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ABSTRACT

The concentration–mass relation for dark matter-dominated halos is one of the essential results expected from a
theory of structure formation. We present a simple prediction scheme, a cosmic emulator, for the concentration–mass
(c–M) relation as a function of cosmological parameters for wCDM models. The emulator is constructed from
37 individual models, with three nested N-body gravity-only simulations carried out for each model. The mass
range covered by the emulator is 2 × 1012 M� < M < 1015 M� with a corresponding redshift range of z = 0–1.
Over this range of mass and redshift, as well as the variation of cosmological parameters studied, the mean halo
concentration varies from c ∼ 2 to c ∼ 8. The distribution of the concentration at fixed mass is Gaussian with a
standard deviation of one-third of the mean value, almost independent of cosmology, mass, and redshift over the
ranges probed by the simulations. We compare results from the emulator with previously derived heuristic analytic
fits for the c–M relation, finding that they underestimate the halo concentration at high masses. Using the emulator
to investigate the cosmology dependence of the c–M relation over the currently allowable range of values, we
find—not surprisingly—that σ8 and ωm influence it considerably, but also that the dark energy equation-of-state
parameter w has a substantial effect. In general, the concentration of lower-mass halos is more sensitive to changes
in cosmological parameters as compared to cluster mass halos. The c–M emulator is publicly available from
http://www.hep.anl.gov/cosmology/CosmicEmu.
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1. INTRODUCTION

Over the last three decades, cosmology has made tremen-
dous progress, culminating in the so-called Standard Model of
Cosmology. The two main components of the Standard Model
are a mysterious dark energy, leading to a late-time accel-
erated expansion, and a dark matter component making up
roughly 25% of the total matter-energy budget of the universe.
The evolution of structure in the universe from the earliest
accessible times to today is successfully described by a
theory based on gravitational instability—the distribution of
galaxies in the universe, for example, is remarkably well
reproduced by this paradigm. Clusters and groups of galaxies
are major building blocks of the large-scale structure and mea-
surements of their abundance provide a powerful cosmological
probe. Large, gravity-only N-body simulations have been re-
markably successful in providing a consistent picture of the
formation of the large-scale structure from the very early, small
Gaussian density fluctuations to the halos, voids, and filaments
we observe today.

A surprising discovery from these simulations (Navarro et al.
1996, 1997) was that the dark matter-dominated halos—over a
wide mass range typical of dwarf galaxies to massive clusters—
share a basically universal density profile. Specifically, it was
shown that the spherically averaged density profile of relaxed
halos formed in simulations can be described by what is
now commonly known as the Navarro–Frenk–White (NFW)
profile. The NFW profile is described by two parameters, the
normalization and the characteristic scale radius of the halo or
equivalently its (dimensionless) concentration.

Aside from the distribution of halo masses, halo profiles are
also of considerable interest. The profiles can be measured di-

rectly for individual massive halos by a variety of observational
methods, or inferred indirectly for less massive halos using sta-
tistical lensing probes. Halo profiles are also a key input in halo
occupation distribution modeling of the galaxy distribution. Al-
though there are several issues in applying a simple spherical
description to halos (e.g., anisotropy, baryonic effects), NFW
profiles (or minor variants thereof) are in good agreement with
recent observations (Bhattacharya et al. 2011; Coe et al. 2012;
Umetsu et al. 2012; Okabe et al. 2013; Newman et al. 2013). As
the observations continue to improve, a corresponding sharpen-
ing in theoretical predictions for (NFW) halo concentrations as
a function of cosmological parameters is needed. Because the
intrinsic scatter in the c–M relation is considerable, this requires
us to determine the actual distribution of halo concentrations as
a function of halo mass.

Quantitative predictions for the c–M relation from a first
principles analytic approach are difficult to obtain, due to the
highly nonlinear dynamics involved in the formation of halos.
Accurate predictions can only be obtained from computation-
ally expensive, high-resolution simulations. These simulations
need to cover large volumes in order to yield good statistics,
especially in the cluster mass regime, as well as high force
resolution to reliably resolve the halo profiles. In recent years,
the focus has therefore been on generating predictions for one
cosmology around the best-fit Wilkinson Microwave Anisotropy
Probe (WMAP) results of that time (e.g., Duffy et al. 2008;
Bhattacharya et al. 2011; Prada et al. 2012). The fitting func-
tions so generated cannot be extended beyond the cosmological
model they have been tuned for. Heuristic models that aim to
extend this reach, e.g., those by Bullock et al. (2001) and Eke
et al. (2001) and improvements thereof (Macciò et al. 2008),
do not lead to the desired accuracy, as discussed in Duffy et al.

1

http://dx.doi.org/10.1088/0004-637X/768/2/123


The Astrophysical Journal, 768:123 (9pp), 2013 May 10 Kwan et al.

(2008). Other discussions of this issue can be found in Gao et al.
(2008), Hayashi & White (2008), and Zhao et al. (2009).

