peaks,
shapes, and cutoff values of the distribution with appropriate
uncertainty quantification. This gives us a unique leverage
to probe these parameters that separately trace independent
astrophysical and evolutionary processes.

In order to prevent contamination of the population, which
may lead to systematic deviations from the probed mass distribu-
tion, we keep the observed pulsar sample as uniform as possible.
We choose mass measurements that do not have strong a priori
model dependencies and therefore can be considered secure.

In Section 2, we review theoretical constraints on NS masses.
We derive useful quantities such as the NS birth mass My, the
amount of mass expected to be transferred onto the NS primary
during recycling Am,., and the viable range of maximum
mass (upper 97.5% probability) cutoff value My,x for NSs.
The observations are reviewed in Section 3. We describe the
statistical approach used to probe the underlying NS mass
distribution in Section 4. After we summarize in Section 5, the
range of implications and following conclusions are discussed
in Section 6. For brevity, the details of the statistical model,
the method for inference, and results from model checking are
included in Appendices A and B.

2. THEORETICAL CONSTRAINTS

This section summarizes theoretical estimates on the birth
mass of NSs, the amount of mass that can be accreted onto NSs,
and the constraints on the maximum NS mass.

2.1. Birth Mass

The canonical mass limit My, ~ 1.4 M, is the critical mass
beyond which the degenerate remnant core of a massive star
or a WD will lose gravitational stability and collapse into an
NS. This limiting mass is an approximation that is sensitive to
several nuclear, relativistic, and geometric effects (see Ghosh
2007; Haensel et al. 2007, for review). In addition to these
effects, the variety of evolutionary processes that produce NSs
warrant a careful treatment.
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A more precise parameterization of the Chandrasekhar
mass is
Mgy =5.83Y2 My, (D)

where Y, = n,/(n, + n,) is the electron fraction. A perfect
neutron—proton equality (n, = n,) with ¥, = 0.50 yields a
critical mass of

My, = 1.457 M. 2)

However, we have a sufficiently good insight into the processes
that affect M.,. So, we can go beyond the idealized cases and
estimate the remnant’s expected initial mass more realistically.

The inclusion of more reasonable electron fractions
(Y. < 0.50) yields smaller values for M.y. General relativistic
implications, surface boundary pressure corrections, and the
reduction of pressure due to non-ideal Coulomb interactions
(e~—e™ repulsion, ion—ion repulsion, and e~ —ion attraction) at
high densities all reduce the upper limit of My,.

On the other hand, the electrons of the progenitor material
(i.e., the WD or the core of a massive star) are not completely
relativistic. This reduces the pressure leading to an increase in
the amount of mass required to reach the gravitational potential
to collapse the star. Finite entropy corrections and the effects
of rotation will also enhance the stability for additional mass.
These corrections, as a result, yield a higher upper limit for M.

The level of impact on the birth masses due to some of these
competing effects is not well constrained as the details of the
processes are not well understood. An inclusion of the effects
that are due to the diversity in the evolutionary processes alone
requires a ~20% correction (for a detailed numerical treatment,
see Butterworth & Ipser 1975) and therefore implies a broader
mass range, i.e., Mo, ~ 1.17-1.75 M.

The measured masses, however, are the effective gravitational
masses rather than a measure of the baryonic mass content.

After applying the quadratic correction term Myryon — Mgray &
0.075 M;rav (Timmes et al. 1996), one can obtain
My, ~ 1.08-1.57 M, 3)

as a viable range for gravitational NS masses, which is believed
to encapsulate the range of NS birth masses.

2.2. Accreted Mass

There is considerable evidence that at least some millisecond
pulsars have evolved from a first generation of NSs that have
accumulated mass and angular momentum from their evolved
companion (Alpar et al. 1982; Radhakrishnan & Srinivasan
1982; Wijnands & van der Klis 1998; Markwardt et al. 2002;
Galloway et al. 2002, 2005). There is also a line of arguments
that supports the possibility of alternative evolutionary processes
that may enrich the millisecond pulsar population (Bailyn &
Grindlay 1990; Kiziltan & Thorsett 2009).

Possible production channels for isolated millisecond pulsars
are mergers of compact primaries or accretion-induced collapse
(AIC). In the case where an NS is produced via AIC, the final
mass configuration of the remnant is determined by the central
density of the progenitor (C—O or O-Ne WD) and the speed
at which the conductive deflagration propagates (Woosley &
Weaver 1992).

While there are uncertainties on the parameters that describe
the ignition and flame propagation, a careful treatment of the
physics that tune the transition of an accreting WD yields a
unique baryonic mass Myyyon ~ 1.39 My for the remnant,
which gives a gravitational mass of Mg, ~ 1.27 Mg for
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NSs produced via AIC (Timmes et al. 1996). There is indirect
evidence that the occurrence rate of AICs can be significant
(Bailyn & Grindlay 1990).

The physics of these production channels is still not under-
stood well enough to make quantitative predictions of the NS
mass distribution produced via these processes. But we can es-
timate the mass required to spin NSs up to millisecond periods
by using timescale and angular momentum arguments.

For low-mass X-ray binaries (LMXBs) accreting at typical
rates of i1 ~ 1073 Mgqq, the amount of mass accreted onto an NS
in 10'° yr is Am ~ 0.10 M. One can also estimate the amount
of angular momentum required to spin the accreting progenitor
up to velocities that equal the Keplerian velocity at the co-
rotation radius. In order to transfer sufficient angular momentum
(L = I x w) and spin up a normal pulsar (R =~ 12 km,
I ~ 1.4 x 10 g cm?) to millisecond periods, an additional
mass of Am & 0.20 M, is required. Hence,

Atgee ~ 0.10-0.20 M, )

will be sufficient to recycle NS primaries into millisecond
pulsars.

2.3. Maximum Mass

The mass and the composition of NSs are intricately related.
One of the most important empirical clues that would lead
to constraints on a wide range of physical processes is the
maximum mass of NSs. For instance, secure constraints on the
maximum mass provide insight into the range of viable EOSs
for matter at supranuclear densities.

