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ABSTRACT

A fundamental assumption in our understanding of disks is that when the Toomre Q > 1, the disk is stable
against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks
are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass
concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations,
i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks
are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via
stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M ~ 0.1
can produce a few stochastic fragmentation or “direct collapse” events over ~Myr timescales, even if Q > 1 and
cooling is Slow (fco01 > forbit)- In transsonic turbulence this extends to O ~ 100. We derive the true Q-criterion
needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven
by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the
cooling time. Cooling times 250 f4,, may be required to completely suppress fragmentation. These gravo-turbulent
events produce mass spectra peaked near ~(Q Myiw/M,)> Mg (rocky-to-giant planet masses, increasing with
distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar
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nebulae could experience stochastic collapse events, provided a source of turbulence.
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1. INTRODUCTION
1.1. The Problem: When Do Disks Fragment?

Fragmentation and collapse of self-gravitating gas in turbu-
lent disks is a process central to a wide range of astrophysics,
including planet, star, supermassive black hole, and galaxy for-
mation. The specific case of a “marginally stable,” modestly
turbulent Keplerian disk is particularly important, since this is
expected in protoplanetary and proto-stellar disks as well as
active galactic nucleus (AGN) accretion disks. There has been
considerable debate, especially, regarding whether planets could
form via “direct collapse”—fragmentation of a self-gravitating
region in a protoplanetary disk—as opposed to accretion onto
planetesimals (see, e.g., Boley et al. 2006; Boley 2009; Dodson-
Robinson et al. 2009; Cai et al. 2008, 2010; Vorobyov & Basu
2010; Johnson et al. 2010; Boss 2011; Stamatellos et al. 2011;
D’Angelo et al. 2011; Forgan & Rice 2013, and references
therein). Even if this is not a significant channel for planet for-
mation, it is clearly critical to understand the conditions needed
to avoid fragmentation. This is especially demanding because
such fragments need only form an order-unity number of times
over the millions of dynamical times most protoplanetary disks
survive, to account for a significant fraction of planets.

Yet there is still no consensus in the literature regarding
the criteria for “stability” versus fragmentation in any disk,
especially in nearly Keplerian protoplanetary disks. The classic
Toomre Q-criterion,

Og K

0= 7 G Zgus

> 1, (1)

where oy is the gas velocity dispersion, k ~ € the epicyclic fre-
quency, and X, the gas surface density (Toomre 1964, 1977;
Goldreich & Lynden-Bell 1965), appears to offer some guid-
ance. And indeed, for Q < 1, most of the mass in disks frag-
ments into self-gravitating clumps in roughly a single crossing
time. But this was derived for a smooth, homogeneous disk,
dominated by thermal pressure with no cooling, and so does
not necessarily imply stability in any turbulent system. Gammie
(2001) studied a more realistic case of a turbulent disk with some
idealized cooling and showed that if the cooling time exceeded
a couple times the dynamical time, the disk could maintain its
thermal energy (via dissipation of the turbulent cascade), with a
steady-state Q 2 1 and transsonic Mach numbers (powered by
local spiral density waves), thus avoiding runway catastrophic
fragmentation.

However, many subsequent numerical simulations have
shown that, although catastrophic, rapid fragmentation may be
avoided when these criteria are met; simulations with larger
volumes (at the same resolution) and/or those run for longer
timescales still eventually form self-gravitating fragments, even
with cooling times as long as ~50 times the dynamical time (see
references above and, e.g., Rice et al. 2005, 2012; Meru & Bate
2011a, 2011b, 2012; Paardekooper et al. 2011; Paardekooper
2012). Increasing spatial resolution and better resolution of the
turbulent cascade (higher Reynolds numbers) appear to exac-
erbate this—leading to the question of whether there is “true”
stability even at infinitely long cooling times (Meru & Bate
2012). And these simulations are still only typically run for a
small fraction of the lifetime of such a disk (or include only a
small fraction of the total disk mass, in shearing-sheet models)
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and can only survey a tiny subsample of the complete set of
parameter space describing realistic disks.

1.2. The Role of Turbulent Density Fluctuations

Clearly, the theory of disk fragmentation requires revision.
But almost all analytic theoretical work has assumed that the
media of interest are homogeneous and steady-state (though
see Kratter & Murray-Clay 2011, and references above),
despite the fact that perhaps the most important property of
turbulent systems is their inhomogeneity. In contrast to the
“classical” homogenous models, Paardekooper (2012) went so
far as to suggest that fragmentation when Q 2 1 may be a funda-
mentally stochastic process driven by random turbulent density
fluctuations—and so can never “converge” in the formal sense
described by the simulations above. That said, simulations of
idealized turbulent systems in recent years have led to important
breakthroughs, in particular, the realization that compressible,
astrophysical turbulence obeys simple inertial-range velocity
scalings (e.g., Ossenkopf & Mac Low 2002; Federrath et al.
2010; Block et al. 2010; Bournaud et al. 2010), and that—at
least in isothermal turbulence—the density distribution driven
by stochastic turbulent fluctuations develops a simple shape,
with a dispersion that scales in a predictable manner with the
compressive Mach number (Vazquez-Semadeni 1994; Padoan
et al. 1997, Scalo et al. 1998; Ostriker et al. 1999).

Recently, in a series of papers (Hopkins 2012b, 2012c,
2012d, 2013a, 2013b), we showed that the excursion-set for-
malism could be applied to extend these insights from ide-
alized simulations and analytically calculate the statistics of
bound objects formed in the turbulent density field of the
interstellar medium (ISM). This is a mathematical formu-
lation for random-field statistics (i.e., a means to use the
power spectra of turbulence to predict the statistical real-
space structure of the density field), well known from cos-
mological applications as a means to calculate halo mass
functions and clustering in the “extended Press—Schechter”
approach from Bond et al. (1991). This is a well-known the-
oretical tool in the study of large-scale structure and galaxy
formation and underpins much of our analytic understanding
of halo mass functions, clustering, mergers, and accretion his-
tories (for a review, see Zentner 2007). The application to
turbulent gas therefore represents a means to calculate many
interesting quantities analytically that normally would require
numerical simulations. In Hopkins (2012b) (hereafter Paper I),
we focused on the specific question of giant molecular clouds
(GMCs) forming in the ISM and considered the simple case of
isothermal gas with an exactly lognormal density distribution.
We used this to predict quantities such as the rate of GMC forma-
tion and collapse, their mass function, size—mass relations, and
correlation functions/clustering and showed that these agreed
well with observations. In Hopkins (2013a, hereafter Paper II),
we generalized the models to allow arbitrary turbulent power
spectra, different degrees of rotational support, non-isothermal
gas equations of state, magnetic fields, intermittent turbulence,
and non-Gaussian density distributions; we also developed a
time-dependent version of the theory, to calculate the rate of
collapse of self-gravitating “fragments.”

1.3. Paper Overview

In this paper, we use the theory developed in Paper I and
Paper 1II to calculate the statistics of fragmentation events in
Keplerian, sub-, and transsonically turbulent disks, with a par-
ticular focus on the question of fragmentation in protoplanetary
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disks. We develop a fully analytic prediction for the probabil-
ity, per unit mass and time, of the formation of self-gravitating
fragments (of a given mass) in a turbulent disk. In addition to
providing critical analytic insights, this formulation allows us to
simultaneously consider an enormous dynamic range in spatial,
mass, and timescale and to consider extremely rare fluctuations
(e.g., fluctuations that might occur only once over millions of
disk dynamical times), which is impossible in current numer-
ical simulations.* We will show that this predicts “statistical”
instability, fragmentation, and the formation of candidate “direct
collapse” planets/stars even in the “classical” stability regime
when Q > 1and cooling is very slow. However, these events oc-
cur stochastically, separated by much larger average timescales
than in the catastrophic fragmentation that occurs when Q < 1.
We will show that this naturally explains the apparently dis-
crepant simulation results above and may be important over a
wide dynamic range of realistic disk properties for formation of
both rocky and giant planets.

2. “CLASSICAL” VERSUS “STATISTICAL” STABILITY

Motivated by the discussion above, and the models developed
in this paper, we will introduce a distinction between two types
of (in)stability: “classical” and “statistical.”

By “classical” instability, we refer to the traditional regime
where O < 1, in which small perturbations to the disk
generically grow rapidly. A “classically unstable” disk will
fragment catastrophically, with a large fraction of the gas mass
collapsing into self-gravitating objects on a few dynamical
times. A “classically stable” disk will survive many dynamical
times in quasi-steady state, and gas at the mean density will not
be self-gravitating.

By “statistical” instability, we refer to the regime where an
inhomogeneous disk experiences sufficiently large fluctuations
in density such that there is an order-unity probability (integrated
over the entire volume and lifetime of the disk) of the formation
of some region which is so overdense that it can successfully
collapse under self-gravity. A “statistically stable” disk has a
probability much less than unity of such an event occurring,
even once in its lifetime.

Classically unstable disks are always statistically unstable,
and statistically stable disks are always classically stable.
However, we argue in this paper that there is a large regime
of parameter space in which disks can be classically stable,
but statistically unstable. In this regime, disks can, in principle,
evolve for millions of dynamical times with Q > 1, and nearly
all the disk mass will be stable, but rare density fluctuations
might form an order-unity number of isolated self-gravitating
“fragments.”

3. MODEL OUTLINE

Here, we present an order-of-magnitude, qualitative version
of the calculation which we will develop rigorously below.

4 1t is important to clarify that, when we refer to “large fluctuations.” we are
not referring to extremely large, single-structure “forcing” events (e.g., a very
strong shock on large scales). In fact, we assume that the probability of such
“positive intermittency events” (isolated, large-amplitude Fourier modes) is
vanishingly small (p; = 0, in the language of the intermittency models
discussed in Section 4 and Hopkins 2012a, 2013a). What we calculate is the
(rare) probability of many small, independent fluctuations on different scales
acting, by random chance, sufficiently “in phase” so as to produce a large
density perturbation. If “positive intermittency events” do occur, it may
significantly increase the probability of rare collapse events.
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This serves to illustrate some important scalings and physical
processes.

Consider an inhomogeneous disk (around a star of mass M,,)
with scale radius r,, scale height #, mean surface density X and
midplane density pg &~ X£/(2h), and Toomre Q > 1. Although
the disk is classically stable (and so not self-gravitating at the
mean density), if a local “patch” of the disk exceeds some
sufficiently large density, then that region will collapse under
self-gravity. The most unstable wavelengths to self-gravity are of
order the disk scale height ~h; roughly speaking, a gas parcel of
this size will collapse under self-gravity if it exceeds the Roche
criterion (overcomes tidal forces): p = M,/ rf ~ Q py.

So for Q = 1 we see that gas at the mean density will not
collapse. However, turbulence produces a broad spectrum of
density fluctuations. For simple, isothermal turbulence with
characteristic (compressive) Mach number M = (vtzurb)l/ 2 /¢y,
the (volumetric) distribution of densities is approximately
lognormal, with dispersion oy,, ~ +/In[1+ M?] (=M for
M.

Since density fluctuations exceeding p 2 Q po (In(p/p0) =,
In Q) can collapse, we integrate the tail of the lognormal den-
sity probability distribution function (PDF) above this critical
density to estimate the probability P. ~ erfc[(In Q)/ (ﬁ Oinp)ls
per unit volume, of a region being self-gravitating at a given
instant. Since we are considering regions of size ~#h, the disk
contains approximately ~(r,./ h)* independent volumes, and so
(assuming that P, is small) the probability of any one such
volume having a coherent volume-average density above the
critical threshold is P, ~ (r,/h)?* P..