In order to overcome the many shortcomings of fitting
functions as a general approach in cosmology, we have re-
cently developed the “cosmic calibration framework” (CCF)
to provide accurate prediction schemes for cosmological ob-
servables (Heitmann et al. 2006; Habib et al. 2007). The aim
of the CCF is to build codes that act as very fast—basically
instantaneous—prediction tools for large-scale structure ob-
servables such as the nonlinear power spectrum (Heitmann
et al. 2010, 2009; Lawrence et al. 2010), mass functions
for different halo definitions (Bhattacharya et al. 2013), or
the concentration–mass relation—as discussed here. Predict-
ing these observables requires running a number of high-
performance simulations to reliably resolve the nonlinear regime
of structure formation. The CCF provides a powerful way to
build precision prediction tools from a limited number of com-
putationally expensive simulations.

At the heart of the CCF lies a sophisticated sampling scheme
that provides an optimal sampling strategy for the cosmological
models to be simulated (we use orthogonal array-based Latin
hypercube as well as symmetric Latin hypercube (SLH) designs;
an introduction to the general sampling strategy is provided in
Santner et al. 2003), an optimal representation to translate the
measurements from the simulations into functions that can be
easily interpolated (a principal component (PC) basis turns out
to be an efficient representation), and finally a very accurate
interpolation scheme (our choice here is Gaussian process
modeling).

The CCF was first introduced in Heitmann et al. (2006)
and a more detailed description and examples are provided
in Habib et al. (2007). In a series of three papers (Coyote
Universe I–III), we developed an emulator for the matter
power spectrum for a five-dimensional parameter space covering
θ = {ωb, ωm, ns, w, σ8}, where ωb = Ωb h2 is the baryon en-
ergy density, ωm = Ωm h2 is the dark matter energy density,
H0 = 100 h km s−1 Mpc−1 is the normalized Hubble constant,
ns is the spectral index, w is the equation-of-state parameter,
and σ8 is the normalization of the power spectrum in a top
hat of radius 8 h−1 Mpc. This emulator provides predictions
for the power spectrum over these cosmological parameters
out to k ∼ 1 Mpc−1 at the 1% accuracy level for a redshift
range of 0 � z � 1. In Schneider et al. (2008), the work
was extended to derive an approximate statistical model for
the sample variance distribution of the nonlinear matter power
spectrum. Eifler (2011) used the emulator to generate a weak-
lensing prediction code to calculate various second-order cosmic
shear statistics, e.g., shear power spectrum, shear–shear corre-
lation function, ring statistics, and Complete Orthogonal Set of
EB-mode Integrals.

The focus of this paper is the development of an emulator for
the concentration–mass relation for wCDM cosmologies, a set
of quintessence models in which the equation-of-state parameter
is kept constant with redshift but allowed to vary away from
w = −1. We use the same base set of simulations as in Lawrence
et al. (2010), consisting of 37 cosmological models and a
single 1300 Mpc volume, high-resolution simulation for each
model. This simulation set is augmented here with a set of new,
higher-resolution simulations. These simulations cover smaller
volumes (a 360 Mpc and a 180 Mpc simulation for each model)
to obtain good statistics over a large range of halo masses. For
each model we measure the best-fit concentration–mass (c–M)
relation, assuming a simple power-law form. The fits lay the

foundation for building the emulator that provides predictions
for the c–M relation within the wCDM parameter space covered
by the original simulations. In redshift, the emulator covers the
range between z = 0 and z = 1. We provide a fast code that
delivers the mean c–M relations for wCDM cosmologies to
good accuracy.5 More details about the simulations are provided
in Section 3.

As is well known, the c–M relation has considerable scatter
and, in principle, it is not obvious that this scatter should have a
simple form, and what its cosmological dependence might be.
However, as discussed in Bhattacharya et al. (2011), the scatter
has a simple Gaussian form in wCDM models, and moreover,
even though the mean c–M relation is clearly cosmology
dependent, as is the associated concentration variance, σ 2

c (M),
the ratio of σc(M) to the mean concentration is close to
1/3, independent of cosmology, mass, or redshift. This means
that once an emulator for the c–M relation is in hand, the
concentration standard deviation is given automatically by a
simple relation.

The paper is organized as follows. After a brief outline of
the halo concentration measurements from the simulations, we
describe the cosmological model space and the simulation suite
used to build the emulator. In Section 3, we also discuss the
generation of the smooth prediction for the concentration–mass
relation for each model that underlies the interpolation scheme
for building the emulator. We give a brief description on how to
build the emulator in Section 4 and show some examples from
the working emulator and test results verifying its accuracy. We
also compare our results to currently used fitting formulae and
investigate the cosmology dependence of the c–M relation in
some detail. Finally, we provide a conclusion and outlook in
Section 5.

2. CONCENTRATION–MASS RELATION

We study the concentration–mass relation in the regime of
bright galaxies to clusters of galaxies, spanning halo mass ranges
between 2 × 1012 M� and 1015 M�, while varying wCDM
cosmological parameters. A detailed description on how to
measure halo concentrations from simulations and a discussion
of possible systematics is given in Bhattacharya et al. (2011).
We follow the same approach in this paper and give here a brief
summary of the main steps in measuring the c–M relation in
our simulations.