A first-order theoretical upper limit can be obtained by
numerically integrating the Oppenheimer—Volkoff equations for
a low-density EOS at the lowest energy state of the nuclei
(Baym et al. 1971). This yields an extreme upper bound to the
maximum mass of an NS at M,.,x ~ 3.2 M (Rhoades & Ruffini
1974). For any compact star to stably support masses beyond
this limit requires stronger short-range repulsive nuclear forces
that stiffen the EOSs beyond the causal limit. For cases in which
causality is not a requisite (v — ©0), an upper limit still exists
in general relativity (*5.2 M) that considers uniform density
spheres (Shapiro & Teukolsky 1983). However, for these cases,
the extremely stiff EOSs that require the sound speed to be
superluminal (dP/dp > c?) are considered non-physical.

Differentially rotating NSs that can support significantly more
mass than uniform rotators can be temporarily produced by
binary mergers (Baumgarte et al. 2000). While differential
rotation provides excess radial stability against collapse, even
for modest magnetic fields, magnetic braking and viscous forces
will inevitably bring differentially rotating objects into uniform
rotation (Shapiro 2000). Therefore, radio pulsars can be treated
as uniform rotators when calculating the maximum NS mass.

While general relativity, along with the causal limit put a strict
upper limit on the maximum NS mass at ~3.2 M, the lower
bound is mostly determined by the still-unknown EOS of matter
at these densities and therefore is not well constrained. There
are modern EOSs with detailed inclusions of nuclear processes
such as kaon condensation and nucleon—nucleon scattering that
affect the stiffness. These EOSs give a range of 1.5-2.2 M, as
the lower bound for the maximum NS mass (Thorsson et al.
1994; Kalogera & Baym 1996). Although these lower bounds
for a maximum NS mass are implied for a variety of more
realistic EOSs, it is still unclear whether any of these values are
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favored. Therefore,
M ~ 1.5-3.2 Mg ®))

can be considered a secure range for the maximum NS mass
value.

3. OBSERVATIONS

The timing measurements of radio pulsations from NSs offer
a precise means to constrain orbital parameters (Manchester &
Taylor 1977). For systems where only five Keplerian orbital
parameters (orbital period: P, projected semi-major axis: x,
eccentricity: e, longitude, and the time of periastron passage:
wyp, Tp) are measured, individual masses of the primary (m,)
and secondary (m;) stars and the orbital inclination i cannot
be separately constrained. They remain instead related by the
measured mass function f, which is given by

(my sini)? 27\* .
f: 21‘4—2 = (E) XSTOI, (6)

where M = mj + m, and masses are in solar units, the constant
To = G Mg/c® = 4.925490947 ps, and x is measured in light
seconds.

For some binary systems, the timing residuals cannot be mod-
eled with only Keplerian parameters when the effects of gen-
eral relativity are measurable. In these cases, the gravitational
influence can be parameterized as five potentially measurable
post-Keplerian (PK) parameters that have similar interpreta-
tions (Taylor 1992); (1) w: advance of periastron; (2) P,: orbital
period decay; (3) y: time dilation-gravitational redshift; (4) r:
range of Shapiro delay; and (5) s: shape of Shapiro delay, where
these are described by

) P\ 2/3 201
“= (E) (ToM)? (1 — )7, N
. 1927 (P, \ " 73, 37
th——n b 1+ —¢*+—¢*
5 \2x 24" 796
x (1= 1 mymy M7, ®)
P13
y—e (ﬁ) T2 My oy +2m), )
r=Tgmy, (10)
P\
s=x (2—b> 75" P M w3 (11)
JT

A comprehensive review of the observational techniques and
measurements can be found in Lorimer & Kramer (2004) and
Stairs (2006).

In systems where at least two PK parameters can be measured,
my and m, may be individually determined. In rare cases, more
than two PK parameters are measurable. These over-constrained
systems present a unique means to test for consistent strong-field
gravitational theories (Taylor & Weisberg 1989).

In Tables 1 and 2, we compile a comprehensive list of NS
masses that are determined by the relativistic orbital phenomena
reflected onto the binary system orbital parameters. We include
the mass estimates along with the 68% confidence limits, which
are plotted on Figure 1.
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Table 1
Double Neutron Star Systems
Pulsar Mass (Mg) 68% Central Limits Refs.?
Double neutron star binaries

J0737-3039 1
Pulsar A 1.3381 +0.0007
Pulsar B 1.2489 +0.0007

Total 2.58708 +0.00016
J1518+4904 2
Pulsar 1.56 +0.13/ — 0.44
Companion 1.05 +0.45/ —0.11

Total 2.61 +0.070
B1534+12 3
Pulsar 1.3332 +0.0010
Companion 1.3452 +0.0010

Total 2.678428 40.000018
J1756—-2251 4
Pulsar 1.40 +0.02/ —0.03
Companion 1.18 +0.03/ —0.02

Total 2.574 +0.003
J1811—-1736 5,6
Pulsar 1.56 +0.24/ —0.45
Companion 1.12 +0.47/ —0.13

Total 2.57 +0.10
J1829+2456 7
Pulsar 1.20 +0.12/ — 0.46
Companion 1.40 +0.46/ —0.12

Total 2.59 +0.02
J1906+0746 8,9
Pulsar 1.248 +0.018
Companion 1.365 +0.018

Total 2.61 +0.02
B1913+16 10, 11
Pulsar 1.4398 +0.0002
Companion 1.3886 40.0002

Total 2.828378 +0.000007
B2127+11C 12, *
Pulsar 1.358 +0.010
Companion 1.354 +0.010

Total 2.71279 +0.00013
Notes.

2 References: (1) Kramer et al. 2006; (2) Thorsett & Chakrabarty
1999; (3) Stairs et al. 2002; (4) Faulkner et al. 2005; (5) Stairs 2006;
(6) Corongiu et al. 2007; (7) Champion et al. 2005; (8) Kasian 2008;
(9) Lorimer et al. 2006b; (10) Weisberg et al. 2010; (11) Taylor 1992;
(12) Jacoby et al. 2006; () in globular cluster.