Now consider that a typical protoplanetary disk (at a few AU)
might have Q ~ 100 and M ~ 1, with h/r, ~ 107", In this
case, P. ~3 x 1078 and P, ~ 3 x 107 are extremely small!

However, this analysis applies to the disk viewed at a single
instant. Turbulent density fluctuations evolve stochastically in
time, with a coherence time (on a given scale) about equal to the
bulk flow crossing time ~h /v, (since this is the time for fluid
flows to cross and interact with a new independent region of size
~h). So the density PDF is re-sampled or “refreshed” on the
timescale ~h /v, ~ 1/(M Q). But this is just a dynamical time,
which is very short relative to a typical disk lifetime (Q~! ~ yr
at ~10 AU). If the disk survives for a total timescale #,, then
the entire volume is re-sampled ~M £y Q independent times.
So the probability, integrated over time, of any one of these
volumes, at any one time, exceeding the self-gravity criterion,

is Pl ~ M1y Q(r./h)* erfc[ln Q/(V20m,)l.

If a typical disk with parameters above survives for ~Myr,
or ~10° crossing times, we then obtain a time-and-volume-
integrated probability Pfir‘;; ~ 1 of at least a single stochastic
“fragmentation event” driven by turbulent density fluctua-
tions. The mass of the self-gravitating “fragment” will be
~(47m/3) h? p~40 h? po~ 4 (h/r*)3 M, (~0.1-1 MJupiters for
these parameters in a minimum-mass solar nebula). And, despite
the fact that the average timescale between such events may be
long (~Myr), if a fragment forms, it forms rapidly (in ~yr) on
the turbulent crossing time ~1/(M ) ~ yr and has a short
collapse/free-fall time ~1/,/Gp ~ Q™! ~ yr. Despite having
QO ~ 100, then, we estimate that this disk could be statistically
unstable!

For otherwise fixed h/r, ~ 0.1 and M ~ 1, Pf"r‘;‘g declines

exponentially with increasing Q. So for @ > 100, Pfir“;g <1

5 To derive this, we assume a Keplerian disk, Q2 ~G M, / rf, and vertical

equilibrium, 2 & ¢, /Q, for a disk supported by thermal pressure.
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and such a disk is both classically and statistically stable. For
QO < 1, the disk is classically unstable, and even material at the
mean density (i.e., an order-unity fraction of the mass) begins
collapsing on a single dynamical time. But for 1 < @ < 100,
such a disk is classically stable, but statistically unstable.
Below, we present a more formal and rigorous derivation of
statistical (in)stability properties and consider a range of disk
properties. But the simple order-of-magnitude arguments above
capture the most important qualitative behaviors we will discuss.

4. THE MODEL: TURBULENT
DENSITY FLUCTUATIONS

As mentioned above, turbulence in approximately isother-
mal gas (neglecting self-gravity) generically drives the density
PDF to an approximate lognormal (a normal distribution in
In (p)). This follows from the central limit theorem (see Passot
& Vazquez-Semadeni 1998; Nordlund & Padoan 1999), al-
though there can be some corrections due to intermittency and
mass conservation (Klessen 2000; Hopkins 2012a). And in the
simplest case of an ideal box of driven turbulence, the vari-
ance S simply scales with the driving-scale Mach number M
as § = In[1 + > M?] (where b is a constant discussed below).
These scalings have been confirmed by a huge number of nu-
merical experiments with M ~ 0.01-100, sampling the PDF
down to values as low as ~107' in the “tails” (Federrath et al.
2008, 2010; Federrath & Klessen 2012; Schmidt et al. 2009;
Price & Federrath 2010; Konstandin et al. 2012).

This is true in both sub-sonic and super-sonic turbulence (see
references above), as well as highly magnetized media (with
the magnetic fields just modifying b or the effectively com-
pressible component of M; see Kowal et al. 2007; Lemaster &
Stone 2009; Kritsuk et al. 2011; Molina et al. 2012), and
even multi-fluid media with de-coupled electrons, ions, neutral
species, and dust (see Downes 2012).% And although the density
PDF is not exactly lognormal when the gas is no longer isother-
mal, the inviscid Navier—Stokes equations show that the local re-
sponse is invariant under the substitution S(M) — S(M | p) =
In[1+ b v?/c2(p)], allowing an appropriately modified PDF that
provides an excellent approximation to the results in simulations
(see Scalo et al. 1998; Passot & Vazquez-Semadeni 1998).

In Paper I and Paper II, we use these basic results to show
how excursion-set theory can be used to analytically predict the
statistical structure of turbulent density fluctuations. The details
are given therein; for the sake of completeness, we include a
summary of the important equations in Appendix B. Here, we
briefly describe the calculation.

6 Itis a common misconception that lognormal density PDFs apply only to
super-sonic, non-magnetized turbulence. In fact, while they apply strictly to
only isothermal (non-intermittent) turbulence (as discussed in Section 4), the
analytic derivation of lognormal PDFs actually assumes small (local) Mach
numbers (see Nordlund & Padoan 1999). The lognormal model (with the
higher-order intermittency corrections we include in Section 5) and the simple
assumptions we use for the scaling of the density power spectrum with
velocity power spectrum have been tested in the sub-sonic limit in both
simulations (see Shaikh & Zank 2007; Kowal et al. 2007; Burkhart et al. 2009;
Schmidt et al. 2009; Konstandin et al. 2012) and also in experimental data
from the solar wind (Burlaga 1992; Forman & Burlaga 2003; Leubner &
Voros 2005) and laboratory MHD plasmas (Budaev 2008), as well as jet
experiments (Ruiz-Chavarria et al. 1996; Warhaft 2000; Zhou & Xia 2010).
The power spectrum predictions in this limit, in fact, generically follow the
well-known and tested weakly compressible Kolmogorov-like scaling
(Montgomery et al. 1987; Zank & Matthaeus 1990). And in Hopkins (2012a),
we show that deviations from lognormal statistics in the high-density wing of
the distribution are less significant at lower Mach numbers. Likewise, because
of the lower compressive Mach numbers, these assumptions are more accurate
in solenoidally forced and/or magnetized turbulence (see Kowal et al. 2007;
Hopkins 2012a; Federrath 2013).
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Consider the field px(R) = p(x| R): the density field about
the (random) coordinate x in space, smoothed with some
window function of characteristic radius R (e.g., the average
density in a sphere). If the gas is isothermal (we discuss more
complicated cases below), this is distributed as a lognormal:

[In px(R) + S(R)/2]2)
2 S(R) ’

1
P(In[px(R)]) NZ3903) exp (
2

where S(R) is the variance on each scale R. S(R) is just the
Fourier transform of the density power spectrum, which itself
follows from the (well-defined) velocity power spectrum (see
Equation (B2)). Essentially, S(R) is determined by integrating
the contribution to the variance on each scale from the velocity
field, using the relation AS ~ In (1 + 5> M(R)?) (M(R) is the
scale-dependent Mach number of the velocity field).

“Interesting” regions are those where px(R) exceeds some
critical value, above which the region is sufficiently dense so
as to be self-gravitating. Including the effects of support from
angular momentum/shear, thermal and magnetic pressure, and
turbulence, this is given by

2 R it
pcrlt(R) Q (14_2) |:Ug( s Perit) ﬁ+l~('2 £:| 3)

po 2Kk R oZ(h, po) R h

(Vandervoort 1970). Here pg is the mean midplane density of the
disk, & is the disk scale height, k = x /€ = 1 for a Keplerian disk
(k is the epicylic frequency), and Q = (o,[h, pol k)/(T G Zgys)
is the Toomre Q parameter. The effective gas dispersion
a7(R, p) = c(p)+(v}(R))+vi(p, R)(Equation (B5))includes
the thermal (c;), turbulent (v,), and magnetic support (Alfvén
speed v, ). A full derivation is given in Paper I, but we stress that
this not only implies/requires that a region with p(R) > pcric(R)
is gravitationally self-bound, but also that such regions will not
be unbound by tidal shear (i.e., have sizes within the Hill ra-
dius) and that they will not be unbound/destroyed by energy
input from the turbulent cascade (shocks and viscous heating).’
Knowing the size R and critical density p.,;; of a region, it is triv-
ial to translate this to the total collapsing gas mass M = M(R).
We desire the mass and initial size spectrum of regions which
exceed pcri¢ (so are self-gravitating) on the scale R specifically
defined as the largest scale on which the region is self-gravitating
(i.e., excluding “sub-units” so that we do not double-count
“clouds within clouds”). In Paper I we show that this reduces
to a derivation of the “first-crossing” distribution for the field
px(R). The mass function of collapsing objects can be written

generally as
d_n IOCl’lt(M)

M “

—— frM )‘

7 Note that in Equation (3) we consider the rms turbulent velocity (i.e., do not
explicitly treat different velocity fluctuations), even though we consider density
fluctuations from the turbulence. In Paper I and Paper I we show that this is a
very small source of error (see also, e.g., Sheth & Tormen 2002, who show that
even for pressure-free flows with velocities typically above escape velocities,
this introduces a ~10% correction to the predicted mass functlon) But
particularly here, since the turbulence of interest is sub-sonic, (v (R)) is never
the dominant component of a . Moreover, even though velocity fluctuations
do drive the density ﬂuctuations, because these are built up hierarchically in
the cascade, the magnitude of the coherent velocity fluctuations on a given
scale is instantaneously nearly uncorrelated with the density fluctuations (see
Federrath et al. 2010, who find (v,(R)) (,o(R)/,oo)‘O'OS). Inserting such a
scaling into our model is straightforward, but has no detectable effect in any
figure shown. Finally, the most important effects of coupled velocity-density
fluctuations are already included in the models for intermittency we consider,
since this coupling makes the PDF non-lognormal.
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where f/(S) is a function given in Equation (B8) that is
somewhat cumbersome to derive (see Paper I for details), but
depends only on how the dimensionless quantities S(R) and
Perit(R)/ po “run” as a function of scale R.

In Paper II, we further generalize this to fully time-dependent
fields. In statistical equilibrium, the density field obeys a
modified Fokker—Planck equation with different modes evolving
stochastically—they follow a damped random walk with a
correlation time equal to the turbulent crossing time for each
spatial scale/wavenumber. This allows us to directly calculate
the probability per unit time of the formation of any bound
object in the mass function above. The exact solution requires
a numerical approach described in Paper I (Section 7) and
Paper II (Sections 9 and 10), but to very good approximation
(for Mdn/dIn M < py) this is just

dn At
AP(M, Ar) ~ M ‘L’(M) 5)

where ©(M) = R[M]/v,(R[M]) is the turbulent crossing time
on the scale R[M] corresponding to the mass (Equation (B6)).
This is because the coherence time of density fluctuations on a
given scale is just the crossing time.

Now consider a disk, or disk element (if we consider a series
of cylindrical annuli at different disk-centric radii) with total
mass M,. By the definitions used in Paper I and Paper II, this
means the total “effective volume” is M/ po, i.e., that the total
(integrated) number of objects per unit mass is

ds ’
vk

dN Md dn
frM 'dl

dlogM - EdlogM

Md Pcrit
M po

For any polytropic gas, we can factor out all dimensional
parameters and work in units of A and pg. Mass then has
units of po k. But since for a disk in vertical equilibrium
h = 0,/Q and for a Keplerian disk k = Q = (G M, r>)!/?
(where M, is the central mass and r, is the disk-centric radius),
we have Q = (o,[h]K)/(m GZgs) = hQ?/(m GZg) =
(h/re) M., /(71 Zgas rf). So we can write (h/r,) = Q u, where

2
T Zgas r* ~ Md
M, M,

n , )

where M, is the disk mass within R. For an exponential vertical
profile used to define our dispersion relation, Xgs = 2 oo &,
so we can use this and (h/r,) Ou to link poh® =
Q)" (n Q)* M. We can then remove the local quantities pg
and % and define mass in the much simpler global units of 1 and
M. The units of d N defined above are M, /(py h*), so this can
be similarly re-written. And since the disk crossing time scales
as ~h/oglh] = QL provides a natural time unit.