As a first step, we identify halos using a fast parallel friends-
of-friends (FOF) finder (Woodring et al. 2011) with linking
length b = 0.2. Once a halo is found, we define its center
via a density maximum criteria—the location of the particle
with the maximum number of neighbors. This definition of the
halo center is very close to that given by the halo’s potential
minimum. Given a halo center, we grow spheres around it
and compute the mass in radial bins. Note that even though
an FOF finder is used, the actual halo mass is defined by a
spherical overdensity method, consistent with what is done in
observations. (For discussions on halo mass, see, e.g., White
2001; Lukić et al. 2009; More et al. 2011.) The NFW form
for the spherically averaged halo profile is a function of two
parameters, one of which is constrained by the halo mass.
Here, we fit the mass profile using both total halo mass and
concentration as free variables. Although the mass could be
measured independently of the concentration, the joint analysis
is potentially less sensitive to fitting bias.

5 http://www.hep.anl.gov/cosmology/CosmicEmu
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We write the NFW profile as

ρ(r) = δρcrit

(r/rs)(1 + r/rs)2
, (1)

where δ is a characteristic dimensionless density and rs is the
scale radius of the NFW profile. The concentration of a halo is
defined as cΔ = rΔ/rs , where Δ is the overdensity with respect
to the critical density of the universe, ρcrit = 3H 2/8πG, and
rΔ is the radius at which the enclosed mass, MΔ, equals the
volume of the sphere times the density Δρcrit. We compute
concentrations corresponding to Δ = 200, which in turn
correspond to c200 = R200/rs .

The mass enclosed within a radius r for an NFW halo is given
by

M(< r) = M200

[
m(cΔr/R200)

m(c200)

]
, (2)

where m(y) = ln(1 + y) − y/(1 + y). The mass in a radial bin is
then

Mi = M(<ri) − M(<ri−1). (3)

We then fit Equation (3) to the mass contained in the radial bins
of each halo by minimizing the associated value of χ2 as

χ2 =
∑

i

(
Msim

i − Mi

)2(
Msim

i

)2
/ni

, (4)

where the sum is over the radial bins, ni is the number of
particles in a radial bin, Msim

i is the mass in bin i calculated
from the simulations, and Mi is the mass calculated assuming
the NFW profile. The advantage of fitting the mass in radial bins
rather than the density is that the bin center does not have to be
specified. Note that we explicitly account for the finite number
of particles in a bin. This leads to a slightly larger error in the
profile fitting but minimizes any possible bias due to the finite
number of particles, especially near the halo center.

We fit for two parameters—the normalization of the profile
and the concentration. Halo profiles are fitted in the radial range
of approximately (0.1–1) Rvir, where Rvir is set by Δ = Δvir, as
given by the spherical top-hat collapse model. This choice of
range is motivated partly by the observations of concentrations
that typically exclude the central region of clusters (e.g.,
observations by Oguri et al. 2012). More significantly, however,
this excludes the central core which is sensitive to the effects of
baryonic physics and numerical errors arising from limitations
in both mass and force resolution. Duffy et al. (2010) have shown
that, at r < 0.1 Rvir, cluster halo profiles are potentially sensitive
to the impact of baryons, with the profiles being affected at
r = 0.05 Rvir by as much as a factor of two.

The c–M relation is calculated by weighing the individual
concentrations by the halo mass,

c(M) =
∑

i ciMi∑
i Mi

, (5)

where the sum is over the number, Ni, of the halos in a mass bin.
The mass of the bin is given by

M =
∑

i

Mi/Ni. (6)

The error on c(M) is the mass-weighted error on the individual
fits plus the Poisson error due to the finite number of halos in

an individual bin added in quadrature,

Δc(M) =
√(∑

i ΔciMi∑
i Mi

)2

+
c2(M)

Ni

, (7)

where Δci is the individual concentration error for each halo.
The first term dominates toward the lower-mass end where the
individual halos have a smaller number of particles and the
second term dominates toward the higher-mass end, where there
are fewer halos to average over.

3. COSMOLOGICAL MODELS AND SIMULATION SETS

We now describe the cosmological model space covered by
our prediction scheme and the simulations used to construct it.
The emulator is based on 37 cosmological models spanning the
class of wCDM cosmologies. We allow for variations of the
following five parameters:

θ = {ωb, ωm, ns, w, σ8}. (8)

The 37 models are chosen to lie within the ranges

0.0215 < ωb < 0.0235,
0.120 < ωm < 0.155,

0.85 < ns < 1.05,
−1.30 < w < −0.70,

0.616 < σ8 < 0.9,

(9)

which are picked based on current constraints from cosmic
microwave background (CMB) measurements (Komatsu et al.
2011). Following the approach in Lawrence et al. (2010), we
lock the value of the Hubble parameter h to the best-fit value
for each model, given the measurement of the distance to the
surface of last scattering. The values for h then range from
0.55 < h < 0.85. In addition to the 37 models, we run one
ΛCDM model (M000 in Table 1) which is not used to build
the emulator. Instead we use this model as a control for testing
the accuracy of the emulator. All 37 + 1 models are specified in
detail in Table 1.