Pulsar surveys suffer from selection effects, especially in the
low-frequency (<1 GHz) regime. Recent surveys at 1.4 GHz
have revealed a greater number of pulsars compared with
previous surveys. The inverse square law, radio sky background,
and propagation effects (i.e., pulse dispersion and scattering) in
the interstellar medium also introduce global selection biases
to the observed population. In addition to these biases affecting
the population at large, there are also source dependent biases
such as radio intermittency, pulse nulling, and the finite size of
the emission beam. However, there is no evidence that these
source-dependent selection biases have mass dependent effects
(see Lorimer et al. 2006a). Therefore, we do not expect that
these selection effects introduce mass-dependent biases to the
observed distribution.

We aim to prevent possible contamination of the sample with
sub-populations that may have gone through different and not
well understood evolutionary paths (e.g., isolated NSs). Even
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Table 2
Neutron Star—White Dwarf Binary Systems

Pulsar Mass (M) 68% Central Limits Refs.?
Neutron star—white dwarf binaries
J0437—-4715 1.76 +0.20 1
J0621+1002 1.70 +0.10/ — 0.17 2
JO751+1807 1.26 +0.14 2
J1012+5307 1.64 +0.22 3
J1141-6545 1.27 +0.01 4
J1614-2230 1.97 +0.04 5
J1713+0747 1.53 +0.08/ — 0.06 6
J1802—2124 1.24 +0.11 7
B1855+09 1.57 +0.12/ —0.11 8
J1909—-3744 1.438 +0.024 9
B2303+46 1.38 +0.06/ — 0.10 10
J0024—7204H 1.48 +0.03/ — 0.06 T, %
J0514—4002A 1.49 +0.04/ — 0.27 T
B1516+02B 2.10 +0.19 T, %
J1748—24461 1.91 +0.02/ — 0.10 To*x
J1748—2446] 1.79 +0.02/ — 0.10 T, %
B1802—07 1.26 +0.08/ — 0.17 10, x
B1911-5958A 1.40 +0.16/ — 0.10 11, %
Notes.

2 References: (1) Verbiest et al. 2008; (2) Nice et al. 2008; (3) Callanan
et al. 1998; (4) Bhat et al. 2008; (5) Demorest et al. 2010; (6) Splaver
et al. 2005; (7) Ferdman et al. 2010; (8) Nice et al. 2003; (9) Jacoby
et al. 2005; (10) Thorsett & Chakrabarty 1999; (11) Bassa et al. 2006;
(1) P. Freire (2010, private communication); (%) in globular cluster.

for the better constrained formation processes that lead to the
production of double neutron star (DNS) and NS—WD systems,
theoretical models estimating the final NS masses are tentative.

4. ESTIMATING THE UNDERLYING
MASS DISTRIBUTION

Recent advances in statistical methods have reached a level
that allows us to extract information from sparse data with
unprecedented detail.

It can be clearly argued why modeling the underlying NS
mass distribution as a single homogeneous population is overly
simplistic. There is no compelling line of reasoning that would
require a single coherent (unimodal) mass distribution for NSs
that we know have dissimilar evolutionary histories and possibly
different production channels (e.g., see Podsiadlowski et al.
2004). In fact, there is an increasing number of measurements
that show clear signatures for masses that deviate from the
canonical value of 1.4 M. For instance, recent findings of van
Kerkwijk et al. (2011) imply that the mass for PSR B1957+20
may be as high as 2.4 £+ 0.12 Mgy. As we will show in
Section 4.1, a flexible modeling approach can be used to test
whether the implied masses belong to the same distribution. We
argue that with the number of NS mass measurements available
in Tables 1 and 2, clear signatures should be manifest in the
inferred underlying mass distributions if appropriate statistical
techniques are utilized. Since we still operate in the sparse data
regime, it is useful, if not necessary, to use Bayesian inference
methods.

For the range of calculations, we use mass measurements
obtained directly from pulsar timing. The methods used for
estimating NS masses other than radio timing have intrinsically
different systematics and therefore require a more careful
treatment when assessing the implied NS mass distribution. The
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Figure 1. Measured masses of radio pulsars. All error bars indicate the central
68% confidence limits. Vertical solid lines are the peak values of the underlying
mass distribution for DNS (m = 1.33 M) and NS-WD (m = 1.55 M)
systems. The dashed and dotted vertical lines are the central 68% and 95%
predictive probability intervals of the inferred mass distribution in Figure 2.
Systems marked with asterisks are found in globular clusters.

inclusion of mass estimates of NSs in X-ray binaries along with
these more secure measurements would potentially perturb the
homogeneity of the sample and the coherence of the inference.

For an all-inclusive assessment of NS masses, more sophis-
ticated hierarchical inference methods may be required. For
sparse data, a proper statistical treatment of different systematic
effects and a priori assumptions is not trivial. Also, the expected
loss in precision may outweigh the gain obtained from a more
detailed approach. Without properly tested and calibrated tools,
further inclusion of NSs whose masses are not measured by
pulsar timing in radio may just contaminate the sample and can
therefore be misleading (e.g., see Steiner et al. 2010).

4.1. Statistical Model

Here, we present the statistical model to estimate the NS
mass distribution. The approach is based on a formulation that
incorporates errors in the measurements of NS mass estimates.
Specifically, the model formulation:

mi=M;+w;, i=1,...,n, (12)

where, for the ith NS, m; is the estimate of the NS mass M;
and w; is the associated error. We thus need a model for the
NS mass distribution and the measurement error distribution.
Evidently, the key focus of inference is the NS mass distribution,
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but a flexible specification for the error distribution is needed
to ensure that this inference is not biased. At the same time,
the model specification must take into account the limited
amount of data. The proposed modeling approach achieves a
balance between these considerations and, importantly, enables
arelatively straightforward implementation of inference through
posterior simulation computational methods.