Having defined units, the model is completely specified by
dimensionless parameters. These are the spectral index p of the
turbulent velocity spectrum, E(k) o k=7 (vf(R) o« RP~1), and
its normalization, which we define by the Mach number on
large scales Mﬁ = (v2(h))/c2, as well as the Toomre param-
eter Q. We must also specify the parameter b, i.e., the mean
fraction of the velocity in compressive modes. This is b = 1
for purely compressively forced turbulence, b = 1/3 for purely
solenoidally forced turbulence, and b = 1/2 for random forc-
ing. But we can almost completely factor out the dependence on
this parameter if we simply define the compressive component
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of the turbulence, i.e., work in units of the compressive Mach
number® M, = b M.

In Paper II, we show how these equations generalize for
the cases with non-isothermal gas, intermittent turbulence, and
non-isotropic magnetic fields. The qualitative scalings are sim-
ilar, but the math becomes considerably more complicated (and
the “first-crossing distribution” f(M) and its evolution in time
must be solved via a numerical Monte Carlo method rather than
analytically). The presence of intermittency makes the density
PDF non-Gaussian and introduces explicitly correlated fluc-
tuation structures, but this can be entirely encapsulated in a
modified form of Equation (B8) above (see Paper II; Appendix
D), leaving the rest of our derivation intact. We will consider
such non-Gaussian, correlated statistics and show that they give
very similar results. For non-isothermal cases, we must replace
¢s —> ¢s(p) (in calculating both the variance and critical den-
sity) and again allow for the density PDF to be non-Gaussian
(with a skew toward lower/higher densities as the equation of
state is made more or less “stiff,” respectively; see Sections 3
and 4 in Paper II; this also introduces higher-order correlations
in the fluctuation statistics, distinct from those associated with
intermittency). Modulo these changes, however, our derivations
(and the changes made to specify to the Keplerian disk case)
are identical for the simple case of a polytropic gas where
¢ oc p7~! (y is the polytropic index). Magnetic fields can pro-
duce global anisotropy, but this can be simply absorbed into the
form of f;(M) as well; their largest effect in suppressing fluctu-
ations manifests as a field-strength-dependent value b (Paper II,
Section 6, and, e.g., Kowal et al. 2007; Lemaster & Stone 2009;
Molina et al. 2012). For the strong-field limit, however, this is
just similar to the pure-solenoidal turbulence case (in both cases,
there is only one spatial dimension along which compression is
possible) and so is within the range of b variations we will
consider.”

5. RESULTS: FRAGMENTATION RATES AND MASS
SPECTRA IN THE GENERAL CASE

In Figure 1, we now use this to predict the mass spectrum—
specifically the probability per unit time, per unit mass—of the

8 At sufficiently small M., the compressive-to-total Mach number ratio can
scale steeply with Mach number depending on the turbulent forcing (see Zank
& Matthaeus 1990; Zank et al. 1990). Because we work specifically with the
compressive Mach number, this is largely irrelevant to our calculation (what
does matter is that the relation between M, and density fluctuations remains
intact; see Konstandin et al. 2012). Moreover, the “steepening” becomes
significant only below the minimum M, values we will identify as interesting
(compare, e.g., Figure 6 of Konstandin et al. 2012), especially for magnetized
turbulence (where other effects have the opposite sense; see Ostriker et al.
2001; Shaikh 2007; Price et al. 2011; Molina et al. 2012).

9 We do caution that some of our simple assumptions (for example, how we
assume that the density and velocity power spectra “turn over” at large-scale
heights z Z h) remain to be tested in simulations of fully nonlinear, shearing,
vertically stratified, MHD turbulence. However, within the disk scale height,
preliminary comparisons suggest that these corrections have little effect. In
Section 6.2 below, we explicitly compare the predictions from our model to the
variance in the midplane density field calculated in such simulations (vertically
stratified, shearing MRI boxes; Bai & Stone 2012) and find that our predictions
agree remarkably well over a range of field strengths. Moreover, we can repeat
this comparison at various vertical heights up to ~6 & and find ~10%
agreement. Recently, Arena & Gonzalez (2013) have performed numerical
experiments of three-dimensional (non-magnetized, isothermal) disks with
effective Mach numbers from ~1 to <0.1 (M, < 0.03); the results agree well
with our assumed form for the density distribution and power spectrum shape.
In future work (J. Lynn et al., in preparation), we will study the effect of
non-isothermal, stratified, rotating, and self-gravitating flows on turbulent
density fluctuations.
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formation of self-gravitating regions, as a function of various
properties of the system. '’

We define our “reference” model to be isothermal (y = 1),
non-intermittent (i.e., lognormal density PDF), with turbulent
spectral slope p = 2 (appropriate for compressible turbulence),
Toomre Q = 1, and have b = 1/2 (random forcing) with rms
three-dimensional compressive Mach number on the largest
scales M, = 1. But we then vary all of these parameters.
For now, we treat each as free—in other words, we make
no assumptions about the specific mass profile, temperature
structure, cooling chemistry, or other microphysics of the disk.
These microphysics are, of course, what ultimately determine
the value of the model parameters (and may build in some
intrinsic correlations between them); but for any given set of
parameters in Figure 1, the prediction is independent of how the
microphysics produce those parameters.

In general, the shape of the mass spectrum is similar re-
gardless of these variations. This is peaked (very approximately
lognormal-like) around a characteristic mass ~0.1-1 u? M. For
a relatively massive disk M; ~ 0.1 M,, then, we expect char-
acteristic masses in such events of ~10~* M, corresponding to
gas giants. If, however, the disk mass is lower, M; ~ 0.01 M,,
then this becomes ~107% M., typical of rocky (Earth-mass)
planets.

The dependence on the slope of the turbulent spectrum
is quite weak: Kolmogorov-like (p = 5/3, appropriate for
incompressible turbulence) spectra give nearly identical results;
shallower spectra slightly broaden the mass range predicted
(since M, declines more slowly at small scales), but these
are not seen in realistic astrophysical contexts. Likewise, at
fixed M., there is some dependence on b (because of how
M = M.,./b enters into the critical density for collapse),
but this is small in this regime, because turbulence is not the
dominant source of “support” resisting collapse. The effects of
intermittency are very weak, since they only subtly modify the
density PDF shape (see Paper II; the important point here is that
our predictions do not much change for reasonable departures
from Gaussian or lognormal statistics). Even changing the
equation of state has surprisingly mild effects. A “stiffer”
(higher-y) equation of state is more resistive to fragmentation
on small scales and leads to a more sharply peaked spectrum.
But for fixed M., the variance near the “core” of the density
PDF is similar independent of y, so this does not have much
effect on the normalization of the probability distribution. We
stress that the medium could have a perfectly adiabatic equation
of state with no cooling, and if it had the plotted Mach number
and Toomre Q, our result would be identical (and the probability
of fragmentation would still be finite). Very soft equations of
state, on the other hand, can lead to a runaway tail of small-
scale fragmentation, but this is not likely to be relevant. Clearly,
the largest effects come from varying M, and Q; at M, 2 1
or Q < 1 the mass distribution rapidly becomes more broad,
while at M, < 1or Q 2 1 the characteristic mass remains fixed
but the normalization of the probability becomes exponentially
suppressed.

This is summarized in Figure 2. Since the mass range of
expected “events” is relatively narrow, we integrate over mass

10 For simplicity, we will refer to these calculations as if the disk is constant
surface density out to some maximum radius, with total mass M, and Q (the
orbital velocity) defined at that radius, and constant Toomre Q parameter.
However, the results shown could be applied to any radius in a disk with any
mass profile (provided it is still Keplerian), with M, defined as the disk mass
inside a radial annulus, and Q and Q evaluated at that same radius.
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Figure 1. Here we show the rate of formation of self-gravitating clumps as a function of mass. We plot the probability per unit time, per log-interval in mass, of
the formation of a self-gravitating gas overdensity (turbulent density fluctuation) that can collapse—i.e., a “fragmentation event” and candidate planet formation via
direct collapse. Mass is in units of u? My, where My is the disk mass and & = M /M, is the disk-to-star (central object) mass; the probability is in units of w20,
where Q = 27 /tomi; is the Keplerian frequency. We define a “reference model” (M, =1, p =2, 0 =1,b =1/2,y = 1, T = 0) and vary each parameter in
turn. (1) Large-scale compressive (longitudinal) Mach number M. = b M[h]. Fragmentation is exponentially suppressed when M, <« 1 and develops on a single
crossing time over a broad mass range when M, >> 1. There is a characteristic mass ~u? My. (2) Turbulent spectral index (E (k) o< k~7), p = 2 is Burgers (highly
compressible) turbulence and p = 5/3 is Kolmogorov (incompressible); values outside this range are rare. This has weak effects, but shallower spectra give more
power on small scales. (3) Global Toomre parameter (Q ~ 1 for marginal classical stability). Q > 1 exponentially suppresses (but does not eliminate) fragmentation.
0O < 1 leads to “catastrophic” fragmentation in a single crossing time on a broad range of mass scales. (4) Fraction b of turbulent velocity in compressive modes
(M, = b M). In purely compressive turbulence b = 1, pure solenoidal turbulence (and/or cases with strong magnetic fields) b = 1/3, and random forcing b = 1/2.
At fixed compressive M, (not fixed M), this has a weak effect.® (5) Equation-of-state polytropic index y (cf o p?~1). “Soft” y < 1 produce a much broader
spectrum of fragmentation on small scales, as compared to isothermal (y = 1). y = 4/3 corresponds to a radiation-pressure supported disk with no cooling; y = 5/3
to an adiabatic disk with no cooling. These cases suppress fragmentation on smaller scales, but still form collapsing regions via turbulent density fluctuations on larger
scales with nearly the same integrated probability (normalization). (6) Intermittency parameter T (see Paper II; Appendix B). T = 0 is no intermittency; 7 = 0.05
corresponds to the intermittency model of She & Leveque (1994), appropriate for incompressible Kolmogorov turbulence; 7 = 0.12 to the model of Boldyrev (2002),
for more intermittent compressible super-sonic turbulence.