The specific model selection process is described at length in
Heitmann et al. (2009). In summary, it is based on SLH sampling
(Li & Ye 2000); this sampling strategy provides a scheme that
guarantees good coverage of the parameter hypercube. In our
specific case, we choose an SLH design that has good space
filling properties in the case of two-dimensional projections
in parameter space. In other words, if any two parameters are
displayed in a plane, then the plane will be well covered by
simulation points. Heitmann et al. (2009) provide an extensive
discussion regarding optimal design choices and we refer the
interested reader to that paper.

The emulator developed here is valid between 0 < z < 1
and covers a halo mass range from 2 × 1012 M� to 1015 M�.
We use different box sizes to cover different mass ranges with
sufficient statistics. A summary of the different simulation
sizes is given in Table 2. All simulations were carried out
with the TreePM code GADGET-2 (Springel 2005). In previous
work (Bhattacharya et al. 2011), we have shown that results
from GADGET-2 simulations and those with HACC (Habib
et al. 2009; Pope et al. 2010) produce completely consistent
results. Results from a recent cluster re-simulation campaign
(Wu et al. 2013) are also in good agreement with those of
Bhattacharya et al. (2011).
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Table 1
The Parameters for the 37+1 Models Which Define the Sample Space

No. ωm ωb ns −w σ8 h No. ωm ωb ns −w σ8 h

M000 0.1296 0.0224 0.9700 1.000 0.8000 0.7200 M019 0.1279 0.0232 0.8629 1.184 0.6159 0.8120
M001 0.1539 0.0231 0.9468 0.816 0.8161 0.5977 M020 0.1290 0.0220 1.0242 0.797 0.7972 0.6442
M002 0.1460 0.0227 0.8952 0.758 0.8548 0.5970 M021 0.1335 0.0221 1.0371 1.165 0.6563 0.7601
M003 0.1324 0.0235 0.9984 0.874 0.8484 0.6763 M022 0.1505 0.0225 1.0500 1.107 0.7678 0.6736
M004 0.1381 0.0227 0.9339 1.087 0.7000 0.7204 M023 0.1211 0.0220 0.9016 1.261 0.6664 0.8694
M005 0.1358 0.0216 0.9726 1.242 0.8226 0.7669 M024 0.1302 0.0226 0.9532 1.300 0.6644 0.8380
M006 0.1516 0.0229 0.9145 1.223 0.6705 0.7040 M025 0.1494 0.0217 1.0113 0.719 0.7398 0.5724
M007 0.1268 0.0223 0.9210 0.700 0.7474 0.6189 M026 0.1347 0.0232 0.9081 0.952 0.7995 0.6931
M008 0.1448 0.0223 0.9855 1.203 0.8090 0.7218 M027 0.1369 0.0224 0.8500 0.836 0.7111 0.6387
M009 0.1392 0.0234 0.9790 0.739 0.6692 0.6127 M028 0.1527 0.0222 0.8694 0.932 0.8068 0.6189
M010 0.1403 0.0218 0.8565 0.990 0.7556 0.6695 M029 0.1256 0.0228 1.0435 0.913 0.7087 0.7067
M011 0.1437 0.0234 0.8823 1.126 0.7276 0.7177 M030 0.1234 0.0230 0.8758 0.777 0.6739 0.6626
M012 0.1223 0.0225 1.0048 0.971 0.6271 0.7396 M031 0.1550 0.0219 0.9919 1.068 0.7041 0.6394
M013 0.1482 0.0221 0.9597 0.855 0.6508 0.6107 M032 0.1200 0.0229 0.9661 1.048 0.7556 0.7901
M014 0.1471 0.0233 1.0306 1.010 0.7075 0.6688 M033 0.1399 0.0225 1.0407 1.147 0.8645 0.7286
M015 0.1415 0.0230 1.0177 1.281 0.7692 0.7737 M034 0.1497 0.0227 0.9239 1.000 0.8734 0.6510
M016 0.1245 0.0218 0.9403 1.145 0.7437 0.7929 M035 0.1485 0.0221 0.9604 0.853 0.8822 0.6100
M017 0.1426 0.0215 0.9274 0.893 0.6865 0.6305 M036 0.1216 0.0233 0.9387 0.706 0.8911 0.6421
M018 0.1313 0.0216 0.8887 1.029 0.6440 0.7136 M037 0.1495 0.0228 1.0233 1.294 0.9000 0.7313

Note. See the text for further details.

Table 2
Box Sizes, Particle Numbers, and Mass Resolution

Length N3
p Force Res. mp

(Mpc) (kpc) (M�)

1300 10243 50 5.7 × 1011ωm

365 5123 10 1.0 × 1011ωm

180 5123 10 1.2 × 1010ωm

One set of simulations is from the original Coyote Universe
suite as described in Lawrence et al. (2010). This set of runs
evolves 10243 particles in (1300 Mpc)3 volumes. In addition,
we run one realization each per model with 5123 particles with
a 10 kpc force resolution in a 365 Mpc box and a 180 Mpc box.
A summary of the simulation sets including force and mass
resolution is given in Table 2.