Visual inspection of the pulsar mass estimates (see Tables 1
and 2 and Figure 1) suggests that skewness may be present in
the NS mass distribution, at least for the NS—-WD systems. It is
therefore important to extend the normality assumption, which
is implicit in the existing estimation methods. Furthermore, it
is clear from the error bars of the pulsar mass estimates that
an asymmetric measurement error distribution is needed for
some of the observations, especially for the DNS systems. The
statistical model developed below allows for skewness both
in the NS mass distribution and the error distribution while
encompassing the normal distribution for either as a special
case.

The pulsars in less constrained systems (e.g., with only one
PK parameter determined) typically have asymmetric measure-
ment errors. The flexibility of the statistical modeling approach
developed here allows us to take full advantage of all available
mass measurements in Tables 1 and 2. It is noteworthy that the
model is generic enough so it can be adopted to other similar
astrophysical problems and serve as a useful reference.

Regarding the model for the NS mass distribution, we work
with a skewed normal distribution with a density function
given by

2 (M- M—
SN(MIu,o,a)zgqb( 0")@(( G’”“), (13)

where ¢(-) and ®(-) denote the density function and cumulative
distribution function (CDF), respectively, of the standard normal
distribution. Here, 1 € R is a location parameter, 0 € R* is a
scale parameter, and « € R is a skewness parameter. This model
was studied by Azzalini (1985) and is one of the more commonly
used skewed normal distributions. Note that « = 0 yields the
normal distribution with mean p and standard deviation o as a
special case of Equation (13), which highlights the role of o as a
skewness parameter. In particular, positive/negative values of «
result in right/left skewness for the density in Equation (13).
Hence, an appealing feature of this model is that, within
the context of Bayesian inference, we can make probabilistic
assessments for skewness of the NS mass distribution relative
to a normal distribution through, for instance, a posterior interval
estimate for parameter «. As we will discuss in Section 4.2, we
find some evidence for skewness in the NS mass distribution
corresponding to the NS—WD systems, but not for the DNS
systems.

Next, we describe the model for the error distribution, which
is motivated by the process used to produce the pulsar mass
estimates and the associated error bars. For each pulsar (either
from a NS-WD or a DNS system), an empirical density
curve for its mass is constructed based on how well the PK
parameters of the system can be constrained. We generically
denote the final constructed density for the ith pulsar as h;(m)
and note that, although it is unimodal, it may be asymmetric
(especially for pulsars that are in a system for which only one
PK parameter can be constrained), resulting in the asymmetric
error bars reported for some of the systems in Tables 1 and 2.
The pulsar mass estimate, m;, is obtained as the mode of
this density, whereas the error bars, +u; / — ¢;, define the




THE ASTROPHYSICAL JOURNAL, 778:66 (12pp), 2013 November 20

interval, (m; — £;, m; +u;), of the smallest possible length with
68% probability coverage. Numerically, the interval is obtained
by starting from the peak value of h;(m) and slicing down
the density until fy;"‘j;‘ hi(m)dm = 0.68, which, given the
unimodal shape of density &; (m), also implies that h;(m; —¥€;) =
h i(m i+ ui).

Hence, in the context of model given by Equation (12),
the errors w; are realizations from a distribution with a mode
at 0. We thus seek a measurement error distribution that is
parameterized in terms of its mode, allows asymmetry around
the mode, and yields the normal distribution in the special case
of symmetry. A particularly suitable choice is the asymmetric
normal distribution studied in Ferndndez & Steel (1998) with a
density function given by

AN(w | ¢,d) = ﬁ
{6 () locw @+ () 1emo)] (14)

where ¢ > 0,d > 0, and 14(-) denotes the indicator function of
set A. The mode of this density is at 0, when ¢ = 1 it reduces to
the normal density with mean 0 and standard deviation d, and
when ¢ > 1 (¢ < 1) itis right skewed (left skewed). Therefore,
d plays the role of a scale parameter, whereas c is the asymmetry
parameter.

A critically important feature of the asymmetric normal
density in Equation (14) is that it leads to a straightforward
estimation of parameters c; and d; for the ith pulsar, using the
values of the 68% central limits, +u; / — ¢;, in Tables 1 and 2.
First, from the condition AN(—¢; | ¢;,d;) = AN(u; | ¢;, d;)
we obtain ¢(—c;d; ' ¢;) = ¢(c;'d; 'u;), which, in turn, yields
¢; = (u;/€;)"/?. Next, with ¢; determined, we specify d; by
solving numerically for its value that satisfies ff} AN(w |
¢i,dj)dw = 0.68. Computing this equation involves normal
distribution function evaluations and it can be easily shown that
there is a unique solution for d;. Note that ¢; = 1 when ¢; = u;
and thus the error distribution is normal for the pulsars with
symmetric error bars. However, for pulsars with asymmetric
error bars, asymmetry is introduced in the respective error
distribution components. The extent of the asymmetry depends
on the relative magnitude of ¢; and u;; for instance, the maximum
value for the asymmetry parameter c; is 2.02 corresponding to
PSR J1518+4904’s companion and the minimum value is 0.38
corresponding to PSR J0514-4002A.

4.2. Inferring the Neutron Star Mass Distribution

For each of the NS—WD and DNS systems, the data vector
comprises data = {(m;,c;,d;) : i = 1,...,n}, with (¢;, d;)
computed as detailed in Section 4.1. Then, combining the
models for the NS mass and error distributions in Equations (13)
and (14), respectively, the hierarchical model for the data can
be written as

m; | M; ~ AN(m; — M, | ¢;,d;), i =1,...,n,
M| u,o,0 ~ SNIM; | n,o,a), i=1,...,n. (15)

That is, given the respective NS masses M;, the pulsar mass
estimates m; arise conditionally independently from the asym-
metric normal response distribution with mode at M;. Here,
the M; are modeled as conditionally independent realizations,
given parameters (i, o, &), from the skewed normal NS mass
distribution.
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Now, the likelihood function for the NS mass distribution
parameters arises from the hierarchical model in Equation (15)
by marginalizing over M;, that is,

L(u, o, a; data) = H/AN(mi — M, |ci,d)
i=1

X SNM; | u, o, a)dM,;.