(A color version of this figure is available in the online journal.)

to obtain the total probability of an event per unit time, if we integrate the probability of a fragmentation event over
d Nirag dN the lifetime of the disk, we obtain an order-unity probability

— = / dlogM ——, ®) even for dNpge/dt ~ 10~% in the units here (i.e., M, as

dt dlog M dt small as ~0.15). Of course, following such an integration in

and plot this as a function of M, for different parameter detail requires knowing the evolution of the disk mass, Q,
choices. As before, most parameters make a surprisingly small M., etc. But we can obtain some estimate of the value of Q
difference; M, and Q dominate. required for statistical stability (ensuring that the probability
o . o of fragmentation events is negligible) by simply assuming that

5.1. A General Statistical Stability Criterion all quantities are constant and integrating over an approximate

timescale, also shown in Figure 2. Here we take our standard
model, consider three timescales in units of /,Lz Q! (a factor of
~100 shorter and longer than the value motivated above), and
consider the minimum Q at each M, needed to ensure that the
time-integrated probability of a fragmentation event is <1.
This minimum Qy,, is ~1 at M ~ 0.1; equivalently, disks
with @ ~ 1 and M, 2 0.1 have an order-unity probability of
at least one stochastic fragmentation event over their lifetime
P~ 1). At larger M, = 0.3-0.5, O = 3-5 is required

frag

Formally dNg,g/dt is always non-zero for M, > 0, but
we see that for M, < 1/2, the probability per unit time of
forming a self-gravitating fluctuation drops rapidly. However,
recall that the total lifetime of, e.g., a protoplanetary disk
is many disk dynamical times ~Q~!, and our “time unit” is
w* Q. Consider a typical lifetime of Tyvy = Taik/Myr ~ 1;
then the disk at ~10 AU around a solar-mass star (where
Q ~ 1yr~!) experiences ~10° dynamical times. For a disk-
to-total mass ratio of u ~ 0.1, this is ~108 “time units,” so (
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Figure 2. Top: probability (integrated over all masses in Figure 1) per unit
time of a fragmentation event vs. compressive Mach number M., for other
varied parameters. At fixed M, and Q, the turbulent power spectrum shape (p),
forcing mechanisms and presence/absence of magnetic fields (b), equation of
state (), and intermittency have small effects. In all cases the rate grows very
rapidly when M, 2> 0.1 and is suppressed when Q >> 1. Bottom: the minimum
value of Q for statistical stability, as a function of M. For O > Qpmin, the
time-integrated probability of a fragmentation event Pragine = f dt d Nipag /dt
is small (here we choose Ptir';fg < 0.1, but the exact choice has only a
weak logarithmic effect on the result). The three lines span a plausible range
for the “lifetime” of a turbulent protoplanetary disk (recall, Q~! ~ yr at
Jupiter, and typical © < 0.1). The curves approximately follow Qmin ~

0.5 exp (v/21n (Time/u2Q=1) In (1 + M2)) ~ 0.5 exp (6 /In (1 + M2)) (see
Equations (9)-(29)).

(A color version of this figure is available in the online journal.)

for Pfir‘;‘g « 1; and by sonic Mach numbers M, ~ 1-3,

QO 2 40-1000 is required for Pfir‘,‘;g < 1.

We can approximate the scaling of Quin(M,.) by the fol-
lowing: recall that the critical density near the Toomre scale h
scales approximately as In (pcrit/p0) ~ In(2 Q) (Equation (3)),
while the density dispersion scales as o, ~ /(1+M2)
(Equation (B2)). As noted above, if the system evolves for
a total timescale 79 = fo/(u? Q') (time in our dimen-
sionless units), then an event with probability per unit time
P = 1/19 has an order-unity probability of occurring. If the
probabilities are approximately normally distributed, then this
is just exp(—B2?/(2S)) ~ 1/1y, where B is the barrier and
S the variance. Since the mass function is peaked near the
Toomre scale, we can approximate both by their values near
the “driving scale” ~h, B ~ In(2Q) and S ~ In(l + M2).
Thus, statistical stability over some timescale of interest fg
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requires a Qnin in Figure 2 of

Omin & 0.5 exp [\/2 In(fon=2Q) In(1+ Mf)] )

For typical values of 1y, €2, and u—i.e., the typical number of
independent realizations (in both time and space) of the turbulent
field in a protoplanetary disk—this becomes

Omin ~ 0.5 exp (6 In(1+ M%)) ) (10)

In other words, a ~5-60y,, event has order-unity chance of
occurring once over the disk lifetime, so for any M, this implies
a minimum Q needed to ensure statistical stability in such an
extreme event.

6. HOW IS THE TURBULENCE POWERED? STATISTICAL
STABILITY IN SPECIFIC MODELS FOR TURBULENCE

Thus far, we have considered the general case, varying the
Mach numbers M, independent of other disk properties such
as O, X, and y. However, in a realistic physical model, the
mechanisms that drive turbulence may be specifically tied to
these properties. Moreover, there may be certain characteristic
Mach numbers expected or ruled out. In this section, we
therefore consider some well-studied physical scenarios for
the driving of turbulence in Keplerian disks and examine their
implications for the “statistical stability” we have described
above.

6.1. The “Gravito-turbulent” Regime
(Gravity-driven Turbulence)

Much of the work studying fragmentation in Keplerian disks
has considered disks with a (locally) constant-cooling rate (“¢”
disks, with oo = ¢ Q7! locally fixed). In particular, this
includes the scenario of a “gravito-turbulent” steady-state from
Gammie (2001), with local instabilities (spiral waves) powering
turbulence that contributes an effective viscosity and maintains
a steady temperature and Q ~ 1. The theory we present above
is more general than this: we make no assumption about the
detailed cooling physics, or that the disk is an «-disk, and
allow the various parameters Q, M., y, etc., to freely vary,
whereas many of these are explicitly linked in these models.
But in the theory above we cannot predict these quantities (or
their co-dependencies); therefore, this model provides a simple
and useful way to relate and predict some of the otherwise
independently free parameters of the more general case and is
worth considering in detail.

6.1.1. General Scalings

Consider a cooling rate which is uniform over a region
(annulus) of the disk,

Ieool = CQil‘ 1)

If dissipation of gravitational instabilities (e.g., spiral waves)
provides a source of heating balancing cooling, and ¢ 2 3,
the system can develop a quasi-steady-state angular momentum
transport and Toomre Q parameter, as in a Shakura & Sunyaev
(1973) -disk. Pringle (1981) and Gammie (2001) showed that
in this equilibrium, the “effective” viscosity parameter «,

4 1

~T L 12
NS¢ (12



THE ASTROPHYSICAL JOURNAL, 776:48 (18pp), 2013 October 10

is approximately constant. This corresponds to the amplitude of
density waves X/ o o!/2, leading to a maximum ety ~ 0.06
above (hence minimum ¢, below) which the local Q < 1 and
catastrophic fragmentation will occur (see Gammie 2001; Rice
et al. 2005; Cossins et al. 2009). In an «-disk, the inflow rate is
also determined, as

M= 3nac“2‘2gas§271, (13)

so this also corresponds to a maximum “classically stable”
inflow rate below which catastrophic fragmentation will not
occur.

Implicitly, the relations above also define a steady-state
Mach number. Recall, the dissipation of spiral instabilities is
ultimately governed by the turbulent cascade. Since the turbulent
dissipation rate is constant over scale in a Kolmogorov cascade,
we can take it at the top level, dE/d A dt = (p — 1)7! Zges v} Q
(where here we consider the rate per unit area) and equate it to the
cooling rate = [y (y — )] Zgas 2 1., giving M? ~ (3/2) a.
Equivalently, we could have equated the Reynolds stress that
leads to o, @ = (dInQ/dInr,)~! TRey/(Zgas cf) with Trey =
(Zgas 8V,0v¢); we obtain

2 1 14
AR - —
3y

M.~
(y —D¢

C

[NSY OS]

again.!! We now see how this relates to the theory developed in
this paper.

In the language here, increasing ¢ enters our theory by—as
discussed in the text—changing the equilibrium balance be-
tween thermal and turbulent energy, i.e., the Mach number. As
cooling becomes less efficient, maintaining the same Q ~ 1
needed to power the turbulence (since spiral waves are still gen-
erated) requires a smaller turbulent dispersion and hence makes
the system “more stable.”

6.1.2. A Statistical Stability Criterion

But this also suggests an improved statistical stability crite-
rion, accounting not just for regions where Q < 1 but also for
stochastic local turbulent density fluctuations. For a given Q, we
have calculated (Figure 2) the Mach number M, above which
the system will be probabilistically likely to fragment on a given
timescale. Equation (14) allows us to translate this to a minimum
¢. We can do this exactly by simply reading off the numerically
calculated values, but we can also obtain an accurate analytic
approximation by the following (see Section 8). Recall that for
a system which evolves for a total timescale 7y = #5/(u> Q")
(time in the dimensionless units we adopt), we obtain the ap-
proximate Equation (9) for the Oy, needed to ensure Pf‘r“;g < 1:

0> % exp [\/2 In (7o) In (1 +M§)}. (15)

We can invert this to find the maximum M, for statistical
stability at a given Q:

2 2
M < exp [[ln(2 0)] } a0

, 16
2 In7 2 Int (16)

1" One subtlety here is that the hydrodynamic Reynolds stress, and/or the
dissipation on small scales, is dominated by the longitudinal (compressive)
component. So this relation actually determines M, not necessarily M. But
for our purposes, this is particularly convenient, as it allows us to drop the b
term from our earlier derivation.
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where the second equality follows from the fact that (for the
systems of interest) 2 In (1) > In (2 Q) is almost always true.
Combining this with Equation (14), we obtain

4 In (79)
min% 17
i~ 35 D Q)P (17
2 —1
4 In[to/(n” Q7] (18)

T3y -1 RO

We can immediately see some important consequences. Be-
cause of the stochastic nature of turbulent density fluctuations,
Cmin Will never converge in time integration (assuming that the
disk can maintain steady-state mean parameters)—there is al-
ways a finite (although possibly extremely small) probability
of a strong shock or convergent flow forming a region which
will collapse rapidly. However, the divergence in time is slow
(logarithmic). The critical ¢ also scales with y just as in the
Gammie (2001) case; as the equation of state is made “stiffer,”
the Mach numbers and density fluctuations are suppressed so
faster cooling (lower ¢) can be allowed without fragmentation.
And ¢ scales inversely with log (Q), so indeed higher-Q disks
are “more stable,” but there is no “hard” cutoff at a specific Q
value.

We can turn this around and estimate the typical timescale for
the formation of an order-unity number of fragments at a given
¢, obtaining

3
(t(Ngag ~ 1) ~ > Q" exp (Z Cy(y—D[n@ Q)]z) :
(19)

As expected, this quickly becomes large for modest ¢ and/or
0. We stress, however, that this is a probabilistic statement.
Although the mean timescale between fragment formation
events might be millions of dynamical times, if and when
individual fragments form meeting the criteria in the text, they
do so rapidly—on of order a single crossing time.

Given our derivation of ¢pi,, Wwhat do we expect in realistic
systems such as protoplanetary disks? For a physical disk with
¢ > 1 we should expect y ~ 7/5-5/3 (depending on the gas
phase), and in equilibrium Q ~ 1; and we should integrate over
the entire lifetime of the disk, 7y = 7ot ~ 10°—10'0 (with values
motivated in Section 5). We then expect

m 51 1+0.05 In(z/10°%)
min y(y —1) (1+1.41n0Q)>

This is fairly sensitive to Q—note ™ ~ 13 /[y (y —1)]if Q =2
instead—and weakly sensitive to 7y for reasonable variations.
But this implies that only disks with extremely slow cooling,
teool = 50Q~! (corresponding to steady-state Mach numbers
M. <0.02), are truly statistically stable with Q ~ 1 over such
a long lifetime.

(20)

6.1.3. Comparison with Simulations

Now consider the parameter choices in some examples that
have been simulated. Gammie (2001) considered the case with
y = 2 and a steady-state Q ~ 2.46, evolving their simulations
for typical timescales 7, ~ 50Q~! (though they consider
some longer-scale runs). Because these were two-dimensional
shearing-sheet simulations, the appropriate p is somewhat
ambiguous, but recall (h/r,) = Q u by our definitions, and for
the assumptions in Gammie (2001) their “standard” simulation
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corresponds to an A/r, ~ 0.01 QO (where we equate the “full
disk size” to the area of the box simulated). Plugging in these
values, then, we predict {yin = 3.4, in excellent agreement
with the value ¢ ~ 3 found by trial of several values therein.
Paardekooper (2012) considered very similar simulations but
with Q ~ 1 and all sheets run for £y ~ 1000 Q~!; for this system
we predict {min = 20.4—again almost exactly their estimated
“fragmentation boundary.” Meru & Bate (2012) and Rice
et al. (2012) consider three-dimensional global simulations;
here u = My/M, = 0.1 is well defined, a more realistic
y = 5/3 is adopted, and the disks self-regulate at Q ~ 1. The
simulations are run for a shorter time ~50-100 (€)' (where
for convenience we defined (Q) at the effective radius of the
disk, since it is radius-dependent, but this is where the mass is
concentrated), giving ¢min ~ 21-25, in very good agreement
with where both simulations appear to converge (using either
smoothed particle hydrodynamics or grid-based methods). This
is also in good agreement with the earlier simulations in Rice
et al. (2005), for y = 5/3 (predicting {min = 7.5, versus their
estimated 6-7) and y = 7/5 (predicting {min = 14, versus
their estimated 13). Of course, we should naturally expect some
variation with respect to the predictions, since this is a stochastic
process, but we do not find any highly discrepant results.