We combine the simulation results from the three boxes for
each model to obtain measurements spanning the desired mass
range. While some models (in particular those with high values
of σ8) have clusters at even higher masses, the statistics beyond
1015 M� are insufficient and we exclude those measurements.
This is also done in order to avoid extrapolations for models
where no data points at high masses exist. In order to build
an emulator, for each model we have to provide a prediction
for the c–M relation for the same mass range. This ensures
that we can provide a consistent set of measurements for
the final interpolation process between different models. From
the simulation results, we determine for each of the 37 + 1
cosmologies the best-fit c–M relation by simply finding the
best-fit power law for each model at two redshifts, z = 0 and
z = 1. The results for the 37 models underlying the emulator
are shown in Figure 1. The blue points show the simulation
results while the red curves show the best-fit power law for each
model. The upper curves in each plot are obtained at redshift
z = 0 and the lower curves at z = 1. The concentration values
range between c ∼ 2 and c ∼ 8. As expected, we find that
models with low values of σ8 (e.g., M012, M018, M019 with
σ8 < 0.65) have depressed c–M relations. We will return to
the cosmology dependence of the c–M relation in Section 4.2
after constructing the emulator, which will allow us to carry out

a comprehensive sensitivity analysis. We reiterate that the fits
shown in Figure 1 are the basis for building the emulator; this
procedure is discussed in the next section.

Finally, we turn to a discussion of the intrinsic scatter in
the c–M relation. As mentioned earlier, the distribution of
concentrations at any given halo mass is Gaussian, and the ratio
of σc(M) to the mean concentration is an approximate invariant
for wCDM models, with a value of ∼1/3 (Bhattacharya et al.
2011), independent of redshift and halo mass. This behavior
is exhibited in Figure 2 where the ratio is computed for all 37
cosmologies as a function of halo mass, at z = 0. Thus, given the
c–M relation from the emulator, the standard deviation at each
mass bin can be trivially estimated by multiplying the returned
concentration value by 1/3.

4. EMULATOR FOR THE
CONCENTRATION–MASS RELATION

4.1. Building the Emulator

In this section, we briefly outline the process for building the
c–M emulator. We follow the procedure explained in Heitmann
et al. (2009) and refer the reader to this paper for more complete
details. The focus of Heitmann et al. (2009) was on modeling the
matter power spectrum rather than the c–M relation, however,
the process is essentially unchanged. Starting with the design
of 37 models given in Table 1, we measure the c–M relation
for each cosmology at z = 0 and z = 1 and fit these with
a power law as described in Section 3 to obtain a smooth
functional form. First, for every mass bin, the global mean value
is subtracted, and then via a simple rescaling the concentrations
are normalized to have unit variance. This produces a zero-
mean, unit variance data set spanning the 37 cosmologies. To
reduce the dimensionality of the problem, these normalized
functions are then decomposed into PC basis functions and only
the most significant components are kept. The idea is to apply
the interpolation method of choice (Gaussian process modeling
in our case) to the coefficients of the basis functions, rather than
to the raw data itself (see Heitmann et al. 2009 for details).
Figure 3 shows that we only need three PCs to successfully
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Figure 1. Concentration–mass relations for 37 wCDM cosmologies. The blue points show the measurements from the three simulations per model while the red lines
show the best-fit power law for each measurement. In each subplot, we show the results for z = 0 and z = 1 (upper and lower curve, respectively). We find the best-fit
power law separately for both redshifts. Models with low values for σ8 generally also exhibit lower c–M relations (e.g., M012, M018, M019). The fits shown here are
the foundation for building the emulator described in Section 4.

(A color version of this figure is available in the online journal.)

capture the behavior of the c–M relation since the shape of the
relationship remains fairly simple across this set of cosmologies.
As explained above, the emulator actually returns the weight on
each PC basis function and these can be combined together to
give the new c–M relation. We model the error in the projection
to the PC basis with an additional hyperparameter λp that can
be tuned to represent the level of noise in the data.

A Gaussian process is then used to interpolate between the
model results; this means that the c–M relation for a new
cosmology is actually a function drawn from a unit normal
distribution. The covariance matrix describes the “distance”
between the new model and the set of known models as given
by the covariance function. The full covariance matrix, Σ, is
composed of one Σl for each PC, arranged along the diagonal
elements such that: Σ = diag(Σ1 . . . Σn) for n PCs. Each element
of Σl is given by

Σl;ij = λl

5∏
k=1

ρ
4(θik−θjk )2

kl , (10)

where θl represents the cosmological parameters and the i and
j indices run over the number of models spanning the design
space (in this case i, j = 1–37), the l index runs over the
number of PCs, and the k index runs over the number of
cosmological parameters. The hyperparameters, λl, ρkl, λp, are

set by exploring the likelihood surface, which is done with a
Markov chain Monte Carlo analysis, but any other algorithm
that locates the maximum likelihood of a multidimensional
surface could also be used. The complete expression for the
posterior can be found in Equation B17 of Heitmann et al.
(2009). This conditions the Gaussian process to the design of
the 37 models and ensures that the hyperparameters correctly
capture the complexity of the surface, because they control the
fit of the interpolating functions to the data.