The integral is readily available analytically only in the special
case of a normal distribution for both the errors and NS masses
(¢; = 1 and ¢ = 0, respectively). Therefore, in general,
numerical maximization of the likelihood function to obtain
the maximum likelihood estimates for parameters p, o, and «
is not straightforward. Even more challenging is the uncertainty
quantification for the point estimates and its subsequent effect on
the NS mass density; this would require large-sample asymptotic
results, the use of which is particularly problematic to justify
given the small number of observations from both the DNS and
NS-WD systems.

We thus employ the Bayesian approach to inference for the NS
mass distribution using Markov Chain Monte Carlo (MCMC)
methods for sampling from the posterior distribution of model
parameters (Gelman et al. 2003). Under the Bayesian approach,
the model given by Equation (15) is completed with priors
for the NS mass distribution parameters. Details on the prior
distributions are given in Appendix A.

In addition to providing a coherent probabilistic framework
for inference, the Bayesian model formulation enables harness-
ing the full hierarchical structure in Equation (15). In particu-
lar, our posterior simulation method retains the individual NS
masses M; as part of the full parameter vector along with the
NS mass distribution parameters (u, o, ). In fact, we work
with a transformed version (u, t2, ) of (i, o, ), such that
o2 =12+ y?and « = /7, with t > 0 and ¥ € R. This
re-parameterization facilitates implementation of the compu-
tational method for posterior inference as an efficient Gibbs
sampler algorithm. Key in this direction is also a stochastic rep-
resentation of the skewed normal distribution in Equation (13)
as a mixture of normal distributions (Henze 1986). The specific
result is given in Appendix A, which includes also the technical
details of the MCMC posterior simulation method.

Implementing the Gibbs sampler described in Appendix A,
we obtain posterior samples for (i, 72 ) and thus, through the
transformation discussed above, for parameters (u, o, o). These
samples can be used to explore a variety of inferences for the
NS mass distribution.

First, the point estimate for the density of the NS mass
distribution is given by the posterior predictive density, P(My |
data), where M, denotes the (unknown) mass of a “new”
unobserved pulsar that we seek to estimate (predict) given the
observed data. The posterior predictive density is given by

P(M, | data) = /SN(MO | u,o,a)
X p(u,o,a | data)ydudo do, (16)

where p(u, o, o | data) denotes the posterior distribution of
the model parameters. Using expression (16) along with the
samples from p(u,o,« | data), we can compute through
straightforward Monte Carlo integration the NS mass density
estimates over any grid of mass values of interest. Figure 2
plots the posterior predictive NS mass density estimates for the
DNS and NS-WD systems, which have peaks at 1.33 M and
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Figure 2. Posterior predictive density estimates for the NS mass distribution.
DNS systems (dashed line) and NS-WD systems (solid line) mass densities
have respective peaks at 1.33 M and 1.55 M. The 68% and 95% posterior
predictive intervals are given by (1.21 M, 1.43 M) and (1.10 Mg, 1.55 M)
for the DNS systems, and by (1.35 Mg, 1.81 M) and (1.13 Mg, 2.07 M) for
the NS-WD systems.

1.55 M, respectively. We can also sample from the posterior
predictive distribution by sampling from the SN(M | i, o, @)
distribution (using its normal mixture stochastic representation)
for each posterior sample of (u, o, «). The resulting samples
quantify the posterior predictive uncertainty around the NS mass
density peaks. In particular, for the DNS systems, the 68%
and 95% posterior predictive intervals are (1.21 My, 1.43 M)
and (1.10 Mg, 1.55 M), whereas for the NS—WD systems the
corresponding intervals are given by (1.35 Mg, 1.81 M) and
(1.13 Mg, 2.07 Mg).

It is noteworthy from Figure 2 that the NS-WD systems
posterior predictive density suggests positive skewness in the
NS mass distribution. This is also reflected in the posterior
distribution for the skewness parameter o given the NS-WD
systems data; specifically, the posterior mean for « is 0.90
and Pr(e > 0 | data) = 0.78. In contrast, the corresponding
results for the DNS systems data are E(x | data) = —0.03 and
Pr(o > 0 | data) = 0.49 supporting symmetry (and normality)
for the DNS systems mass distribution.

Next, we supplement the point estimates in Figure 2 with
uncertainty bands for the NS mass density. To this end, using
a grid of mass values in 0.5 My to 2.5 My, we evaluate the
skewed normal NS mass density in Equation (13) at each of the
posterior samples for its parameters (i, o, «). This produces a
sample of densities that can be averaged to obtain the posterior
mean NS mass density estimate, given by the solid lines in
Figure 3. (Formally, the posterior mean estimate is equivalent
to the posterior predictive density and thus the solid lines in
Figure 3 agree with the estimates in Figure 2.) However, we
can now also depict the posterior uncertainty for the entire NS
mass density through percentiles from the posterior sample of
densities. In Figure 3, we use the 0.025 and 0.975 percentiles
and thus the gray bands depicting the posterior uncertainty
correspond to 95% interval estimates for the NS mass density.

Finally, Figure 3 also plots the prior point and the 95%
interval estimates for the NS mass density. These are produced
as discussed above for the posterior inference results, but in
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this case using samples from the prior distribution assigned to
the model parameters. Hence, Figure 3 shows the prior guess
at the NS mass density (the prior mean estimate given by the
dashed line), as well as the extent of variability in the prior
(encapsulated by the dotted lines). This provides an effective
means to summarize the extent of prior information for the NS
mass density incorporated into the model through the specific
priors for the model parameters. Moreover, the comparison with
the corresponding estimates given the data illustrates the amount
of prior-to-posterior learning, which is evidently significant for
both the DNS and NS—-WD systems.