We should also note that convergence in the total fragmenta-
tion rate in simulations—over any timescale—requires resolv-
ing the full fragmentation mass distribution in Figure 1. Unlike
time resolution above, this is possible because there is clearly a
lower “cutoff” in the mass functions (they are not divergent to
small mass), but requires a mass resolution of ~0.01-0.1 u? My
(depending on the exact parameters). This is equivalent to a
spatial resolution of ¢, ~ 0.02-0.2 0'2h, ie., a small frac-
tion of the disk scale height /. This also agrees quite well with
the spatial /numerical resolution where (at fixed time evolution)
many of the studies above begin to see some convergence (e.g.,
Meru & Bate 2012; Rice et al. 2012), but it is an extremely
demanding criterion.

6.2. The Magneto-rotational Regime

In the regime where the disk is magnetized and ionized,
the magneto-rotational instability (MRI) can develop, driving
turbulence even if the cooling rate is low and Q > 1. We
therefore next consider the simple case where there is no gravo-
turbulent instability (z.0q — 00), but the MRI is present.

6.2.1. General Scalings

Given MRI and no other driver of turbulence, Alfvén waves
will drive turbulence in the gas to a similar power spectrum
to the hydrodynamic case (within the range we examine where
the power spectrum shape makes little difference), with driving-
scale rms (v?)!/2 & v4. In terms of the traditional B parameter
(ratio of thermal pressure to magnetic energy density; 8 — 0 as
magnetic field strengths increase), B = 2cs2/v/2\, so the rms

driving-scale Mach number is M ~ /2 8~!. Magnetically
driven turbulence is close to purely solenoidal, so b ~ 1/3
and M, = b M =~ (+/2/3) /2.

We stress, though, that what is important is the saturated
local plasma 8 = s, which can be very different from the
initial mean field B, threading the disk. As the MRI develops,
the plasma field strength increases until it saturates in the fully
nonlinear mode. Direct simulations have shown that for initial
fields By < 10%, B ~ 1/3-2/3 (see, e.g., Bai & Stone 2012;
Fromang et al. 2012, and references therein). The saturation
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occurs in rough equipartition with the thermal and kinetic energy
densities—i.e., the turbulence is transsonic or even super-sonic
(M, ~ /2/3 ~ 0.8). In the weak-field limit, however, with
Bo = 10*, the saturation is much weaker, with g, ~ 10-20, so
M, ~0.1.

These same simulations allow us to directly check our simple
scaling with v,; the authors directly measure the rms standard
deviation in the (linear) density § = p/{p), which for a
lognormal density distribution is (by our definitions) identical
to M.. For four simulations with 8y = 10%, 10%, 10° (but
higher resolution), 10%, they see (midplane) saturation Bg =
0.4, 1.1, 0.7, 18 and (p*)'?/(p) = 0.60, 0.43, 0.53, 0.13
(compared to a predicted (p2)!/2/(p) = M. = (+/2/3) B> =
0.72, 0.44, 0.55, 0.11, respectively). Moreover, these and a
number of additional simulations have explicitly confirmed that
our lognormal assumption (in the isothermal case) remains a
good approximation for the shape of the density PDF (see Kowal
et al. 2007; Lemaster & Stone 2009; Kritsuk et al. 2011; Molina
et al. 2012). So for a given M, and Q, our previous derivations
remain valid.

6.2.2. A Statistical Stability Criterion

The strong-field limit therefore leads to large density fluctua-
tions. However, strong magnetic fields will also provide support
against gravity, modifying the collapse criterion; this appears
in Equation (BS5). But for a given B, this simply amounts (to
lowest order) to the replacement ¢ — ¢2+ v} = 2 (1+287").
Because Q « ¢y, near the Toomre scale, this is approximately
equivalent to raising the stability parameter as Q — Q. =
Qa = 0){/1+2 B! (where Q(vpa = 0) is the Q including
only thermal support). The energy and momentum of the bulk
flows in the gas turbulence also provide support against collapse,
so the “effective dispersion” in Equation (B5) includes all three
effects; however, this is already explicitly accounted for in our
previous calculations for any M. But while the effective Q¢ in-
creases in the strong-field limit with 8~1/2, so does M., and the
O needed for statistical stability on long timescales (Figure 2)
increases exponentially with M .—so the net effect of MRI is
always to increase the probability of stochastic collapse.

Putting this into our general criterion Equation (9), we can
write the statistical stability requirement

0 0) Cs K cs Q
VA = = =~
A T GLys G Ly

1 exp [\/2 In (z9) In (1+2/9 ﬂ;ﬂ)}

2,/1+28,!
N N
2,/1+28,!

where 1) = #o =2 Q as before and the latter uses the fact that
B is not extremely small in the cases of interest. Integrated over
the lifetime of the disk, this becomes

¢y Q

L
TG "o 14287

This increases rapidly with increasing magnetic field strength:
Onmin(va =0) & 15, 7, 3, 1.2 for B = 1/3, 2/3, 2, 10.
So MRI with saturation Bg < 10 (“seed” By < 10%) will

make even Q > 1 disks statistically unstable, without the need

>

exp[(2/3) fu Vinw]. @D

exp (2.9 85 "7). (22)
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for any other source of turbulence. On the other hand, weak-
field MRI with s = 10 produces only small corrections to
statistical stability.

6.3. Convective Disks

A number of calculations have also shown that protoplanetary
disks are convectively unstable over a range of radii (Boss
2004; Boley et al. 2006; Mayer et al. 2007). Most simulations
which see convection have also seen fragmentation, which has
been interpreted as a consequence of convection enhancing the
cooling rates until they satisfy the Gammie (2001) criterion
for fragmentation. But Rafikov (2007) and others (Cai et al.
2006, 2008) have argued that while convection can and should
develop in these circumstances, the radiative timescales at
the photosphere push the cooling time above this threshold.
However, as we have discussed above, that would not rule out
rarer, stochastic direct collapse events.

Consider a polytropic thin disk; this is convectively unstable
when it satisfies the Schwarzschild criterion

y —1

dInT
> —.
dIn P y

(23)

Following Lin & Papaloizou (1980), Bell & Lin (1994), and
Rafikov (2007), using the fact that disk opacities can be
approximated by x & ko P* T# (P the midplane pressure),
this can also be written as (1 + «)/(4 — B8) > (y — 1)/y. For
the appropriate physical values, this implies strong convective
instability in disks with T < 150K (where « is dominated by
ice grains) and at higher temperatures >1.5 x 10* K when grains
sublimate, and marginal convective instability in between. So
this should be a common process.

A convective disk can then accelerate gas via buoyancy at
a rate comparable to the gravitational acceleration, implying
Mach numbers M? ~ 0.25-1 (depending on the driving
gradients; recall also that this is the three-dimensional M) at the
scale height where the disk becomes optically thin.'” Buoyancy-
driven turbulence is primarily solenoidal forcing, so b ~ 1/3
while M ~ 0.5-1, leading to a “maximal” M, ~ 0.2-0.3
(assuming that the convection cannot become super-sonic; this
is approximately what is measured in these simulations). If
this saturation level is independent of Q (provided that the
disk is convectively unstable at all), we then simply need to
examine Figure 2 to determine O, for statistical stability; from
Equation (9) this is approximately

0> 0.5 exp [Mc \/M] ~3.

Thus, while this does not dramatically alter the behavior of the
stability criterion Q, it does systematically increase the threshold
Q for statistical stability by a non-trivial factor. And indeed,
in the simulations of Mayer et al. (2007) and Boss (2004),
fragmentation occurs when convection is present at radii where
Q0~14-18> 1.

(24)

12 From mixing-length theory, we can equate the convective energy flux at the
scale height Feony =20 Cp T v / h ggray (Where at ~h, the acceleration

8grav N Q2h h~ s /€2, and for the relevant parameters C,, &~ 1.25 x 108 in
cgs) to the cooling flux osp T;f. This gives us the approximate estimate

M % 0.5 (Tett /200 K) (Zga5 /1000 gcm=2)~1/3 (Q~1 /yr)!/3. This agrees well
with the simulations in the text when M < 1, but extrapolates to super-sonic
values at low X and/or large r., so convection could be considerably more
important than we estimate if it does not saturate at velocities ~c;.
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6.4. Additional Sources of Turbulence

There are many additional processes that may drive turbu-
lence in protoplanetary and other Keplerian disks, but under
most regimes they are less significant for our calculation here.

In the midplane of a protoplanetary disk, where large grains
and boulders settle and are only weakly aerodynamically cou-
pled to the gas, Kelvin—Helmholtz and streaming instabilities
generate turbulence. However, these only operate in a thin dust
layer and appear to drive rather small Mach numbers in the
gas, so they are unlikely to be relevant for direct collapse in
the gas and we do not consider them further (see, e.g., Bai &
Stone 2010; Shi & Chiang 2012). They may, however, be critical
for self-gravity of those grains participating in the instabilities
themselves—a more detailed investigation of this possibility is
outside the scope of this work (since our derivation does not ap-
ply to a weakly coupled, nearly collisionless grain population),
but extremely interesting for future study.

Radiative instabilities should also operate if the disk is
supported by radiation pressure, and/or in the surface layer
if a wind is being radiatively accelerated off the disk by
central illumination. The former case is not expected in the
physical disk parameter space we consider; but if it were so,
convective, magneto-rotational, and photon-bubble instabilities
are also likely to be present (Blaes & Socrates 2001; Thompson
2008), which will drive turbulence that saturates in equipartition
between magnetic, radiation, and turbulent energy densities, i.e.,
produce the equivalent of M ~ 1 throughout the disk (giving
results broadly similar to the strong-field MRI case). In the
wind case, the Mach numbers involved can be quite large (since
material is accelerated to the escape velocity), but unless the
surface layer includes a large fraction of the mass, it is unlikely
to be important to the process of direct collapse.

In the case of an AGN accretion disk, local feedback from
stars in the disk may also drive turbulence (as it does in galactic
disks), and this can certainly be significant in the outer regions
of the disk where star formation occurs (see Thompson et al.
2005). In that case the turbulence may even be super-sonic, in
which case a more appropriate model is that developed in Paper [
and Paper II. In the inner parts of the disk, though, where the
turbulence is sub-sonic, we are not necessarily interested in rare
single star formation events.

7. EXAMPLE: PROTOPLANETARY DISK AND
FRAGMENTATION RADII

We now apply the statistical stability criteria derived above
to a specific model of a protoplanetary disk. This is highly
simplified, but it allows us to estimate physically reasonable
sound speeds, cooling times, and other parameters and so allows
us to ask whether our revised statistical stability criteria are, in
practice, important.