After conditioning the Gaussian Process (GP) for the best-
fitting hyperparameters, the emulator is ready to predict the c–M
relation for a different cosmology. The prediction involves re-
calculating the covariance matrix between the new parameters
and the design and this locates the new parameters within the
design space. This process is quite fast, and can be repeated each
time a new cosmology is needed with little computational cost.

The results at intermediate redshifts (0 < z < 1) are produced
with a simple linear interpolation. This remains fairly accurate
because the change in the c–M relation with redshift is largely
a simple shift in amplitude.

4.2. Testing the Emulator

The accuracy of the emulator is determined using two
methods: (1) we compare the performance of the emulator

5
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Figure 2. Ratio of the standard deviation of the concentration to the mean
concentration as a function of mass for all 37 cosmologies at z = 0. While both
the standard deviation and the mean concentration are functions of cosmology
and redshift, their ratio is essentially invariant, and is approximately 1/3. The
distribution of the concentration around the mean is well fit by a Gaussian
distribution (Bhattacharya et al. 2011).

(A color version of this figure is available in the online journal.)
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against a model not included in the original design and (2) we
remove one of the models from the design and rebuild the
emulator based on the remaining 36 models in what is known
as a holdout test. In this section, we perform both of these tests
to demonstrate the accuracy of the c–M emulator.

We withheld one model (M000) with a ΛCDM concordance
cosmology from the set of 37 models when building the c–M
emulator. Figure 4 shows the comparison between the emulator
prediction for this cosmology against the direct simulation
results from three different box sizes at z = 0 and z =
1. The hashed region covers the 1σ boundary around the
mean. The emulator predictions are consistent with the N-body
c–M relations well within the errors on the measurements. In
comparison with the smoothed fit for model M000, derived
from the same power-law fitting procedure used on the set of 37
cosmologies, we find that at z = 0, the emulator is essentially
perfect at the high-mass end and accurate to at least 3.25%
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Figure 4. Predictions from the c–M emulator at z = 0 (blue, solid) and z = 1
(red, solid) for measurements from N-body simulations for the M000 cosmology.
The dashed lines show the best-fit power law describing the N-body results and
the hashed region shows the expected variation in the c–M relation from the
mean (solid line). Note that this set of simulations was not used to build the
emulator.

(A color version of this figure is available in the online journal.)

for low-mass halos. For z = 1 the error is somewhat worse,
mainly due to the limited halo statistics for building the emulator,
especially for the low-σ8 models. At low masses, the predictions
are accurate at the 2% level and degrade to 9% inaccuracy at
the highest masses considered. All of these values are well
within what may be considered to be the nominal uncertainty
in determining concentrations from simulations (Bhattacharya
et al. 2011). For most of the range of halo mass considered,
the accuracy of the emulator outperforms any other prediction
scheme available, especially considering the large model space
covered here.

In Figure 5, we show estimates of the emulator error by
performing a holdout test. In such a test, one model is kept aside
and a new emulator is built based on the remaining 36 models.
The new emulator is used to predict the c–M relation for the
heldout model. Since the numerical result (“truth”) is known for
that model, we can measure the emulator prediction error. One
shortcoming of this method—in particular if only a very small
number of simulations is available as is the case here—is that
by removing one model, the quality of the emulator is degraded.
Therefore, the error estimate for the emulator obtained this way
can be considered to be a conservative upper bound.

We have chosen to exclude only models M004, M008,
M013, M016, M020, and M026 because these are located
relatively close to the center of the design. Removing a model
that defines one of the edges of the design would greatly
reduce the performance of the emulator, since the GP would
be extrapolating for a missing model that is now outside of
the design range. The comparison in Figure 5 is made with
respect to the power-law fits that were used to construct the
full emulator, not the direct c–M relation measured from the
N-body simulation. At most, the emulator deviates by 3.3%
from the simulation results at z = 0 and this rises to 15%
at z = 1. This is because the error on the raw measurements
increases with redshift as the sample size of halos decreases,
particularly for low-σ8 models.

4.3. Comparison with Other c–M Predictions

We now compare the results obtained from the emulator with
those from the models presented in Bhattacharya et al. (2011),
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(A color version of this figure is available in the online journal.)