4.3. Model Checking

The predictive performance of the statistical model developed
in Sections 4.1 and 4.2 was evaluated using a well-founded
technique for Bayesian model checking (see, for example,
Chapter 6 of Gelman et al. 2003). Briefly, for each data point
(m;, ¢;, d;), we obtained the posterior predictive distribution,
77(mlr.ep | data), for replicated response m;ep, that is, the pulsar
mass estimate that we would observe if the experiment that
produced the data was to be replicated. Details on sampling
from these posterior predictive distributions are included in
Appendix B. An indication of how well the model is performing
predictively can be obtained by checking where the observed
pulsar mass estimate m; lies within the corresponding posterior
predictive density. A relatively large number of observations
falling in the tails of the respective predictive densities is
indicative of a poor model fit. Under the proposed model, all
pulsar mass estimates from both the DNS and NS—-WD systems
were effectively captured within their corresponding posterior
predictive distributions; see the plots in Appendix B. These
results provide a further illustration of the predictive power of
the model as it replicates the appropriate type of asymmetry for
the responses with asymmetric measurement errors.

5. SUMMARY

We reviewed the physical processes that tune masses of
NSs in Section 2. In order to theoretically estimate the viable
range for NS masses, we derived the birth mass (Section 2.1,
Mpyn = 1.08-1.57 M) and the amount of mass expected
to be transferred onto recycled NSs during the binary phase
(Section 2.2, Am .. =~ 0.1-0.2 M). We then discussed why the
constraints on the maximum NS mass (M. = 1.5-3.2 M)
are less stringent and comment on the sources of uncertainties
in Section 2.3.

In order to maintain a uniform approach in our analysis, we
refrained from including additional constraints that may arise
from assumptions such as the possible relationship between
the binary period and the mass of the remnant WD (i.e., the
P,—mj relationship) suggested by Rappaport et al. (1995). While
more elaborate and hierarchical implementation methods may
be utilized in deducing implication of other assumptions, a use
of more inclusive approaches may only convolute the mass
inference, which is contrary to the goal of this work. Throughout
our analysis, we only assume that Einstein’s prescription for
general relativity is correct and include mass measurements that
are considered secure (Section 3).

We then subject the pulsar mass measurements to a detailed
statistical analysis. In Section 4, we showed that a Bayesian
approach offers an effective means for inference (for a detailed
derivation, see Appendix A), using a model that accommodates
skewness in distributions for both the underlying NS masses and
the measurement errors.
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Figure 3. Comparison of prior mean and 95% interval estimates (dashed and dotted lines) with posterior mean and 95% interval estimates (solid lines and gray bands)
for the NS mass density corresponding to the DNS systems (left panel) and the NS—WD systems (right panel). We refer the reader to Section 4.2 for further details.

6. DISCUSSION AND CONCLUSIONS
6.1. Previous Studies

The first article that reviewed pulsar mass measurements in or-
der to deduce the range of masses NSs can attain was published
by Joss & Rappaport (1976). They used mass measurements
from five sources (PSR B1913+16, Her X-1, Cen X-3, SMC
X-1, and 3U0900—40), which were predominantly X-ray
sources, and found a marginally consistent range of 1.4-1.8 M.

Finn (1994) used a Bayesian statistical approach for the
first time to infer limits on the NS mass distribution. By
using the mass measurements of four radio pulsars (PSRs
B1913+16, B1534+12, B2127+11C, and B2303+46), he con-
cluded that NS masses should fall mainly in the range between
1.3-1.6 M.

A comprehensive paper on pulsar masses was published
by Thorsett & Chakrabarty (1999). Their analysis based
on 26 sources yielded a remarkably tight mass range at
1.38t%_01% Mg. The width of their NS mass inference was
mainly driven by the narrow error bands of the DNS mass
measurements.

The recent work by Schwab et al. (2010) analyzed masses
of 14 sources with an approach based on comparing the
CDF with an idealized Gaussian. It is well understood that
the Kolmogorov—Smirnov (K-S) test should be used with
caution in cases where deviations occur in the tails (Mason
& Schuenemeyer 1983). Additionally, even in data samples
where the number of outliers in the tails are considerably
larger and the associated measurement errors are taken into
account, a K-S approach will still remain limited in quantifying
the significance of the outliers. Therefore, while the bimodal
feature found for the initial mass function (i.e., My;y) may
be consistent with theoretical expectations for remnant masses
produced by electron-capture versus Fe-core collapse SNe
(Podsiadlowski et al. 2004), the evidence for a deviation
of My, from a unimodal distribution is still tentative. In
order to firmly establish a potential multi-modal feature for
the NS birth mass distribution, a more diverse sample tested
with statistics that allow sensitivity and performance checks
are required.

6.2. Maximum Mass Limit

Our model is flexible and sensitive enough for detecting
signatures of a potential truncation in the underlying mass

distribution. We pay particular attention to whether there are
signatures of truncation in the implied mass distribution at the
high-mass end for two reasons: (1) a high-mass limit set by
the EOS of the NS matter, or by general relativity, should
produce a relatively sharp cut off, which will manifest itself
as a truncation. (2) The nature of potential skewness of the
underlying mass distribution will provide insight into how
NSs are produced and the evolutionary link between the two
NS populations.

The masses of NSs in DNS systems imply a tight symmetric
distribution while the distribution of masses of NSs in NS-WD
systems show evidence of skewness with a heavy tail on the
high-mass end. On the other hand, both populations show no
evidence of a strong truncation limit on either end.

These have important implications: the stochastic nature
of evolutionary processes such as long-term stable accretion
naturally produces a wider distribution for NSs in NS-WD
systems. This, along with the lack of a strong truncation,
indicates that, in particular, the high-mass end of the NS mass
distribution is driven by evolutionary constraints. As a result,
this rules out the possibility that an upper mass limit is set by
the EOS of matter or general relativity for NSs with masses
M < 2.1 Mg. Therefore, the 2.1 M, upper mass limit implied
by NSs in NS—WD systems should be considered a minimum
secure limit to the maximum NS mass rather than an absolute
upper limit to NS masses. The heavy tail of the mass distribution
of NSs in NS-WD systems favors the possibility that at least
some of these pulsars are born as massive NSs.