7.1. Disk Model Parameters

For convenience, consider a disk with a simple power-law
surface density profile
T =X 1000 1000 gecm™ (r,, /AU) . (25)
The minimum-mass solar nebula (MMSN) corresponds to
2o0.1000 ~ 1 and o & 1.5, but we consider a range in these
parameters below.
For a passive flared disk irradiated by a central star with
radius = R, and temperature = T, the effective temperature is
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(Chiang & Goldreich 1997)

T o ~ (“T R3)1/4 T,
eff,* ~ 4}"2 EX)
*

where for a solar-type star ar ~0.005 (r,/AU) " +
0.05 (ry /AU)2/ T R, = Rg,and T, = 6000 K. If, instead of irra-
diation, disk heating is dominated by energy from steady-state
accretion with some M, energy balance requires an effective
temperature (i.e., disk flux)

(26)

1/4
, 27

3 MQZ]

Teff, acc ~ [g o
SB

where ogp is the Stefan—Boltzmann constant. The temperature of
interest for our purposes, however, is the midplane temperature
Tmia, since this is where the disk densities are largest and what
provides the c; resisting collapse; this is related to T by a
function of opacity and X, which we detail in Appendix A. But
having determined T and Z, it is straightforward to calculate
Tmia; the sound speed is ¢ = +/kp Tmia/IL, Where kg is the
Boltzmann constant and p is the mean molecular weight.

This is sufficient to specify most of the parameters of interest.
In the gravito-turbulent model, however, we also require an
estimate of the cooling time to estimate { = f.,,€2. Rafikov
(2007) calculates the approximate cooling time for a convective
and radiative disk (depending on whether or not it is convective
and, if so, accounting for the rate limiting of cooling by the disk
photosphere). This gives

Teool =

chz
o O

by T \°
~ 2 x 10* yr f(T),
103 gem=2 100K 103

where f(r) is a function (shown in Appendix A) of the
opacity which interpolates between the optically thin/thick and
convective/radiative regimes.

With these parameters calculated, for a given assumption
about what drives the turbulence—e.g., MRI, gravitoturbulence,
convection—the compressive Mach number M, can be calcu-
lated following Section 6. We also technically need to assume
the details of the turbulent spectral shape, for which we will
assume a spectral index p = 2 and non-intermittent 7 = 0, as
well as the gas equation of state, for which we take y = 7/5, ap-
propriate for molecular hydrogen. But these choices have small
effects on our results, as shown in Figure 1.

(28)

7.2. The Characteristic Initial Fragment Mass

In Figure 3, we use this model to calculate the expected mass
of a self-gravitating “fragment.” Varying 2 900, &, and M., we
calculate the expected T and Q, assuming a constant accretion
rate of M = 3x10~7 M, yr~! atall radii,'? which dominates the
disk temperature inside ~10 AU. Given this, we calculate the
mass spectrum as Figure 1 and define an average (M oiapse)
(the mass-weighted, spectrum-integrated mass). Technically
this depends on M, and hence the turbulent driving mechanism,
but the dependence is weak so we just assume M, = 0.1 in all
cases.

13 This may not be self-consistent, since M could vary with disk parameters,
but there is no straightforward a priori expectation for M, and we only intend
this as a guide, in any case.
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Figure 3. Characteristic mass at collapse—i.e., “seed” or “collapse” mass—as
a function of radius, for a protoplanetary disk with surface density profile
Z = 29,1000 IOOOgcm’2 (r«/AU)™“, around a star with mass M, and disk
temperature calculated including illumination and accretion as described in
Section 7. Specifically, the mass is the mean (M) of the predicted MF as
in Figure 1, calculated with Q for this temperature and X, and turbulent
b=1/2,T =0,y =7/5 p = 2, M. = 0.1 (these parameters have
little effect on the prediction). The MMSN corresponds to Xo 1000 = 1,
a = 1.5, My, = Mg. Units are Jupiter masses. The characteristic mass
scales as ~u2 Q2 My(< ry). This (on average) increases with r, spanning an
Earth-to-Jupiter mass range (Mgarth = 0.003 Mj).

(A color version of this figure is available in the online journal.)

In each case, (Mcolapse) ~ u? 0% Mgig(< ry) as expected.

Since u = (1 £r2)/M,, this increases with disk surface density
or mass, and also with increasing disk-to-stellar mass ratio.

Recall that Togp ace o¢ (M Q)4 o¢ 13 and Togr, o 12

So modulo opacity corrections we expect (Mcoliapse) O rf (1.5-0)

at small radii < a few AU, weakly increasing with r,, and

0.5+3 (1.5—a) . . .
(Mcoltapse) OC T at large r,, increasing more rapidly.
This is only the initial self-gravitating, bound mass—it may
easily evolve in time, as discussed in Section 8. However, it is
interesting that there is a broad range of masses possible, with
Earth and super-Earth-like masses more common at 1 AU and

giant planet masses more common at =10 AU.

7.3. Disk Temperatures at Which Direct Collapse Occurs

Given a mass profile, then for a source of turbulence in
Section 6 we can translate the criteria for statistical stability—a
probability Pf‘lf;‘g <« 1 of forming a fragment in a characteristic
timescale ~Myr—into a range of midplane temperatures 7ipig.

Figure 4 shows this for a disk with 2o 1000 = 1 and & = 1,
around a solar-type star, as well as a disk with 2o 1000 = 10.
Choosing o = 1.5 gives a similar result but with the curve
slopes systematically shifted. Together this spans a range in
disk mass at ~10 AU of ~0.004-0.07 M. We compare the
expected Tig(ry, X), for accretion rates M = 0 and M =
3x 107" Mgyr~'.

There is some T(r,) below which Q < 1, so the disk
will catastrophically fragment. But this is quite restrictive:
Q < 1 only when X and r, are large (for Zo 1000 ~ 10-100,
re 2 10-100 AU for o« ~ 1-1.5, respectively; roughly where
Mgis(< 1y) Z 0.1 M,).

If the disk is convectively unstable, the resulting Mach
numbers lead to a large temperature range over which Q > 1, so

the disk is classically stable, but Pfir‘;‘g ~ 1; this is less likely to

be relevant for an MMSN (r,. 2 50 AU for Xy 1900 = 1) but can
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Figure 4. Shaded regions show the range of disk temperatures, at a given ra-
dius around a solar-type star, in which a protoplanetary disk is statistically
unstable (i.e., has an order-unity probability Pi'r’:‘t0 ~ 1 of at least one “frag-
mentation” or direct collapse event in a timescale ~1 Myr). Top: disk with
T = 1000 gcm 3 (r,/AU)~!. Bottom: 10 x higher Z (Z¢ 1000 = 10* gecm™2;
Mgisk(< 10 AU) ~ 0.05 M,). Black is the standard Toomre Q < 1 (catastrophic
fragmentation). Other shaded regions correspond to different mechanisms driv-
ing turbulence, with M., Q, etc., calculated self-consistently for X(r,), T, and
M, (see Section 6). Green: temperature where Pf‘r’;‘ ~ 1 if the disk is convec-
tively unstable (Section 6.3; Equation (24)). Solid/dashed lines correspond to
the higher/lower M estimated from convective driving in simulations. Pink:
temperature where Pf‘r"; ~ 1 if the disk has a saturated (strong-field) magneto-
rotational instability (MRI; Section 6.2; Equation (21)); again solid/dashed
lines correspond to stronger/weaker limits on saturation (Bs¢ = 0.45-0.85,
from seed By = 102-10%). Blue: gravitoturbulence (Section 6.1; Equation (17));
here, higher T corresponds to faster cooling, hence higher M. (Equation (14)),
and increased Pf'r‘jfg Red lines show the calculated T for a disk with the given
X(r«) from illumination by a solar-type star (dot-dashed) and illumination plus
accretion with M = 3 x 1077 Mg yr~! (dotted). Even in MMSN, radii >a
few AU are statistically unstable v1a gravitoturbulence; smaller radii are statis-
tically unstable for M 2 3 x 10~7 Mg yr~!. Strong-field MRI is also capable
of generating sufficient fluctuations for direct collapse down to ~0.1-1 AU.

(A color version of this figure is available in the online journal.)

be sufficient at r, 2 2-10 AU for X 1000 = 10. As discussed
in Section 6.3, the convective Mach numbers are somewhat
uncertain, so we show the calculation for the range therein.
Strong-field MRI—if/where it is active—produces even
larger M; this can greatly expand the range where Ptlr‘;tg ~ 1
even in an MMSN. Again there is a range of possible M, in
the saturated state, shown here. In the weak-field regime, M. is

smaller, giving results very similar to the convection prediction.
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Gravitoturbulence (again, if/where it is active), interestingly,
has the opposite dependence on temperature. Because cooling
rates grow rapidly at higher Ty,4, the expected M, is larger and

f‘r";g is larger at higher T (despite higher Q). It is also much less
sensitive to the disk surface density. If the process operates, this

is sufficient to produce Pi" ~ 1 atr, > 2-5 AU, regardless of

frag ~
M for nearly all reasonable temperatures, and even at r, < 1 AU
if there is a modest M to raise the temperature (hence cooling
rate) to >300-1000 K. For the disk surface densities here,
Pt‘r';‘g < latr, <1 AU requires M < 3 x 1077 Mg yr!.
However, we caution that at sufficiently high 7 and Q, the
mechanism may not operate at all.

Beyond a certain radius (which depends on which combina-
tion of these mechanisms are active), perhaps the most important
result is that there may be no temperature where P\" <« 1, for

frag
a glven surface densrty.

7.4. Surface Densities at Which Direct Collapse Occurs

In Figure 5, we calculate the surface densities (as a function
of radius r,, around a solar-type star) where disks are statistically
unstable ( f‘r‘zltg ~ 1) if/when different turbulent driving mecha-
nisms are active, as in Figure 4. Whereas in Figure 4 we allowed
the temperature to be free, here we assume that it follows our
best estimate Tmld(r*, Y) for either an accretion rate M =0or

=3 x 107" My yr~!, but freely vary X(r,).

Roughly speaking, convection and MRI systematically lower
the density at all radii where P™ ~ 1. Classical instability

frag
(Q < 1) requires £ 2 30Zyysn. If the disk is convective,
it can have Q > 1 but be statistically unstable (vulnerable
to direct fragmentation via turbulence density fluctuations)
for ¥ 2 10Zymsn at . 2 10 AU; at smaller radii the
threshold is sensitive to accretion heating raising Q. If strong-
field MRI is active, the threshold surface density for statistical
instability is much lower: for small accretion rates and/or
large radii 22-5 AU, even the MMSN can have P, flr"; ~ 1.
Gravitoturbulence, if active, generates sufficient turbulence for

statrstlcal instability (P, P™ ~ 1)evenatX ~ 0.1 Zymsn, at radii

frag
re 2 1 AU regardless of accretion rate, and r, < 1 AU for

M >3x107" Mgyr!

8. DISCUSSION AND CONCLUSIONS

Traditionally, a disk with Toomre Q > 1 is classically sta-
ble against gravitational collapse on all scales (modulo cer-
tain global gravitational instabilities). However, we show here
that this is no longer true in a turbulent disk. Random tur-
bulent density fluctuations can produce locally self-gravitating
regions that will then collapse, even in Q > 1 disks.'* For-
mally, the probability of such an event is always non-zero, so
strictly speaking turbulent disks are never “completely” stable,
but can only be so statistically, if the probability of forming a
self-gravitating fluctuation is small over the timescale of inter-
est. Moreover, we can analytically predict the probability, as a
function of total self-gravitating mass, of the formation of such
a region per unit time in a disk (or disk annulus) with given
properties.