Bullock et al. (2001), Duffy et al. (2008), and Prada et al. (2012).
The Bullock et al. (2001) model was intended to correct the red-
shift dependence of the original NFW model, which was claimed
to overpredict the concentration of high-redshift (z > 1) halos.
We perform our comparisons against the most recent version
of the model that incorporates corrections from Macciò et al.
(2008).6 The Bullock et al. (2001) model contains two free pa-
rameters K = 3.85 and F = 0.01. Newer values of K and F
were obtained in Macciò et al. (2008) by fitting this model to
N-body simulations using cosmological parameters correspond-
ing to the first, third, and fifth WMAP data releases. Figure 6
shows the ratio of the Bullock et al. (2001) model to our emula-
tor at z = 0 for two cosmologies, M000 and WMAP7 (Komatsu
et al. 2011); note that the Bullock et al. (2001) model has only
been tested with ΛCDM and SCDM cosmologies. These two
models are certainly consistent at low halo masses within the
expected error of the emulator, but a substantial discrepancy
occurs at cluster-sized halos, even with the updated version of
Macciò et al. (2008). This occurs because the model contains
free parameters that need to be tuned to a particular cosmology
with N-body simulations. However, the Bullock et al. (2001)
model is able to reach much lower halo masses, M < 1010 M�,

6 Available from physics.uci.edu/∼bullock/CVIR
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Figure 6. Comparison of the emulator—taken as the reference—with other
models for the c–M relation at z = 0 (upper panel) and z = 1 (lower panel).
The Bullock et al. (2001)/Macciò et al. (2008) c–M relation is shown in blue
for both M000 (solid) and WMAP7 (dashed) cosmologies. The Bhattacharya
et al. (2011) fit (note that this fit was derived only for M000, not for general
cosmological models) is in green, the Prada et al. (2012) c–M relation in cyan,
and the Duffy et al. (2008) c–M relation in red for M000 (solid) and WMAP5
(dashed) cosmologies. In addition, the pink line shows the ratio of the power-law
fit for M000 to the emulator prediction (as shown in Figure 4 the agreement
is very good, with less than 3% deviation over most of the mass range). The
lower panel shows the results for z = 1. The public code for the Bullock et al.
(2001)/Macciò et al. (2008) fit does not work seamlessly over the full mass
range so we do not show results for the very high mass end here. See the text
for further discussion of this set of results.

(A color version of this figure is available in the online journal.)

than our emulator because it is calibrated to higher-mass reso-
lution N-body simulations.

At z = 1, the public code used for the Bullock/Macciò model
fails to compute the concentration across the full range of halo
masses because of difficulties at low-σ8. We therefore show only
results for a limited mass range. The discrepancy here is much
larger than for z = 0, with a concentration underestimation of
greater than 20%.

More recently, Duffy et al. (2008) proposed a new c–M
relation with a power-law relationship between the halo mass
and the concentration, as extracted from a series of high
resolution, small-to-medium volume N-body simulations with
a WMAP5 cosmology. Results from the c–M emulator are
consistent with their predictions to within ∼10% at z = 0,
as are the results in Bhattacharya et al. (2011). There is a slight
deviation at cluster-sized halos; our c–M emulator is based on
larger volume simulations, and is therefore able to provide a
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Figure 7. Sensitivity of the c–M relation to the five cosmological parameters varied in the emulator design, Ωm h2, Ωb h2, −w, ns , and σ8, at z = 0. We vary each
cosmological parameter individually for each panel and have binned the range into five intervals, which are colored from light to dark as the value of the parameter
increases. For each of these bins, we take the ratio of the binned c–M relation with respect to the model corresponding to the midpoint of the design space, c(M)0. To
guide the eye, we also plot the median c(M)/c(M)0 of each bin in parameter space.

more complete sample of massive halos and reduced shot noise
at the high-mass end. The agreement between the emulator and
the Duffy et al. (2008) c–M relation improves to ∼5%–6% at
z = 1 for the WMAP5 cosmology.

In Figure 6, we also show the ratio between our emulator
and the c–M relation as determined by the model discussed in
Prada et al. (2012), which is itself based on a number of N-body
simulations. There is a ∼20% discrepancy at z = 0 (∼40%
at z = 1) for lower halo masses. This increases dramatically
for cluster-sized halos at both redshifts, since unlike Prada
et al. (2012), we do not observe an upturn in the c–M relation,
where their concentration increases with halo mass. One should
note that the methods for measuring the halo concentration are
different in our two cases—we use a finite-range profile-fitting
method as discussed in Bhattacharya et al. (2011), whereas
Prada et al. (2012) use a two-point ratio method. Expectations
for discrepancies between profile fitting and their particular ratio
method are further discussed in the Appendix of Bhattacharya
et al. (2011) and also in De Boni et al. (2013).

We also note that there is a good agreement to within ∼5%
between our emulator and the c–M relations measured by Neto
et al. (2007) from the Millennium simulation (Springel et al.
2005). The cosmology of the Millennium simulation does not
quite fall within the range of our emulator (ωb h2 = 0.024 and
h = 0.73), and to facilitate this comparison we have adopted
values as close to these as possible that still lie within our
parameter space (ωb h2 = 0.0235 and h = 0.719).

Lastly, we compare the emulator prediction with the fitting
function derived in Bhattacharya et al. (2011) for the M000
cosmology. Before doing so, we provide some necessary back-
ground. First, the redshift dependence in the fitting form in
Bhattacharya et al. (2011) is handled differently than in the cur-
rent paper. In Bhattacharya et al. (2011), the aim was to find a
global power-law fit that encompasses all redshifts considered
(between z = 0 and z = 2) at once. Therefore, the fit for each
redshift is not expected to be perfect. In the current paper, we
follow a different path: since we do not provide a single formula
for the c–M relation but rather a simple numerical code, we can
generate the best-fit power-law model for each redshift sepa-
rately and then simply interpolate between the redshifts. This
produces a more accurate answer at each redshift at the minimal
cost of running a fast code for every c–M prediction instead of
using one fitting formula.