6.3. Central Density and the Equation of State

All EOSs that require a maximum NS mass My < 2.1 Mg
are ruled out. The implied stiffness of the EOS largely precludes
the presence of meson condensates and hyperons at supranuclear
densities. Consequently, lower central densities, larger radii, and
thicker crusts for NSs are favored (Shapiro & Teukolsky 1983).

The energy density—radius relation implied by Tolman (1939),
when combined with the causality limit, gives an analytical
solution for an upper limit on the central density

peM? =153 x 10" M2 gem™. 17)

With a 2.1 M secure lower limit on the maximum NS mass,
we set a 95% confidence upper limit to the central density of
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NSs, which is
Pmax < 3.47 x 108 gem™ (18)

corresponding to ~11p, for a fiducial saturation threshold
ng ~ 0.16 fm=3.

Exotic matter such as hyperons and Bose condensates signif-
icantly reduces the maximum mass of NSs. Therefore, a strict
lower limit on the maximum NS mass My.x > 2.1 M rules
out soft EOSs with extreme low-density softening and require
the existence of exotic hadronic matter (see Lattimer & Prakash
2007 for a review). NSs with deconfined strange quark matter
mostly have maximum predicted masses lower than 2.1 Mg.
Hence, EOSs with strange quark matter that predict maximum
masses smaller than 2.1 Mg can also be ruled out as viable
configurations for NS matter.

6.4. Evidence for Alternative Evolution and the
Formation of Massive Neutron Stars?

A 2.1 M upper limit to masses of NSs in NS—-WD system
poses a problem. If all millisecond pulsars were indeed NSs that
are recycled from a first generation of normal pulsars, the im-
plied distribution should be consistent with a recycled version
of the initial mass distribution. While the peaks of the distribu-
tions for DNS and NS—WD systems appear to be consistent with
the expectations of standard recycling (Section 2.2), the widths
imply otherwise. As shown in Figure 1, Am,.. = 0.22 M, lies
within the expected range. However, with typical accretion rates
experienced during the LMXB phase (11,c. ~ 1073 Mgqq), it is
difficult to accumulate sufficient mass onto NSs that started their
lives as ~1.4 Mg NSs and produce NSs with masses ~2.1 M
such as PSR B1516+02B. Even with initial masses of ~1.6 M,
these sources need to accrete Am = 0.4-0.5 M during their
active accretion phase. This requires long-term, stable, active
accretion at unusually high rates.

Based on the P-P demographics of millisecond pulsars,
Kiziltan & Thorsett (2009) argue that &~ 30% of the millisecond
pulsar population may be produced via a non-standard evolu-
tionary channel. This prediction falls in line with a distribution
that has a consistent recycled peak but has an unusual width
(and some skewness with a heavy tail on the high-mass end),
which extends up to 2.1 M. While it is difficult to quantify the
formation rate(s) of non-standard processes that may produce
these NSs, it is clear that the standard scenario requires at least
a revision. Such a revision should consistently account for the
observed P—P distribution of millisecond pulsars, along with the
long term sustainability of unusually high accretion rates that
would be required to produce a population of second generation
massive NSs.

The only viable alternative to a major revision of the mass
evolution implied by the standard recycling scenario, also
corroborated by the lack of truncation of the underlying NS
mass distribution and enforced by the heavier tail of the skewed
distribution inferred from NS-WD systems, is then to form
massive NSs.

The authors thank P. Freire for sharing updated probability
distribution functions from which some of the NS mass esti-
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NSF grant AST-0506453. The authors thank the anonymous
referee for a critical review. After this work was submitted for
initial review, Ozel et al. (2012) discussed an alternate approach
for estimating the NS mass distribution assuming a Gaussian
underlying distribution.
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APPENDIX A

BAYESIAN INFERENCE FOR THE NEUTRON
STAR MASS DISTRIBUTION

A.l. Hierarchical Model Formulation

The skewed normal distribution in Equation (13) admits a
stochastic representation as a mixture of normal distributions
with a truncated normal mixing distribution. Introducing trun-
cated normal latent random variables z; and reparameterizing
SN(- | u, o, @) to SN(- | w, T2, ), as described in Section 4.2,
we have

ind
M | zis i, T2 = NM; | o+ ¥zi, T2);

ind
zi ~ N(O, D1jo,00)(z:) (A1)

as a hierarchical mixture representation of SN(M; | w, T2, %)
(that is, if we marginalize over the z; in (Al), we obtain

My | 729 ZSNOM, | e, 12, ). Here, N(O, D)1jp.0(2)
indicates a standard normal distribution restricted to R*.

To facilitate MCMC posterior simulation, we work with this
formulation for the skewed normal distribution. The second line
of the hierarchical model for the data given in Equation (15)
is therefore changed as indicated in Equation (A1) to give the
following hierarchical model for the data:

ind

m; | M; ~ AN(m; — M; | c;,d), i=1,...,n

ind
Mi | ziy i, T2 S NM; | o+ Yz, T2,

. .
zi ~ N(zi | 0, Dlp,ey(zi), i=1,...,n.

The Bayesian model is completed with (conditionally conju-
gate) priors for the NS mass distribution parameters. Specif-
ically, we place a bivariate normal prior, N((u, W 6,%),
on (u, ¥) with mean vector 6 and covariance matrix X and an
inverse-gamma prior, IG(t2|a, b), on T2 with shape parameter
a > 1 and scale parameter b, such that the prior mean of 7 is

b/(a—1).
A.2. MCMC Posterior Simulation Method

In addition to the N'S mass distribution parameters (i, 72, V),
the model parameters include the individual NS masses
My, ..., M,, as well as the auxiliary random variables
Z1, ..., 2. The likelihood function and the priors for (u, V)
and 72 combine to give the posterior distribution for all model
parameters, which is proportional to:

N, )" | 6, DIG(z?|a, b)l—[{AN(mi — M | ci,di)
i=1

X N(M; |+ ¥z, TN | 0, D1jo,00)(2)}- (A2)

We utilize an MCMC posterior simulation algorithm to sample
from the posterior distribution. The MCMC algorithm dynam-
ically updates the model parameters by simulating from their
full conditional distributions in turn and, upon reaching con-
vergence, the resulting samples are samples from the posterior
distribution that may be used for inference. The key benefit
of the augmented hierarchical model that includes the auxil-
iary variables zi, ..., z, is that it allows for the use of a Gibbs
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Figure 4. Histograms of posterior predictive distributions for replicated responses for each pulsar. Columns 1-3 plot results for each observed pulsar mass estimate
m; in DNS systems and Columns 4—6 plot results for mass estimates in NS—WD systems. The corresponding data for the measured NS masses, including both the

estimates and the error bars, are displayed in each panel.

sampler, which is both efficient and straightforward to imple-
ment, since it involves sampling from standard distributions as
described below.