We do this using the excursion-set formalism developed
in Paper I and Paper II, which allows us to use the power
spectra of turbulence to predict the statistical properties of

14 Recall that these arise from the super-position of many smaller
perturbations/turbulent structures, not necessarily a “‘global” forcing event.
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Figure 5. Shaded regions show the range of surface densities that are statistically
unstable (have an order-unity probability Pi!r‘:‘tg ~ 1 of adirect collapse event in a
timescale ~1 Myr, as Figure 4), in a protoplanetary disk at a given radius around
a solar-type star. For each X(r,), we calculate T self-consistently including
illumination and accretion with M = 3 x 1077 Mg yr~! (top) or illumination
only (bottom); see Section 7. Each shaded range corresponds to a different
candidate source of turbulent density fluctuations, as in Figure 4. Red line
shows the MMSN, for comparison. Strong MRI can promote collapse in an
MMSN at all radii; gravitoturbulence in even lower-density disks at Z AU, and
smaller radii if M >3 x 10~7 Mg yr~!. If these are not active, convection can
promote collapse in higher-density disks with £ 2 10 Zymsn.

(A color version of this figure is available in the online journal.)

turbulent density fluctuations. In previous papers, this has been
applied to the structure of the ISM in galactic or molecular
cloud disks; however, we show that it is straightforward to
extend to a Keplerian, protoplanetary disk. The most important
difference between the case here and a galactic disk is that in the
galactic case, turbulence is highly super-sonic (M ~ 10-100),
as opposed to sub/transsonic. And in galactic disks, cooling is
rapid and the disk is globally self-gravitating (non-Keplerian), so
systems almost always converge rapidly to Q = 1 (see Hopkins
et al. 2012); here, we expect a wider range of Q. And finally,
protoplanetary disks are very long-lived relative to their local-
dynamical times, so even quite rare events (with a probability
of, say, 1076 per dynamical time) may be expected over the disk
lifetime.

At Q =~ 1, disks with M, 2 0.1 are classically stable but
statistically unstable: they are likely, over the lifetime of the disk,
to experience at least an order-unity number of “fragmentation”
events (formation of self-gravitating, collapsing masses). As
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expected, higher-Q disks are “more stable” (although again we
stress that this is only a probabilistic statement); for Q ~ 3-5,
values of M, 2 0.3-0.5 are required for statistical instability.
If the turbulence is transsonic (M, ~ 1-3), values as large
as Q0 ~ 40-1000 can be statistically unstable! Generally
speaking, we show that statistical stability (i.e., ensuring that the
probability of a stochastic direct collapse event is < 1) integrated
over some timescale of interest 7y requires

Omin ~ 0.5 exp I:\/Z In(fou=2Q) In(1+ /\/lg)i|

~ 0.5 exp (6 In(1+ ./Vlg))

(Figure 2 and Equation (9)). At the Mach numbers of interest,
this is exponentially increasing with M !

This is a radical revision to traditional stability criteria.
However, the traditional Toomre Q criterion is not irrelevant. It
is a necessary, but not sufficient, criterion for statistical stability,
which should not be surprising since its derivation assumes a
homogenous, non-turbulent disk. If O < 1, then “catastrophic”
fragmentation occurs even for M, — 0; all mass in the disk
is (classically) unstable to self-gravity, and collapse proceeds
on a single free-fall time. If Q > 1, fragmentation transitions
to the stochastic (and slower) statistical mode calculated here,
dependent on random turbulent density fluctuations forming
locally self-gravitating regions.

Likewise, the criterion in Gammie (2001), that the cooling
time be longer than a couple times the dynamical time, is not
sufficient for statistical stability. For a given turbulent Mach
number and Q, we show that assuming a stiffer equation
of state has quite weak effects on the ‘“stochastic” mode of
fragmentation; in fact, even pure adiabatic gas (no cooling)
produces very similar statistics if it can sustain a similar M..
Again, the key is that the Gammie (2001) criterion is really about
the prevention of catastrophic fragmentation; as noted therein,
a sufficiently slow cooling time allows turbulence to maintain a
steady-state Q ~ 1, and dissipation of that turbulence (driven
by gravitational density waves and inflow) can maintain the gas
thermal energy (c;). Thus, faster cooling leads to catastrophic
fragmentation of most of the mass on a single dynamical time
(Q < 1 and M, > 1). And indeed this is the case from Paper |
in a galactic disk, where o1 < fgyn and the mass is only
“recycled” back into the diffuse medium by additional energy
input (from stellar feedback).

However, provided that the Gammie (2001) criterion is met
and Q > 1 everywhere, we still predict fragmentation in the
“stochastic” mode if gravitoturbulence operates. The cooling
time is then important insofar as it changes the equilibrium
balance between turbulent and thermal energy, i.e., appears
in Q and governs M, & (fcoo1 €2)~'/2. This, indeed, has now
been seen in a growing number of simulations (see references
in Section 1), involving either larger volumes and/or longer
runtimes. We consider the application of our theory to these
specific models in Section 6.1; this allows us to predict a revised
cooling-time criterion in this “mode,” required for statistical
stability over any timescale of interest:

t 4 Inftou=2Q

cooi - n[fop 2)] . (29)
Q' 3y(y—-1D [n2Q)]

This provides an excellent explanation for the results in these
simulations and resolves the apparent discrepancies between
them noted in Section 1.

w
1
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If another process is able to drive turbulence, then stochastic
direct collapse might occur with even longer cooling times.
We show that if the MRI is active and saturates at strong-
field Beae ~ 1, the required Q for complete suppression of
fragmentation can be very large (210-15; scaling with By as
Equation (21)), independent of the cooling time. If the MRI
is not active (in the dead zone, for example), or if it saturates
at weak-field values Bsy = 10, and cooling is slower than the
limit above, then convection may be the dominant driver of
turbulence. This is sufficient to produce stochastic fragmentation
events in the range Q ~ 1-3, though probably not much larger.

We apply these calculations to specific models of protoplane-
tary disks that attempt to self-consistently calculate their temper-
atures and cooling rates. Doing so, we show that the parameter
space where statistical instability and stochastic fragmentation
may occur is far larger than that of classical instability (where
Q < 1) and can include most of the disk even in an MMSN.
Gravitoturbulence appears to be the most important channel
driving stochastic fragmentation when it is active, and is suffi-
cient to produce an order-unity number of events in disks with
2 2 0.1 Zpmmsn at distances 21 AU (independent of accretion
rate) and even at <1 AU (if the disk is heated by accretion rates
>3 x 1077 Mg yr~'). At low accretion rates and/or large radii,
strong-field MRI (if active) is also sufficient to drive statistical
instability if £ > Xymsn. And we show that beyond a few AU,
the combination of gravitoturbulence, convection, and Toomre
instability at low 7' means there may be no disk temperatures at
which Pflr";g <« 1 in a modest-density disk.

Ultimately, regardless of our (admittedly speculative) dis-
cussion of theoretical models for the sources of turbulence in
protoplanetary disks, the key question is empirical. Are the
actual Mach numbers in such disks sufficient, for their Q val-
ues, to be “interesting” here? This remains an open question.
However, Hughes et al. (2011) present some early indications
of detection of turbulent linewidths in two protoplanetary disks,
with inferred Mach numbers of ~0.1 and ~0.4. Although un-
certain, these essentially bracket the most interesting regime of
our calculations here! Because of the exponential dependence
of stochastic collapse on Mach numbers, future observations
which include larger statistical samples and more/less massive
disks, as well as constraints on whether the turbulence appears
throughout the disk (since it is the midplane Mach numbers
that matter most for the models here), will be critical to assess
whether the processes described in this paper are expected to be
relatively commonplace or extremely rare.

We also predict the characteristic mass spectrum of fragmen-
tation events. Sub-sonic turbulence produces a narrow mass
spectrum concentrated around the Toomre mass ~u? 0% Mg
angular momentum and shear suppress larger-scale collapse,
while thermal (and magnetic) pressure suppresses the forma-
tion of smaller-scale density fluctuations. For typical mass ratios
u ~ 0.1 in the early stages of disk evolution, this corresponds
reasonably well to the masses of giant planets. For smaller
mass ratios i ~ 0.01, which should occur at somewhat later
stages of evolution, this implies that direct collapse to Earth-like
planet masses may be possible. Of course, such collapse will
carry whatever material is mixed in the disk (i.e., light elements),
so such a planet would presumably lose its hydrogen/helium
atmosphere as it subsequently evolved (see references in
Section 1). As the turbulence approaches transsonic, the mass
spectrum becomes much more broad. As shown in Paper II,
this owes to the greater dynamic range in which turbulence is
important; in the limit M — oo, the mass spectrum approaches
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a power law with equal mass at all logarithmic intervals in mass
(up to the maximum disk Jeans mass). Thus, within a more tur-
bulent disk, direct collapse to a wide range of masses—even
at identical disk conditions and radii—is expected. This may
explain observed systems with a range of planet masses within
narrow radii (e.g., Carter et al. 2012), and it also predicts a
general trend of increasing average collapse mass with distance
from the central star. However, we are not accounting for sub-
sequent orbital evolution here, and subsequent accretion (after
collapse) will modify the mass spectra.

We discuss and show how these predictions change with dif-
ferent turbulent velocity power spectra, different gas equations
of state, including or excluding magnetic fields, changing the
disk mass profile, or allowing for (quite large) deviations from
lognormal statistics in the density distributions. However, these
are generally very small corrections and/or simply amount to
order-unity re-normalizations of the predicted object masses,
and they do not change any of our qualitative conclusions. Be-
cause of the very strong dependence of fragmentation on Mach
number, the critical Mach numbers we predict as the threshold
for statistical instability are insensitive to most changes in more
subtle model assumptions.'3

Throughout, we restrict our focus to the formation of
self-gravitating regions.'® Following the subsequent evolution
of those regions (collapse, fragmentation, migration, accretion,
and possible formation of planets) requires numerical simula-
tions to treat the full nonlinear evolution (see, e.g., Kratter &
Murray-Clay 2011; Rice et al. 2011; Zhu et al. 2012; Galvagni
etal. 2012, and references therein). Ideally, this would be within
global models that can self-consistently follow the formation
of these regions. However, this is computationally extremely
demanding. Even ignoring the detailed physics involved, the
turbulent cascade must be properly followed (always challeng-
ing), and most important, since the fluctuations of interest can
be extremely rare, very large (but still high-resolution) boxes
must be simulated for many dynamical times. As discussed in
Section 1, this has led to debate about whether or not differ-
ent simulations have (or even can be) converged. Most of the
longest-duration simulations to date have been run for times
~1000 Q~!, which for plausible M, and Q may be shorter by
a factor of ~10°~10° than the timescale on which of order a
single event is expected to occur in the entire disk. But certainly
in the example of planet formation, a couple of rare events are
“all that is needed,” so this is an extremely interesting case for
future study.

We thank Jim Stone, Eugene Chiang, and Eliot Quataert for
insightful discussions that helped inspire this paper. Support for
PFEH. was provided by NASA through Einstein Postdoctoral
Fellowship Award Number PF1-120083 issued by the Chandra
X-ray Observatory Center, which is operated by the Smithsonian

15 Formally, allowing for correlated structure in the density field, nonlinear
density smoothing, different turbulent power spectra, or intermittency and
non-Gaussian statistics in the density PDF, all discussed in detail in Paper II,
within the physically plausible range, produces sub-logarithmic corrections to
the M, and Q criteria we derive for statistical stability.