Second, for the high-mass range, Bhattacharya et al. (2011)
used higher force resolution simulations. As shown in the
Appendix of Bhattacharya et al. (2011), the concentrations

from the Coyote runs are slightly lower at high masses (at the
5% level) compared to higher-resolution simulations. Since it
is not clear if this effect is independent of cosmology (most
likely for lower σ8 simulations the effect will be smaller), we
decided to not attempt to correct the concentration measures
in this paper for the Coyote runs. Therefore, the uncertainty
for the high-mass concentrations from the emulator predictions
will be slightly higher and one should note that the standard
deviation, as estimated by simply taking a third of the mean
value of the concentration (as we do here), will now be slightly
underestimated from its true value. Considering the overall
scatter and uncertainty in the c–M relation, this small effect
is unlikely to be significant.

Keeping these caveats in mind, we now turn to the comparison
of the fit by Bhattacharya et al. (2011) and the emulator result in
Figure 6. For z = 0, both agree at the 2% (low halo mass) to 6%
(high halo mass) level, the Bhattacharya et al. (2011) fit being
slightly higher as expected. For z = 1, the discrepancy ranges
from 4% to 17%. Here, overall the emulator estimate compared
to the best-fit power law to the simulation result is slightly low,
while the Bhattacharya et al. (2011) fit slightly overestimates the
simulation results. In other words, the actual simulation result
lies in between the emulator prediction and the fit. Overall, the
agreement between the Bhattacharya et al. (2011) fit and the
emulator is much better at z = 1 than the agreement between
the emulator and the Bullock/Macciò fit.

4.4. Cosmology Dependence of the c–M Relation

Finally, we explore the sensitivity of the c–M relation to
variations in cosmology. Since we now have a means of quickly
and smoothly interpolating from one cosmology to another,
we can simply vary the parameters that we incorporated into
our design space in a regular grid. We divide each parameter
range into five evenly spaced regions and vary only a single
parameter at a time by keeping the other four parameters
fixed at the midpoint of the parameter range. Our comparisons
are always made with respect to this model at the midpoint,
which has the parameters: Ωm h2 = 0.1375, Ωb h2 = 0.0225,
ns = 0.95, w = −1, and σ8 = 0.758, and we take the
ratio with respect to this model for each binned c–M relation.
Figure 7 shows the results of this exercise at z = 0, with the
values of the cosmological parameters increasing as the shading
increases from light to dark. The entire region is colored to
show the variation in the c–M relation across each parameter
bin. The range of concentration variation changes as a function
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of mass and the cosmological parameter being varied; the
largest variation is of the order of unity. Unsurprisingly, the
c–M relation increases with Ωm h2 and σ8, and decreases with
w, which slows the rate of structure formation. We see little
variation with Ωb h2 because the range of parameters allowed
by the CMB constraints is already quite tight. Also, cluster-sized
halos appear to be relatively less sensitive to these changes in
cosmology. Figure 7 also shows a clear degeneracy between
Ωm h2, σ8, and ns in the c–M relation.

5. CONCLUSION AND OUTLOOK

In this paper, we have presented a new prediction scheme—in
the form of an emulator—for the c–M relation for dark matter-
dominated halos at the bright galaxy to cluster mass scales,
covering a range of 2 × 1012 M� < M < 1015 M� and a
redshift range of z = 0 to z = 1. The emulator provides
results for a large class of wCDM cosmologies and is accurate
at the ∼5% level (better for lower redshifts, slightly worse for
higher redshifts). The emulator enables consistent predictions
to be made when testing for deviations from ΛCDM using
clusters. This is particularly important for cluster cosmology,
since the behavior of the c–M relation can vary by as much
as 30% just by varying the equation of state across the range
−1.3 < w < −0.7. By correctly including the cosmology
dependence in the c–M relation, the emulator improves on
analytic modeling of halo profiles, such as the one-halo term
used in the halo power spectrum. The performance of the
emulator compares favorably with the other models for the c–M
relation in the literature and outperforms the Bullock/Macció
model across the redshift and mass range considered.

Aside from predicting the mean c–M relation, the interesting
and useful fact that across all 37 cosmologies considered, (1) the
scatter in halo concentrations in individual mass bins is Gaussian
and (2) the corresponding standard deviation is given by roughly
a third of the mean concentration value, means that the c–M
emulator also includes within it the information regarding the
concentration distribution at a given value of mass.

The work in this paper is an example of how the CCF provides
a means of estimating highly nonlinear quantities involving
evolved structures from a limited number of computationally
expensive N-body simulations. In the future, we will extend
the number and range of cosmological parameters to include
more exotic phenomena, such as evolving dark energy, as a
complement to upcoming dark energy experiments.
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