For each i = 1, ..., n, the full posterior conditional distri-
bution for M; is proportional to AN(m; — M, | ¢;, d;)N(M; |
w+vz, 72), which can be shown to result in a mixture of two
truncated normals. The first truncated normal has mean {(u +
Vzi)cid? +mit?}/(t? +c7d}?) and variance (t?c7d?) /(T +c7d?)
and is restricted to the interval (—oo, m;]. The second truncated
normal has mean {(i + ¥ z;)(d?/c?) +m;T?}/(x? + (d? /c?)) and
variance (t2d?/c?)/(t? + (d?/c?)) and is restricted to the inter-
val (m;, 0c0). The (unnormalized) weight of the first truncated
normal is

exp | (1 + Yz —m;)? . td;c;
P 2(t2 + ctd?) (c2 +d?c?)'?

5 {q) (mi — ((+Yz)eid? + mit?) [ (<2 +di2c,.2))}

‘L’d,'C,'/(Tz + dizciz)l/2

10

and that of the second is
(L +Yzi —m;)? ) Td; /c;
<r2 +

| S W
o[ttt

Each M; is therefore updated at each MCMC iteration by
drawing from a mixture of two truncated normals, with the
parameters given above.

Next, the full conditional distribution for z; is proportional to
NM; | w+ ¥zi, ©™)N(z | 0, 1)1{0,00)(zi), which results in a
truncated normal distribution with mean (M; — p)y/(¥? + 2)
and variance t2/(y¥2 + t2), restricted to [0, 00).

The NS mass distribution parameters can be sampled
with standard updates. The posterior full conditional dis-
tribution for (u, ¥) can be derived as a bivariate normal
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distribution,

N, W) T E !+ 27227 &0 + 2T My,

x '+ zTz/eH™h, (A3)
where M = (M4, ..., M,)T and Z is an n x 2 matrix with
Zy = 1land Z;, = z;, fori = 1,...,n. Lastly, the full
conditional for 72 is given by an inverse-gamma distribution
with updated shape and scale parameters, IG(a + n/2,b +
Y M — = ¥zi)?/2).

The Gibbs sampler is therefore implemented with the follow-
ing general procedure:

1. Begin with nitial values AMO MOy O 20y,
1O @ 20
2. If the current sample at iteration ¢ is ({M(’), ey, MDY,

{z(lt), e 2% w0 @ 720y obtain the next sample by

simulating from the following distributions:

(a) draw /\/ll(-m), i =1,...,n,fromamixture of truncated
normal distributions as described above, using the

current values of parameters (), @, {z(f) U 0
and t2®;
(b) draw zg”l), i = 1,...,n, from a normal distribu-

tion with mean (ME’H) — 1D /(2O 4 £20) and
variance 72 /(2 + £2®), restricted to the interval
[0, 00);

(c) draw (u, ¥)“*D jointly from the bivariate normal
distribution given in Equation (A3), using the current
values of all other parameters;

(d) draw 220+ from IG(a+n/2, b+ 3" (M) — 0+ —
W(r+l)Z(~t+l))2/2).

3. Repeat the previous step, fort =1, ..., T.

The chain appeared to converge very rapidly; when two chains
were run with different initial values, they converged within just
a few iterations. There was some autocorrelation present for
w and ¥, but it fell below 0.2 after approximately a lag of 5
and samples were approximately uncorrelated by a lag of 10.
In light of these results, all inferences are based on 10,000
posterior samples, which came from a longer chain that was
thinned, retaining every 10 posterior samples.

A.3. Prior Specification

Hyperparameters 6 = (0,,, 6,)", Z, a, and b must be specified
in this Bayesian model. First, note that E(M) =60, + 0y E(z)
and that the skewness parameter of the NS mass distribution is
a = /7. To avoid favoring skewness in the prior distribution,
we set E(y) = 6y = 0 and then set 6, to a reasonable prior
location for the NS mass distribution for each system. The set
of priors used for the results in Section 4.2 had 6, = 1.3
for the DNS system and 6, = 1.45 for the NS-WD system.
With 6, = 0, we have that Var(M) =b/(a — 1) + X, + Xy,
where (X,, Zy) are the elements of matrix X, which is taken
to be diagonal. We fix a = 3 in each set of priors and for
the DNS system we set b/(a — 1), ¥, and X, all to 0.25%/3.
For the NS-WD system, we set all three expressions to 0.3%/3.
These result in a fairly dispersed (thus, non-informative) prior
distribution for NS masses, as demonstrated by the prior interval
estimates in Figure 3.
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APPENDIX B
POSTERIOR PREDICTIVE MODEL CHECKING RESULTS

As discussed briefly in Section 4.3, for model checking we
work with the posterior predictive distributions for replicated
responses for each pulsar. For each i = 1, ..., n, the corre-
sponding expression is given by

P(m;” | data) = /AN(m;eP — M | ¢i,dj)p(M; | data) dM,;.

This distribution can be sampled by drawing a random variate
from the asymmetric normal distribution in the integral rep-
resentation above for each posterior sample of M;. Figure 4
provides histograms of these posterior predictive samples for
replicated responses associated with each pulsar from the DNS
and NS-WD systems. Again, the results suggest a good predic-
tive performance of the model.
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