16 Specifically, the “threshold” criterion we use implies that, within the region
identified, the total energy (thermal, magnetic, kinetic, plus self-gravitational)
is negative; the region is linearly unstable to gravitational collapse; and the
(linear, isothermal) collapse timescale (~1/+/G pcrit) is shorter than each

of the shear timescale (~Q~!), the sound crossing time (~R/c;(poerit)), and the
turbulent cascade energy or momentum “pumping” timescale (~R/(v;(R))).
This automatically ensures that less stringent criteria such as the Jeans, local
Toomre Q, and Roche criteria are satisfied (see Paper I and Paper II for details).
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APPENDIX A

DETAILS OF TEMPERATURE AND COOLING
RATE CALCULATION

Recall, from the text, in the case of disk irradiation by a
central solar-type star, the effective temperature is

. N (aT R£>1/4 .
eff, x ™~ 4}"2 *
*

(AD)

(Chiang & Goldreich 1997), with a7 &~ 0.005 (r,/AU)~! +
0.05(r,/AU)*7, R, = Ry, and T, = 6000K. In this regime
the external radiation produces a hot surface dust layer that
re-radiates ~1/2 the absorbed light back into the disk, main-
taining Thg; if the disk is optically thick to the incident
and re-radiated emission, this gives an approximate Tpig « ~

Telféi /274 Meanwhile, accretion produces an effective temper-

ature

3 2
} . (A2)

Teff, acc ~ [g OB

In the optically thick limit, this is just related to Tyiq by

Tt ace = (3/4) (Tr +2/3) Ty 1ocr Where Tg is the Rosseland-

mean optical depth, Tg = kg(Tinia) Z (SO Thid, acc 1S determined
implicitly).

In the text, Figures 4 and 5 simply use the optically thick

relations for Tyiq and, when accretion is included, interpo-

late with T4 ~ T+  +T? We approximate the opac-

mid mid, * mid, acc*
ities with the simple kg ~ Scm’g™! at T > 160 K,
and kg ~ 2.4 x 107*T?cm? g~ K= at lower temperatures
(approximately what is obtained with a galactic gas-to-dust
ratio; see Adams & Shu 1988; Bell & Lin 1994).

We then follow Rafikov (2007) and estimate the cooling

time as

2
Xc;

f(@), (A3)

Ieool =
4
osB Thnig

where ¢ = +/kp Tmia/ with w = 2.3 appropriate for
molecular, dusty gas. The function f(r) is given by the in-
terpolation between the convective and radiative terms at the
photosphere

f@O=xt"+¢t ", (A4)

__ 4=
T Tra+ By -1

(AS5)

where x and ¢ are constants; from the detailed estimates therein
¢ ~ 1 and x ~ 0.19-0.31, depending on the disk parameters,
so we assume x = 0.31 to be conservative (since this gives
larger cooling times). This interpolates between the optically
thick limits (dominated by x ") and optically thin cases (¢ 7",
where the cooling flux becomes xt osg Tn‘;d).

The scaling index n is determined from the temperature
gradient to the photosphere for a disk in vertical hydrostatic
equilibrium, under the assumption that over some (limited)
local temperature range the opacity « can be approximated by
Kk ~ ko P* TP, which is valid for our assumptions. We assume
y = 7/5 in both this and the turbulent density fluctuation
calculation in Figures 3-5. Based on the scaling of opacities
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Figure 6. Characteristic mass at collapse, as Figure 3, but with a more detailed
set of opacity tables and temperature calculation as described in Appendix A.

(A color version of this figure is available in the online journal.)

in Semenov et al. (2003), at 7 < 160 K, « = 0 and 8 =~ 2,
son~T7/11;at 160 < T < 1500 K, « = 0 and 8 =~ 1/2-1,
so n ~ 7/8-7/9 (we adopt 7/9, but this makes no significant
difference); and at 7 > 1500 K (when all grains sublimate
and molecular opacity dominates), « =~ 2/3 and g ~ 7/3, so
n~3/7.

In the text, we restrict to these simple estimates because the
quantities of interest are fairly uncertain. We can, however,
examine a more detailed approximation here. First, we take
the opacities k g(Tyq) from the full tabulated values in Semenov
et al. (2003). Second, a more accurate estimate of the midplane
temperature is given by solving the implicit equation

4 3 4 2 4 1 4
Tmid = Z Ty + 5 + E Teff, acc T I+ ; Teff,>x<7 (A6)

where ty = ty(Tiiq) is the vertical optical depth from the
midplane, ty = kg(Tmig) Z/2. This allows for an appropriate
interpolation between the optically thick case and the case
where the disk is optically thin to its own re-radiation. Third,
we can switch between the f(r) above, appropriate for a
convective disk, and f(r) ~ t + t~! appropriate for a purely
radiative, convectively stable disk, when the disk falls below
the (temperature-dependent) criteria for convective instability
Vo = Vi with Vo = (1 + «)/(4 — ) and Vg = (y — 1)/y
(see Lin & Papaloizou 1980; Rafikov 2007), where o and B
depend on T (using the full explicit derivatives from the opacity
tables).

Figures 6-8 repeat our calculations from the main text
with this more detailed temperature calculation. We find that
the quantitative results in Figures 3-5 are all changed at the
factor <2 level and the qualitative conclusions are completely
unchanged. The sense of the quantitative change tends to
slightly expand the regions of parameter space where statistical
instability and turbulence-promoted fragmentation can occur.
The more detailed opacity calculation imprints some small
features on the parameter space, the most significant of which
is the elimination of predicted temperatures much larger than
~1500 K at small radii (because grains sublimate and cooling
becomes optically thin), but the “gravito-turbulent” thresholds
shift with the predicted temperatures so the statistical stability
is essentially identical.
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Figure 7. Shaded regions show the temperature range in which there is statistical
instability (order-unity probability of a collapse event), as Figure 4, but with a
more detailed set of opacity tables and temperature calculation as described in
Appendix A.

(A color version of this figure is available in the online journal.)

APPENDIX B
OVERVIEW OF ADDITIONAL MODEL DETAILS

Here, we review the basic framework of the model developed
in Paper I and Paper 11, specifically some key equations needed
to reproduce the results in this paper. Readers interested in a
full derivation and explanation of these equations should see
Paper II.

Consider, for simplicity, the isothermal (lognormal) case: if
density fluctuations are lognormal, then the variable §(x) =
In[p(x)/po] + S/2, where p(x) is the density at a point X, pg is
the global mean density, and S is the variance in In p, is normally
distributed according to the PDF:!’

1 ( 82)
exp| —=— ).
Vars P\T2s
More generally, we can evaluate the field 6(x| R), which
is the 48(x) field averaged around the point x with some
window function of characteristic radius R; this is also normally

distributed (see Paper II; Appendix F), with a variance at each
scale S(R) that is directly related to the density power spectrum.

Py |S) =

(BI)

17 The +§/2 term in & is required so that the integral of p Py(p) correctly gives
po with (8) = 0.

16

HopPkINS & CHRISTIANSEN

------- MMSN [ P(frag) << 1 P(frag) ~ 1
5E. [ <o,
g4 /L
N
=3
"2k
S
or. . S
g lllumination+Accretion ~3
0.1
FrrT
5¢c.
-
— 45
N £
E
(&) 3;
2 &
a2
>
o
1 - s
o
£ lllumination Only 3
Cauaal L Lol | |

0.1 1
r. [AU]

Figure 8. Shaded regions show the surface density range in which there is
statistical instability (order-unity probability of a collapse event), as Figure 5,
but with a more detailed set of opacity tables and temperature calculation as
described in Appendix A.

(A color version of this figure is available in the online journal.)

Paper I derives the “first-crossing” distribution for the general
form of these fields. This corresponds to the mass and initial
size spectrum of regions that are sufficiently dense so as to be
self-gravitating averaged on the scale R (specifically defined
as the largest scale on which the region is self-gravitating,
i.e., excluding bound sub-units already counted “within” the
parent, although these can be counted separately if desired). This
corresponds to the statistics of regions where §(x | R) > B(R),
where B(R) (the “barrier”) is some (scale-dependent) critical
value. In Paper I we derive S(R) and B(R) from simple
theoretical considerations for all scales in a galactic disk and/or
molecular cloud. However, the derivation proceeds almost
identically for a protoplanetary disk, following the most general
form presented in Paper II, which we outline here.

It is well established that the contribution to density variance
from the velocity variance on a given scale goes as § =~
In (1 + b>M?), where M is the Mach number. For a given
turbulent power spectrum, then, S(R) is determined by summing
the contribution from the velocity variance on all scales R’ > R:

b* v2(k)

o0
S(R, p) = Wk, R)PPIn|1+ — 1
(R, p) /O|< ) “[+cg(p,k)+m—z

} dlnk,
(B2)
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where W is the window function for the smoothing,'® v, (k) is
the turbulent velocity dispersion averaged on a scale k (trivially
related to the turbulent power spectrum), c, is the thermal sound
speed (both ¢, and S can depend locally on p if the gas is not
isothermal), and b is the fraction of the turbulent velocity in
compressive (longitudinal) motions (discussed below). Here «
is the epicyclic frequency; since we are interested in Keplerian
disks, we take k¥ ~ Q, the disk orbital frequency. Note that on
large scales, angular momentum (k> k~2) enters in a similar way
to ¢2 and suppresses fluctuations, which follows directly from
the form of the dispersion relation for density perturbations (e.g.,
Lin et al. 1969; Toomre 1977; Lau & Bertin 1978); accounting
for this is necessary to ensure mass conservation.

Since we are interested in the formation of self-gravitating gas
objects, we define B(R) corresponding to the critical density
averaged on a given scale, p.i(R), at which an overdensity
will collapse. Given §(R) = In[p(R)/po] + S/2 defined above,
then B(R) follows from the dispersion relation for a density
perturbation in a disk with self-gravity, turbulence, thermal and
magnetic pressure, and angular momentum/shear (Vandervoort
1970; Aoki et al. 1979; Elmegreen 1987; Romeo 1992):

In (pcril(R)> + @’
Po 2

where pqi¢ 1s the critical density above which a region is
self-gravitating. This is the (implicit) solution to

< h) og(R, pei) b _, R
I+ =) | ———=+k"—|,
R oz(h, po) R h

B(R) = (B3)

Perit (R ) Q

Po K

(B4)

where pg is the mean midplane density of the disk, % is the
disk scale height, k = x/Q = 1 for a Keplerian disk, and
0 = (oglh, polk)/(w G Zgys) is the Toomre Q parameter. The
“total” dispersion o, is

as(R, p) = c2(p)+ (v (R)) + vilp, R). (B3)
The map between scale R and the total mass in the collapsing
region is

M(R)=4 h’ Rz 1+ R R 1
= 4T Pcrit 2h2 7 eXp h .

(B6)

It is easy to see that on small scales, these scalings reduce to the
Jeans+Hill criteria for a combination of thermal, turbulent, and
magnetic support, with M = (47/3) peic R?; on large scales it
becomes a Toomre-like criterion with M = 72X R.

For any B(R) and S(R), Paper I shows that the instantaneous
“first-crossing” mass function (i.e., instantaneous mass function
of collapsing objects, uniquely defined to resolve the “cloud-in-
cloud” problem) is

dn ,Ocm(M)
— (M ) (B7)
M T
18 For convenience we take this to be a k-space tophat: W = 1 for k < 1/R,

W = 0 otherwise. But we show in Paper I and Paper II (Appendix G) that this
has little effect on our results. Similarly, we emphasize that whether the
fluctuations are random-phase or correlated has little effect on our conclusions
(as shown explicitly in Paper II).
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where f/(S) is a function shown by Zhang & Hui (2006) to be
the solution of the Volterra integral equation:

S
=8+ [ dS iSRG @Y
with
B(S
§1<S)=[ ‘ ()} PUBO)IS), (B9
e [ B®-BES)
gz(s,S)—[ B -2 ‘ ] (B10)
% PolB(S) - B(S)|S' -
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